View met

adata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Lancaster E-Prints

Light-touch Interventions to Improve
Software Development Security

Charles Weir, Lynne Blair
Security Lancaster
Lancaster University
United Kingdom
{c.weirl, l.blair} @lancaster.ac.uk

Abstract— Many software developers still have little interest in
software security. To change this, we need ‘interventions’ to
development teams to motivate and help them towards security
improvement. An intervention costing less than two days’ effort
from a facilitator plus half a day of team effort can significantly
improve that team’s software security. This case study describes
how this approach was used with one commercial team, and
identifies its impact using Participative Action Research. With
suitable improvements, the approach has the potential to help
many other development teams.

Keywords— Developer centered security; case study; software
security; software developer; intervention; action research

INTRODUCTION

Software security and privacy are now major issues: the cost
and potential threat to us all is increasing dramatically [1]. With
over 100 billion lines of code created a year [1], the effectiveness
of developers at creating secure software is vital®.

Unfortunately, many if not most developers consider
software security to be ‘not their problem’ [2]. Developers may
expect security to be handled by a different team; consider it too
expensive to incorporate without a significant drive from
product management; or simply not know where to start.

In prior work [3], the authors identified through interviews
with leading software security experts, a powerful ‘cocktail” of
eight, mostly well-known, techniques (including a ‘top five’), to
encourage and support software development teams to deliver
secure code. This combination of techniques has the potential to
improve secure software development.

However, prior work has established only the potential; for
the research to have impact requires us to find ways to
disseminate knowledge of this ‘cocktail’ to some of the
hundreds of thousands of programmers who could benefit. In a
recent paper [18] we suggested a variety of approaches to this
problem; in this research we investigated one approach in detail:
having a consultant lead the introduction of the techniques using
a package of lightweight consultancy ‘interventions’.

! Throughout this paper we use ‘secure’ and ‘security’ to refer to privacy
aspects of software development as well as security ones.

XXX-X-XXXX-XXXX-XIXXI$XX.00 ©20XX |EEE

Ingolf Becker, M. Angela Sasse
Department of Computer Science
University College London
United Kingdom
{i.becker, a.sasse} @ucl.ac.uk

James Noble
Engineering and Computer Science,
Victoria University of Wellington,

New Zealand

kjx @ecs.vuw.ac.nz

This paper describes four aspects of those interventions:

e The design of the intervention package and
methodology used;

e The background of the software development project
where it was used;

e The effect of the interventions on both developers and
product security;

e and possible improvements we might make in future.

The contributions of this work are:

1. Research on using managerial and process-based
approaches to developer security rather than on
delivering better tools,

2. A low-cost but effective intervention method to help a
team improve their development security, and

3. A detailed example of its implementation and the
consequences.

The rest of the paper is as follows. Section 11 establishes the
existing literature on the subject. Section 11l explains the
research and analysis methods in detail. Section IV discusses
the context and background to the development project. Section
V discusses the results obtained. And Section VI compares the
approach with existing practice and identifies future work.

Il. EXISTING WORK

This section examines existing academic literature and
related publications on the subject of helping and encouraging
developers to improve their software security. We explore
several areas in turn, examining the existing research available
in each, and moving from the relatively mechanical to more
sociological approaches.

A. Encouraging the Adoption of Tools

Much research has gone into the creation of tools to improve
security, such as code analyzers [4]-[7]. Rather less, however
has gone into getting them used. A survey by Johnson et al.
analyzed “Why Don’t Software Developers Use Static Analysis
Tools to Find Bugs’ [8] and produced a set of recommendations
for tool functionality; in particular the ability to avoid repeated
false positives and support for ‘quick fixes’. Jordan et al. [9]

https://core.ac.uk/display/196588067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

explored using emails to encourage developers to upgrade to
more secure versions of components, and suggested a variety of
other possible interventions, but provided no evidence of
success.

Some studies of tool adoption have based their theory on the
seminal work on getting new ideas adopted, Rogers’ book
‘Diffusion of Innovations’ (Dol) [10]. Based on extensive
research and examples, much of this work describes the
adoption process and reasons for adoption or non-adoption,
providing a language with which to describe the process. Only
one chapter, ‘The Change Agent’, describes — though at an
abstract level — how individuals and organizations may promote
and stabilize change.

Witschey et al. [11] suggested that adoption of tools could
be modelled by Dol theory [10], and used a survey of 40
developers recruited opportunistically to explore the model.
They concluded that more experienced, and more inquisitive,
developers are more likely to adopt tools, and that key deterrents
were difficult of trialling new tools, and their invisibility — that
developers are unlikely to notice a colleague using one.

Xiao et al. [11] reported a Dol-based study, interviewing 40
professional developers to explore the social factors that led to
security tool adoption. They found the main reason for adoption
was recommendation by trusted peers, including high-rated
experts in discussion forums. Interestingly company policies
mandating the use of such tools were very effective; all 13 who
had security tools mandated did use them.

Research by Dodier-Lazaro et al. [12] surveyed expert users
about their tool installation choices, finding that they were
unable to sacrifice consistency and flexibility for security
benefits. Whilst an article by Bessey et al. [13] describes the
experience of Coverity in building and marketing a source code
checking tool for large codebases. They observed that the tool
needs to deliver a true defect in its first three error messages to
generate a sale.

Away from the domain of software security, others have
investigated the adoption of development tools in general
software engineering. Murphy-Hill et al. [14] explored how
developers learned of new tools using 18 interviews and a diary
study of 76 programmers. They concluded that discovery
required peer interactions — especially seeing the tools being
used by colleagues — and that these were surprisingly infrequent.

B. Encouraging the Adoption of Security-Enhancing

Activities

There has been rather less work on encouraging developers
to use non-tool techniques. Prior to 2010, the main way of
improving software security was seen to be the ‘Secure
Development Lifecycle’ (SDL), a prescriptive set of instructions
to managers, developers, stakeholders and testers [15]. The
assumption appears to have been that developers, if instructed to
use an SDL, would do so wholeheartedly —which did not happen
in practice. Indeed Xiao’s 2014 survey of 40 developers [11],
found only 2 using them, and none of the three major SDLs
appears to have been developed much since 2010.

On the adoption of specific techniques, only code reviews
have received any academic attention. However, research on

their effectiveness has been limited to general software
improvement, rather than specifically as a security technique:
Baum et al. [16], for example, reviewed a variety of earlier work,
and interviewed 24 professionals in 19 German companies.
They conclude that cultural issues, rather than practical ones,
determined whether code reviews were used, and that reviews
were best embedded in the development process from the
beginning of a project.

C. Consultancy and Training Interventions

Several research teams have explored the impact of training
and external involvement on teams’ delivery of secure software.

A recent paper by Poller et al. [17] describes an ethnographic
study over 13 months of a depressingly unsuccessful attempt to
improve security practices long term in an agile development
team of about 15 people. The study investigated the effect of
security consultants whose task ‘was not to advise the product
group on how to change their organizational routines, but to
challenge and teach them about security issues of their product’.
This proved insufficient, for two reasons. First, pressure to add
functionality meant that attention was not given to security
issues. Second, developers had trouble ‘improving security’
because their normal work procedures and ways of structuring
their work did not support that kind of quality goal. The authors
concluded that successful interventions would need “to
investigate the potential business value of security, thus making
it a more tangible development goal”; and that security is best
promoted as a team, not individual, effort.

Tiurpe et al. [18] reported a similar ethnographic study
exploring the effect of a penetration testing session and
workshop on 37 members of a large geographically-dispersed
project. The results were also not encouraging; the main reason
suggested by the authors was that the workshop consultant
highlighted problems without offering much in the way of
solutions (a behavior this paper’s authors have observed in other
security practitioners).

Recent work by Ashenden and Lawrence [19] took a
different approach. They used an Action Research method to
investigate and improve the relationships between security
professionals and business people in a single company, and
found the approach effective in improving communication,
though no evidence is yet available of longer-term impact.

D. Using Formal Education Techniques

Others have investigated the effect of programmer learning
on security improvement. Yskout et al. [20] tested if ‘security
patterns’ (such as described in Schumacher et al.’s book [21])
might be an effective intervention to improve secure
development in teams of student software developers; the results
suggested a benefit but were statistically inconclusive.

Acar et al. [22] concluded through a survey of nearly 300
successful app developers worldwide that they learned security
using web search and from peers. They also used a practical
experiment with over 50 Android developers to evaluate the
effectiveness of the different ways of learning app security; this
produced the surprising result that programmers using only
digital books achieved better security than those using web

search. More recently Acar et al. [23] investigated web-based
handbooks to see how well they supported such learning; finding
that very few provided tutorials or exercises, or discussed wider
aspects of security such as social engineering.

E. Motivating Change in Development Teams

To move from delivering insecure code to delivering secure
code requires a change in thinking in the development teams. A
variety of research has explored how to engender such a change.

Dyba [24] performed a wide-ranging quantitative survey of
Software Process Improvement (SPI) in 120 organizations, and
concluded that organizational factors were at least as important
as technical ones. In particular, he identifies business
orientation, the extent to which SPI goals and actions are alighed
with explicit and implicit business goals and strategies, as one
of the factors with the strongest influence on SPI success;
together with employee participation, the extent to which
employees use their knowledge and experience to decide, act,
and take responsibility for SPI. Surprisingly, management
commitment was not required. The paper also strongly
recommends that, for SPI, the measurement systems be designed
by the software developers themselves.

Beecham et al. [25] conducted a literature review of 92
papers on programmer motivation in 2008. Though virtually all
the research cited is about motivation to do the job of
programming rather than motivation to change behavior, the
survey identifies that professional programmers tend to be
motivated most by problem solving, by working to benefit
others and by technical challenges. Fear of failure was not
among the list of motivators, which suggests that merely
frightening developers into security (‘a terrible thing might
happen’) is unlikely to be an effective strategy to promote secure
software. This is consistent with Xie et al.’s interviews of 15
professional programmers [2] to investigate why they believed
they made security errors; they found a consistent tendency to
treat security as ‘someone else’s problem’.

F. Limitations of Existing Literature

There has been virtually no academic investigation into ways
to encourage developers to adopt successful security practices.
Since governments and private companies are now investing
considerable money into improving developer security, this
seems an unfortunate omission. In this work we offer an
experiment investigating one possible way to help developers.

I1l. METHODOLOGY

A. Research Method

How were we best to structure this work as academic
research? Given that the researchers themselves directly
influence the behavior of the research participants — the
researchers are the intervention — an ethnographic research
approach was inappropriate. Instead an accepted methodology,
used in many forms of academic social research, is Action
Research [26]. This is an approach to research in communities
that emphasizes participation and action; Action Research aims
at understanding a situation in a practical context and aims at
improving it by changing the situation.

Specifically, we used Participatory Action Research [27],
with the lead author working, as ‘intervener’, directly with the
participants. We had a Pragmatic approach, since the intention
was to primarily to trial the impact of the interventions. Given
that this was to some extent a pilot project, we had only a single
feedback cycle [28].

The key research question was: ‘What effect did the
interventions have?’ To measure an effect, we needed a baseline
with no intervention. A-B testing, requiring a different team
working in parallel, was not practical. Instead, we used a
longitudinal approach, deducing a baseline (‘no intervention
situation”) from the initial situation plus a knowledge of the
original plans by the team leaders to improve security over the
same timescale.

First, we interviewed a selection of the future participants to
establish a baseline in terms of their current understanding, plans
and practice related to secure software development. We then
carried out a series of intervention workshops with members of
the development teams, led by the intervener. Finally, a suitable
time after the final intervention workshop, we re-interviewed the
same participants as before.

The audio recordings of the interviews and most of the
workshops — a total of 7 hours of audio — were transcribed and
qualitatively analyzed. In an iterative process, two of the authors
coded all transcripts. Initially both authors used open coding
[37] on the first two hours of material, then agreed on a coding
scheme based on that and the research questions. Differences in
coding were discussed and resolved between us. The final code
book consisted of 5 families of codes, making a total of 41 codes,
applied to 2661 references in total.

In coding, we were looking for aspects of security
improvement — including in learning and attitude — implied by
statements from the speakers. Specifically, we were looking for
signs of new knowledge in the team, new activities related to
security, and evidence of improvements in the security of
developed software; we were also looking for problems they had
encountered and how they had overcome them; we also recorded
evidence of baseline security activities and awareness, present
or planned, before the start of the interventions.

This research was approved by the Lancaster University FST
ethics committee.

B. Implementing the Techniques as Practical Interventions.
The purpose of this work was to use the eight interventions

introduced in Section I, which are as follows [3]:

1. Incentivization A workshop or discussion to help

Session developers to understand the impact of
security issues.
2. Threat Working as a team to identify actors and
Modelling potential threats; following this up with
risk assessment and mitigation
decisions.
3. On-the-Job informal sessions sharing security
Training knowledge; also mentoring and having

developers more expert at security join
the team.

4. Continuous Regular activities to keep up the team’s

Reminder awareness of the need for security.
5. Component Choosing secure components, and
Choice keeping them up-to-date; adding
component analysis tools to the
toolchain.

6. Automated
Static Analysis
7. Code Review

Using code analysis tools to identify
certain categories of security error.
Introducing scheduled meetings to
analyze code for security defects; having
other programmers or security experts
review code for problems.

Having external specialist security
testers identify flaws, usually using web
based tools.

8. Penetration
Testing

However, each intervention had a variety of forms, suitable
for different development budgets, team sizes, and team
cultures. What forms would be suitable for us, outside
interveners, with limited knowledge of the development team?

Looking at the list of interventions, we observed that four —
the first four — are to do with process and can be implemented
for limited cost by a team lead or manager; the next three require
commitment by the developers; and the last, Penetration
Testing, is expensive [29]. As outside consultants, therefore, we
concentrated on the process interventions, and used
opportunities within the consultancy to consider the remaining
interventions.

Perhaps the biggest challenge was to find a suitable way to
provide the Incentivization Session. From prior work [3], we
were aware of three forms of such sessions: a two-day training
course by a security and training professional aware of the kinds
of attack currently happening on the developers’ system; a long
personal interview with each one of the developers involved;
and a full penetration test of the developers’ system to identify
problems. None of these three approaches was suitable for a
lightweight intervention.

Fortunately, while we were working on this challenge we
received an enquiry from a colleague. He wanted to use a game,
the ‘Agile Security Game’ [30], invented by the lead author.
This was based on the ‘Mumba’ role-playing game, invented by
Frey [31] to help elicit participants’ prior experience of real-life
security attacks. The “Agile Security Game’ variant, however,
was designed for a conference workshop simply to educate
developers about security. The colleague wanted to use the game
to help motivate development teams towards security. After
some discussion we realized that this game would indeed work
well as an Incentivization Session, and that there was
considerable possible benefit for the teams from using the full
intervention package.

Threat Modelling, too, was also challenging to implement.
Much of the literature [32], [33] describes a heavyweight
process taking a while to set up and requiring considerable
knowledge of possible technical threats, preferably with support
from a professional with a detailed understanding of both the
industry sector and current cyber threats to it. But such a process
would be expensive in time and commitment, and the required
professional knowledge was not available to support us.

However, in this case the researchers’ own experience was
valuable. As technical lead for a major mobile money project,
the lead author had faced this problem in a commercial project.
With the help of Alec Muffett, a consultant security expert, his
development team had developed a lightweight brainstorming
process to identify threats and potential attackers [34]. While
this may have lacked the rigor of the secure-development-
process-based threat modelling approaches used by some large
companies, it had certainly served to deliver a product which
was successful as far as its security needs were concerned.
Accordingly, therefore we determined to use the same approach
here.

On-the-Job Training was not required as an external
intervention in this case; the technical leads were enthusiastic
about improving security, and were already considering using a
variety of different approaches, including working through the
OWASP Top Ten [35].

The final process-based intervention was Continuous
Reminder. For this we agreed to a monthly meeting, by video
conferencing; its main purpose was to act as a regular ‘nudge’
of the importance of security.

To introduce the more technical interventions, we used an ad
hoc approach. The facilitator mentioned and discussed each of
these interventions with the developers during the Threat
Modelling, the mitigation discussions, and subsequent sessions,
using comments from the developers as cues.

C. Intervention Attitude

We know from literature that developers dislike formal
processes [24]; we know also that developers, like most other
people, tend to dislike being told what to do and will react
against it [33, Ch. 2], So at no point did the facilitator interact
with the development teams using terms like “you must” or “it’s
essential that”. On the other hand, we also know from personal
experience that developers are very happy to solve problems that
they agree to be important. Therefore, throughout the workshops
and game, we allowed the developers themselves to drive the
solutions; as facilitators we provided only guidance.

D. Scope of this Paper

This paper describes our activities with a single organization;
the work is part of a much larger ongoing project, involving
three organizations in the first year and further organizations
thereafter.

IV. THIS PROJECT

This section discusses the company, project, and
development team involved. To preserve confidentiality, we
have changed all names, and the exact functionality of the
product.

AyCo is a company employing around 50 people in the UK.
Set up about 10 years ago, it has a single product which is sold
both web based as ‘software as a service’, and as an installable
system for clients” own sites. The product, ‘Ambassador’, is a
web-based accounting and planning package suitable for
managing the working of very large organizations. AyCo’s
customers include several household names.

Figure 1: Project Calendar

10:00
Entry Exit
interviews i i
12:00 interviews
14:00 .
Ince.ntlwzatlon I Continuous I Continuous Final
session reminder reminder workshop
(videocon) (videocon)
16:00 Threat
modelling
18:00 +
Sep Oct Nov Dec

A. Interview Participants

To help identify the effects of the interventions, we
interviewed four team members both before and after the
process. They were chosen to provide a cross section
representing both experienced and less experienced developers
in each team. They are shown in Table 1.

We have included quotations in the remainder of the paper,
in italics. Where the speaker can be identified, we have cited the
appropriate ID. In the recordings of group sessions, however, it
was rarely possible to identify individual speakers, and
quotations are cited accordingly, e.g. ‘Developer, Threat
Modelling.” We have edited the quotations to protect
confidentiality and indicate context: square brackets show
additions and replacements; ellipses show removals.

D perience Role ea
Al | 17 years Architect & Lead Demigods
A2 | 2years Developer Demigods
A3 | 14 years Senior developer Superheroes
A4 | 3years Developer Superheroes

Table 1: Interviewee Roles
V. RESULTS

A. Intervention Time Requirements

Figure 1 shows the timeline needed for the interventions.
On-the-job Training is not shown as it was instigated by the
team leads, not the external intervener. As will be seen, despite
the long-elapsed time, the total effort required from the
intervener was relatively short: a total of two days, of which at
least four hours were research interviews and not part of the
intervention itself. So, the effort spent for the total intervention
was less than one working day. Adding another day for
preparation — scheduling, preparing materials for the workshops,
etc. — the total time spent by the intervener on the interventions
was less than two working days.

About 15 people, from both development teams, attended the
incentivization and threat modelling workshops, which were
sequential, each taking 1 hour 15 minutes, with a break between.
Roughly six people — the two architects and several senior
developers — attended the follow-up sessions, which were an
hour each. Some ten attended the exit workshop of 45 minutes.
Thus, the total time investment from the development team was
in the region of 60 man hours, which is about half a day’s effort
for a 15-person team.

15 man hours
60 man hours

Intervention facilitator:
Development team:

B. Discussion Topics

Figure 2 summarizes the kinds of discourse in the
discussions.

We were surprised to find about half of the discussion
involved participants, including the facilitator, presenting
knowledge in different ways in response to the issues raised. A
proportion of this was what we call ‘war stories’ — complete
anecdotes relevant, or partially relevant to the discussion. A
relatively small amount of the total time (which included the

Figure 2: Workshop Topics by Words Used

= Presenting knowledge Identifying threats/attackers

Brainstorming Banter

= War story

game) was spent on brainstorming; but the other major
proportion was, as one would expect, spent identifying threats
and attackers. A sign of good esprit-de-corps among the team
was the level of ‘banter’ — shared jokes and friendly insults —
between themselves.

The participants clearly enjoyed and learned from the
incentivization game workshop [30]:

The game was fun, | did enjoy the game. And it was
proving as per usual, that... whatever you do, you are
going to lose somewhere (A3)

Actually, it was very useful... [showing] you cannot
always know the right answer. (A2)

The Threat Modelling workshop generated some ways of
thinking and conclusions that were unexpected for the
participants.

I never really thought about 'who would', so much, until
you put up ‘why would somebody and who would they be'
(A4)

In the first follow-up session (not recorded), we discussed
prioritization of the mitigations arising from the Threat
Modelling session. The main learning point for the participants
was that the decisions were mostly for the product manager; not
for the ‘security expert’.

The second follow-up session was a discussion about their
progress so far implementing mitigations, plus a technical
discussion about industry experience with encryption as a
mitigation.

What [are] the advantages of database encryption, and
what would that give us, compared to application level
encryption... and risks with encryption itself?
(Architect)

Finally, we carried out the exit interviews to help identify the
outcomes, as follows.

C. Outcomes Attributable to the Interventions

We can identify two significant improvements in the
Ambassador product and process security as a result of the
interventions. Beforehand, the developers had been thinking of
security improvements as line by line improvements in the code
they themselves had written. Afterwards, they understood that
their most effective security improvements were likely to be
elsewhere. Specifically, they made two changes:

1. They introduced a component security checker to their build
cycle, and embarked on a program of updating and replacing
components according to their security vulnerabilities.

We [have built] the OWASP dependency checker into
our build process, ... and established a process for how
we deal with new vulnerabilities in existing libraries, or
adding new libraries or upgrading libraries. (A1)

2. They identified their own existing customers as competitors
with each other, and therefore potential ‘attackers’, and
identified that the permissions functionality was therefore a

major privacy issue; making fixes in this area was likely to
give security wins:

I have a ... task to check user permissions, and check
that a user has access to that specific entity or a set of
those entities (A2)

D. Learning Attributable to the Interventions

We looked for evidence of learning by workshop
participants. From the transcripts, we identified three insights:

1. The importance of using secure and up-to-date components.

[Learning about updating components] tends to stick in
your memory. | would never trust a third-party library
with anything that is going to the user (A4)

2. Security issues related to business functionality can be as
important as technical aspects of security.

I find it a little concerning that there are so many attacks
that we traditionally haven't mitigated against. ... Stuff
like social engineering. (Participant, Threat Modelling)

3. Decisions on “what security fixes should we implement?”
are for product management, not technical developers.

I guess, one challenge, as always, is playing what we, as
architects, believe are the most pressing security
concerns, against what customers are asking for in terms
of dealing with security concerns. (A1)

E. Outcomes Not Attributable to the Interventions

As we discussed in Section IV, the team leads were already
interested in software security. We anticipate, therefore, that
they would have made some improvements even without the
external interventions we provided. From the initial interviews
with A1 and A3 we identified two such improvements that
would likely have occurred without the interventions:

First, they had already identified the OWASP Top 10 [35] as
being important, and understood the need for regular
reinforcement of the security message. So, although one direct
outcome of the Threat Modelling session was agreement to
study a new OWASP threat each month — an intervention that
fits nicely as a Continuous Reminder — this might have happened
without our intervention.

We also decided to introduce a knowledge improvement
process, that wasn't too costly, and didn't distract too
much from what we were trying to do. And basically, we
decided that we would take the OWASP Top Ten,
starting at No.1, and every release, we would focus on
that, in some capacity. (Architect, follow-up session 2)

Second, they made the interesting experiment of assigning
one of the team as ‘saboteur’, with the task of deliberately
inserting security defects for others to find. In practice, whilst it
kept a focus on security, this technique proved unpleasant for

Table 2: Blockers and Motivators

Blocker

The difficulty of incorporating a component analyser tool in
the toolchain, especially given they were using a number of
components that were not supported by that tool.
The time-consuming bit was trying to get [the tool] to
recognize more obscure libraries that we use... we
probably spent a man-week's work of time, manually
Googling. (A1)

‘ Motivator

The enthusiasm on the part of the open-source tool
implementers for incorporating AyCo’s suggestions.
We have been able to feed into the tool a bit as well,
which has been nice... They have been very responsive
in terms of issues that we have raised, and suggestions
for improvements (Al)

The significant work involved in upgrading a range of
components, and modifying the code to support the upgraded
APls.
We haven't necessarily got to as much of [the
component upgrading] as we would have liked to. (A3)

Representing the upgrades as explicit stories for scheduling:
Hopefully, the architect guys... [will] try and feed
some of those stories in. (A3)

And the satisfaction of seeing ‘red lights’ turn green as the

components were updated.

You've got lights that you can turn green - it becomes
relatively straight forward to go through turning them
green, one after another until they are all green (A1)

More generally, the additional work involved in implementing

and prioritising security enhancements.
[Only] a certain amount of our road map time is given
to architecture. And we have ended up diverting most
of that time to addressing security vulnerabilities in
one way or another, since you first came. And there is
still more to do. The downside of that is, obviously,
that we don't address other architectural concerns like
performance, or code quality. (A1)

The benefits of security as a feature, whether tick box
support for the audits of potential customers, or actual unique
selling propositions when compared with others.
I think it has come at just the right time for us, because
... the world is moving forward in terms of
expectations around security ... [and] we are getting
more customers for whom security is a bigger concern
(A1)

The difficulty of learning from existing security sources.
I still find reading the OWASP stuff difficult. (A3)

Learning as a group.
We 've adopted this idea of focussing on a particular
one of the OWASP Top Ten each release. 1 think that
went pretty well in the first release. (A1)

the team member assigned, so is unlikely to be continued, nor
tried as an intervention elsewhere.

The saboteur didn't enjoy being a saboteur ... So, itis on
hold at the moment until we can figure out how to make
it work, or whether it is a good idea in the long term.
(Participants, follow-up session 2)

F. Problems, and How They Were Overcome

Analyzing the workshops in more detail, we identified
several problems encountered in carrying out the security
enhancements. We have termed these ‘blockers’, and against
them we have identified successful ‘motivators’ that permitted
team members to overcome them. Table 2 shows the four most
important such blockers and their corresponding motivators.

G. General Feedback on the Process

We had some overall feedback during the second follow-up
session, suggesting that the developers’ own ratings of the
intervention impact were lukewarm.

I did a quick survey this morning to find out how people
thought the process had gone. ... And most people
thought, it was about average, in terms of effectiveness.

So, on a scale of one to five, it was a little under 3, but
not terrible. (Team lead)

In view of the time cost, however, the leaders felt the
involvement had been successful.

It doesn't feel like it has distracted significantly from the
ongoing development process, so that is worth balancing
against how much effort (Team lead 2)

H. Opportunities for Improvement

While our primary goal from the intervention was to
improve the security of code delivered by the team, a secondary
goal was to empower participants to deliver secure code in
future. Accordingly, in the exit interviews we were interested to
what extent they had understood the process as well as learning
about security and its application to the Ambassador product. To
avoid leading questions, we phrased this as an open question:

Let’s imagine there’s a team starting a similar project
now... What would you recommend that’s the same as we
did, and how would you recommend improving it?

The resulting answers and discussion around them showed
the understanding of specific threats they had encountered, of

prioritization, and an increased understanding of Component
Choice.

[1’d] address the most important threats, and first
implement those things, that would help us to address ...
attacks that would be more harmful (A2)

The OWASP stuff... Libraries, definitely, don't use
anything old, always. (A3)

More security focus... [for example] if it was a site
where | was taking user details, | am aware now of EU
regulations... it has to be stored securely. (A4)

Only Al, the lead architect appreciated the importance of the
interventions as a process to achieve that.

I think the workshop approach was really good fun, and
really interesting. | think brainstorming threats and
vulnerabilities and assets was really helpful. (Al)

That suggests a need in future interventions for some more
explanation of the process and reasons for it. That might be
appropriate as a short presentation by the facilitator at the start,
and even shorter ‘milestone’ presentations before each later
session. A participant also suggested introducing a checklist.

I think maybe some sort of tick sheet in terms of *have
you got these things in place' to take away, that might be
a good addition (Al).

It might be demotivating to do this at the start, risking being
perceived as telling participants ‘what to do’ [36]. Instead we
plan to introduce such a checklist after the initial workshops,
thus enhancing the perceived effectiveness as discussed in
section F above.

In terms of improvements to the research methodology, we
have identified two key limitations of our approach in this
project, and plan to redress them in future work as follows:

Need for evidence
whether the change is

Repeat exit interviews one year after
intervention, so see if enhancements

long-term have been retained.
Need for quantitative Apply a scoring system for the
evidence team’s security activities and

knowledge before and after the
interventions.

VI. CONCLUSIONS

A. Improvements on Existing Practice

Current practice in interventions is often based on
Penetration Testing. Aside from the high cost [29], this approach
can prove ineffective in the longer term [18].

The approach described in this paper is significantly less
costly, in that the skills required are the much more readily-
available ones associated with facilitation. It also requires a
smaller amount of effort from the interveners.

While it is early to know the long-term impact, it is probable
that that the team will preserve their component security
evaluation and upgrade process, and that the understanding will
remain of the business functionality being a part of the security

story. The motivation of the team towards security has also
remained throughout the three months of the pilot; given the
team’s increased understanding of the business impact of
security issues there is at least a reasonable possibility that it will
remain long-term.

This intervention approach, therefore, offers inexpensive
and impactful security improvements for development teams
like those at AyCo.

B. Conclusion and Future Work

In this case study, the authors used a light-touch facilitation-
based ‘intervention’ to two productive and successful
development teams. The intervention required limited effort
from the facilitator, and relatively little from the development
teams. The authors demonstrated, via Participative Action
Research and detailed coding, evidence of improved
understanding of several important lessons in software security;
also, two significant security enhancements implemented for the
product as a result.

A single case study is insufficient to draw conclusions about
the general effectiveness of this kind of intervention. Further
work in this project includes trialing the interventions with other
kinds of software development teams and comparing and
differentiating the consequences. Further future work suggested
by the section ‘Opportunities for Improvement’ above is to
empower the participants by improving the process, and even to
have the researchers train facilitators among the participants
rather than providing the facilitation themselves.

Lightweight, facilitation-based, interventions of the kind
used here offer the potential to help many software development
teams improve their software security. Wider-scale adoption of
the process will empower developers and play a much-needed
role in improve software security for all end users.

REFERENCES

[1] S. Morgan, “2017 CyberVentures Cybercrime Report,” 2017.
[Online]. Available: https://cybersecurityventures.com/2015-
wp/wp-content/uploads/2017/10/2017-Cybercrime-Report.pdf.

[2] J. Xie, H. R. Lipford, and B. Chu, “Why Do Programmers Make
Security Errors?,” Proc. - 2011 IEEE Symp. Vis. Lang. Hum.
Centric Comput. VL/HCC 2011, pp. 161-164, 2011.

[3] C. Weir, A. Rashid, and J. Noble, “Developer Essentials: Top Five
Interventions to Support Secure Software Development,” Lancaster
University, 2017.

[4] Y. R. Smeets, “Improving the Adoption of Dynamic Web Security
Vulnerability Scanners,” Radboud University, NL, 2015.

[5] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton, “ASIDE: IDE
Support for Web Application Security,” Proc. 27th Annu. Comput.
Secur. Appl. Conf. - ACSAC 11, p. 267, 2011.

[6] 1. Pribik and A. Felfernig, “Towards Persuasive Technology for
Software Development Environments: An Empirical Study,” in
International Conference on Persuasive Technology, 2012, pp. 227—
238.

[7] D. Nguyen, Y. Acar, and M. Backes, “Developers Are Users Too:
Helping Developers Write Privacy Preserving and Secure (Android)
Code,” 2016. [Online]. Available:
https://www.usenix.org/sites/default/files/soupsl6poster22-
nguyen.pdf.

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
Don’t Software Developers Use Static Analysis Tools to Find
Bugs?,” in 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 672-681.

T. B. Jordan, B. Johnson, J. Witschey, and E. Murphy-Hill,
“Designing Interventions to Persuade Software Developers to Adopt
Security Tools,” in Proceedings of the 2014 ACM Workshop on
Security Information Workers - SIW °14, 2014, pp. 35-38.

E. M. Rogers, Diffusion of Innovations. Simon and Schuster, 2010.

S. Xiao, J. Witschey, and E. Murphy-Hill, “Social Influences on
Secure Development Tool Adoption: Why Security Tools Spread,”
Proc. ACM Conf. Comput. Support. Coop. Work. CSCW, pp. 1095-
1106, 2014.

S. Dodier-Lazaro, 1. Becker, J. Krinke, and M. A. Sasse, “‘No Good
Reason to Remove Features’: Expert Users Value Useful Apps over
Secure Ones,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 10292 LNCS, no. ¢, 2017, pp. 25-44.

A. Bessey, D. Engler, K. Block, B. Chelf, A. Chou, B. Fulton, S.
Hallem, C. Henri-Gros, A. Kamsky, and S. McPeak, “A Few Billion
Lines of Code Later,” Commun. ACM, vol. 53, no. 2, pp. 66-75,
2010.

E. Murphy-Hill, D. Y. Lee, G. C. Murphy, and J. McGrenere, “How
Do Users Discover New Tools in Software Development and
Beyond?,” Comput. Support. Coop. Work, vol. 24, no. 5, pp. 389—
422, 2015.

B. De Win, R. Scandariato, K. Buyens, J. Grégoire, and W. Joosen,
“On the Secure Software Development Process: CLASP, SDL and
Touchpoints Compared,” Inf. Softw. Technol., vol. 51, no. 7, pp.
1152-1171, Jul. 2009.

T. Baum, O. Liskin, K. Niklas, and K. Schneider, “Factors
Influencing Code Review Processes in Industry,” in FSE2016,
2016, pp. 85-96.

A. Poller, L. Kocksch, S. Tirpe, F. A. Epp, and K. Kinder-
Kurlanda, “Can Security Become a Routine? A Study of
Organizational Change in an Agile Software Development Group,”
in Proc. CSCW’17, 2017, pp. 2489-2503.

S. Turpe, L. Kocksch, and A. Poller, “Penetration Tests a Turning
Point in Security Practices? Organizational Challenges and
Implications in a Software Development Team,” in WSIW at
Twelfth Symposium on Usable Privacy and Security (SOUPS 2016),
2016.

D. Ashenden and D. Lawrence, “Security Dialogues : Building
Better Relationships,” IEEE Secur. Priv. Mag., vol. 14, no. 3, pp.
82-87, 2016.

K. Yskout, R. Scandariato, and W. Joosen, “Do Security Patterns
Really Help Designers?,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, 2015, pp. 292—
302.

M. Schumacher, E. Fernandez-buglioni, D. Hybertson, F.
Buschmann, and P. Sommerlad, Security Patterns: Integrating
Security and Systems Engineering. John Wiley & Sons, 2005.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]
(32]

(33]

(34]

(35]

(36]

(371

(38]

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C.
Stransky, “You Get Where You’re Looking For: The Impact of
Information Sources on Code Security,” in IEEE Symposium on
Security and Privacy, 2016, pp. 289-305.

Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S.
Fahl, “Developers Need Support, Too: A Survey of Security Advice
for Software Developers,” IEEE Secur. Dev. Conf., pp. 22-26,
2017.

T. Dyba, “An Empirical Investigation of the Key Factors for
Success in Software Process Improvement,” IEEE Trans. Softw.
Eng., vol. 31, no. 5, pp. 410-424, 2005.

S. Beecham, N. Baddoo, and T. Hall, “Motivation in Software
Engineering: A Systematic Literature Review,” Inf. Softw. Technol.,
vol. 50, no. 9, pp. 860-878, 2008.

W. F. Whyte, Participatory Action Research. Sage Publications,
Inc, 1991.

R. L. Baskerville, “Investigating Information Systems with Action
Research,” Commun. AlS, vol. 2, no. 3es, p. 4, 1999.

K. Petersen, C. Gencel, N. Asghari, D. Baca, and S. Betz, “Action
Research as a Model for Industry-Academia Collaboration in the
Software Engineering Context,” in Proceedings of the 2014
International Workshop on Long-Term Industrial Collaboration on
Software Engineering, 2014, pp. 55-62.

J. M. Such, A. Gouglidis, W. Knowles, G. Misra, and A. Rashid,
“The Economics of Assurance Activities,” 2015.

C. Weir, “The Agile App Security Game — Leader’s Instructions,”
2017. [Online]. Available:
https://www.securedevelopment.org/app/download/11233441072/T
heAgileAppSecurityGame.zip. [Accessed: 28-Mar-2018].

S. Frey, “Mumba Role Playing Game: The Rulebook.” 2016.

A. Shostack, Threat Modeling: Designing for Security. John Wiley
& Sons, 2014.

Microsoft, “Microsoft Secure Development Lifecycle.” [Online].
Available: https://www.microsoft.com/en-us/sdl/. [Accessed: 29-
Mar-2018].

Penrillian, “Penrillian’s Secure Development Process,” 2014.
[Online]. Available:
http://www.penrillian.com/sites/default/files/documents/Secure_De
velopment_Process.pdf. [Accessed: 21-Jul-2016].

OWASP, “Top Ten Project,” 2017. [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Pro
ject. [Accessed: 31-Oct-2017].

R. Fisher, A. Sharp, and J. Richardson, Getting It Done: How to
Lead When You're Not in Charge. HarperPerennial, 1999.

B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Chicago: Aldine Transaction,
1973.

K. Schwaber, Agile Project Management with Scrum. Microsoft
press, 2004.

	I. Introduction
	II. Existing Work
	A. Encouraging the Adoption of Tools
	B. Encouraging the Adoption of Security-Enhancing Activities
	C. Consultancy and Training Interventions
	D. Using Formal Education Techniques
	E. Motivating Change in Development Teams
	F. Limitations of Existing Literature

	III. Methodology
	A. Research Method
	B. Implementing the Techniques as Practical Interventions.
	C. Intervention Attitude
	D. Scope of this Paper

	IV. This Project
	A. Interview Participants

	V. Results
	A. Intervention Time Requirements
	B. Discussion Topics
	C. Outcomes Attributable to the Interventions
	D. Learning Attributable to the Interventions
	E. Outcomes Not Attributable to the Interventions
	F. Problems, and How They Were Overcome
	G. General Feedback on the Process
	H. Opportunities for Improvement

	VI. Conclusions
	A. Improvements on Existing Practice
	B. Conclusion and Future Work
	References

