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We study the revenue management (RM) problem encountered in airport carparks, with the primary ob-
jective to maximize revenues under a continuous-time framework. The implementation of pre-booking
systems for airport carparks has spread rapidly around the world and pre-booking is now available in
most major airports. Currently, most RM practices in carparks are simple adjustments of those devel-
oped for hotels, exploiting the similarities between the two industries. However, airport carparks have
a distinct setting where the price-per-day of a parking space is heavily discounted by the length-of-stay
of the booking. This is because the customer decision tends to be made after the length of the trip is
already set, and it becomes a choice between parking or alternative modes of transport. Consequently,
the length-of-stay becomes a critical variable for revenue optimization. Since customers are able to book
the parking by the minute, the resulting state space is very large, making a conventional network solu-
tion intractable. Instead, decomposed single-resource problems need to be considered. Here we develop
a bid-price control strategy to manage the bookings and propose novel approaches to define such bid-
prices depending on the length of stay, which could be utilized in real-time RM algorithms. Managing
stochastic carpark bookings by length-of-stay in the decomposed single-resource approximation allowed
us to achieve within 5% of the expected revenues for a multi-resource approximation, with a fraction
of the computational effort. When expected demand exceeds the available parking capacity, the method
increases the revenues by up to 45% relative to the first-come-first-serve acceptance policy.
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1. Introduction

In this paper, we study the revenue management (RM) problem encountered in airport carparks, with our
primary objective to maximize revenues under a continuous-time framework. RM has been accredited
for the success in various industries. Originally developed and implemented for airlines (Smith et al.,
1992), it quickly expanded to hotels (Goldman et al., 2002; Badinelli, 2000) and car rentals (Geraghty
and Johnson, 1997; Li and Pang, 2016), while extending to other less traditional industries such as
restaurants (Hwang et al., 2010; Guerriero et al., 2014) and cruises (Ladany and Arbel, 1991; Maddah
et al., 2010). An overview of research on these can be found in Chiang et al. (2007). All these industries
possess one common feature that led to their rapid growth: they maintain a pre-booking system where
customers can book their seats, rooms etc prior to their arrival. This enabled revenue managers to use
advanced demand information (ADI) (see Tan et al., 2009; Benjaafar et al., 2011, for a discussion on
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imperfect ADI) to predict future demand and make proactive informed decisions on pricing or booking
control.

Airport carparks cater for customers planning to fly and looking for a place to park their car until
they return. Over the last decade, the implementation of pre-booking systems for airport carparks has
spread rapidly around the globe and pre-booking of parking space is now available in all major airports
in the UK and Europe through their official websites as well as through third parties. Recent reports re-
veal that airport carparking revenues add up to around 15-22% of the overall turnover within an airport
organisation, with a trend towards online pre-booking currently at 70% (Steer, 2013a,b) and steadily in-
creasing. As a result, this has created a whole new market which in turn has generated an ever growing
interest from consulting firms to provide RM solutions. During the last couple of years, several com-
panies have already seen the potential benefit and are offering RM systems tailored for airport carparks
across Europe, Australia and the US (eg. IDeaS, Kowee).

While parking lot operations share common traits with other prominent RM problems, the academic
literature has paid surprisingly little attention to this industry. However, noting that big international
airports in the UK carry tens of millions of passengers per year with an average parking revenue esti-
mated between £1-2 per passenger (Steer, 2013a), we believe that RM techniques in airport carparks
may prove to be highly beneficial.

One may notice that among the range of industries for which RM is applied to, airport carparks are
most closely related to hotels. In particular, the main product that is sold in both cases is “space” in the
facility (room in the hotel, parking spot in the carpark). Therefore, the major challenges are similar, as
the manager needs to address the network problem arising from multi-day stays Bitran and Mondschein
(1995); Liu et al. (2006, 2008). Consequently, most RM practices in carparks have been simple ad-
justments of those developed for hotels. However, in what follows, a number of distinct characteristics
render airport carparks a unique setting for RM. Commonly, no customer makes a decision on the length
of their holiday or business trip based on the cost of parking. In most cases, a decision on carparking is
made after the arrival and departure date is already set, so the majority of customers do not experiment
with arrival or departure dates to compare prices; rather customers make the decision based on a com-
parison between other parking options (with same LoS) and alternative travel (e.g. bus, train, taxi). The
alternative travel options play an important role because the price for them is independent of the LoS.
Furthermore, both the start time and the end time of each booking is completely free to be chosen by
the customer (in hotels there are usually standard check in and check out times), which means that there
can be very short bookings (20 minutes) and very long ones (30 days) overlapping with each other. For
the reasons outlined above we believe that an operator would not be able to successfully sell products by
offering different prices on different days, a practice commonly seen in hotels. Hence, the LoS pricing
results in the need for a different approach to be developed, whereby the price stays fixed and we must
optimize the revenue by controlling the bookings according to the LoS in a more continuous setting.

The complexity of the network problem in RM comes down to the ability to estimate the corre-
sponding value function. This is an enormous task and even when optimal solutions exist, these are
unrealistically time consuming, if not impossible to solve. Therefore, the only realistic option in prac-
tice is to rely on approximation methods. The two main approaches of solving network problems is
either by mathematical programming (MP), or by dynamic programming (DP). In the hotel context, the
network RM problem is usually formulated as a mathematical program, which preserves its network
structure and intra-day dependence. At its simplest the stochastic demand for each product is replaced
by its mean and the resulting deterministic linear program (widely known as DLP) is solved to give opti-
mal partitioned allocations for each product. According to Weatherford (1995), when DLP is frequently
resolved it can generate good control policies. The biggest limitation of DLP is its deterministic nature
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as it ignores all demand uncertainty and only considers the expected demand. Stochastic mathematical
programs have been proposed (see Goldman et al., 2002; De Boer et al., 2002) but the extra complexity
as well as the resulting large number of variables and constraints renders these less appealing in prac-
tice. Finally, improved mathematical programs have also been studied by Chen and Homem-de Mello
(2010), under the choice-based setting.

Dynamic programming can be employed to solve the network problem instead; however the state
space formation suffers from Bellman’s curse of dimensionality. The common approach in practice is
to use some decomposition technique to reduce the problem down to a set of single-resource dynamic
programs, one for each day (resource), and approximate the value function of the network by the sum
of these single-resource value functions (Cooper and Homem-de-Mello, 2007; Bertsimas and De Boer,
2005). A traditional way to achieve this incorporates the static dual values from a DLP to adjust the fare
contribution of the products in each of the resources these products require; this is either done additively
or multiplicatively. This methodology has first been introduced by Liu and Van Ryzin (2008) in the
context of the choice-based RM and further extended by Zhang (2011). Another way to break up the
inter-dependencies between the resources is by a Lagrangian relaxation across the capacity constraints
of the mathematical program (Jiang, 2008; Topaloglu, 2009). Later variants of these approaches aim to
improve the proration schemes by updating the fare allocations iteratively (Kunnumkal and Topaloglu,
2010).

The main limitation of the aforementioned decomposition approaches is that once the initial net-
work adjustments are made, all resulting single-resource programs are solved in parallel with no further
information being exchanged between them. To overcome this Zhang (2011) proposed an improved
methodology. Given that under the traditional DLP-based decomposition approach we can obtain an
upper bound to the value function from each of the single-resource programs at every time-step (see
Zhang and Adelman, 2009, for details), he proceeds as before but uses the tightest bound (out of all re-
sources) as the value function approximation at each time step. In a further paper, Kemmer et al. (2012)
propose an iterative algorithm that solves the dynamic programs simultaneously, while at each time-step
information on the marginal capacity values is exchanged in order to update the proration fares. Their
computational results suggest that the new algorithm performs very similarly to the traditional iterative
DP decomposition scheme, but it achieves this at a fraction of the computation cost.

The concept of dynamic time-dependent bid-prices is fairly new and is based on the ability to write
the dynamic program as a linear program and then make an affine functional approximation to the
value function to obtain prices that allow the marginal value to change with time; the methodology
has been introduced by Adelman (2007), extended by Zhang and Adelman (2009) and Meissner and
Strauss (2012a,b) to the customer-choice setting, and studied by Kirshner and Nediak (2015) under a
continuous-time framework.

All of the above studies focus on how to deal with the network problem case and, in particular, how
to decompose the network down to a set of single-resource programs, exchange information between
them, solve them and then build the network value function up again, with promising results and also
motivation for further research. However, these single-resource dynamic programs are always imple-
mented under the traditional dynamic programming formulation (employed in either the standard or the
choice-based setting) where each product i arrives with intensity λi and corresponds to the adjusted fare
fi.

This paper proposes a new formulation for the resulting single-resource programs, which leads to
a Hamilton-Jacobi-Bellman (HJB) equation that is optimised by the LoS variable. In contrast to the
traditional revenue management models where the formulation is in discrete-time, our methodology
implements a continuous-time setting which seems more appropriate for airport carparks. In major
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airport carparks, the LoS of a customer can be anything between 20 minutes and 30 days, with the
sophistication in the payment methods leading to a potential for pricing car park stays by the minute.
Therefore, traditional techniques such as the DLP are difficult to formulate let alone to be solved, as
the number of product combinations in the incidence matrix grows exponentially large. For instance,
when time is viewed in 20-minute slots, there are 3× 24 = 72 time periods in each day and for a 10-
day network the total number of products (arrival-day/LoS combinations) grows from 10×30 = 300 in
the hotel case to (10× 72)× (30× 72) = 1555200 ! Therefore, in airports experiencing high booking
volumes and short LoS durations, the continuous-time model becomes a reasonable approximation.
From an operational point of view, continuous time allows a better utilisation of space since more cars
can be accommodated in the same parking spot each day by reducing the minimum occupancy time
buffer which is implemented to avoid overlaps between the arriving and departing cars within a given
time slot. As in any realistic application reducing the calculation time is important, the continuity and
smoothness of the underlying functions make it possible to speed up the computation times and enable
the solution to be calculated/updated in real time.

Our model follows that in Papayiannis et al. (2012) and Papayiannis (2013) and assumes that de-
mand follows a Poisson process with time-varying intensity, with exponential distributions to model the
lead-time and LoS. Based on these distributions we simulate booking requests which we then use in a
formulated test framework, that is our model representation of a real reservation system, to model the
customer flow and the resulting occupancy in the carpark.

We present novel approaches to generate the bid-prices, as functions of capacity and time left, and
construct the resulting bid-price tables that maximise the carpark revenue. The bid prices are generated
in three distinct optimisation problem settings, each with a different set of assumptions and technical
challenges.

We subsequently examine the three optimisation problem settings under a time invariant framework,
a natural starting point that enables tractability of the solution while preserving its key elements. In
each setting, our model yields an estimate of the value function that is then used to approximate the
displacement cost of capacity and ultimately build up the bid-price table. The resulting bid-prices are
examined in a special test framework to (a) assess the improvement in performance compared to a first-
come-first served policy (FCFS) and (b) establish whether the two single-resource models could be used
instead of the a more generic multi-resource model to speed up the computations.

The paper is structured as follows. Section 2 introduces our unique pricing formulation for airport
carparks and describes the test framework. Sections 3, 4 and 5 present the three optimisation problem
settings, namely the SMR, SSR and DSR methods, respectively. Numerical results are presented and
analysed in section 6 and our conclusions are found in section 7.

2. Framework

2.1 List of Notations

Here we summarise the key notations used in the paper:

• j or t denotes the current time in a discrete or continuous setting, respectively;

• k or T denotes the future time of interest in a discrete or continuous setting, respectively;

• η is the lead time between booking and arrival, and ξ is the length of stay (LoS) between arrival
and departure, respectively;



REVENUE MANAGEMENT OF CARPARKS 5 of 34

• Ψ(ξ ) is the price rate for a particular LoS;

• φ(η ,ξ ) is the probability density function which describes how far in advance the booking is
likely to have been made and how long we expect a customer to stay;

• Q j,k or Q(t,T ) denotes the number of customers present in the carpark in a discrete or continuous
setting;

• x j,k or x(t,T ) denotes the number of spaces remaining at the present time for the period of interest;

• Vx, j,k or V (x, t,T ) denotes the future expected revenue generated during the period k in the discrete
setting, or the future expected revenue generated per unit time at the moment T in the continuous
setting;

• πx, j,k is the bid-price table used to control capacity in the model.

2.2 Pricing function

We assume the existence of a price rate function that describes the relationship between the price-rate-
per-day and the LoS, denoted by ξ . The function follows an exponential form and is monotonically
decreasing in ξ , namely

Ψ(ξ ) = ψ∞ +(ψ0−ψ∞)e−µξ , (1)

where ψ∞ is the long term price rate that is achieved in the limit, ψ0 is the highest price rate associated
with the theoretical stay of 0 days and µ > 0 is the decreasing rate which controls the shape of the
curve between these two extremes. Thus, for a customer staying for ξ days, the total price to charge
is ξ Ψ(ξ ). The exact form of the price function has been in accordance to that being implemented by
carpark managers of major UK airports. Usually, parameters ψ0, ψ∞ and µ are set manually at the
beginning of the year, based on the seasonal cycles, the price elasticity of the customers, the taxi market
and offsite competitors. Common values for ψ0 range between £10-35 while ψ∞ lies in the range of
£2-6. Once set, these parameters are kept fixed within the year and reviewed once at the beginning of
the next calendar year. We also note that often the price rate function in (1) is used to describe the
additional price rate on top of a base price rate, as to link the quoted prices across the available carpark
alternatives and seasons.

2.3 Booking process

We assume that bookings can be described by three time variables; these relate to the arrival time in the
carpark, the lead time, i.e. the time span between pre-booking and arrival, and the length-of-stay.

In particular, under a general setting we assume that the probability of a customer arriving at time t
follows an nonhomogeneous Poisson process with time-varying intensity λa(t), so that the total number
of customers X(t) that have arrived at the carpark by time t is

X(t) =
∫ t

0
dX(ta) (2)

and the expected number is

E[X(t)] =
∫ t

0
λ (ta)dta. (3)
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Let us now focus on a particular time t. For each arriving customer at time t there is an associated
lead time η and a required length-of-stay ξ at the carpark which will ultimately lead into the actual
occupancy in the carpark, since not all of the customers who have arrived will still be present at time
t. So we assume that there is a probability density function φ(η ,ξ ; t) which describes the distributions
of customer requirements which is independent of the arrival process. The quantity φ(η ,ξ ; t)dη dξ

indicates the probability customers who arrive at t, to have booked between η and η +dη days before
and to stay between ξ and ξ +dξ days, and this function can easily fitted to booking data. We have noted
that in the real world data the distribution of lead times η is best modelled with a gamma distribution,
whilst the LoS distribution can only be captured with an empirical fit. However for this present paper we
choose the distributions of η and ξ to be a linear combination of independent Exponential distributions,
namely

η(t)∼ Exp(λb(t)) (4)
ξ (t)∼ Exp(λs(t)) (5)

where the parameters λb(t) and λs(t) are possibly time-varying functions.

2.4 Booking classes

In our study, we adopt a time-invariant framework, a natural starting point that enables tractability of the
solution while preserving its key elements. Under this framework, all arrival days are assumed to follow
the same distribution; thus, the explicit reference to the arrival time t can be removed, and as a result the
time parameters in equations (3), (4), (5) become fixed constants, i.e. λa,λb,λs, while the joint density
function is simplified to φ(η ,ξ ) for all arrival times t.

The definition of the joint density function φ(η ,ξ ) can easily be extended to accommodate N cus-
tomer classes. In particular, we assume two customer classes (N = 2), the Business and the Leisure
customers. By definition, these two sets of customers express different types of customer behaviour and
thus they are described by different average arrival intensities λa, different lead times, λb and different
length-of-stays, λs. Therefore, the nth customer class could be expressed as

Bn ∼

 λbn

λan

λsn

 . (6)

Note that there are three sources of uncertainty as the number of arrivals per day from the nth class,
the lead-times and length-of-stay are all stochastic variables. Using equation (6) we can define the total
booking profile as a combination of the single booking classes, namely

B = ∑
n

Bn. (7)

Consequently, each class n has its own distribution φn(·) and thus the total distribution φ(·) for all
N classes combined is given by the weighted linear combination

φ(η ,ξ ) = ∑
n

αn φn(η ,ξ ), αn =
λan

Λa
∀n ∈ 1, . . . ,N, (8)
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with the total arrival intensity defined as
Λa = ∑

n
λan . (9)

The formulation of φ(·) in (8) allows any type of distributions to be used. In some cases, the type of
distributions used can lead to interesting analytical results. In particular, under Exponential lead times
and length-of-stays, we have

φ(η ,ξ ) = ∑
n

αn λbn λsn e−λbn η e−λsn ξ (10)

and in Appendix B we derive the corresponding analytic formulae.
Under this setting we price a single product (i.e. a single pricing function Ψ(·)) that is offered

simultaneously to both classes, irrespective of their class characteristics. Thus, a unified treatment of
the combined booking flow B can be achieved and as long as the capacity restrictions are met, this
product remains open to both classes.

We note that we are not concerned with deriving the optimal pricing-function parameters (ψ0,ψ∞,µ).
Instead, we consider that these have been derived or pre-set by the management and reflect the current
market demand to the best possible degree. However, it is important to understand that although the
pricing function is fixed, the price-rate-per-day charged does vary according to the customer’s required
duration of stay.

2.5 Carpark setting

Now assume that we are on day 0 with an empty carpark that is about to begin its operations. Our goal
is to maximise the expected revenues on a future day T . We split the continuous time line into K fixed
interval time periods of size ∆ t. The kth period is defined as [tk, tk+1), where

tk = (k−1)∆ t ∀k = 1,2, ...,K.

We assume also that each booking request i has an associated booking time t i
b, arrival time t i

a and
departure time t i

d . Therefore, to indicate whether a customer requests to stay in period k we introduce
the following binary variable

δ
i
k =

{
1 if tk 6 t i

a < tk+1 OR tk < t i
d 6 tk+1 OR (t i

a < tk and t i
d > tk+1)

0 otherwise (11)

This variable is set to 1 only if the customer is requesting to be present over period k, and 0 otherwise.
Next, for each request we make a decision as to whether we should admit or deny entry in the carpark.
Any decision made, affects the entire booking in the sense that the customer is admitted entry to either
all or none of the days requested. Therefore, for each booking request i there is an associated binary
control variable ui that indicates just this;

ui =

{
1 if booking i is accepted
0 otherwise (12)

Now, we can define the number of cars present in period k as of period j, j 6 k by

Q j,k = ∑
i

t i
b < t j+1

ui
δ

i
k, s.t Q j,k 6C, (13)



8 of 34 A. PAPAYIANNIS ET AL.

where C denotes the carpark size. Note that in this definition, we account only for bookings that have
been made before the end of period j.

Next we consider the number of spaces remaining in period k as of period j, according to (13) this
is denoted by

x j,k =C−Q j,k. (14)

Therefore, the revenue remaining to be generated for a carpark in period k and initial capacity C, xxx =
(x j,1,x j,2, . . . ,x j,K) spaces remaining as of period j, under policy u, u ∈U is given by

Ju
xxx, j,k,C = ∑

i
t i
b > t j+1

ui
δ

i
k Ψ(ξ i)∆ t, (15)

subject to capacity constraint
∑

i
t i
b > t j+1

ui
δ

i
k 6 x j,k for k > j. (16)

Note that in the above definition, we account only for bookings that have been made after period j, and
that ξ i is still perceived as the length-of-stay in days for the ith request1.

FULL NETWORK PROBLEM Assume that the expected revenue remaining V in period k for a carpark
of initial capacity C, with xxx spaces remaining as of period j, can be expressed by

V u
xxx, j,k,C = E

[
Ju

xxx, j,k,C
]

(17)

where u ∈U is an admission control policy chosen from the set of all admissible policies. The problem
of the carpark manager, is that they must jointly manage the available resources in each and every period
and optimise revenues over the full network of days with a single admission control policy. The total
expected future network revenue (NR) over all K periods at time j may be calculated in an additive
manner, so the full network problem can be written as

NRxxx, j = max
u∈U

[ K

∑
k=1

V u
xxx, j,k,C

]
(18)

subject to
x j,k > 0.

Under the given setting, customers can book for any duration of stay, from as little as one period
of time ∆ t, up to 30 days. Thus, if for example, the minimum stay is set to 20-minutes, (∆ t = 1/72),
then a 10-day network consists of K = 10/∆ t = 720 time periods with (10×72)×(30×72) = 1555200
distinct products (arrival-day/LoS combinations). Since users of airport carparks may book up to 18
months in advance this is obviously going to be a problem.

Given the large state space of the full network problem, an exact network solution is not available.
Rather, this paper is primarily focused on the decomposed single-resource problem and the associated
bid-prices. In particular, three distinct optimisation models are studied, each with a different set of as-
sumptions and technical challenges, and all lead to bid-prices which are defined as functions of capacity
and time left. The objective of our study is ultimately to optimize the expected revenue rate that is
related to a given future day. More precisely we have,

1To calculate the required length-of-stay in days of the ith request, ξ i, we need to follow a two-step process. We first derive the
length-of-stay in terms of ∆ t-periods, Di, as Di = bt i

d/∆ tc−bt i
a/∆ tc+1, and then calculate the required quantity by ξ i = Di∆ t.
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1. Stochastic Multi Resource (SMR)
This is the simplest model intuitively, as it naturally arises from the formulation of the test frame-
work which is described in section 2. This method uses Monte Carlo to simulate bookings; it be-
gins with a zero bid-price table and iteratively refines the estimates until convergence is achieved.
The major advantage of this method (which rendered its name) is that it treats the network as a
multi-resource problem and proceeds in deriving bid prices that better reflect the true network
structure of the problem. On the downside, however, are the high computation times required for
the algorithm to converge.

2. Stochastic Single Resource (SSR)
The network problem can be simplified when considered as a set of single-resource problems.
In other words, we may treat each resource (day) separately and derive a set of independent
single-resource dynamic programs, one for each day in the network. Under a continuous-time
formulation, the single resource refers to an infinitesimal instant of time and thus it uses the price
rate per day, as opposed to the total price of the booking. The problem still remains stochastic
(Poisson demand) but it leads to a partial differential equation (PDE) to generate deterministic
booking policies for which appropriate schemes can be solved relatively quickly.

3. Deterministic Single Resource (DSR)
This is again a continuous-time model where the interdependence within days is also ignored.
By relaxing the assumption of Poisson demand we can treat the parking spaces as continuous
quantities, which results in a “fluid” approximation formulation with deterministic and continuous
dynamics. This approach is developed to examine how well a deterministic model can perform in
a stochastic environment. Pontryagin’s maximum principle is used to obtain the optimal solution
(Bertsekas, 1995).

The booking RM system goes through every booking request and decides whether the current request
should be admitted/denied entry. If the request is admitted into the carpark, then the system allocates a
parking space on all periods required by that request. We can then assume booking control is driven by
an underlying table of bid-prices,

πx, j,k

quoted as a function of capacity remaining for period k, denoted by x, the time j, and the period of
interest k. Therefore, the ith booking request made in period j to arrive in period l and stay for Di

periods (or ξ i = Di ∆ t days), is accepted only if there are spaces available and its total price is greater
than the sum of the bid-prices over the periods required, namely

ξ
i
Ψ(ξ i)>

l+Di−1

∑
k=l

πx, j,k. (19)

Note that in the case of a zero bid-price table, a special case of control arises, the FCFS policy, as
booking requests are only restricted based on capacity availability.

TIME INVARIANT BID-PRICES In the sections above we introduced the time-dependent framework
for the sake of generality. We focus on the time-invariant framework for the remainder of the paper in
order to obtain clear tractable steady-state solutions of the optimisation problem. Under a time invariant
framework, the explicit reference to the actual time is removed, with only the time lag between booking
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and being present matters, m = k− j, in which case the value function, the maximum expected revenue
remaining of the carpark with x spaces remaining and m periods left, is denoted by vx,m. All methods
that we consider in this study calculate the expected marginal values ∆vx,m = vx,m−vx−1,m of the spaces
as functions of the periods left m and capacity remaining x. The bid-price control is then generated by
setting the bid-price of each resource equal to its corresponding expected marginal value, namely

πx, j,k = ∆vx,k− j ∀x, j,k. (20)

Thus, the resulting set of bid-prices defines the bid-price table, which is also referred to as the admission
control policy in this paper.

SIMULATION ENVIRONMENT Our simulation experiment proceeds as follows. We implement the
admission control policy at time 0 when the carpark is entirely empty. We then simulate a number of
booking reservations sets according to the distributions in (2), (4) and (5). For each reservation set we
proceed by looping through its bookings one at a time and admit/deny entry to the carpark based on
the rule in equation (19). The procedure estimates the expected total revenue to be generated in a given
period k, denoted as

Rk = E
[
JCCC,0,k,C

]
= E

[
∑

i
ui

δ
i
k Ψ(ξ i)∆ t

]
. (21)

Note that in this equation all possible bookings are accounted for, and we start with an empty carpark
xxx = CCC = {C,C, . . . ,C}. To eliminate all initialization effects, we let this run for a sufficient number of
periods out in the future and build up accordingly. Then, we summarise our results by averaging over an
interval of 20 days (or more precisely 20/∆ t consecutive periods) in order to obtain a perpetual quantity
for the maximum expected revenue per period, R∞, and for the maximum expected revenue rate per day,
r∞ = R∞/∆ t. Finally, the algorithm is applied to a range of carpark sizes C.

3. Stochastic Multi Resource (SMR) Method

Motivated by the previous section we can derive an intuitive approach to calculate the underlying set
of bid-prices. Let j be the current period, and we wish to estimate the maximum expected revenue
remaining V to be generated in the future period k when there are x spaces remaining in a carpark of
capacity C. This quantity is given by

Vxxx, j,k,C = E
[
Ju∗

xxx, j,k,C
]

(22)

where u∗ is the optimal admission control policy, which means that the actual value here will depend on
the effect the policy has on days other than k and the spaces remaining on those days as well (the full
network problem).

We propose to approximate V in the following way, using a particular policy u we assume that

Vxxx, j,k,C ≈V u
x, j,k (23)

where V u
x, j,k is the expected value at period k given j is the current period, the carpark is in an empty

state for all k > j and the capacity of the carpark is C = x j,k = x. Given that we can simulate values of
J from this initial state, we can calculate V as

V u
x, j,k = E

[
Ju

xxx, j,k,x | xxx = {x,x, . . . ,x}
]

(24)
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for a given control policy u. From a single simulation of the booking set we can calculate Ju
xxx, j,k,x for

all values of x and k > j given a fixed j. By choosing a different value of j and returning the carpark
to an empty state, we can then calculate V u

x, j,k for all values of x, j and k to build up the bid price
table πx, j,k. Using an iterative scheme we would successively update both V and the bid price table π

in turn to maximise the expected revenues. Using an empty carpark to calculate the expected values
appears problematic at first but it greatly simplifies the problem and allows for the results to be reused
in different scenarios. We found that the values of Rk in (21) do not change greatly for large k, meaning
that using the policy starting from a genuine empty carpark is not too different to when we apply it over
longer periods, so this indicates that the proposed method captures the primary network effects.

Under the time-invariant framework, the problem becomes much simpler as the expected revenue
remaining of a carpark of x j,k spaces remaining in period k as observed in period j, j 6 k is equivalent
to

V u
x, j,k =V u

x,0,m, (25)

where m = k− j is the time lag in periods between booking and being present. This means that to find
the expected revenue remaining of a carpark of x j,k spaces remaining in period k as observed in period
j, we can simply evaluate an initial empty carpark, on the mth = k− j period with size C = x and we can
write

πx,m =Vx,0,m−Vx−1,0,m.

A full description of our implementation of the method is given in Appendix A. Results are presented
later in section 6 and compared with the alternative methodologies introduced in the next two sections.

4. Stochastic Single Resource (SSR) Approach

Previously, we described the simulation process for a set of reservations that was characterised by the
intensity parameters denoted λb, λa and λs, using Exponentially distributed lead times and length-of-
stays. Over the current and following section we develop two models formulated in continuous time.
Each of these models investigate the single resource approximation, in which we try to calculate the
value of the car park over a small time interval between T and T +dT , and in the continuous setting this
is infinitely small. This can only be done by ignoring the capacity at all other times, hence the single
resource approximation.

Instead of simulating the underlying probability distributions numerically, we now build our model
based on the relevant analytical expressions. Let us now evaluate the occupancy over the instant T
generated from bookings up to time t, Q(t,T ). If the stochastic process dX(ta) from (2) captures a
customer arriving at ta, then by selecting only those customers that will be present at T we arrive at the
process for occupancy at T ,

Q(t,T ) =
T∫

ta=−∞

1{tb6t and td>T} dX(ta). (26)

Equation (26) involves all bookings that have either already arrived (i.e. ta ∈ (−∞, t]) or that are about to
arrive sometime in the future (i.e. ta ∈ (t,T ]) and sums up only those that booked before t and stay long
enough to be present over the time instant T . The corresponding intensity of this process is therefore
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given by

q(t,T ) = Λa

∫
∞

ξ=0

∫ T−t

η=(T−t−ξ )+
φ(η ,ξ )dη dξ (27)

assuming that the time-invariant booking intensities are given by (8) and (9).
Now as a single resource approximation we are only interested in the revenue generated over the

instant T , which is given by the price rate Ψ(ξ ), rather than the total revenue generated for the whole
time the booking is present, given by Ψ(ξ )ξ . Now consider that each customer will pay a different
price rate, then the revenue generated is calculated by integrating the probability density of different
LoS multiplied by the price rate they each would pay. The resulting revenue rate is given by

r(t,T ) = Λa

∫
∞

ξ=0

∫ T−t

η=(T−t−ξ )+
φ(η ,ξ )Ψ(ξ )dη dξ . (28)

It is important to note that equation (28) is a double rate in the sense that it relates to the contribution to
the revenue at the instant T (price rate) multiplied by rate of bookings made at the instant t.

Next, define x(t,T ) to be the number of parking spaces remaining for the time instant T as of time
t. Hence V (x, t,T ) is defined as the value rate function at T with x spaces remaining as of time t. To
recover the total revenue in the carpark one would need to integrate V w.r.t T . More precisely, x is
modelled as a jump process with jump size −1 (corresponding to one sale), with x(t = −∞;T ) = C
the initial carpark size. In particular, over the next time interval dt, we sell one space with probability
q(t,T )dt + o(dt), we do not sell a space with probability 1− q(t,T )dt− o(dt) and we sell more than
one space with probability o(dt). Omitting the terms of order less than dt we may write the change in x
as

dx =

{
0 with probability 1−q(t,T )dt
−1 with probability q(t,T )dt. (29)

Then dV is given by,

dV (x, t,T ) =
∂V
∂ t

dt +q(t,T )
[
V (x−1, t,T )−V (x, t,T )

]
dt. (30)

Equating equation (30) to the revenue rate in (28) and dividing by dt we obtain

∂V (x, t,T )
∂ t

+q(t,T )
[
V (x−1, t,T )−V (x, t,T )

]
=−r(t,T ), (31)

with V (x, t = T,T ) = 0 and V (x = 0, t,T ) = 0, for all choices x and t, respectively.
The equation in (31) assumes that the value function at T only depends on the current time t and the

number of spaces remaining for T , x(t,T ), is completely independent of the carpark state on the nearby
days. This is a rather strong assumption as one would normally assume that network effects from the
nearby days are present; if the neighbouring days are sold out then any customers for day T that plan
to park for more than a day, will be denied entry. However, the interdependence among neighbouring
days is less apparent when most bookings are for a single-day stay, in which case our independent-day
assumption is reasonable (see Ladany, 1976; Bitran and Gilbert, 1996). Note the minus sign on the
RHS of equation (31) indicates the fact that the remaining value decreases at the opposite rate at which
revenue is generated. This describes the intuitive fact that as time progresses the value remaining for
the carpark on day T reduces. However, the value that is lost when going from t to t +dt is “replaced”
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by the revenue which is generated from customers who book within this period. Therefore, the rate at
which the value reduces is exactly inversely proportional to the rate at which the revenue is generated
as time passes.

Next, by setting τ = T − t the value function of x spaces remaining and time τ to go, V (x,τ), is the
solution to

∂V (x,τ)
∂τ

+q(τ)
[
V (x,τ)−V (x−1,τ)

]
= r(τ), (32)

with V (x,τ = 0) = 0 and V (x = 0,τ) = 0, for all choices of x and τ , respectively. Note that this PDE is
forward looking in τ , which is the reason for the imposed initial condition at τ = 0, as opposed to the
final condition for (31).

An admission policy should ensure that in order to maximise the expected value rate we accept a
customer only if its corresponding price rate Ψ is higher than or equal to some optimal minimum price
rate Ψ ∗ set by the carpark manager. Since there is a one-to-one correspondence between the price Ψ(·)
and the length-of-stay ξ , with the price rate monotonically decreasing in ξ , we can apply the admission
policy with regards to the latter. In other words, we accept a customer only if its duration of stay ξ is
less than or equal to some optimal maximum duration of stay ξ ∗.

In fact, the intensity of customers that are present τ days later and stay for no more than ξ ∗ days is
given precisely by

q(τ|ξ ∗) = Λa

∫
ξ ∗

ξ=0

∫
τ

η=(τ−ξ )+
φ(η ,ξ )dη dξ . (33)

These customers will bring the revenue rate of

r(τ|ξ ∗) = Λa

∫
ξ ∗

ξ=0

∫
τ

η=(τ−ξ )+
φ(η ,ξ )Ψ(ξ )dη dξ . (34)

In other words, out of the set of customers that would have arrived to be present over T , the optimal
admission rule selects only those customers that will be staying at most ξ ∗ days, or better those that
contribute at least Ψ(ξ ∗). Note the notation using the | symbol to indicate that q(·) and r(·) now are
evaluated for a given upper limit value on ξ .

Therefore, the SSR model, expressed in a Hamilton-Jacobi-Bellman (HJB) form, reads

∂V (x,τ)
∂τ

= max
ξ

{
r(τ|ξ )−q(τ|ξ )

[
V (x,τ)−V (x−1,τ)

]}
. (35)

The SSR model appears to be closer to a dynamic pricing model seen in the literature (eg. Gallego and
Van Ryzin, 1994; Zhao and Zheng, 2000) because the price varies continuously as a result of changing
the maximum allowed stay ξ . However, we notice that the demand is not directly affected by the
price but it rather gets truncated so that only customers who pay more than a minimum amount are
accepted. This might then indicate some form of dynamic capacity control as the entire demand flow is
still observed but we limit the available products (by restricting the length-of-stay) in such a way that
only part of this demand gets through (eg. Zhao and Zheng, 2001).

It is important to note that, as opposed to the SMR method that calculates the expected revenue
generated over a finite ∆ t period, the SSR model in equation (35) (and the DSR model which is presented
in the next section) solves for the expected revenue rate per day that must then be multiplied by ∆ t,
before treating the two quantities on the same scale to allow a valid comparison between them.
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One of the big advantages we found using the continuous-time model was in the derivation of ana-
lytic results for the functions q and r. The justification is that approximating the value function in the
limit with simple functions as input, was preferable to introducing more complex inputs to derive the
value over a small time interval. In particular, further details on this matter can be found in Papayiannis
et al. (2013), where the authors present a methodology to derive this value over a finite time interval. It
should also be noted under this setting all small intervals have a similar revenue potential so the bid-price
table can be reused over a long period once it has been solved. This is particularly useful if bookings
within a season were to exhibit similar patterns.

4.1 Structure of the optimal price

The optimal price Ψ ∗ at which we accept customer requests can be found by differentiating the PDE
(35) w.r.t ξ ∗. Doing so, we conclude that

Ψ
∗ = max

{
V (x,τ)−V (x−1,τ), ψ∞

}
, (36)

indicating that at optimality the price-per-day equals the expected opportunity cost. By then combining
(1) and (36) and solving w.r.t. ξ ∗ we obtain

ξ
∗ = log

(
Ψ ∗−ψ∞

ψ0−ψ∞

)−1/µ

. (37)

4.2 Numerical considerations

In order to solve the PDE (35) we use a finite-difference scheme (see Smith, 1985). The main challenge
we are faced with is the presence of multiple integrals that need to be calculated at every step on the
mesh; this would escalate computation times. Thus, a pre-processing step is employed, where the values
of q(τ|ξ ) and r(τ|ξ ) are precomputed for all combinations of τ and ξ , and stored in 2D matrices. Details
on the computations of this matrix are presented in Appendix B.

4.3 Bid Prices

We construct the discrete bid prices from the continuous value rate function V as

πx,m =V (x,τ = m∆ t)∆ t−V (x−1,τ = m∆ t)∆ t.

A full description of how the bid-price table is calculated and used is presented in Appendix C.

5. Deterministic Single Resource (DSR) Approach

We now consider the associated deterministic (fluid) formulation of the problem by assuming that the
remaining capacity x is a continuous quantity. Then the problem can be expressed as

max
ξ

∫ T

0
r(τ|ξ )dτ (38)

subject to
dx
dτ

= q(τ|ξ ) and x(τ = T ) =C, x(τ)> 0 (39)
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namely, to maximise the revenue rate over the booking horizon subject to x changing deterministically
and continuously according to the controlled intensity q(·).

In this representation, time is in reverse, meaning that T should be regarded as the length of the
booking horizon. The idea here is that at the beginning of the booking horizon (T days before) no
spaces have been sold yet which means that the number of spaces remaining at this point is the entire
carpark capacity C i.e. x(τ = T ) = C. As we move towards the target day, spaces are getting sold to
customers, effectively reducing the remaining spaces in the carpark. On the target day, we would have
either sold the entire number of spaces or we would be left with a few unsold spaces (x(τ = 0)> 0). The
objective is to find the optimal selling rate of the spaces (optimal trajectory for x) so that the generated
revenue is maximised. Consequently, to solve this model we apply the Pontryagins maximum principle
(Bertsekas, 1995).

When the problem is deterministic we can show that the optimal price policy is a fixed-price policy;
that is when the total demand to come is greater than the carpark capacity, we choose the run-out price,
Ψ 0, at which we sell precisely the entire capacity, and when the total demand is less than the carpark
capacity we enact the revenue maximising price, Ψ ∗; this result is also verified in Gallego and Van
Ryzin (1994).

5.1 Bid Prices

We construct the discrete bid prices using the optimal price rate which is calculated as part of the
solution. Consider that the optimal price rate ψ0 has a corresponding LoS ξ 0, we can write

πx,m =

 Ψ

(
ξ 0
)

such that
∫ m∆τ

0 q(s|ξ 0)ds = x

Ψ ∗ when total demand is less than capacity
.

A full description of how the run-out price is calculated and used to construct the bid-price table is
presented in Appendix D.

6. Results

Informal discussions with various airports carpark managers in UK indicates that the size of Premium
carparks ranges from 50 to 500 spaces and can sell out during peak times. In contrast, Long Stay
carparks have huge capacity which rarely sells out. Thus in practice, a Premium carpark naturally leads
to constrained optimization problem, where ‘denied’ customers are redirected to the unconstrained Long
Stay carparks.

In our default scenario, we assume that we operate a Premium carpark with capacity up to C = 100
spaces, in order to ensure that results can be obtained and comparisons can be achieved across all three
methods (SMR, SSR, DSR). Later, for the two methods, SSR and DSR, this restriction is relaxed and
we consider a Premium carpark of capacity C = 500 and assess their performance.

The parameters for the Business and the Leisure class are given by

B∼

 λb = 1/3
λa = 25
λs = 1

and L∼

 λb = 1/14
λa = 5
λs = 1/7

, (40)

respectively. The parameters for the two sets are carefully selected in a manner that best reflects the
likely customer behaviour within each segment; note the higher arrival rate of B which is 25 as opposed
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to only 5 for set L. Also note that Leisure customers tend on average to book around two weeks in
advance (E[ηL] = 1/λb = 14 days) and stay for around a week in the carpark (E[ξL] = 1/λs = 7 days),
whereas the Business customers book relatively close to the arrival day (E[ηB] = 3 days) and stay on
average for just a day (E[ξL] = 1). This is a typical situation in the airport carpark where we encounter a
high-percentage of shorter length-of-stay customers averaging one day per customer. We have of course
ignored the “roll-up” customers (those who do not prebook in advance) which greatly simplifies our
problem setting. These customers typically stay for a shorter amount of time (dropping off or picking
up other customers) and are subject to a different and very high price-rate.

The expected total demand per day can be calculated by E[total demand] = ∑n λan/λsn , which in our
model scenario is 60 customers per day. In other words, we would expect that carparks of size 60 and
larger should be adequate in satisfying the customer demand.

The price-rate function parameters are set to ψ0 = 15, ψ∞ = 5 and µ = 1/5, chosen specifically
to replicate the behaviour of pricing functions that are commonly used in practise. Under this set of
parameters, the quoted prices start from 15 units per day (when ξ → 0), exponentially decrease in
length-of-stay and asymptotically achieve the long term rate of 5 units per day (when ξ → ∞).

Recall that the SMR method uses the parameter ∆ t to set the size of the smallest time period that can
be monitored. The smaller ∆ t is, the more refined the price structure and the occupancy becomes. In fact,
as ∆ t→ 0, the SMR solution converges to the solution given by the two continuous-time approaches and
ultimately enables comparisons to be made and meaningful conclusions to be deduced. For this study,
we have used ∆ t = 6.25×10−3 (9-minute intervals) for all three methods SMR, SSR, DSR, a parameter
value which has been shown to be sufficient for numerical accuracy at a reasonable computational cost
(Papayiannis, 2013).

Under the absence of an optimal solution, A FCFS policy is implemented to serve as a benchmark
against our three developed methodologies. Under this strategy the only condition that is required for
a request to be accepted is capacity availability. Recall that this simple strategy can also be seen as a
special case of a bid-price policy where all the bid-prices in the table are set to zero.

6.1 Inspection of Methods

Figure 1 presents the expected revenues to be generated, from the FCFS (left) and SMR (right), as
a function of the time left. We recall that for the SMR case, these expected revenues (of x spaces
remaining on period k as of period j) are derived by setting an empty carpark and evaluate the revenue
generated on the mth period (m = k− j) using capacity C = x. Thus for the SMR method, the terms
capacities C and remaining capacities x, are used interchangeably.

When demand is unconstrained (E[total demand] < x) both approaches seem to generate identical
revenues; this is the expected outcome as all customers are allowed entry irrespective of their length-
of-stay. In this case, the expected revenue is a concave function of the time-left. At the maximum
lead time, the expected revenues rise up to 530 currency units. When expected demand is constrained
(E[total demand]> x), the expected revenues under the FCFS strategy fail to be concave and are lower
revenues than those of the SMR. This happens due to the poor management decisions taken in the
booking process; when customers are served on a first-to-come basis, the system tends to accept too
many leisure customers which results in displacing some lucrative business customers that would have
arrived later in the booking horizon. In contrast, under the SMR policy the bid-price algorithm works
well in controlling the leisure stream of customers and thus ensuring that spaces will remain available
for the business ones who will arrive later in the booking process.
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FIG. 1. Expected values as functions of the time left, for the FCFS (left) and SMR (right) policy. Time left is measured in periods
of size ∆ t, though here we present it in terms of full days. The different curves show various carpark sizes, ranging from 70 to 10,
top to bottom. The values in each period are divided by ∆ t to represent rates.

Figure 2 compares the solutions of the SSR and the DSR methodologies. Recall that the latter is the
“fluid” formulation of the former and it is deterministic. In particular, we compare the expected revenues
to be generated in the carpark when there are 100 days left until utilisation. The expected revenue under
the DSR approach increases in x and it reaches its maximum at the point when the remaining capacity
equals the expected total demand (x = 60). Beyond this size, no additional revenue can be achieved and
hence the sharp horizontal line. This is to be contrasted to the SSR method where the expected revenue
slowly reaches that maximum. Thus, we conclude that the DSR method serves as an upper bound to our
SSR model, formalising the idea that uncertainty in sales results in lower expected revenues.

6.2 Comparisons within the test framework

6.2.1 BidPrice Policies Let us now examine the performance of the three derived methodologies,
SMR, SSR and DSR when implemented within our test framework. Figure 3 presents the expected
marginal values of the resource days, as these are calculated by the three developed methods plus that
of the FCFS strategy. Note that under the assumption of time-invariance, these bid-price tables are
identical for all days in the carpark; in the general non-stationary case there would be a distinct table for
every single day (resource) in the carpark. The expected marginal values of the resource are presented
as 2D tables w.r.t the capacity remaining and time left until utilisation. For the purpose of this study,
each of these tables forms an admission policy, or equivalently a bid-price table which is implemented
and tested within the test framework. Beginning from the FCFS policy (top left), the resources are
associated with no value, in which case the admission algorithm accepts/denies requests based just on
whether capacity is available. Looking at the SMR policy (top right) the expected marginal values show
the anticipated behaviour as they increase in time-left and decrease in capacity remaining. Recalling that
the expected total demand is 60 and that the problem is stochastic, the curves become zero on and around
that capacity size. Around 15 iterations and 12000 paths were needed for the algorithm to converge to
the solution. Even after many simulations the surfaces still show some variation and are not completely
smooth. The SSR approach (bottom left) achieves a similar policy to that of the SMR approach. The
results are not only much smoother here but the time taken to compute these has been limited to seconds
as opposed to hours. Finally, for the DSR approach the deterministic nature of the model is reflected in
the resulting policy, where there is a sharp cut-off in the valuations; when the demand is greater than
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FIG. 2. Expected values as functions of the capacity remaining, x, with τ = 100 days left, for the SSR and DSR models.

capacity these are positive and similar to that of the SSR model and when capacity becomes greater than
demand they become zero.

A closer inspection of the policies reveals some interesting facts; this can be seen in figure 4 that
shows the expected marginal values as a function of capacity remaining, for a fixed expected demand of
60 and with τ = 50 days remaining. The SSR and DSR results are very similar in shape and absolute
value, with the difference being the cut-off of the DSR once the total expected demand exceeds capac-
ity. Both curves retain the monotonicity property in capacity since they increase monotonically as the
available spaces are reduced. In contrast, the SMR policy seems to have lost this property when the
capacity remaining drops below 20, as the curve appears to be bending downwards. This indicates that
the last available spaces are not associated with the maximum price rate for stay for a single period. This
is explained by the fact that when ∆ t is small, spaces are more efficiently utilised with a fewer number
of customers occupying each period simultaneously - as a result, this reduces the expected marginal
values.

6.2.2 Revenue Performance Comparison Next, we seek to examine how the bid-price policies per-
form in the test framework. For this purpose we have used 5000 booking reservations sets in the simula-
tion. Let us denote by rFCFS

∞ the expected perpetual revenue rate per day after using the FCFS admission
policy. Also let us define by rSMR

∞ , rSSR
∞ and rDSR

∞ the expected perpetual revenue rates that result after
implementing the SMR, SSR and the DSR policy, respectively. Therefore, by dividing over rFCFS

∞ gives
us a first indication of the methods’ performance against the FCFS method.

Figure 5 and table 1 illustrate the relative performance of the methods for different carpark sizes.
The key observations are summarised below;

(a) When capacity is congested, i.e when the total expected demand is much larger than the available
capacity, all methods outperform the FCFS for all capacities. The added benefit is more pronounced
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FIG. 3. Expected marginal values as functions of the capacity remaining, x and time remaining, in days m∆ t, for the four
approaches.

for relatively small carparks. This is because the booking flow in the carpark is controlled such that
there will always be available spaces for the business customers who normally arrive later in the
booking horizon. Under the FCFS policy, nothing restricts the leisure low-paying customers in fill-
ing the carpark early in advance, and consequently the carpark sells out long before the business
and more profitable customers arrive. As the carpark size increases, the additional benefit from
implementing an admission policy reduces; and eventually for relatively big carparks they all per-
form identically to the FCFS policy. The maximum benefit of the methods is observed at carpark
size 10 when the SMR, SSR and DSR policies generate 48.4%, 47.0% and 44.2% higher expected
revenues, respectively.

Given that our comparison is based on simulations, we can examine the statistical significance of
the results obtained. In particular, we can test whether the difference in the perpetual revenues of
each method against the FCFS method, is statistically significant. This is undertaken using a two-
sample t-test; we run a test for each carpark size and assess it using a confidence level of α = 0.05
while we also generate the 95% confidence intervals around these differences. The results for these
tests are shown in tables 2, 3 and 4. For capacities up to 40, all three methods achieve statistically
higher perpetual revenues than the FCFS policy, while for larger carpark sizes the improvement is
no longer statistically significant.



20 of 34 A. PAPAYIANNIS ET AL.

0 20 40 60 80 100

0

5

10

15

Capacity remaining, x

∆
V
x
,m

SSR
DSR

SMR

FIG. 4. Relative performance comparison of the three methods against the FCFS policy, for various carpark sizes with the expected
demand fixed at 60 and τ = 50 days (or m = 50/∆ t periods) remaining.

(b) Among all methods the SMR seems the superior method. Again, the impact of implementing the
SMR policy as opposed to the others is more apparent for small capacities, when the booking con-
trol over the last few spaces is more appropriately managed; this is because the calculated marginal
values of the last few spaces better reflect the true network structure of the problem when the SMR
method is implemented. Since the marginal expected values take into consideration the neighbour-
ing days the resulting bid-prices are lower in absolute value and tend to reject fewer short stay
customers. For all other carpark sizes the performance of the three methods is similar. Putting this
in a statistical context, and by looking at tables 5 and 6, the superiority of the SMR method cannot
be generalised fully for all carpark sizes, at the selected confidence level.

(c) Comparing the SSR and the DSR methods, the former generates higher expected revenues for all
carpark sizes. Evidently, the fact that the DSR method makes a deterministic statement on the total
demand (assuming that the total demand equals its expectation) renders the sharp cut in the result-
ing bid-price table and inevitably deteriorates the resulting revenues. The maximum difference is
observed for carpark size 5 where the SSR generates 4.0% higher expected revenues. Again, by
looking at table 7, any difference in the performance between these two is not statistically signifi-
cant.

Recall that for the DSR and SSR methods, we can obtain results for more realistic capacities. Thus
we have experimented with carpark sizes up to C = 500 spaces, while adjusting for the expected
demand accordingly; we scale the initial maximum carpark size of C = 100 by a factor of 5 to get
C∗ = 500. To ensure consistency, we thus apply the same factor on the arrival rates for the two
classes while keeping the rest unchanged, namely

B∗ ∼

 λb = 1/3
λa = 125
λs = 1

and L∗ ∼

 λb = 1/14
λa = 25
λs = 1/7

(41)
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FIG. 5. Relative performance comparison of the three methods against the FCFS policy, for various carpark sizes.

Table 8 demonstrates our findings; the relative performance of the two methods in the scaled-up
model scenario remains similar to the default setting, with any differences between the generated
perpetual revenues being not statistically significant.

Table 1. Comparative performance of the SMR, SSR and DSR, relative to the FCFS policy, for various carpark sizes C.
C rFCFS

∞ rSMR
∞ /rFCFS

∞ rSSR
∞ /rFCFS

∞ rDSR
∞ /rFCFS

∞

5 37.406 1.432 1.373 1.319
10 73.090 1.484 1.470 1.442
20 146.593 1.450 1.452 1.445
30 227.351 1.330 1.327 1.328
40 314.298 1.190 1.183 1.182
50 402.032 1.075 1.066 1.063
60 477.796 1.011 1.007 1.006
70 519.869 1.000 1.000 1.000
80 529.987 1.000 1.000 1.000
90 530.768 1.000 1.000 1.000
100 530.781 1.000 1.000 1.000

7. Conclusions

Three approximation RM methods have been studied in the context of airport carpark sales, which we
refer to as Stochastic Multi Resource (SMR), Stochastic Single Resource (SSR) and Deterministic Sin-
gle Resource (DSR). All these methods attempt to estimate the expected marginal values of the carpark
spaces so that they can be used in a bid-price control in a running test framework. We have demonstrated
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Table 2. Statistical Comparison of the SMR against the FCFS policy, for various carpark sizes C.

C rFCFS
∞ rSMR

∞ s.e.FCFS s.e.SMR Diff. in means Diff. in means P-value t-test outcome
95% CI (t-test) (α = 0.05)

5 37.406 53.573 2.793 0.881 16.167 [10.425, 21.909] 0.000 significant
10 73.090 108.475 4.132 1.506 35.385 [26.763, 44.006] 0.000 significant
20 146.593 212.536 7.000 3.132 65.943 [50.911, 80.975] 0.000 significant
30 227.351 302.351 10.302 5.573 75.000 [52.039, 97.961] 0.000 significant
40 314.298 374.054 12.678 8.270 59.756 [30.084, 89.428] 0.000 significant
50 402.032 432.236 12.624 10.264 30.204 [-1.689, 62.097] 0.063 not significant
60 477.796 483.083 11.308 12.106 5.287 [-27.186, 37.76] 0.750 not significant
70 519.869 520.009 21.171 21.277 0.140 [-58.697, 58.977] 0.996 not significant
80 529.987 529.989 28.542 28.543 0.002 [-79.122, 79.126] 1.000 not significant
90 530.768 530.768 29.601 29.601 0.000 [-82.057, 82.057] 1.000 not significant
100 530.781 530.781 29.624 29.624 0.000 [-82.121, 82.121] 1.000 not significant

Table 3. Statistical Comparison of the SSR against the FCFS policy, for various carpark sizes C.

C rFCFS
∞ rSSR

∞ s.e.FCFS s.e.SSR Diff. in means Diff. in means P-value t-test outcome
95% CI (t-test) (α = 0.05)

5 37.406 51.356 2.793 1.237 13.950 [7.961, 19.939] 0.000 significant
10 73.090 107.415 4.132 1.936 34.325 [25.38, 43.269] 0.000 significant
20 146.593 212.809 7.000 3.316 66.216 [51.033, 81.399] 0.000 significant
30 227.351 301.715 10.302 5.240 74.364 [51.706, 97.022] 0.000 significant
40 314.298 371.720 12.678 7.208 57.422 [28.834, 86.01] 0.000 significant
50 402.032 428.411 12.624 8.377 26.379 [-3.32, 56.078] 0.082 not significant
60 477.796 481.040 11.308 10.682 3.244 [-27.248, 33.736] 0.835 not significant
70 519.869 519.930 21.171 21.208 0.061 [-58.68, 58.802] 0.998 not significant
80 529.987 529.988 28.542 28.543 0.001 [-79.122, 79.124] 1.000 not significant
90 530.768 530.768 29.601 29.601 0.000 [-82.057, 82.057] 1.000 not significant
100 530.781 530.781 29.624 29.624 0.000 [-82.121, 82.121] 1.000 not significant

Table 4. Statistical Comparison of the DSR against the FCFS policy, for various carpark sizes C.

C rFCFS
∞ rDSR

∞ s.e.FCFS s.e.DSR Diff. in means Diff. in means P-value t-test outcome
95% CI (t-test) (α = 0.05)

5 37.406 49.355 2.793 1.352 11.950 [5.866, 18.033] 0.000 significant
10 73.090 105.428 4.132 2.159 32.338 [23.199, 41.476] 0.000 significant
20 146.593 211.861 7.000 3.659 65.268 [49.785, 80.751] 0.000 significant
30 227.351 301.996 10.302 5.704 74.645 [51.561, 97.729] 0.000 significant
40 314.298 371.364 12.678 7.324 57.066 [28.365, 85.767] 0.000 significant
50 402.032 427.545 12.624 8.270 25.513 [-4.071, 55.097] 0.091 not significant
60 477.796 480.598 11.308 10.575 2.802 [-27.547, 33.151] 0.856 not significant
70 519.869 519.920 21.171 21.200 0.051 [-58.679, 58.781] 0.999 not significant
80 529.987 529.988 28.542 28.543 0.001 [-79.122, 79.124] 1.000 not significant
90 530.768 530.768 29.601 29.601 0.000 [-82.057, 82.057] 1.000 not significant

100 530.781 530.781 29.624 29.624 0.000 [-82.121, 82.121] 1.000 not significant

the methodology of each approach explicitly and presented a number of important numerical results.

7.1 Remarks

The real network structure of the problem is difficult to model and to solve. Through a number of
simplifications the underlying network problem was reduced to the SMR setting, which allowed us to
calculate the expected marginal values for each space individually. The SMR model still retains some
network features as the optimisation rule is applied to the booking request in total. Under this setting, a
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Table 5. Statistical Comparison of the SSR against the SMR policy, for various carpark sizes C.

C rSSR
∞ rSMR

∞ s.e.SSR s.e.SMR Diff. in means Diff. in means P-value t-test outcome
95% Conf. Int. (t-test) (α = 0.05)

5 51.356 53.573 1.237 0.881 -2.217 [-5.194, 0.76] 0.144 not significant
10 107.415 108.475 1.936 1.506 -1.060 [-5.869, 3.749] 0.666 not significant
20 212.809 212.536 3.316 3.132 0.273 [-8.669, 9.215] 0.952 not significant
30 301.715 302.351 5.240 5.573 -0.636 [-15.631, 14.359] 0.934 not significant
40 371.720 374.054 7.208 8.270 -2.334 [-23.839, 19.171] 0.832 not significant
50 428.411 432.236 8.377 10.264 -3.825 [-29.796, 22.146] 0.773 not significant
60 481.040 483.083 10.682 12.106 -2.043 [-33.691, 29.605] 0.899 not significant
70 519.930 520.009 21.208 21.277 -0.079 [-58.966, 58.808] 0.998 not significant
80 529.988 529.989 28.543 28.543 -0.001 [-79.127, 79.125] 1.000 not significant
90 530.768 530.768 29.601 29.601 0.000 [-82.057, 82.057] 1.000 not significant

100 530.781 530.781 29.624 29.624 0.000 [-82.121, 82.121] 1.000 not significant

Table 6. Statistical Comparison of the SMR against the DSR policy, for various carpark sizes C.

C rDSR
∞ rSMR

∞ s.e.DSR s.e.SMR Diff. in means Diff. in means P-value t-test outcome
95% Conf. Int. (t-test) (α = 0.05)

5 49.355 53.573 1.352 0.881 -4.217 [-7.38, -1.054] 0.009 significant
10 105.428 108.475 2.159 1.506 -3.047 [-8.207, 2.113] 0.247 not significant
20 211.861 212.536 3.659 3.132 -0.675 [-10.117, 8.767] 0.889 not significant
30 301.996 302.351 5.704 5.573 -0.355 [-15.987, 15.277] 0.964 not significant
40 371.364 374.054 7.324 8.270 -2.690 [-24.345, 18.965] 0.808 not significant
50 427.545 432.236 8.270 10.264 -4.691 [-30.529, 21.147] 0.722 not significant
60 480.598 483.083 10.575 12.106 -2.485 [-33.995, 29.025] 0.877 not significant
70 519.920 520.009 21.200 21.277 -0.089 [-58.965, 58.787] 0.998 not significant
80 529.988 529.989 28.543 28.543 -0.001 [-79.127, 79.125] 1.000 not significant
90 530.768 530.768 29.601 29.601 0.000 [-82.057, 82.057] 1.000 not significant

100 530.781 530.781 29.624 29.624 0.000 [-82.121, 82.121] 1.000 not significant

Table 7. Statistical Comparison of the SSR against the DSR policy, for various carpark sizes C.

C rSSR
∞ rDSR

∞ s.e.SSR s.e.DSR Diff. in means Diff. in means P-value t-test outcome
95% Conf. Int. (t-test) (α = 0.05)

5 51.356 49.355 1.237 1.352 2.000 [-1.592, 5.593] 0.275 not significant
10 107.415 105.428 1.936 2.159 1.987 [-3.697, 7.671] 0.493 not significant
20 212.809 211.861 3.316 3.659 0.948 [-8.732, 10.628] 0.848 not significant
30 301.715 301.996 5.240 5.704 -0.281 [-15.465, 14.903] 0.971 not significant
40 371.720 371.364 7.208 7.324 0.356 [-19.787, 20.499] 0.972 not significant
50 428.411 427.545 8.377 8.270 0.866 [-22.209, 23.941] 0.941 not significant
60 481.040 480.598 10.682 10.575 0.442 [-29.023, 29.907] 0.977 not significant
70 519.930 519.920 21.208 21.200 0.010 [-58.771, 58.791] 1.000 not significant
80 529.988 529.988 28.543 28.543 0.000 [-79.125, 79.125] 1.000 not significant
90 530.768 530.768 29.601 29.601 0.000 [-82.057, 82.057] 1.000 not significant

100 530.781 530.781 29.624 29.624 0.000 [-82.121, 82.121] 1.000 not significant

Monte Carlo approach has been implemented to simulate the booking sets, and an admission rule based
on additive bid-prices was used for the booking control. An iterative scheme was designed in order to
gradually converge to the correct estimates. The approach was found to be computationally intensive and
the resulting surfaces still retained some degree of variance. Further, the resulting bid-price policy was
found to be outperforming the policies from SSR and DSR, especially for small constrained capacity
carparks. However, the feasibility of applying the SMR method in practice depends on a trade-off
between the speed in calculating the policy and the added gains in performance. Note that in a real-time
optimization keeping computation times in a practically low level is very desirable.
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Table 8. Statistical Comparison of the SSR against the DSR policy, under a more realistic setting of larger capacities.

C rSSR
∞ rDSR

∞ s.e.SSR s.e.DSR Diff. in means Diff. in means P-value t-test outcome
95% Conf. Int. (t-test) (α = 0.05)

50 613.321 611.132 3.719 3.978 2.189 [-8.486, 12.864] 0.688 not significant
100 1180.440 1179.090 6.585 7.250 1.350 [-17.849, 20.549] 0.890 not significant
150 1651.090 1652.170 11.499 12.599 -1.080 [-34.517, 32.357] 0.950 not significant
200 2008.440 2007.640 16.488 16.817 0.800 [-45.366, 46.966] 0.973 not significant
250 2291.080 2288.870 19.009 18.823 2.210 [-50.227, 54.647] 0.934 not significant
300 2552.500 2551.920 26.106 25.989 0.580 [-71.628, 72.788] 0.987 not significant
350 2651.240 2651.240 65.056 65.056 0.000 [-180.345, 180.345] 1.000 not significant
400 2651.650 2651.650 65.749 65.749 0.000 [-182.266, 182.266] 1.000 not significant
450 2651.650 2651.650 65.749 65.749 0.000 [-182.266, 182.266] 1.000 not significant
500 2651.650 2651.650 65.749 65.749 0.000 [-182.266, 182.266] 1.000 not significant

Next, we have shown how to construct a continuous-time stochastic model, named SSR. The model
is formulated as an HJB PDE model and the solution is calculated by using simple finite-differences
techniques. Although this model no longer solves the network problem, the resulting surfaces have been
shown to be smooth and they were actually computed in less than a minute. One potential approach that
would exploit the speed advantage of the SSR model while preserving the SMR bid-price generation
algorithm is to use them both in a joint scheme whereby the smoothed SSR admission policies serve as
the starting point in the SMR iterations. In this way, we aim to speed up convergence without losing
valuable information.

The final model we studied, namely DSR, was a direct extension of the previous SSR model formu-
lated under the assumption of a continuous quantity. Our results verified that the DSR solution forms
an upper bound to the SSR solution. The biggest advantage of the DSR method compared to SSR is the
computation time which has now been limited to just a few seconds. However, further information is
lost due to the assumption of the deterministic sales process, particularly when the capacity is close to
the demand.

The bid-price policies resulting from the three models were found to perform significantly better
than the naive FCFS policy. In particular, the SMR has shown the best overall performance with the
added gains to be more apparent on low capacity carparks. The SSR and DSR did similarly well but
there is room for further improvement.

Taking into account each of the methods’ efficiency, the computation times and the resulting ex-
pected revenues, a hybrid approach that uses either SSR or DSR as a default and then switches to SMR
in times of congestion would appear to be the preferred method. Each of the three methods showcase
the merits of using the continuous time RM framework for real-time booking systems.

7.2 Implications in real-world booking systems

Our study exploits an RM setting under the traditional Poisson arrival Process, but with booking dynam-
ics modelled by a two-dimensional probability density function, φ(η ,ξ ), with η and ξ being the lead
time and length-of-stay, respectively. The versatility of the formulation allows for any mix of marginal
distributions and an arbitrary number of customer classes with different characteristics, which together
can model a variety of carpark or other RM scenarios.

In contrast to most RM problems, the length-of-stay dimension is also modelled in continuous-time,
leading to a huge state space and intractable mathematical problems. We showed that applying a single-
resource decomposition is feasible for this type of RM problem, which makes it possible to utilise
a continuous-time formulation and exploit the associated algorithmical benefits. Also, the unique rela-
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tionship between price and length-of-stay, a distinct feature of airport carparks, enables the management
to apply dynamic capacity optimization by imposing a limit on the maximum length-of-stay allowed.
The successfully tested idea of using the length-of-stay as a control variable to optimise customer de-
mand hints at how other RM problems could be tackled in the near future, with extensions of the current
model to incorporate spot (roll-up) demand and optimisation under multiple carparks to naturally go to
future work.
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A. Numerical Implementation of the MSR method

We describe the method under the time invariant framework which simplifies our problem greatly. In
practice this means that the valuation drops by one dimension, from three dimensions to two. Thus, we
define the matrix v to store our results; this is a 2D array composed of the expected values at every time
and state of the carpark, defined by

Vx,0,m := vx,m. (42)
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As before, this is interpreted as the expected value of the carpark with x spaces remaining and m = k− j
periods remaining until all spaces are occupied.

The procedure to determine the optimal solution v and the optimal admission control policy is based
on iteration and Monte-Carlo simulation. Recall that two customer classes are assumed with different
booking characteristics. Reservations from each customer class are simulated based on a Poisson arrival
process, with Exponential lead times and length-of-stays, with class-specific intensities. Let us define
a sample path as one simulated booking set, where each booking set is comprised of thousands of
individual reservations. Given a large number of such paths, the methodology works by taking each
sample path, one at a time, applying the booking control policy (bid-price table) on all the simulated
reservations of that sample path and calculating the resulting revenue. The procedure is repeated for all
paths and then the expected revenue v is estimated by taking their average value. Once the expected
revenue is calculated, we also calculate the expected marginal values ∆v, which are used to update the
estimates of the bid-prices in the booking control policy; this completes one iteration. For the second
iteration, the same paths are examined, but now under the new updated policy, with the entire procedure
repeated, gradually improving on the values, until some convergence criterion is met. Note that at the
first iteration the booking control assumes all bid-prices are zero.

Note that we use the same sample path to generate the revenue vx,m for all possible values of x and
m. This guarantees that the pth sample path gives a marginal value that is non-negative (i.e. ∆v(p)

x,m > 0).
This will mean that over a total of P sample paths, our estimate of the expected marginal value, namely

1
P

P

∑
p=1

∆v(p)
x,m > 0,

is strictly non-negative as well. However, even if we use a large number of paths the variance in the
calculated values will still be large. Consequently, the scheme might not converge, as the convergence
relies on accurate estimates of the expected revenues. If the opportunity costs are overestimating the
spaces, we will be rejecting too many customers in the next iteration, which will thus decrease the
expected revenues. Then, the resulting policy will now be underestimating the spaces, leading to too
many customers being accepted and thus push the expected revenues up. This oscillatory behaviour may
potentially persist before converging.

Therefore, we propose an improved algorithm that will prevent us encountering such an undesirable
situation. The algorithm is based on the idea that we should iterate towards the correct solution by using
an under-relaxation scheme. As opposed to an over-relaxation scheme where the scheme’s relaxation
parameter ω is often set to be greater than one in order to speed up convergence, in this scheme we
choose this parameter to lie between 0 6 ω < 1. In this manner, the solution should steadily improve at
every iteration. A reasonable choice for ω is to have ω = 1/P. Motivated by the Gauss-Seidel iteration
method (details in Olver and Shakiban, 2006), within this algorithm new estimates on the expected
values made available from one sample path are used directly in the evaluation for the next sample
path. Under these assumptions we can observe experimentally that the algorithm converges to the true
solution in a finite number of iterations.

As an extra measure for reducing the variance from the sample paths, we propose a scheme whereby
the number of sample paths is multiplied by a factor of

√
2 at every iteration. Therefore a stopping

criterion on the maximum total number of paths at each iteration, Pmax, is imposed in order to prevent
the algorithm from excessive use of time and RAM.

The algorithm is as follows

1. Choose the booking horizon T and split it into K finite time periods of size ∆ t.
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2. Set the value matrix v equal to 0. This implies that all spaces in the carpark are initially assumed
worthless and therefore all customers can be accepted as long as capacity is available. Since this
is our initial guess for v we denote it as v(0), where v(r) is the rth estimate for the solution.

3. Choose the number of paths P(r) and the relaxation parameter ω(r) = 1/P(r).

4. Use Monte-Carlo simulation to generate booking sets within the pre-specified time interval [0, T ].

5. Evaluate the expected value of the carpark in period k for all time periods k, k = 1,2, . . . ,K and
all possible capacities 0 6 xk 6C (beginning with capacity 0) to generate the matrix y from

yx,k = Ju
x,0,k,x (43)

given that for the ith booking made in the period j to arrive in period l and stay for Di periods (or
ξ i = Di ∆ t days) the equation to satisfy is

ξ
i
Ψ(ξ i) >

l+Di−1

∑
k=l

(
v(r)x,k− j− v(r)x−1,k− j

)
. (44)

6. Under-relax to obtain the next estimate of the value

v(r+1)
x,k = v(r)x,k +ω

(
yx,k− v(r)x,k

)
. (45)

7. Go to step 4 P times.

8. Go to step 3, update P and ω to P(r+1) = P(r)
√

2 and ω(r+1) = 1/P(r+1), respectively, and repeat
until ||v(r+1)− v(r)||< ε or until P > Pmax, whichever occurs first.

Finally, recall that this discrete-time methodology is to be compared against two continuous-time
alternatives in sections 4 and 5. Since the time period in a continuous-time setting is infinitesimal, the
SMR method is solved for the limiting case ∆ t → 0; in practice we have used ∆ t = 6.25× 10−3, a
sufficient size that balances out accuracy and computation times.

B. Computation of q and r rates for SSR and DSR

Recall that our goal is to pre-compute the occupancy and revenue rates q(ξ |τ) and r(ξ |τ) given by

q(ξ ∗|τ) = Λa

∫
ξ ∗

ξ=0

∫
τ

η=(τ−ξ )+
φ(η ,ξ )dη dξ =

∫
ξ ∗

ξ=0
ρs(η ,ξ )dξ (46)

and

r(ξ ∗|τ) = Λa

∫
ξ ∗

ξ=0

∫
τ

η=(τ−ξ )+
φ(η ,ξ )Ψ(ξ )dη dξ =

∫
ξ ∗

ξ=0
ρs(η ,ξ )Ψ(ξ )dξ , (47)

where
ρs(η ,ξ ) = Λa

∫
τ

η=(τ−ξ )+
φ(η ,ξ )dη .
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These rates are functions of two parameters, length-of-stay ξ and time τ , for all pairwise combinations.
Suppose that the domain we will work on is rectangular with τ ranging from 0 to T and x ranging from
0 to ξmax. Divide [0, T ] into K equally spaced intervals at K + 1 values indexed by k = 0,1, . . . ,K.
Similarly, we divide [0, ξmax] into I integer intervals at I+1 values indexed by i = 0,1, . . . , I. The length
of these intervals is ∆τ in the time direction and ∆ξ in the length-of-stay direction such that τk = k∆τ ∀k
and ξ i = i∆ξ ∀i. We then define

qk
i = q(i∆ξ |k∆τ) (48)

and
rk

i = r(i∆ξ |k∆τ), (49)

where q and r are the corresponding arrays with dimensions (I +1)× (K +1).
Notice that equation (48) can also be expressed as

qk
i =

∫ (i−1)∆ξ

0
ρs(τ

k,ξ )dξ +
∫ i∆ξ

(i−1)∆ξ

ρs(τ
k,ξ )dξ = qk

i−1 +
∫ i∆ξ

(i−1)∆ξ

ρs(τ
k,ξ )dξ . (50)

Thus, the next value of qk
i can be expressed in terms of the previous value qk

i−1 plus an integral term
corresponding to the increment ∆ξ . Similarly, for equation (49) we have

rk
i = rk

i−1 +
∫ i∆ξ

(i−1)∆ξ

ρs(τ
k,ξ )Ψ(ξ )dξ . (51)

Again, the next value of rk
i may be computed as the previous value rk

i−1 plus an integral term corre-
sponding to the increment ∆ξ .

Now, if the difference between the two limits is sufficiently small (i.e. ∆ξ → 0) then the integral
term can be approximated by the one-step Simpsons Rule. Therefore the above formulations for q and
r are powerful as they enable us to recursively calculate the values q and r, one after the other. The
recursion begins from the trivial case qk

0 = 0 and rk
0 = 0 for all k.

In the time-invariant case when the distribution of bookings are of the form (10) we can derive the
following analytic formula:

q(ξ |τ) =


q1(ξ |τ) ifτ < ξ

q1(τ|τ)+ 1
Pa(τ)−Pd(τ)

∑n αn(e−λan τ −1)(e−λsn ξ − e−λsn τ) ifτ > ξ

(52)

where

q1(ξ |τ) =
1

Pa(τ)−Pd(τ)
∑
n

αn

(
λsn

λan −λsn

e−λan τ

(
e(λan−λsn )τ −1

)
+ e−λan τ

(
e−λsn ξ −1

))
Pa(τ) = 1−∑

n
αne−λan τ

Pd(τ) = 1−∑
n

αn

[
λane−λsn τ −λsn e−λan τ

λan −λsn

]
.

C. Numerical Implementation of the SSR method

We use an explicit finite difference scheme to solve this PDE. For details on this numerical technique
the reader is referred to Smith (1985).
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We first construct the mesh. In the stationary case the mesh has two dimensions only, the advance-
time τ and the capacity remaining x. Suppose that the domain we will work on is rectangular with
τ ranging from 0 to T and x ranging from 0 to C. Divide [0, T ] into K equally spaced intervals at
K + 1 values indexed by k = 0,1, . . . ,K. Similarly, we divide [0,C] into C integer intervals at C + 1
values indexed by j = 0,1, . . . ,J, so that we move with integer steps in space as parking spaces cannot
be sold in fractions. The length of these intervals is ∆τ in the time direction and ∆x = 1 in the state
direction such that τk = k∆τ ∀k and x j = j ∀ j. We seek an approximation to the values of V at the
(K +1)× (C+1) grid points.

Therefore,
V (x j,τ

k) =V ( j,k∆τ)≈ vk
j,

where v is a 2D array.
Similarly, if [0,ξmax] is the domain for the length of stay ξ , we may divide it into I equally spaced

intervals of length ∆ξ such that we have ξ i = i∆ξ for every i = 0,1, . . . , I.
The next step is to approximate the partial derivative of v at each grid point. More precisely, we use

a forward divided difference in time to write it as

∂v
∂τ

=
vk+1

j − vk
j

∆τ
.

Combining, the above we may write the numerical scheme as

vk+1
j = vk

j +max
i

{
pk

i (v
k
j−1− vk

j)+ rk
i

}
∆τ,

with the boundary conditions

v0
j = 0 ∀ j (53)

vk
0 = 0 ∀k. (54)

This is an explicit scheme as one could then proceed to calculate explicitly all the (unknown) vk+1
j ’s

from the already computed (and thus known) vk
j’s and recursively obtain u for the entire grid. Note that

such a numerical scheme will lead to a first order convergence in time.
The algorithm reads

1. Calculate the integrand and fill in the matrices p and r for all combinations of i = 0,1, . . . , I and
k = 0,1, . . . ,K, as shown in the Appendix B

2. Set the time τk starting from k = 0 to k = K.

3. Set the capacity j starting from j = 0 (boundary condition) to j =C, where C the largest carpark
size considered.

4. Set the optimal price Ψ ∗ = ψ0 at the beginning. Calculate the optimal price rate as

Ψ
∗ = max

{
vk−1

j−1− vk−1
j ,ψ∞

}
5. Calculate the respective optimal length of stay by

ξ
∗ =

(
Ψ ∗−ψ∞

ψ0−ψ∞

)−1/µ
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6. Derive the index i using

i =
⌊

ξ ∗

∆ξ

⌋
7. Calculate

vk
j = vk−1

j +
(

qk−1
i (vk−1

j−1− vk−1
j )+ rk−1

i

)
∆τ

8. Go to step 3 C times

9. Go to step 2 K times.

D. Numerical Implementation of the DSR method

Under the deterministic setting the problem is greatly simplified. We now examine our strategy for the
two possible scenarios. When the expected total demand to come is less than the carpark capacity C
then the problem is trivial because we maximise the revenues by letting ξ ∗→ ∞ so that Ψ ∗→ ψ∞. In
this case all customers are accepted irrespective of their duration of stay. Conversely, when the expected
total demand to come is greater than the carpark capacity C, there should exist a constant pricing policy
under which we can sell all the spaces exactly. Mathematically this implies that the optimal policy
should result in x(τ = 0) = 0.

Let us, consider the initial value problem that arises from equations (39), evaluated at ξ , while using
the results in Appendix B,

x(τ)
∣∣∣∣
ξ

=C−
∫ T

τ

q(τ ′|ξ )dτ
′ (55)

where T = K∆τ and τ = k∆τ for some k and ξ = i∆ξ for some i.
At expiry (τ = 0) the remaining unsold spaces are given by x(τ = 0)

∣∣
ξ

. Let us define the function
F as

F (ξ )≡ x(τ = 0)
∣∣∣∣
ξ

=C−
∫ T

0
q(τ ′|ξ )dτ

′

We know that, if we had used the optimal length of stay ξ ∗ we would have sold the entire inventory
exactly and therefore we would have

F (ξ ∗) = 0.

This suggests the implementation of a root-finding method (e.g. Newton-Raphson) to find the root of
F , i.e. the optimal value ξ ∗. Finally, we can substitute the optimal ξ ∗ in equation (38) to obtain
the maximised total revenue rate generated within the time horizon T ; more precisely, we evaluate the
integral

V (x =C,τ = T ) =
∫ T

0
r(τ|ξ ∗)dτ (56)

FIND THE OPTIMAL LENGTH-OF-STAY AND CALCULATE THE RESULTING REVENUE RATE We de-
fine the one dimensional array l∗ to store the optimal duration of stay for each carpark size. To do so,
we divide the range of carparks, [0,C], into C integer intervals at C+1 values indexed by j = 0,1, . . . ,J,
so that we move with integer steps as carparks cannot have fractional capacity.

l∗j = ξ
∗(x j)

The procedure to find the optimal durations ξ ∗ for each carpark size considered, works as follows
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1. Calculate the integrand and fill in the matrices p and r for all combinations of i = 0,1, . . . , I and
k = 0,1, . . . ,K, as shown in the Appendix B

2. For carpark size x j do

(i) Set i = 0, the case when the allowed duration is set to 0 and thus no customers are allowed
to enter.

(ii) Solve the IVP problem in (55) using the numerical approximation

F (ξ ) = x j− [qK
i −q0

i ]

.

(iii) If ||F (ξ )||< ε , where ε is the tolerance level, ξ ∗ has been found. Go to 3

(iv) Otherwise, update guess on ξ as

ξ
r+1 = ξ

r− F (ξ r)

F ′(ξ r)
,

where in the updating equation, F is defined using the analytical formula for q(ξ |τ) as
shown in (52) which allows for the derivative to be calculated, and update i by

i =
⌊

ξ r+1

∆ξ

⌋
(v) Go to step ii

3. Set

i∗ =
⌊

ξ ∗

∆ξ

⌋
and calculate the revenue rate generated as

vK
j =

K

∑
k=0

rk
i∗ . (57)

4. Store the optimal length of stay, l∗j = ξ ∗, to use later on

5. Go to 2

DERIVE CORRESPONDING BID-PRICES FOR EACH TIME AND CAPACITY REMAINING Our goal is
to construct bid-prices as functions of time and capacity remaining, and not to use the actual solution
(revenues) directly. Unlike the SSR method whereby the resulting expected values are used directly
to obtain the expected marginal values for all x and τ and hence construct the bid-price control policy,
in the DSR method this requires a rather more work. The DSR method calculates the revenue to be
generated from a carpark with C available spaces and τ = T time remaining to sell them. Thus, if we
wish to calculate the revenue to be generated from a carpark with C spaces and τ = T ′ time remaining we
should resolve the problem starting from the new time T ′. After integrating for the values for all C and
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T ′ we could evaluate the marginal values and thus create the bid-price control policy. This procedure
requires resolving the problem for all possible C and τ which is incredibly inefficient.

Fortunately, we do not have to do this because we can use the optimal durations in l∗ directly. For
example, if we want to calculate the marginal value when there are x j spaces remaining and τ time left
(τ < T ), we can navigate to the required time point and search through the different trajectories to find
the one passing closest to x j. Once this is identified we can take ξ ∗ = l∗j (or the interpolated ξ ∗ between
the two closest trajectories) to calculate Ψ(ξ ∗), which is the corresponding expected marginal value and
hence the bidprice at that point.

We first construct the mesh. In the stationary case the mesh has two dimensions only, the advance-
time τ and the capacity remaining x. Suppose that the domain we will work on is rectangular with τ

ranging from 0 to T and x ranging from 0 to C. Divide [0, T ] into K equally spaced intervals at K + 1
values indexed by k = 0,1, . . . ,K. Similarly, we divide [0,C] into C integer intervals at C + 1 values
indexed by j = 0,1, . . . ,J, so that we move with integer steps in space as parking spaces cannot be sold
in fractions. The length of these intervals is ∆τ in the time direction and ∆x = 1 in the state direction
such that τk = k∆τ ∀k and x j = j ∀ j.

Next define
pk

j = π(x j,τ
k),

a (K +1)× (C+1) array to store the resulting bid prices and proceed as follows

1. Iterate through all times k = 0,1, ...,K

2. Iterate through all remaining capacities j = 0,1, ...,J

3. Find the sales trajectory S that passes through the point (τk = k∆τ,x j = j) (or else, the two
trajectories S1,S2 closest to that point) and note down the carpark size m (or sizes m1, m2) it has
initiated from, along with the resulting optimal length-of-stay used l∗m (or l∗m1

, l∗m2
).

4. The optimal length-of-stay to use is

ξ
∗ =


I∗m if trajectory S passes through the point

I∗m1
+( j−m1)

I∗m2
−I∗m1

m2−m1
if trajectories S1 and S2 pass closest to the point

(58)

5. Set pk
j =Ψ(ξ ∗)

6. Go to 2 J times

7. Go to 1 K times


