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Summary  23 

1. Nitrogen (N) and phosphorus (P) are essential nutrients for plant metabolism and their 24 

availability often limits primary productivity. Whereas the effects of N-availability on 25 

photosynthetic capacity are well established, we still know relatively little about the 26 

effects of P availability at a foliar level, especially in P-limited tropical forests.  27 

2. We examined photosynthetic capacity, leaf mass per area (LMA), and foliar P fractions in 28 

five woody plant species after six years of N and P fertilization in a lowland tropical forest.  29 

3. Foliar N:P ratios indicated P limitation of the unfertilized plants; accordingly 30 

photosynthetic P-use efficiency (PPUE) and LMA decreased with P addition, and foliar N 31 

and P concentrations increased, whereas N addition had little effect on measured foliar 32 

traits. However, P addition enhanced photosynthetic capacity only in one species, and not 33 

in other four species. We then assessed plant acclimation to low P availability by 34 

quantifying four fractions of foliar P representing different functional pools: structural P, 35 

metabolic P (including inorganic P), nucleic acid P, and residual P. We found that P addition 36 

enhanced the concentrations of metabolic, structural, and nucleic acid P fractions in all 37 

species, but the magnitude of the effect was species-specific.  38 

4. Our findings indicate that tropical species acclimate to low P availability by altering 39 

allocation of foliar P to meet the demand of P for photosynthesis. Importantly, species 40 

typical of lowland tropical forests in East Asia maintained their photosynthetic rate under 41 

low P availability. We conclude that P limitation of leaf photosynthetic capacity may not 42 

be as common as previously assumed due to plant acclimation mechanisms in low-P 43 

tropical forests. Species-specific strategies to allocate P to different foliar fractions 44 

represent a potentially important adaptive mechanism for plants in P-limited systems. 45 

Keywords: Fertilization, Nitrogen deposition, P fractions, P limitation, Photosynthesis, PNUE, PPUE, 46 

Secondary forest47 



Introduction  48 

Nitrogen (N) and phosphorus (P) are essential nutrients for photosynthetic carbon assimilation, 49 

and the most common nutrients limiting net primary productivity in terrestrial ecosystems. 50 

Nitrogen availability constrains plant productivity in many temperate and boreal forests by limiting 51 

leaf initiation and expansion (Vos & Biemond 1992) and the synthesis of Rubisco and other 52 

photosynthetic proteins (Evans 1989). However, tropical forests were generally regarded as P 53 

limited rather than N limited, because soil P availability generally declines with bedrock weathering 54 

and soil age (Walker & Syers 1976). Quaternary glaciation exposed fresh bedrock over a large area 55 

of temperate and boreal regions, but not in the tropics (Vitousek 1984). In accordance, 56 

biogeochemical theory indicates that old, strongly weathered lowland tropical forests should be P 57 

limited (Vitousek 1984; Vitousek & Howarth 1991; Vitousek et al. 2010). However, tropical forests 58 

maintain the greatest plant biomass and the fastest rates of many biological processes (i.e. 59 

decomposition, N transformation) on Earth (Tanner et al. 1990). Therefore, identifying the 60 

strategies that tropical plants have evolved to use P efficiently under low soil P availability is an 61 

important topic in plant ecology (Hidaka & Kitayama 2009; Reed et al. 2011; Hidaka & Kitayama 62 

2013; Lambers et al. 2015).  63 

Shifting P allocation in leaves is an important mechanism for plants to acclimate to low soil P 64 

availability (Hidaka & Kitayama 2011). Foliar P is functionally divided into four major fractions: 1) 65 

metabolic P, including low-molecular-weight phosphate esters (e.g., ADP, ATP, and sugar 66 

phosphates), and inorganic phosphate (Pi); 2) nucleic acid P, most of which is contained in 67 

ribosomal RNA; 3) structural P in membrane phospholipids; and 4) residual P in phosphorylated 68 

proteins and unidentified residues (Kedrowski 1983; Hidaka & Kitayama 2011; Lambers et al. 2011). 69 

Of these, metabolic P is of particular interest for studying P limitation, because P-containing 70 

metabolites have key roles in the Calvin-Benson cycle, and insufficient metabolic P could limit 71 

maximum photosynthetic rates (Ågren, Wetterstedt & Billberger 2012). Nucleic acid P generally 72 

represents 40–60% of the organic P pool in leaves (Veneklaas et al. 2012). Over 85% of nucleic acid 73 

P is contained in RNA, especially ribosomal RNA (rRNA), and a high P allocation to rRNA sustains 74 



rapid protein synthesis, which is required for growth and photosynthesis (Hidaka & Kitayama 2011). 75 

Therefore, there is generally a positive correlation between rRNA content and protein content, as 76 

well as growth rates, over a range of taxa (Elser et al. 2000). Structural P accounts for 10-20% of all 77 

foliar P (Veneklaas et al. 2012), and is contained mainly in phospholipids, which are an essential 78 

component of plasmalemma and organelle membranes. Finally, residual P can represent 20% of 79 

total foliar P in tropical trees (Hidaka & Kitayama 2011) and probably mostly comprises 80 

phosphorylated proteins. Generally, the concentration of the residual P fraction is relatively 81 

constant, because phosphorylated proteins are essential for many metabolic processes. However, 82 

under extremely P-limiting conditions, phosphatases may also dephosphorylate phosphorylated 83 

proteins (Schlüter et al. 2013), leading to a reduction in residual P concentrations. 84 

Under P deficiency, photosynthesis is generally reduced (Turnbull, Warren & Adams 2007) due to 85 

feedback inhibition resulting from reduced leaf growth (Dissanayaka et al. 2018) or because 86 

orthophosphate (Pi) in the cytosol becomes limiting (Warren 2011). Plants also tend to increase 87 

their leaf mass per unit area (LMA; Chiera, Thomas and Rufty (2002), and increase their 88 

photosynthetic P-use efficiency (Hidaka & Kitayama 2009) when P supply is limited. Ellsworth et al. 89 

(2015) suggest that P-limitation of photosynthetic capacity is likely common in the field. However, 90 

since photosynthesis involves a series of chemical and physical processes that are dependent on 91 

nutrient supply, some degree of acclimation to P availability can be expected for plants growing on 92 

low-P soils. There is evidence that tree species growing on P-poor soils in tropical montane forests 93 

reduce their overall need for foliar P by decreasing the metabolic P fraction (Hidaka & Kitayama 94 

2011). However, it is unclear whether such a reduction in metabolic P affects leaf photosynthetic 95 

capacity, because plant vacuoles serve as a reservoir of Pi (Mimura 1995), which buffers direct Pi 96 

restriction of photosynthesis. Although generally a short-term acclimation to low P availability, this 97 

buffering effect has been observed in many species (Rao & Terry 1995; Schachtman, Reid & Ayling 98 

1998; Warren 2011). Another important P-saving mechanism under low P availability involves the 99 

replacement of phospholipids (structural P) in membranes by sulfolipids and galactolipids 100 

(Rouached, Arpat & Poirier 2010; Lambers et al. 2012; Veneklaas et al. 2012), which can maintain 101 



foliar P metabolite concentrations at very low P availability. However, this mechanism appears to 102 

be an evolutionary adaptation to low P availability, and has so far only been reported in Proteaceae 103 

from severely P-impoverished soils in Australia (Lambers et al. 2012).  104 

Lowland tropical forest trees have experienced long-term low P status; adaptations to P limitation 105 

thus likely evolved in these species, but field-based evidence for this is lacking. A recent study in a 106 

Panamanian tropical forest showed that P limitation of plant growth is species-specific, but does 107 

not translate into a community-wide response, because some species are adapted to low P 108 

availability and able to grow rapidly, despite low soil P availability (Turner, Brenes-Arguedas & 109 

Condit 2018). The finding redefined our understanding of P limitation in species-rich tropical 110 

forests; however, we do not fully understand the mechanisms by which tropical species are able to 111 

acclimate to low-P soils and maintain rapid growth.  112 

Given the importance of photosynthetic capacity for plant performance, a better understanding of 113 

species-specific foliar P-allocation patterns and their relationship with photosynthetic capacity in 114 

low-P tropical forests is needed. We investigated this within an existing fertilization experiment in 115 

lowland tropical forest in China, using five woody plant species with distinct distributions: three 116 

species are limited to the lowland tropics (stenotopic), one species occurs in both tropical and 117 

subtropical forests of East Asia, and is also found in temperate regions (eurytopic; Fig. S1). To 118 

understand how plants acclimate to low-P soils through shifts in foliar traits and P-allocation 119 

pattern, we measured leaf photosynthesis, photosynthetic P-use efficiency (PPUE), LMA, leaf N and 120 

P concentrations, and leaf P fractions after six years of N- and P fertilization. We hypothesized that:  121 

1) Fertilisation with P would have a much stronger effect on foliar traits (i.e. photosynthetic capacity, 122 

LMA, N and P concentrations) than fertilisation with N.  123 

2) The response of photosynthetic capacity to P fertilization would be species-specific, whereby 124 

the maximum photosynthetic rate of stenotopic tropical species would be unaffected by P addition, 125 

as they are adapted to the low soil P availability.  126 

3) Species-specific changes in the allocation of P to different leaf fractions (structural P, metabolic 127 



P, nucleic acid P, and residual P) explain the maintenance of photosynthetic capacity under low P 128 

availability. 129 

Material and methods 130 

Site description 131 

The study was carried out at Xiaoliang Research Station for Tropical Coastal Ecosystems of the 132 

Chinese Academy of Sciences (21�27ʹN, 110°54ʹE), located in the southwest of Guangdong 133 

Province, China. This region is characterized by a tropical monsoon climate with a mean 134 

annual temperature of 23°C. Annual rainfall ranges from 1400 to 1700 mm, with dry season 135 

from November to March. The soil is classified as a latosol developed from granite (Wang et 136 

al. 2014). Annual wet N deposition in the region was c. 40 kg N ha-1 in 2011 and 2012 (Mo et 137 

al. 2015; Chen et al. 2016). 138 

The study site was located in secondary broad-leaf mixed forest on coastal land (c. 5 km from 139 

the coast) with a very small slope. The forest was restored from Eucalyptus exserta plantation 140 

by introducing 312 plant species between 1964 and 1975. Thereafter, natural colonization 141 

during succession displaced almost all of the planted species, resulting in a typical secondary 142 

evergreen tropical forest with the biodiversity and structural complexity of natural forest (Mo 143 

et al. 2015; Chen et al. 2016).  144 

Experimental design 145 

An N- and P-fertilization experiment was established in a randomized block design within the 146 

secondary tropical forest in September 2009 (Zhao et al. 2014; Chen et al. 2016). Four 10-m × 147 

10-m plots were established within each of five replicate blocks; adjacent blocks were 148 

separated by 50 m. Four treatments, N-addition (+N), P-addition (+P), N- and P-addition (+NP), 149 

and a control treatment (CT, no addition of mineral nutrients) were assigned randomly to the 150 

four plots within each block. The edges of each plot were trenched to a depth of 20-cm and 151 



surrounded by a 2-m wide buffer. Since most fine roots are distributed in surface soils, the 152 

trenches largely inhibited the transfer of nutrients among treatments, as evidenced by clear 153 

differences between fertilized and unfertilized treatments in extractable soil P after six years 154 

of fertilization in 2015 (Table 1). Fertilizers were applied every two months from 2009 - 2015 155 

to give total amounts of N and P equivalent to 100 kg ha-1 yr-1. Briefly, for every fertilizer 156 

application, 476.6 g NH4NO3 (equal to 166.6 g N) and/or 808 g Na2HPO4 (equal to 166.6 g P) 157 

were dissolved in 30 L groundwater and then applied to the corresponding plots uniformly 158 

using a backpack sprayer near the soil surface; 30 L of groundwater were also applied to 159 

control plots (Wang et al. 2014; Li et al. 2015). The amount of added water in each plot was 160 

equivalent to 0.08% and 0.35% of rainfall inputs in the wet and dry seasons, respectively (Mo 161 

et al. 2015).  162 

Table 1 General soil chemical properties (0-10 cm) in fertilization treatments in a secondary coastal 163 

forest in China before the start of fertilizer application in September 2009 and after six years of 164 

fertilization treatments in May 2015; where CT is control, and +N, +P or +NP denote fertilization 165 

with nitrogen (N), phosphorus (P) or both nutrients, respectively; means ±SE are shown for n=5. 166 

Different superscript letters indicate significant differences among treatments at p<0.05. TP: total 167 

P concentration, TN: total N concentration, AP: available phosphorus; data for 2009 are reported 168 

in Li et al. (2015). 169 

Date Variables CT +N +P +NP 

Sep. 

2009 

pH (H2O) 4.0±0.06 4.0±0.05 4.0±0.05 4.0±0.09 

AP(mg kg-1) 4.10±0.56 3.79±0.42 4.06±0.37 3.70±0.60 

NO3
--N (mg kg-

1) 

2.88±0.35 2.72±0.11 2.68±0.31 2.35±0.33 

NH4-N(mg kg-1) 2.12±0.12 1.85±0.13 1.81±0.11 2.03±0.17 

TN (g kg-1) 2.71±0.15 2.34±0.21 2.66±0.10 2.68±0.19 

TP (g kg-1) 0.40±0.03 0.38±0.02 0.42±0.02 0.43±0.03 

May. 

2015 

pH (H2O) 3.8±0.02 3.8±0.06 3.9±0.06 3.9±0.06 

AP (mg kg-1) 4.60c±0.57 5.60c±0.69 71.4a±2.8 53.2b±9.15 

NO3
--N (mg kg-

1) 

6.02±0.75 7.42±1.58 3.11±0.46 6.04±1.85 

NH4-N(mg kg-1) 3.55±0.36 4.11±0.46 4.19±0.73 4.16±0.50 

TN (g kg-1) 1.31±0.05 1.36±0.04 1.25±0.09 1.50±0.12 



TP (g kg-1) 0.35b±0.02 0.39b±0.01 0.65a±0.02 0.58a±0.05 

Measurement of foliar traits 170 

We used previous vegetation surveys at the study site to identify the 10 most common 171 

understory species, and selected five common species that occurred in sufficient numbers in 172 

all experimental treatments. Clerodendrum cyrtophyllum Turcz.is a eurytopic shrub species, 173 

which is distributed widely from temperate forest to tropical forest in East Asia (Fig. S1). 174 

Schefflera octophylla (Lour.) Harms is a small tree that can grow to 15 m height and can be 175 

found in subtropical and tropical forests (He & Zeng 1978). Syzygium bullockii Hance. and 176 

Psychotria rubra (Lour.) Poir. are shrubs or small trees (Chen & Pie 1982; Chen 1984; Chen 177 

1999), typical of lowland tropical forests (i.e. stenotopic species). Uvaria microcarpa Champ. 178 

Ex Benth is a shrub only found in tropical forests (i.e. a stenotopic species, Jiang and Li (1979). 179 

We selected individuals with a height of c. 2 m for consistency of in situ foliar level 180 

measurements. We measured foliar photosynthetic rates, leaf mass per area (LMA) and foliar 181 

N and P concentrations on mature leaves of all five species after six years of fertilization with 182 

N and/or P in 2015. Leaf photosynthetic rates were measured using a portable open-system 183 

infrared gas analyzer (LI-6400, LI-COR Biosciences, Lincoln NE, USA). Measurements were 184 

carried out during seven days in August 2015 between 8:00 AM and 12:00 PM on fully 185 

expanded healthy sun-exposed mature leaves. Three to seven individuals per species were 186 

measured in each treatment. Rates of CO2 exchange were measured in situ under controlled 187 

cuvette conditions set to 1000 μmol m-2 s-1 PAR, 400 μmol CO2 mol-1, a chamber temperature 188 

of 25 ±1ºC and a vapor pressure deficit of 0.5-1.0 kPa. The photosynthetic photon flux density 189 

of 1000 μmol m-2 s-1 was the same as previous studies in tropical forests (Hidaka & Kitayama 190 

2009; Hidaka & Kitayama 2013), and is generally a saturating light value for photosynthesis in 191 

these understory species. Leaves measured for CO2-assimilation rates were subsequently�192 

collected to determine LMA using a portable leaf area meter (LI-3000A, LI-COR Biosciences) 193 



and a second leaf sample was collected from the same branch for chemical analyses. All leaf 194 

samples were stored on ice, returned to the lab and washed within 6 h. After determination 195 

of leaf area, the first leaf samples were dried to constant weight at 50ºC for 72 h and weighed 196 

to determine dry mass and LMA (g m-2). The second leaf sample was freeze-dried for analysis 197 

of foliar N and P concentrations (mg g-1 dry weight) and P fractions. Leaf samples were ground 198 

after removing petioles and main veins, and foliar P concentrations were measured 199 

spectrophotometrically after digestion with sulfuric acid (H2SO4); foliar N concentrations were 200 

determined using the Kjeldahl method (Wang et al. 2013). Photosynthetic nutrient use 201 

efficiency for N (PNUE) and P (PPUE) was defined as the rate of net photosynthesis per unit N 202 

or P expressed on a leaf dry mass basis, and photosynthetic capacity is given on dry mass basis 203 

(Amass; nmol CO2g-1s-1) and leaf area basis (Aarea; umol CO2m-2s-1). 204 

Measurement of P fractions 205 

Foliar P was partitioned into four fractions: structural P, metabolic P (including Pi), nucleic acid 206 

P and residual P, using sequential extraction (Kedrowski (1983) with modifications (Hidaka and 207 

Kitayama (2011). First, c. 0.5 g of freeze-dried leaf sample was weighed into a 50-ml centrifuge 208 

tube (tube 1); it was then extracted twice with 7.5 ml 12:6:1 CMF (chloroform, methanol, 209 

formic acid, v/v/v). The liquid extract was transferred into a clean tube (tube 2). The residue 210 

from the initial extraction was then extracted twice with 9.5 ml 1:2:0.8 CMW (chloroform, 211 

methanol, water, v/v/v), and the liquid solvent was also added to tube 2. The remaining 212 

residue was then mixed with 9.5 ml water-washed chloroform and the supernatant was also 213 

transferred to tube 2, and mixed thoroughly. The upper phase of the extract in tube 2 was 214 

transferred to a clean tube (tube 3) and the lower lipid-rich phase was used to determine 215 

structural P.  216 

All liquid extracts in tube 3 were mixed with those remaining in tube 1, and 5 ml methanol 217 

(85% v/v) was added; the tube was then placed in a vacuum dryer for 48 h to remove residual 218 



chloroform and methanol. The extract was refrigerated (4ºC) for 1 h. First, 1 ml TCA 219 

(trichloroacetic acid, 100%) and then 10 ml TCA was added and the extract was shaken for 1 220 

h before being centrifuged at 3000 g. The supernatant was analyzed for metabolic P.  221 

Finally, the residue was mixed with 35 ml TCA (2.5%, w/v), extracted for 1 h in a hot water 222 

bath (95ºC), and centrifuged at 3000 g after cooling to room temperature. The liquid layer was 223 

measured for nucleic acid P and the residue from this final extraction was analyzed for residual 224 

P. All foliar P fractions were measured spectrophotometrically after digestion with sulfuric 225 

acid (H2SO4) and are expressed on a dry mass basis (mg g-1).  226 

Data analyses  227 

All data analyses were conducted in R version 3.1.0 (R Core Team 2017), using the nlme 228 

package (Pinheiro et al. 2016) for linear mixed effects models and the FactoMineR package 229 

(Le, Josse & Husson 2008) for multivariate analyses. As our experiment used a randomized 230 

block design, we first used linear models (Analysis of Variance) to assess the block effect on 231 

soil nutrients before fertilization (Table 1), and found no significant block effect on soil 232 

extractable N or P. We then used linear mixed effects models (lme function) to examine the 233 

effects of N-addition, P-addition and species identity on leaf parameters. In the initial model, 234 

N-addition, P-addition, species and their interaction were considered fixed effects, and plots 235 

within blocks as the random effect. We compared nested models using likelihood ratio tests 236 

and AICs to check for model improvement (Pinheiro & Bates 2000). There was generally a 237 

better model fit (lower AIC values) with interaction terms; we thus selected the full factor 238 

model and assessed the significance of each fixed effect using the anova function. As there 239 

were significant interactions between treatments and species (Table 2), we also investigated 240 



species-specific responses to N- and P addition using separate linear models with block as an 241 

error term (Table S1). Where models for individual species were significant, post-hoc tests 242 

(Tukey’s HSD) were conducted for multiple comparisons among treatments. Results are 243 

reported as significant at p<0.05. 244 

Results  245 

All measured foliar traits varied strongly among the five study species and the responses of 246 

foliar traits to nutrient additions were often species-specific (Table 2), indicating different 247 

nutrient-use or allocation strategies in our study species.  248 

Photosynthesis and leaf mass per area (LMA) 249 

Although there was no overall effect of N- and/or P addition on photosynthetic rate, 250 

significant interactions indicated species-specific responses to N and P addition (Table 2). Both 251 

of Aeara and Amass showed the similar patterns among species and fertilization treatments (Fig.1 252 

& Table 2). Analyses for each species individually showed that Amass was affected by the 253 

interaction of N and P in C. cyrtophyllum and S. octophylla (Table S1). Amass in C. cyrtophyllum 254 

(i.e. the eurytopic species) increased only when P was added alone, resulting in significantly 255 

higher Amass in the +P treatment than in the +NP, +N or control treatments (Fig. 1). By contrast, 256 

Aarea in S. octophylla was significantly lower in the +P treatment than in the control, but the 257 

negative effect of P addition was ameliorated by the addition of N (Fig. 1). 258 

Leaf mass per area (LMA) in the control ranged from 40 g m-2 to 71 g m-2 (Fig. 1; Table 2), and 259 

decreased significantly with P addition (Table 2), with the strongest reduction in C. 260 



cyrtophyllum and S. octophylla (p=0.006 and p=0.02, respectively; Fig 1, Table S1). There was 261 

no effect of N addition on LMA for any species (Fig. 1; Table S1). 262 

 263 

Fig. 1 Box-plots of area-based and mass-based photosynthetic rates (Aarea and Amass) and leaf mass 264 

per unit area (LMA) for five woody species in a tropical forest following six years of fertilization with 265 

nitrogen (+N), phosphorus (+P) or both nutrients (+NP) compared to controls (CT). Different letters 266 

within panels indicate post-hoc significant differences among treatments at p<0.05.. 267 



Table 2 Significance (p-values) of terms from linear mixed model analysis for foliar traits, nutrient concentrations and phosphorus fractions of five woody species in a 268 
tropical forest following six years of fertilization with nitrogen (N) and phosphorus (P), where S is species; N is N-addition; P is P-addition; Aarea is photosynthetic rates 269 
per unit area; Amass is photosynthetic rates per unit mass; LMA is leaf mass per unit area; PNUE is photosynthetic N-use efficiency and PPUE is photosynthetic P-use 270 
efficiency. 271 

Fixed 
effect  

Aarea Amass LMA 
N 
concentration 

P 
concentration 

N:P 
ratios 

PNUE PPUE 
Metabolic 
P 

Nucleic 
P 

Structural 
P 

Residual 
P 

S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

N ns ns ns <0.001 ns ns ns ns ns ns ns 0.009 

P ns ns 0.001 0.001 <0.001 <0.001 ns 0.005 <0.001 <0.001 <0.001 <0.001 

N×S 0.020 ns ns 0.001 ns ns ns ns ns ns ns 0.001 

P×S ns ns ns 0.001 0.001 0.005 ns 0.038 0.006 0.016 ns <0.001 

N×P ns ns ns ns ns ns ns ns ns ns ns 0.004 

N×P×S <0.001 0.005 ns 0.038 ns ns 0.002 0.040 ns ns ns 0.027 

272 
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Foliar N and P concentrations and N:P ratios 273 

The response of foliar N concentrations (hereafter ‘foliar [N]’) to fertilizations was strongly 274 

influenced by species identity and treatment, but overall foliar [N] was slightly but significantly 275 

higher in treatments with added N (Table 2). Foliar P concentrations (hereafter foliar [P]) 276 

increased markedly with P addition in all species (Fig. 2; Table 2). Foliar [P] increased by 33% 277 

- 107% in +P treatments compared with controls, and by 27% - 121% in +NP treatments. Foliar 278 

N:P ratios in control plots indicated P limitation at the study site: C. cyrtophyllum had the 279 

highest foliar N:P ratio of 33; P. rubra and S. octophylla had similar intermediate N:P ratios (25 280 

and 24, respectively), whereas the foliar N:P ratios in S. bullockii and U. microcarpa were 281 

somewhat lower (20 and 21, respectively). A decline in foliar N:P ratios was observed in all 282 

species as a result of foliar P accumulation in the +P and +NP treatments (Fig. 2). Nitrogen 283 

addition did not affect foliar N:P ratios in any species, except S. bullockii (Fig. 2, Table S1), 284 

which had a higher foliar N:P ratio with N addition as a result of increased foliar [N]. 285 

 286 
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 287 

Fig. 2 Box-plots of foliar nitrogen (N) and phosphorus (P) concentrations and N to P ratio for five 288 

species in a tropical forest following six years of fertilization with N (+N), P (+P) or both nutrients 289 

(+NP) compared to controls (CT). Different letters within panels indicate significant post-hoc 290 

differences among treatments at p<0.05. 291 

Photosynthetic phosphorus- and nitrogen-use efficiency  292 

PNUE was not affected by N addition, whereas PPUE decreased with P addition (Table 2; Fig. 293 

S2). PPUE was 9% to 56% lower in the +P treatment and 18% to 51% lower in the +NP 294 

treatment compared to the controls. Species identity modified the response of PNUE and 295 

PPUE to N and P additions (Table 2), but individual analyses only showed significantly higher 296 
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PNUE in C. cyrtophyllum in the +P treatment, and lower PPUE in C. cyrtophyllum and S. 297 

octophylla in the +NP and +P treatments, respectively (Fig. S2). 298 

Foliar phosphorus fractions 299 

Overall, only residual P increased with N addition (Table 2) and this result was largely due to 300 

an increase in residual P in C. cyrtophyllum in the +NP treatment (Table 3). There was a strong 301 

increase in all P fractions with P-addition (Tables 2 and 3), and species identity significantly 302 

influenced the response of metabolic P, nucleic acid P and residual P, and marginally influenced 303 

the response of structural P (P × species interactions; Table 2). Metabolic P (which includes Pi) 304 

increased the most in response to P-addition, followed by structural P and nucleic acid P (Table 305 

3 & Table S2). The pattern for residual P was less clear: there was a significant increase of 306 

residual P in C. cyrtophyllum and P. rubra in the +P and +NP treatments, but not in any other 307 

species (Table 3). 308 

Table 3 Concentrations of foliar phosphorus (P) fractions (mg g-1 dry weight) of five woody plant 309 

species in a tropical forest following six years of fertilization with nitrogen (+N), phosphorus (+P) or 310 

both nitrogen and phosphorus (+NP) compared with controls (CT); means ±S.E. are given. Different 311 

superscript letters indicate significant differences among treatments at p<0.05. 312 

Species  Treatment Metabolic P Nucleic acid P Structural P Residual P 

Clerodendrum 
cyrtophyllum 

CT 0.49±0.14 0.24b±0.06 0.32±0.03 0.12b±0.03 

+N 0.49±0.05 0.33ab±0.01 0.35±0.05 0.14b±0.01 

+P 1.36±0.25 0.44ab±0.06 0.54±0.08 0.27b±0.09 

+NP 1.23±0.26 0.47a±0.04 0.42±0.06 0.49a±0.27 

Syzygium 
bullockii 

CT 0.15a±0.02 0.24ab±0.02 0.09±0.05 0.24±0.02 

+N 0.13a±0.01 0.18b±0.01 0.10±0.04 0.19±0.02 

+P 0.43a±0.20 0.30a±0.03 0.28±0.08 0.24±0.01 

+NP 0.23ab±0.05 0.26ab±0.03 0.21±0.02 0.23±0.01 

Psychotria rubra CT 0.12±0.02 0.18a±0.01 0.13±0.03 0.42b±0.01 

+N 0.20±0.07 0.19a±0.03 0.16±0.02 0.46ab±0.02 
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+P 0.30±0.07 0.24a±0.02 0.16±0.02 0.51a±0.03 

+NP 0.19±0.03 0.21a±0.02 0.15±0.03 0.53a±0.02 

Schefflera 
octophylla 

CT 0.21b±0.02 0.17b±0.01 0.35±0.03 0.10±0.01 

+N 0.24b±0.01 0.16b±0.01 0.36±0.03 0.10±0.00 

+P 0.47a±0.02 0.26a±0.01 0.47±0.03 0.10±0.01 

+NP 0.90a±0.28 0.33a±0.05 0.52±0.18 0.11±0.01 

Uvaria 
microcarpa 

CT 0.27±0.06 0.27±0.04 0.21±0.04 0.25±0.03 

+N 0.27±0.02 0.27±0.00 0.25±0.03 0.22±0.01 

+P 0.66±0.15 0.33±0.03 0.31±0.03 0.23±0.02 

 +NP 0.60±0.15 0.27±0.02 0.31±0.04 0.21±0.00 

Discussion  313 

It is thought that the productivity of lowland tropical forests is limited by P, rather than N 314 

(Thomas, Montagu & Conroy 2006; Pasquini & Santiago 2012). However, experimental 315 

manipulations have failed to detect a consistent response to P addition in species-rich lowland 316 

tropical forests (Cleveland et al. 2011; Wright et al. 2018). A recent study indicated that P 317 

limitation is widespread at the level of individual species, but not at the community level, 318 

because some species grow relatively rapidly on infertile soils, despite extremely low P 319 

availability (Turner, Brenes-Arguedas & Condit 2018). Our study showing altered allocation to 320 

foliar P fractions after P addition provides a potential mechanism to explain how tropical 321 

species can maintain photosynthetic capacity under low P availablity.  322 

Fertilization effects on foliar traits and P fractions 323 

Increased LMA has been widely reported as a sign of N or P deficiency in crop species (Chiera, 324 

Thomas & Rufty 2002; Assuero, Mollier & Pellerin 2004) and although we observed increased 325 

foliar [N] in response to N-addition in two species (C. cyrtophyllum and S. bullockii), we 326 

measured no corresponding change in LMA. By contrast, LMA declined markedly with P 327 
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addition in all five species, especially in C. cyrtophyllum and S. octophylla (Fig. 1), suggesting 328 

that P addition alleviated P deficiency in these species. This supports our first hypothesis that 329 

foliar traits would show a greater response to P than N addition. Species-specific responses of 330 

foliar nutrients and LMA to fertilization (Table 2, Fig. 1) may reflect differences in their life 331 

history strategies and resource requirements (Sayer & Banin 2016). Overall, these results 332 

provide evidence for P limitation of tree growth in the studied forest. 333 

Despite several lines of evidence suggesting P limitation in tropical forests (Vitousek et al. 334 

2010; Turner, Brenes-Arguedas & Condit 2018; Wright et al. 2018), photosynthetic capacity 335 

was only increased by P addition in the eurytopic species C. cyrtophyllum which is consistent 336 

with our second hypothesis and demonstrates that species growing on low-P soils can 337 

maintain photosynthetic capacity. Similarly, there was no response of photosynthetic rate to 338 

N and P fertilization in understory species of a tropical plantation (Zhu, Lu & Mo 2014) or in 339 

response to P addition in lowland tropical forest understory seedlings after 10 years of P 340 

fertilization (Pasquini & Santiago 2012). The results, combined with LMA results, also agree 341 

with studies of several crop species which demonstrated that photosynthesis is far less 342 

sensitive to fertilization than leaf growth (Chiera, Thomas & Rufty 2002; Assuero, Mollier & 343 

Pellerin 2004; Dissanayaka et al. 2018).  344 

Various adaptive strategies allow plants to acclimate to low P availability. Generally, plants on 345 

P-impoverished soils have evolved physiological mechanisms for maximizing soil P acquisition, 346 

such as increasing root surface area, carboxylate exudation, and phosphatase release (Reed 347 

et al. 2011; Zemunik et al. 2015). Our results show that the low P availability in tropical forests 348 

does not necessarily affect rates of photosynthesis. PPUE decreased with P addition in our 349 

study, showing that the unfertilized plants have efficient P-use strategies and maintain 350 

functions despite low availability of soil P. Increased PPUE has been observed in response to 351 

decreasing P availability along a natural soil fertility gradient, where plants were able to 352 
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maintain rates of photosynthesis despite a remarkable decline in foliar [P] (Hidaka & Kitayama 353 

2009). Changes in foliar P allocation may help explain how plants can maintain stable rates of 354 

photosynthesis when P availability is low. 355 

Vacuoles in plant cells serve as a reservoir of Pi (Mimura 1995), which is required for export of 356 

triose phosphates from chloroplasts and for photophosphorylation. Accordingly, we observed 357 

large increases in metabolic [P] (most of which is likely to be [Pi]; (Veneklaas et al. 2012), with 358 

P addition in all species. The ability of plants to take up and store additional Pi or a relatively 359 

low capacity to down-regulate Pi uptake (Ostertag 2010), may explain the observed large 360 

changes in metabolic [P]. However, since photosynthetic capacity was unaffected by P 361 

addition in the stenotopic species, we expect these plants were able to maintain sufficient 362 

metabolic [P], despite low soil P status at the study site.  363 

The mechanism by which plants maintain sufficient metabolic P concentrations to support 364 

stable rates of photosynthesis has been reported in crop plants (Schlüter et al. 2013) and 365 

Proteaceae from severely P-impoverished soils in Australia (Lambers et al. 2015), but has never 366 

been reported for tropical lowland forests. In this study, the metabolic P fraction includes Pi, 367 

and when P availability decreases, excess Pi stored in vacuoles (Veneklaas et al. 2012) is 368 

released to maintain the [Pi] in the cytosol, followed by release of P from membrane 369 

phospholipids (Mimura 1995; Schachtman, Reid & Ayling 1998; Lambers et al. 2012). As plant 370 

growth rates decrease, nucleic acid P will eventually also be used to maintain the cytosolic [Pi] 371 

in cells. Rates of photosynthesis will therefore only be affected when the cytosolic [Pi] can no 372 

longer be maintained (Schachtman, Reid & Ayling 1998). Hence, under low soil P availability, 373 

a certain proportion of foliar P is allocated to metabolic [P] (including Pi) to maintain 374 

photosynthesis which could draw P from structural P (Hidaka & Kitayama 2013), although we 375 

found little evidence for this link in our study, possibly because the plants constitutively 376 

function at low phospholipid concentrations, as in Proteaceae (Lambers et al. 2012). By 377 
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contrast, we observed the expected increases in all foliar P fractions with P-addition, with the 378 

largest increase in [Pi] due to luxury uptake and storage of Pi (Ostertag 2010).  379 

Our current knowledge of the residual P fraction is insufficient to explain why P-addition 380 

resulted in a negative relationship between photosynthetic rates and residual [P] in this study 381 

(Fig. 4); further work is needed to clarify the functional role of the residual P fraction. 382 

Insights into species-specific acclimation to P availability through foliar P allocation 383 

The distinct responses of foliar traits among the five study species revealed different P 384 

requirements and allocation. It is noteworthy that C. cyrtophyllum, a eurytopic species with a 385 

wide distribution from temperate to tropical zones, not only had the highest foliar [P] of all 386 

species, regardless of treatment (Fig. 2), but was also the only species showing increased 387 

photosynthetic capacity with P addition. The substantial increase in nucleic acid [P], combined 388 

with the decline in LMA, suggests that leaf growth increased with P addition in this species, 389 

but we did not measure this directly. These results, combined with the increased PNUE with 390 

P addition, suggest that C. cyrtophyllum had the highest P requirement of all the studied 391 

species, and its photosynthetic capacity was limited by low P availability in this tropical forest. 392 

The high plasticity of C. cyrtophyllum for re-allocating P in response to P availability may also 393 

help to explain its wide distribution in temperate and tropical forests (Fig. S1). 394 

Schefflera octophylla, which is distributed in subtropical and tropical forest, also showed lower 395 

LMA with P addition as well as increased concentrations of foliar P and all P fractions, except 396 

residual P, but its photosynthetic capacity actually declined in the +P treatment. The distinct 397 

responses of foliar traits in S. octophylla to individual nutrients compared with the +NP 398 

treatment suggests that leaf area in this species is potentially P-limited, but that maintaining 399 

foliar N:P stoichiometry may be more important for photosynthesis than increases in either 400 

nutrient alone. 401 



21 

Syzygium bullockii, which only occurs in tropical forest, showed the greatest increase in 402 

structural [P] in response to P addition, whereas LMA and photosynthetic capacity were not 403 

affected by fertilization (Fig. 2). This suggests that S. bullockii utilizes more P from 404 

phospholipids to maintain photosynthetic rates and leaf area when P availability is low. 405 

Increased nucleic acid and structural P fractions with P fertilization in this species also suggest 406 

that foliar growth is P limited. Finally, the lack of changes in photosynthetic capacity or LMA 407 

in P. rubra and U. microcarpa following fertilization suggest that they are well adapted to low-408 

P soils. Both species only occur in tropical forests and P. rubra in particular showed no 409 

evidence of P limitation, whereas small increases in metabolic and nucleic acid [P] in U. 410 

microcarpa (Table S2), suggest that some foliar processes may be P-limited. 411 

Conclusions 412 

In tropical forests on P-poor soils, plants exhibit morphological, physiological, molecular, and 413 

biochemical adaptions to low P availability. Although we found some evidence for P limitation 414 

in this tropical forest, four species in this study maintained their photosynthetic capacity, 415 

despite low P availability. Our measurements of foliar P fractions demonstrate that the study 416 

species acclimated to low P availability by reducing P allocation to non-metabolic foliar P 417 

fractions to meet their demand for metabolic P to maintain photosynthetic capacity. We 418 

conclude that P limitation of leaf photosynthetic capacity may not be as common as previously 419 

assumed for lowland tropical forests, and some species have a high capacity to maintain their 420 

photosynthetic rate in low-P soils. The species-specific strategies to allocate P to different 421 

foliar fractions represents a potentially important adaptation mechanism for plants in P-422 

limited systems. 423 
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Supplementary materials 564 

Table S1 Species-specific linear mixed model analysis (p-values) for leaf traits, nutrient concentrations and phosphorus (P) fractions of five study species in a tropical 565 

forest following six year fertilization with nitrogen (N) and phosphorus (P), where LMA is leaf mass per area; PNUE is photosynthetic nitrogen use efficiency; PPUE is 566 

photosynthetic phosphorus use efficiency, and [N] and [P] are foliar nitrogen and phosphorus concentrations, respectively. 567 

Species  Sources Amass LMA [N] [P]  N:P ratios PNUE PPUE Metabolic P Nucleic  

P 

Structural P Residual P 

Clerodendrum cyrtophyllum N 0.026 ns 0.020 ns ns 0.010 ns ns ns ns 0.043 

P ns 0.006 0.027 <0.001 <0.001 ns ns 0.006 0.001 0.049 <0.001 

N×P 0.006 ns ns ns ns 0.007 ns ns ns ns 0.06 

Syzygium bullockii N ns ns 0.014 ns 0.006 ns ns ns ns ns ns 

P ns ns ns 0.012 <0.001 ns ns 0.022 0.004 ns ns 

N×P ns ns ns ns ns ns ns ns ns ns ns 

Psychotria rubra N ns ns ns ns ns ns ns ns ns ns ns 

P ns ns ns 0.051 0.005 ns ns ns ns ns 0.002 

N×P ns ns 0.05 ns ns ns ns ns ns ns ns 

Schefflera octophylla N ns ns ns ns ns ns ns ns ns ns ns 

P ns 0.02 ns 0.022 <0.001 ns 0.013 0.021 0.001 0.019 ns 

N×P 0.021 ns ns ns ns 0.029 ns ns ns ns ns 
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Uvaria microcarpa N ns ns ns ns ns ns ns ns 0.04 ns ns 

P ns ns ns 0.025 0.05 ns ns 0.016 0.07 0.05 ns 

N×P ns ns ns ns ns 0.045 ns ns ns ns ns 

568 
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Table S2 Relative proportions (mean % ±S.E.) of foliar phosphorus (P) fractions in five study species 569 
in a tropical forest following six years of fertilization with nitrogen (+N), phosphorus (+P) or both 570 
nutrients (+NP), compared to controls (CT); different superscript letters indicate significant 571 
differences among treatment at p<0.05. 572 

Species  Treatment Metabolic P Nucleic acid P Structural P Residual P 

Clerodendrum 
cyrtophyllum 

CT 40.6±5.07 20.3±1.42 29.4±5.40 9.76b±0.66 

+N 37.7±3.85 25.4±1.40 26.2±2.94 10.7b±1.02 

+P 48.8±2.95 18.6±2.26 23.2±3.40 9.41b±1.28 

+NP 45.5±4.14 18.2±1.19 16.8±2.51 19.5a±2.46 

Syzygium 
bullockii 

CT 19.1b±2.49 31.4±2.81 16.5±6.89 32.7±2.37 

+N 21.9ab±1.47 29.8±1.81 17.1±5.83 31.2±2.76 

+P 28.6a±7.07 26.8±3.39 22.7±1.55 23.1±3.51 

+NP 24.0ab±4.57 28.0±1.48 21.6±2.41 25.4±2.11 

Psychotria 

rubra 

CT 13.7b±1.77 21.7±1.79 14.3±2.98 50.4±3.04 

+N 17.6ab±3.12 19.0±0.65 15.7±0.57 47.8±3.14 

+P 21.6a±2.93 20.1±0.54 13.2±1.73 45.2±1.66 

+NP 17.7ab±2.11 19.5±1.27 13.4±2.34 49.4±2.14 

Schefflera 
octophylla 

CT 24.8b±1.38 20.3±0.81 42.1±0.74 12.9±1.57 

+N 28.4ab±1.71 18.7±1.10 41.4±1.54 11.5±0.36 

+P 34.7a±2.24 20.2±0.36 37.4±2.13 7.70±1.11 

+NP 44.0a±5.82 19.0±2.25 27.6±7.09 9.42±2.58 

Uvaria 
microcarpa 

CT 26.5b±2.95 26.8a±1.11 21.8±4.62 25.0a±1.60 

+N 27.8b±0.95 23.7ab±0.90 25.9±1.86 22.6ab±0.76 

+P 41.5a±3.63 22.0ab±1.07 20.8±1.00 15.7b±1.77 

 +NP 41.4a±4.35 20.3b±1.81 22.4±1.05 15.9b±1.96 
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 574 

Fig. S1. The distribution ranges of the five study species in the tropical forest of south China. The data 575 

was extracted from Global Biodiversity Information Facility data base (www.gbif.org), the yellow point 576 

indicates the occurrence of each species by observations or specimen. 577 

 578 

Fig. S2. Box-plots of photosynthetic nitrogen (N) and phosphorus (P) -use efficiency for five species 579 

in a tropical forest following six years of fertilization with N (+N), P (+P) or both nutrients (+NP) 580 

compared to controls (CT). Different letters within panels indicate significant post-hoc differences 581 
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among treatments at p<0.05. 582 
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