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Abstract. We develop a rigidity theory for graphs whose vertices are constrained to lie
on a cylinder and in which two given vertices are coincident. We apply our result to show
that the vertex splitting operation preserves the global rigidity of generic frameworks on
the cylinder, whenever it satisfies the necessary condition that the deletion of the edge
joining the split vertices preserves generic rigidity.

1. Introduction

A framework (G, p) in Rd is the combination of a finite, simple graph G = (V,E) and a
map p : V → Rd. It is rigid if every edge-length preserving continuous motion of the vertices
arises as a congruence of Rd (see, for example, [14] for basic definitions and background).
The theory of generic rigidity aims to characterise the graphs G for which (G, p) is rigid for
all generic choices of p. This was accomplished by Laman [8] for d = 2, but is a long-standing
open problem for d ≥ 3.

We are interested in frameworks in R3 whose vertices are constrained to lie on a fixed
surface. Generic rigidity in this context was characterised for graphs on the cylinder and
various other surfaces in [10, 11]. In this paper we consider frameworks on the cylinder in
which two of the vertices are coincident, but are otherwise generic. For such frameworks
we give the following combinatorial characterisation of rigidity. Given two vertices u, v of
a graph G we use G− uv to denote the graph formed from G by deleting the edge uv if it
exists and G/uv to denote the graph which arises from G by contracting the vertices u and
v (and deleting any loops and replacing any parallel edges by single edges). We say that G
is uv-rigid on a cylinder Y if there exists a realisation p of G on Y such that p(u) = p(v),
p|V−v is generic on Y, and (G, p) is rigid on Y.

Theorem 1.1. Let G be a graph and u, v be distinct vertices of G. Then G is uv-rigid on
a cylinder Y if and only if G− uv and G/uv are both rigid on Y.

Our proof technique extends that used by Fekete, Jordán and Kaszanitzky [4] to obtain
an analogous result for frameworks in R2.

We apply our result to show that the vertex splitting operation preserves the global
rigidity of generic frameworks on the cylinder, whenever it satisfies the necessary condition
that the deletion of the edge joining the split vertices preserves generic rigidity. This is a
key step in the recent characterisation of generic global rigidity on the cylinder given in
[7]. Special position arguments are commonly used to prove that graph operations preserve
generic rigidity properties and it is conceivable that our characterisation of generic uv-
rigidity on the cylinder may have other such applications.

An outline of the paper is as follows. In Section 2 we provide background for frameworks
on a cylinder. In Section 3 we define a count matroid Muv(G) on a graph G with two
distinguished vertices u and v. In Section 4 we derive an inductive construction for graphs
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whose edge set is independent in Muv(G). We then use this construction to prove our
characterisation of rigidity on a cylinder for frameworks in which u and v are coincident
but are otherwise generic. In Section 5 we discuss global rigidity and apply our coincident
vertex result to prove that the vertex splitting operation preserves global rigidity for generic
frameworks on a cylinder if and only if deletion of the new edge preserves generic rigidity.
Finally, in Section 6 we comment on extensions to other surfaces.

2. Frameworks on concentric cylinders

Throughout this paper we will only consider graphs without loops or parallel edges, as
loops and parallel edges give rise to trivial distance constraints. Let G = (V,E) be a graph
with V = {v1, . . . , vn}. We will consider realisations of G on a family of concentric cylinders
Y = Y1 ∪ Y2 ∪ · · · ∪ Yk where Yi = {(x, y, z) ∈ R3 : x2 + y2 = ri} and r = (r1, . . . , rk) is a
vector of positive real numbers.1 A framework (G, p) on Y is an ordered pair consisting of
a graph G and a realisation p such that p(vi) ∈ Y for all vi ∈ V .

Two frameworks (G, p) and (G, q) on Y are equivalent if ‖p(vi)−p(vj)‖ = ‖q(vi)− q(vj)‖
for all edges vivj ∈ E. Moreover (G, p) and (G, q) on Y are congruent if ‖p(vi)− p(vj)‖ =
‖q(vi)−q(vj)‖ for all pairs of vertices vi, vj ∈ V . The framework (G, p) is rigid on Y if there
exists an ε > 0 such that every framework (G, q) on Y which is equivalent to (G, p), and has
‖p(vi) − q(vi)‖ < ε for all 1 ≤ i ≤ n, is congruent to (G, p). Moreover (G, p) is minimally
rigid on Y if (G, p) is rigid on Y but (G− e, p) is not for any e ∈ E. The framework (G, p)
is generic on Y if td[Q(r, p) : Q(r)] = 2n, where td[L,K] denotes the transcendence degree
of the field extension [L : K] i.e. the size of a maximal set of elements of L which are
algebraically independent over K.

It was shown in [10] that a generic framework (G, p) on a family of concentric cylinders
Y is rigid if and only if it is infinitesimally rigid in the following sense. An infinitesimal
flex s of (G, p) on Y is a map s : V → R3 such that s(vi) is tangential to Y at p(vi) for all
vi ∈ V and (p(vj) − p(vi)) · (s(vj) − s(vi)) = 0 for all vjvi ∈ E. The framework (G, p) is
infinitesimally rigid on Y if every infinitesimal flex is an infinitesimal isometry of R3, i.e.
an infinitesimal flex corresponding to a combination of translations and rotations of R3.

The rigidity matrix RY(G, p) is the (|E|+ |V |)× 3|V | matrix

RY(G, p) =

(
R3(G, p)
S(G, p)

)
where: R3(G, p) has rows indexed by E and 3-tuples of columns indexed by V in which,
for e = vivj ∈ E, the submatrices in row e and columns vi and vj are p(vi) − p(vj) and
p(vj)−p(vi), respectively, and all other entries are zero; S(G, p) has rows indexed by V and
3-tuples of columns indexed by V in which, for vi ∈ V , the submatrix in row vi and column
vi is p̄(vi) = (xi, yi, 0) when p(vi) = (xi, yi, zi). The rigidity matroid RY(G) is the matroid
on E in which a set F ⊆ E is independent if and only if the rows of RY(G, p) indexed by
F ∪ V are linearly independent for any generic p. Equivalently RY(G) is the matroid we
get from the row matroid of RY(G, p) by contracting each element of V . We will use rY to
denote the rank function of RY(G, p).

A graph G = (V,E) is (k, `)-sparse if |E′| ≤ k|V ′|− ` for all subgraphs (V ′, E′) of G with
at least one edge. Moreover G is (k, `)-tight if G is (k, `)-sparse and |E| = k|V | − `.

The following characterisation of generic rigidity on Y was proved in [10].

1Our proof techniques apply equally well in the cases when there are one or more cylinders.
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Theorem 2.1. Let (G, p) be a generic framework on a family of concentric cylinders Y.
Then (G, p) is minimally rigid on Y if and only if G is a complete graph on at most three
vertices or G is (2, 2)-tight.

2.1. Coincident realisations on concentric cylinders. Let G = (V,E) be a graph and
u, v ∈ V . A framework (G, p) on Y is uv-coincident if p(u) = p(v). A generic uv-coincident
framework is a uv-coincident framework (G, p) for which (G − u, p|V−u) is generic. We
denote the uv-coincident cylinder rigidity matroid by RYuv(G) (this is the matroid on E in
which a set F ⊆ E is independent if and only if the rows of RY(G, p) indexed by F ∪ V are
linearly independent for any generic uv-coincident realisation p.). Note that the matroid
depends on G but not on the choice of generic uv-coincident realisation. That is, for any
two generic uv-coincident realisations (G, p) and (G, p′) on Y, we get the same matroid.
We also use rYuv to denote the rank function of RYuv(G). We say that G is uv-rigid on Y
if rYuv(G) = 2|V | − 2 and that G is minimally uv-rigid on Y if G is uv-rigid on Y and
|E| = 2|V | − 2.

Note that the terms ‘rigid on Y’ and ‘uv-rigid on Y’, and the notations rY and rYuv
appear to depend on Y. Theorems 1.1 and 2.1 imply that this is not the case since the
characterisations of RY(G) and RYuv(G) given by these results depend only on the graph G
and not the family of concentric cylinders Y.

3. A count matroid

In this section we define a count matroidMuv(G) on the edge set of a graph G with two
distinguished vertices u and v. Our approach follows that given in [4]. We will show that
Muv(G) is equal to RYuv(G) in Section 4.

Let G = (V,E) be a graph. For X ⊆ V let NG(X) be the set of neighbours of X in
V \ X and put NG(x) = NG(X) when X = {x}. Let G[X] denote the subgraph of G
induced by X and let EG(X) be the set of edges of G[X]. Thus iG(X) = |EG(X)|. For a

family S = {S1, S2, . . . , Sk}, where Si ⊆ V for all i = 1, . . . , k, we define V (S) =
⋃k

i=1 Si,

EG(S) =
⋃k

i=1EG(Si) and put iG(S) = |EG(S)|. We also define cov(S) = {xy : x, y ∈
V, {x, y} ⊆ Si for some 1 ≤ i ≤ k}. We say that S covers a set F ⊆ E if F ⊆ cov(S). The
degree of a vertex w is denoted by dG(w). We may omit the subscripts referring to G if the
graph is clear from the context.

Let G = (V,E) be a graph and u, v ∈ V be two distinct vertices of G. Let H =
{H1, ...,Hk} be a family with Hi ⊆ V , 1 ≤ i ≤ k. We say that H is uv-compatible if
u, v ∈ Hi and |Hi| ≥ 3 hold for all 1 ≤ i ≤ k. See Figure 1 for an example. We define
the value of subsets of V and of uv-compatible families as follows. For a nonempty subset
H ⊆ V , we let

val(H) = 2|H| − tH ,
where tH = 4 if H = {u, v}, tH = 3 if H 6= {u, v} and |H| ∈ {2, 3}, and tH = 2 otherwise.
We will often denote tHi by ti for short. For a uv-compatible family H = {H1, H2, . . . ,Hk}
we let

val(H) =

(
k∑

i=1

val(Hi)

)
− 2(k − 1) =

k∑
i=1

(2|Hi| − tHi − 2) + 2.

Note that if H = {H} is a uv-compatible family containing only one set then the two
definitions agree, i.e. val(H) = val(H) holds.

We say that G is uv-sparse if for all H ⊆ V with |H| ≥ 2 we have iG(H) ≤ val(H) and
for all uv-compatible families H we have iG(H) ≤ val(H). Note that if G is uv-sparse then
uv /∈ E must hold. A set H ⊆ V of vertices with |H| ≥ 2 (resp. a uv-compatible family
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H = {H1, . . . ,Hk}) is called tight if iG(H) = val(H) (resp. iG(H) = val(H)) holds. We
will show that the edge sets of the uv-sparse subgraphs of G form the independent sets of
a matroid Muv(G).

The following lemmas will enable us to ‘uncross’ tight sets and tight uv-compatible fam-
ilies in a sparse graph. The first result follows immediately from the definition of the i- and
val- functions.

Lemma 3.1. Let X,Y ⊆ V be distinct vertex sets in G. Then
(a) i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y ) and
(b) if X ∩Y 6= ∅, then val(X) + val(Y ) + tX + tY = val(X ∪Y ) + val(X ∩Y ) + tX∪Y + tX∩Y .

Lemma 3.2. Let H = {H1, . . . ,Hk} be a uv-compatible family in G.
(a) Suppose |Hi ∩ Hj | ≥ 3 for some pair 1 ≤ i < j ≤ k. Then there is a uv-compatible
family H′ with cov(H) ⊆ cov(H′) and val(H′) < val(H).
(b) Suppose G is uv-sparse and H is tight. Then Hi ∩Hj = {u, v} for all 1 ≤ i ≤ k.

Proof. (a) We may assume that i = k − 1, j = k. Let H′ = {H1, . . . ,Hk−2, Hk−1 ∪Hk}.
Using Lemma 3.1(b) we have val(Hk−1) + val(Hk) ≥ val(Hk−1 ∪ Hk) + val(Hk−1 ∩ Hk).
Hence

val(H) =

k∑
l=1

val(Hl)− 2(k − 1) =

k−2∑
l=1

val(Hl)− 2((k − 1)− 1) + val(Hk−1) + val(Hk)− 2

≥
k−2∑
l=1

val(Hl) + val(Hk−1 ∪Hk)− 2((k − 1)− 1) + val(Hk−1 ∩Hk)− 2 > val(H′).

Clearly, we have cov(H) ⊆ cov(H′).
(b) Since H is tight, if |Hi ∩ Hj | ≥ 3 for some pair 1 ≤ i < j ≤ k then, by (a), we
have val(H′) < val(H) = i(H) ≤ i(H′). This contradicts the uv-sparsity of G. Hence
Hi ∩Hj = {u, v} for all 1 ≤ i ≤ k. �

Lemma 3.3. Let H = {H1, . . . ,Hk} be a uv-compatible family with Hi ∩Hj = {u, v} for
all 1 ≤ i < j ≤ k and |Hk| ≥ 4. Then H′ = {H1, . . . ,Hk−2, Hk−1 ∪Hk} is a uv-compatible
family with cov(H) ⊂ cov(H′) and for which val(H′) ≤ val(H) + 1 with equality only if
|Hk−1| = 3. Furthermore, if G is uv-sparse, H is tight and |Hk−1| ≥ 4, then H′ is tight.

Proof. Using Lemma 3.1(b) and the facts that tk = tHk−1∪Hk
= 2 and tHk−1∩Hk

= 4 we have
val(Hk−1)+val(Hk) = val(Hk−1∪Hk)+val(Hk−1∩Hk)+4−tk−1 = val(Hk−1∪Hk)+4−tk−1.
Hence

val(H) =

k∑
l=1

val(Hl)− 2(k − 1) =

k−2∑
l=1

val(Hl)− 2((k − 1)− 1) + val(Hk−1) + val(Hk)− 2

=
k−2∑
l=1

val(Hl) + val(Hk−1 ∪Hk)− 2((k − 1)− 1) + 2− tk−1

= val(H′) + 2− tk−1.
Thus val(H′) ≤ val(H) + 1 with equality only if |Hk−1| = 3. Clearly, we have cov(H) ⊂
cov(H′).

Now suppose G is uv-sparse, H is tight and |Hk−1| ≥ 4. Then val(H′) ≤ val(H) = i(H) =
i(H′), so H′ is tight. �
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Lemma 3.4. Let G = (V,E) be uv-sparse and let X,Y ⊆ V be tight sets in G with
X ∩ Y 6= ∅ and |X|, |Y | ≥ 4. Then |X ∩ Y | 6∈ {2, 3} and X ∪ Y and X ∩ Y are both tight.

Proof. We have

2|X| − 2 + 2|Y | − 2 = i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y )

≤ 2|X ∪ Y | − tX∪Y + 2|X ∩ Y | − tX∩Y = 2|X|+ 2|Y | − 2− tX∩Y .
This implies that tX∩Y = 2 and equality holds throughout. Thus X ∪ Y and X ∩ Y are
both tight and either |X ∩ Y | ≥ 4 or |X ∩ Y | = 1. �

Lemma 3.5. Let H = {H1, . . . ,Hk} be a uv-compatible family with Hj ∩Hl = {u, v} for all
1 ≤ j < l ≤ k, and let Y ⊆ V be a set of vertices with |Y | ≥ 4, and |Y ∩{u, v}| ≤ 1. Suppose
that for some 1 ≤ i ≤ k either |Y ∩Hi| ≥ 2, or |Y ∩Hi| = 1 and |Hi| ≥ 4. Then there is
a uv-compatible family H′ with cov(H)∪ cov(Y ) ⊆ cov(H′) and val(H′) ≤ val(H) + val(Y ).
Furthermore, if G is uv-sparse and H and Y are both tight then H′ and Y ∩ Hi are also
tight.

Proof. Let S = {Hi ∈ H : |Y ∩Hi| ≥ 2 or |Y ∩Hi| = 1 and |Hi| ≥ 4}. Renumbering the
sets of H, if necessary, we may assume that S = {Hi ∈ H : j ≤ i ≤ k}, for some j ≤ k. Let

X = Y ∪ (
⋃k

i=j Hi) and H′ = {H1, . . . ,Hj−1, X}. Then cov(H) ∪ cov(Y ) ⊆ cov(H′) and

|X| =
k∑

i=j

|Hi|+ |Y | − 2(k − j)−
k∑

i=j

|Hi ∩ Y |+ |Y ∩ {u, v}|(k − j).

This gives

val(H) + val(Y ) =

k∑
i=1

val(Hi)− 2(k − 1) + val(Y )

=

j−1∑
i=1

val(Hi)− 2(j − 1) +
k∑

i=j

(2|Hi| − ti)− 2(k − j) + (2|Y | − 2)

=

j−1∑
i=1

val(Hi) + (2|X| − 2)− 2(j − 1) + 4(k − j)−
k∑

i=j

tHi

+2
k∑

i=j

|Y ∩Hi| − 2(k − j)− 2|Y ∩ {u, v}|(k − j)

≥
j−1∑
i=1

val(Hi) + val(X)− 2(j − 1) +

k∑
i=j

(2|Y ∩Hi| − tHi).

If |Y ∩Hi| ≥ 2 then val(Y ∩Hi) = 2|Y ∩Hi|− tY ∩Hi ≤ 2|Y ∩Hi|− tHi . On the other hand, if
|Y ∩Hi| = 1 and |Hi| ≥ 4, then tY ∩Hi = 2 = tHi and we have val(Y ∩Hi) = 2|Y ∩Hi|− tHi .
Thus, in both cases,

val(H) + val(Y ) ≥ val(H′) +
k∑

i=j

val(Y ∩Hi)

and so val(H′) ≤ val(H) + val(Y ).
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Now, suppose that G is uv-sparse and H and Y are tight. Then we have

i(H′) +

k∑
i=j

i(Y ∩Hi) ≥ i(H) + i(Y ) = val(H) + val(Y ) ≥

≥ val(H′) +
k∑

i=j

val(Y ∩Hi) ≥ i(H′) +
k∑

i=j

i(Y ∩Hi),

where the first inequality follows from the fact that edges spanned by H or Y are spanned
by H′ and if some edge is spanned by both H and Y then it is spanned by Y ∩ Hi for
some i. The equality holds because H and Y are tight, and the second inequality holds by
our calculations above. The last inequality holds because G is uv-sparse. Hence equality
must hold everywhere, which implies that H′ is tight and that Y ∩Hi is also tight for all
j ≤ i ≤ k. �

Lemma 3.6. Let H = {H1, . . . ,Hk} be a uv-compatible family with Hi ∩Hj = {u, v} for
all 1 ≤ i < j ≤ k, and let Y ⊆ V be a set of vertices with |Y | ≥ 4, Y ∩ {u, v} = ∅ and
|Y ∩ Hi| ≤ 1 for all 1 ≤ i ≤ k. Suppose that |Y ∩ Hi| = |Y ∩ Hj | = 1 for some pair
1 ≤ i < j ≤ k. Then there is a uv-compatible family H′ with cov(H) ∪ cov(Y ) ⊆ cov(H′)
for which val(H′) ≤ val(H) + val(Y ). Furthermore, if G is uv-sparse and H and Y are both
tight, then H′ is tight and |Hi| = |Hj | = 3.

Proof. We may assume that i = k−1 and j = k. Let H′ = {H1, . . . ,Hk−2, Hk−1∪Hk∪Y }.
We have cov(H) ∪ cov(Y ) ⊆ cov(H′) and

val(H) + val(Y ) =

k∑
i=1

val(Hi)− 2(k − 1) + val(Y )

=
k−2∑
i=1

val(Hi)− 2((k − 1)− 1)− 2 + val(Hk−1) + val(Hk) + val(Y ).

Using Lemma 3.1(b) twice and the fact that |Hk−1 ∩ (Hk ∪ Y )| = 3 we obtain

val(Hk−1) + val(Hk) + val(Y ) = val(Hk−1) + val(Hk ∪ Y ) + 2− tHk

= val(Hk−1 ∪Hk ∪ Y ) + 8− tHk−1
− tHk

≥ val(Hk−1 ∪Hk ∪ Y ) + 2,

with equality only if |Hk−1| = |Hk| = 3. Thus val(H′) ≤ val(H) + val(Y ) as claimed.
Now suppose that G is uv-sparse. and H and Y are both tight. Then we have

i(H) + i(Y ) = val(H) + val(Y ) ≥ val(H′) ≥ i(H′) ≥ i(H) + i(Y )

where the last inequality follows since |Y ∩Hk−1| = |Y ∩Hk| = 1 and |Y ∩Hi| ≤ 1 for all
1 ≤ i ≤ k. Hence equality must hold throughout. Thus H′ is tight and |Hk−1| = |Hk| = 3.
�

Lemma 3.7. Let G = (V,E) be uv-sparse and suppose that there is a tight uv-compatible
family in G. Then there is a unique tight uv-compatible family Hmax in G for which
cov(H) ⊆ cov(Hmax) for all tight uv-compatible families H of G. In addition, if Hmax =
{H1, H2, . . . ,Hk} and |H1| ≥ |H2| ≥ . . . ≥ |Hk|, then:
(a) Hi ∩Hj = {u, v} for all 1 ≤ i < j ≤ k;
(b) |Hi| = 3 for all 2 ≤ i ≤ k;
(c) N(u, v) ⊆ V (Hmax).
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Furthermore, if Y ⊆ V is tight, |Y | ≥ 4, cov(Y ) 6⊆ cov(Hmax), and Y ∩ Hi 6= ∅ for some
1 ≤ i ≤ k, then |Y ∩Hi| = 1, |Hi| = 3, Y ∩ {u, v} = ∅, and Y ∩Hj = ∅ for all j 6= i.

Proof. Let H1 = {H1, H2, . . . ,Hk} be a tight uv-compatible family in G labeled such that
|H1| ≥ |H2| ≥ . . . ≥ |Hk| and suppose that cov(H1) is maximal with respect to inclusion.
Then Lemmas 3.2 and 3.3 imply that Hi ∩ Hj = {u, v} holds for all 1 ≤ i < j ≤ k and
|Hi| = 3 for all 2 ≤ i ≤ k. Suppose for a contradiction that H2 = {J1, J2, . . . , Jl} is another
tight uv-compatible family whose cover is maximal, labeled so that |J1| ≥ |J2| ≥ . . . ≥ |Jl|.
We will use the notation Hi = {u, v, xi} for 2 ≤ i ≤ k and Jj = {u, v, yi} for 2 ≤ j ≤ l.
Without loss of generality we can assume that if |H1| = |J1| = 3 then H1 6= J1.

We define two uv-compatible families as follows: let

H∩ = {Z ⊆ V : |Z| ≥ 3 and Hi ∩ Jj = Z for some Hi ∈ H1, Jj ∈ H2};
let

H∪ = {H1 ∪ J1} ∪ {Hi : 2 ≤ i ≤ k and xi 6∈ H1 ∪ J1} ∪ {Jj : 2 ≤ j ≤ l and yj 6∈ H1 ∪ J1}
if |H1 ∩ J1| ≥ 3, and

H∪ = {H1} ∪ {J1} ∪ {Hi : 2 ≤ i ≤ k and xi 6∈ H1 ∪ J1} ∪ {Jj : 2 ≤ j ≤ l and yj 6∈ H1 ∪ J1}
if |H1 ∩ J1| = 2.

It is easy to see that H∪ and H∩ are both uv-compatible. For convenience we rename
the families as H∪ = {A1, . . . , Ap} and H∩ = {B1, . . . , Bq}, where A1 = H1 ∪ J1 and
B1 = H1 ∩ J1 if |H1 ∩ J1| ≥ 3, and A1 = H1 and A2 = J1 if |H1 ∩ J1| = 2. It follows from
their construction that |Ai| = 3 for all 3 ≤ i ≤ p and |Bj | = 3 for all 2 ≤ j ≤ q and also at
least one of |A2| = 3, |B1| = 3 holds. It can be seen easily that p+ q = k+ l. We also have
i(H1) + i(H2) ≤ i(H∪) + i(H∩), since the family H∪ spans all the edges spanned by H1 or
H2 and H∩ spans all the edges spanned by both H1 and H2. Thus

val(H1) + 3(k − 1)− 2(k − 1) + val(J1) + 3(l − 1)− 2(l − 1) = val(H1) + val(H2)

= i(H1) + i(H2) ≤ i(H∪) + i(H∩) ≤ val(H∪) + val(H∩)

= val(A1) + max{val(A2), val(B1)}+ 3(p− 1)− 2(p− 1) + 3(q − 1)− 2(q − 1).

We will show that equality occurs at both ends of the above inequality. Since k−1+l−1 =
p−1+q−1, it will suffice to show that val(H1)+val(J1) ≥ val(A1)+max{val(A2), val(B1)}.
This is immediate if |H1 ∩ J1| = 2 and follows from Lemma 3.1(b) when |H1 ∩ J1| ≥ 3.

Hence equality must hold throughout the displayed inequality. In particular, H∪ and H∩
are both tight. Since cov(H1) ∪ cov(H2) ⊆ cov(H∪), the maximality of the covers implies
that cov(H1) = cov(H2) which in turn gives H1 = H2.

We have now shown that H1 = Hmax is unique and that properties (a) and (b) hold.
To see that (c) holds choose x ∈ N(u, v) and suppose that x 6∈ V (Hmax). Let H′ =
Hmax +{u, v, x}. Then i(H′) ≥ i(Hmax) + 1 and val(H′) = val(Hmax) + 1, so H′ is tight and
hence contradicts the maximality of Hmax.

To complete the proof we suppose that Y ⊆ V is tight, |Y | ≥ 4, cov(Y ) 6⊆ cov(Hmax),
and Y ∩Hi 6= ∅ for some 1 ≤ i ≤ k. If {u, v} ⊆ Y then H = {Y } would be a uv-compatible
family with cov(H) 6⊆ cov(Hmax). This would contradict the maximality of Hmax and
hence {u, v} 6⊆ Y . If |Y ∩ Hi| ≥ 2 or |Y ∩ Hi| = 1 and |Hi| ≥ 4 then Lemma 3.5 would
imply that there exists a uv-compatible family H′ with cov(Hmax) ∪ cov(Y ) ⊆ cov(H′).
Hence |Y ∩ Hi| ≤ 1 and |Hi| = 3. This tells us that |Y ∩ Hj | ≤ 1 for all j and hence
cov(Y ) ∩ cov(Hmax) = ∅. If Y ∩ {u, v} 6= ∅ then putting H′ = Hmax ∪ {Y ∪ {u, v}} we
have i(H′) ≥ i(H) + 2|Y | − 2 and val(H′) = val(H) + 2|Y | − 2, so H′ would contradict the
maximality of Hmax. Thus Y ∩ {u, v} = ∅. If Y ∩Hj 6= ∅ for some j 6= i then Lemma 3.6
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now gives us a tight uv-compatible family H′ with cov(Hmax) ∪ cov(Y ) ⊆ cov(H′). Hence
Y ∩Hj = ∅ for all j 6= i. �

Note that Lemma 3.7 tells us in particular that if G is uv-sparse and Y ⊆ V is tight with
{u, v} ∩ Y 6= ∅, then Y ⊆ Hi for some Hi ∈ Hmax.

3.1. The matroid and its rank function. It is well known that the edge sets of the
(2, 2)-sparse subgraphs of a graph G = (V,E) are the independent sets of a matroid on
E called the simple (2, 2)-sparse matroid for G. Theorem 2.1 implies that this matroid is
identical to the cylindrical rigidity matroid RY(G). It follows that the rank function of
RY(G) can be defined in terms of ‘thin covers’ where a cover of any F ⊆ E is a system
K = {H1, . . . ,Hk} of subsets of V , of cardinality at least 2, such that each edge in F is
induced by at least one set in K. This cover is thin if |Hi ∩Hj | ≤ 1 for all pairs 1 ≤ i, j ≤ k
with equality only if |Hi| = 2 or |Hj | = 2. We may use Theorem 2.1 and a classical result
of Edmonds on matroids induced by submodular functions [3] to deduce that the rank of F
in RY(G) is given by

(3.1) rY(F ) = min
K

{∑
H∈K

(2|H| − 2− sH)

}
where sH = 1 if |H| = 2 or 3 and sH = 0 if |H| > 3 and the minimum is taken over all thin
covers K of F .

We next define the count matroid Muv(G). Let G = (V,E) be a graph and u, v ∈ V be
distinct vertices of G. We will prove that the family of sets

(3.2) IG = {F : F ⊆ E and (V, F ) is uv-sparse}
is the family of independent sets of a matroid Muv(G) on E and characterise the rank
function of this matroid. We need the following definition.

Let H = {X1, . . . , Xt} be a uv-compatible family and let H1, . . . ,Hk be subsets of V
of size at least two. The system K = {H, H1, . . . ,Hk} is a uv-cover of F ⊆ E if F ⊆
cov(H) ∪ cov({H1, . . . ,Hk}). It is thin if
(i) {H1, . . . ,Hk} is thin,
(ii) Xi ∩Xj = {u, v} for all pairs 1 ≤ i, j ≤ t, and
(iii) |Hi ∩Xj | ≤ 1 for all 1 ≤ i ≤ k, 1 ≤ j ≤ t.
The value of the system K is given by val(K) = val(H) +

∑k
i=1 val(Hi).

Theorem 3.8. Let G = (V,E) be a graph and u, v ∈ V be distinct vertices of G. Then
Muv(G) = (E, IG) is a matroid on E, where IG is defined by (3.2). The rank of a set
F ⊆ E in Muv(G) is given by

(3.3) ruv(F ) = min{val(K) : K is either a thin cover or a thin uv-cover of F}.

Proof. Let I = IG, let E′ ⊆ E and let F ⊆ E′ be a maximal subset of E′ in I. Since
F ∈ I we have |F | ≤ val(K) whenever K is a cover or a uv-cover of E′. We shall prove that
there is a thin cover or uv-cover K of E′ with |F | = val(K), from which the theorem will
follow.

Let J = (V, F ) denote the subgraph defined by the edge set F . First suppose that there
is no tight uv-compatible family in J and consider the following cover of F :

K1 = {H1, H2, . . . ,Hk},
where H1, H2, . . . ,Ht are the maximal tight sets with size at least four in J for some t ≤ k
and Ht+1, . . . ,Hk are the pairs of end vertices of edges in J ′ = (V, F −

⋃t
i=1E(Hi)). Clearly
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u v

v1

v2

v3

v4 v5

Figure 1. An example of a (2, 2)-tight graph G = (V,E) which is not inde-
pendent inMuv(G). It is not difficult to see that G is (2,2)-sparse, and hence
E is independent in the simple (2,2)-sparse matroid. We will show that E
is not independent inMuv(G). Consider the following sets: H1 = {u, v, v1},
H2 = {u, v, v2} and H3 = {u, v, v3, v4, v5}. Then H = {H1, H2, H3} is a uv-
compatible family of G with val(H) = val(H1) + val(H2) + val(H3)− 2 · 2 =
(2 · 3− 3) + (2 · 3− 3) + (2 · 5− 2)− 4 = 10 and cov(H) = E − v1v2. Hence
iG(H) = 11 > val(H) so E is dependent in Muv(G).

K1 is a cover of F . It is thin by Lemma 3.4. Thus

|F | =
k∑

j=1

|EJ(Hj)| =
k∑

j=1

(2|Hj | − tj) = val(K1)

follows. We claim that K1 is a cover of E′. To see this consider an edge ab = e ∈ E′ − F .
Since F is a maximal subset of E′ in I we have F + e 6∈ I. By our assumption there is no
tight uv-compatible family in J , and hence there must be a tight set X in J with a, b ∈ X.
Hence X ⊆ Hi for some 1 ≤ i ≤ t which implies that K1 covers e. (Recall that our graphs
do not contain parallel edges so e is not parallel to any edge in F .)

Next suppose that there is a tight uv-compatible family in J and consider the following
uv-cover of F :

K2 = {Hmax, H1, H2, . . . ,Hk},
where: Hmax = {X1, X2, . . . , Xl} is the tight uv-compatible family of G for which cov(Hmax)
is maximal (given by Lemma 3.7); H1, H2, . . . ,Ht are the maximal tight sets with size at
least four of J ′ = (V, F −E(Hmax)); and Ht+1, . . . ,Hk are the pairs of end vertices of edges

in J ′′ = (V, F −E(Hmax)−
⋃t

i=1E(Hi)). Then K2 is a uv-cover of F . By Lemmas 3.4 and
3.7, the uv-cover K2 is thin, and hence

|F | =
l∑

i=1

|EJ(Xi)|+
k∑

j=1

|EJ(Hj)| =
l∑

i=1

(2|Xi| − ti)− 2(l − 1) +

k∑
j=1

(2|Hj | − tj) = val(K2).

We claim that K2 is a uv-cover of E′. As above, let ab = e ∈ E′ − F be an edge. By the
maximality of F we have F + e 6∈ I. Thus either there is a tight set X ⊆ V in J with
a, b ∈ cov(X) or there is a tight uv-compatible family H′ = {Y1, . . . , Yt} in J with a, b ∈ Yi
for some 1 ≤ i ≤ t.

In the latter case Lemma 3.7 implies that cov(H′) ⊆ cov(Hmax) and hence e is covered
by K2. In the former case, when a, b ∈ X for some tight set X in J , we have |X| ≥ 5
since if |X| = 2, 3 or 4 then X induces a complete graph in J and, since G has no parallel
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edges, e = ab would be an edge of F . Lemma 3.7 now gives |X ∩
⋃l

i=1Xi| ≤ 1. Then
E(X) ⊆ E(J ′) and hence X ⊆ Hi for some 1 ≤ i ≤ k, since every edge of J ′ induces a
tight set and every tight set is contained in a maximal tight set. Thus e is covered by K2,
as claimed. �

4. Characterisation of the uv-coincident cylinder rigidity matroid

Our aim is to show that the uv-coincident cylinder rigidity matroid RYuv(G) of a graph
G = (V,E) is equal to the count matroid Muv(G). To simplify terminology we will say
that G is independent in RYuv, respectivelyMuv, if E is independent in RYuv(G), respectively
Muv(G).

We first show that independence in RYuv implies independence inMuv. Recall that G/uv
denotes the graph obtained from G by contracting the vertex pair u, v into a new vertex
which we denote as zuv. Given a uv-coincident realisation (G, p) of G on Y we obtain a
realisation (G/uv, puv) of G/uv on Y by putting puv(zuv) = p(u) = p(v) and puv(x) = p(x)
for all x ∈ V \ {u, v}. Furthermore, each vector in the kernel of RY(G/uv, puv) determines
a vector in the kernel of RY(G, p) in a natural way. It follows that dim KerRY(G, p) ≥
dim KerRY(G/uv, puv) and hence

(4.1) rankRY(G, p) ≤ rankRY(G/uv, puv) + 3.

We can use this fact to prove that independence in RYuv implies independence in Muv.

Lemma 4.1. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. If G is
independent in RYuv then G is independent in Muv.

Proof. Let (G, p) be a generic uv-coincident realisation of G on Y. Since G is independent
in RYuv the rows of RY(G, p) are independent. Since p(u) = p(v), this gives uv /∈ E.
Furthermore if X ⊆ V and {u, v} 6⊆ X then (G[X], p|X) is a generic realisation of G[X] on
Y and hence i(X) ≤ val(X) by Theorem 2.1. It remains to show that iG(H) ≤ val(H) for
all uv-compatible families H in G. (Note that the case when X ⊆ V and {u, v} ⊆ X will
be included by taking H = {X}.)

Let H = {X1, . . . , Xk} be a uv-compatible family and consider the subgraph H =

(
⋃k

i=1Xi,
⋃k

i=1E(Xi)). By contracting the vertex pair u, v in H we obtain the graph H/uv.
We have Huv = {X1/uv, . . . ,Xk/uv} is a cover of H where Xi/uv denotes the set that we

get from Xi by identifying u and v. Let U =
⋃k

i=1Xi and F =
⋃k

i=1E(Xi). By (3.1) we
have

rankRY(H/uv, puv) = rY(F ) + |U | − 1 ≤
k∑

i=1

(2|Xi/uv| − 2− sXi/uv) + |U | − 1

=

k∑
i=1

(2|Xi| − 2− ti) + |U | − 1.

Using (4.1) and the fact that RY(G, p) has linearly independent rows, we have

|F |+ |U | = rankRY(H, p) ≤ rankRY(H/uv, puv) + 3 ≤
k∑

i=1

(2|Xi| − 2− ti) + 2 + |U |

=

k∑
i=1

val(Xi)− (2k − 2) + |U | = val(H) + |U |.
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Hence iG(H) = |F | ≤ val(H). Thus G is independent in Muv, as claimed. �

We next define operations on uv-sparse graphs and use them to show that independence
in Muv implies independence in RYuv.

The (two-dimensional versions of) the well-known Henneberg operations are as follows.
Let G = (V,E) be a graph. The 0-extension operation (on a pair of distinct vertices
a, b ∈ V ) adds a new vertex z and two edges za, zb to G. The 1-extension operation (on
edge ab ∈ E and vertex c ∈ V \ {a, b}) deletes the edge ab, adds a new vertex z and edges
za, zb, zc.

We shall need the following specialized versions. Let u, v ∈ V be two distinct vertices.
The uv-0-extension operation is a 0-extension on a pair a, b with {a, b} 6= {u, v}. The uv-
1-extension operation is a 1-extension on some edge ab and vertex c for which {u, v} is not
a subset of {a, b, c}. The inverse operations are called uv-0-reduction and uv-1-reduction,
respectively.

We will also need two further moves. The vertex-to-K4 move deletes a vertex w and
substitutes in a copy of K4 with V (K4)∩V (G) = {w} and with an arbitrary replacement of
edges xw by edges xy with y ∈ V (K4). The inverse operation is known as a K4-contraction.
A vertex-to-4-cycle move takes a vertex w with neighbours v1, v2, . . . , vk for any k ≥ 2,
splits w into two new vertices w,w′ with w′ /∈ V (G), adds edges wv1, w

′v1, wv2, w
′v2 and

then arbitrarily replaces edges xw with edges xy where x ∈ {v3, . . . , vk} and y ∈ {w,w′}.
The inverse move is known as a 4-cycle-contraction. The only difference in the specialised
versions of these moves are that we require |V (K4)∩{u, v}| ≤ 1 in a uv-K4-contraction and
similarly |V (C4) ∩ {u, v}| ≤ 1 in a uv-4-cycle-contraction.

We first consider the 0-extension and 1-extension operations. It was shown in [10] that
these operations preserve independence in RY . The same arguments can be used to verify
analogous results for RYuv.

Lemma 4.2. Let G = (V,E) be independent in RYuv and suppose that G′ is obtained from
G by a 0-uv-extension or a uv-1-extension Then G′ is independent in RYuv.

In the case of 0-extensions we will also need the following result.

Lemma 4.3. Let (G, p) be a generic realisation of a graph G = (V,E) on Y and v ∈ V .
Suppose that RY(G, p) has linearly independent rows. Let G′ be obtained by performing a
0-extension which adds a new vertex u to G which is not adjacent to v. Put p′(a) = p(a)
for all a ∈ V , and put p′(u) = p(v). Then RY(G′, p′) has linearly independent rows.

Proof. The 0-extension adds 3 rows and 3 columns to RY(G, p), the 3 columns being 0
everywhere except the 3 new rows. The genericness of p and the fact that uv /∈ E implies
the new 3 × 3 block is invertible. Hence RY(G′, p′) has linearly independent rows so G′ is
independent in RYuv. �

We next consider the vertex-to-4-cycle operation. It was shown in [11] that this operation
preserves independence in RY . A similar argument would yield the analogous result for RYuv
but we will need a stronger result that a vertex-to-4-cycle move which creates two coincident
vertices preserves independence in RY .

Lemma 4.4. Suppose (G, p) is a framework on Y, RY(G, p) has linearly independent rows
and w ∈ V with neighbours v1, v2, . . . , vk. Suppose further that p(w) − p(v1), p(w) − p(v2)
and p̄(w) are linearly independent where p̄(w) is the projection of p(w) onto the plane z = 0.
Let G′ be obtained by performing a vertex-to-4-cycle operation in G which splits w into two
vertices w and w′, and is such that v1 and v2 are both adjacent to w and w′ in G′. Put
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p′(a) = p(a) for all a ∈ V −w and put p′(w) = p′(w′) = p(w). Then RY(G′, p′) has linearly
independent rows.

Proof. We will construct RY(G′, p′) from RY(G, p) by a series of simple matrix operations
that preserve the independence of the rows.

We first add three zero columns corresponding to w′. We then add three rows corre-
sponding to the edges w′v1, w

′v2 and the vertex w′. Adding these rows increases the rank
by 3 since p(w)− p(v1), p(w)− p(v2) and p̄(w) are linearly independent so the 3× 3 matrix
formed by the entries in the columns corresponding to w′ and the rows corresponding to
w′v1, w

′v2, w
′ is non-singular and the rest of the entries in these columns are zero. The

matrix M we obtain by this modification has the following form:

w︷ ︸︸ ︷ w′︷ ︸︸ ︷
(wv1) p(w)− p(v1) 0 ?
(wv2) p(w)− p(v2) 0 ?

...
...

...
(wvi) p(w)− p(vi) 0 ?

...
...

...
(w′v1) 0 p(w)− p(v1) ?
(w′v2) 0 p(w)− p(v2) ?

...
...

...
w p̄(w) 0 0
w′ 0 p̄(w) 0

...
...

...

= M

To obtain RY(G′, p′) from M we need to modify some of the rows in M corresponding to
edges (wvi) into the form of rows corresponding to edges (w′vi), i.e. we need to move the
entries in the columns of w to the columns of w′ and replace them with zeros. We will do
this one by one.

Since (p(w)−p(v1)), (p(w)−p(v2)) and p̄(w) are linearly independent, for every 3 ≤ i ≤ k
there exist unique values α, β, γ such that α(p(w) − p(v1)) + β(p(w) − p(v2)) + γp̄(w) =
(p(w)− p(vi)). Now subtract the row of (wv1) multiplied by α, the row of (wv2) multiplied
by β and the row of w multiplied by γ from the row of (wvi) in M . Then add the row of
(w′v1) multiplied by α, the row of (w′v2) multiplied by β and the row of w′ multiplied by
γ to the same row (and change its label from (wvi) to (w′vi)) for every neighbour vi of w′

in G′ to obtain RY(G′, p′). These operations also preserve independence, thus we conclude
that the rows of RY(G′, p′) are independent. �

Corollary 4.5. Let G be independent in RYuv and suppose that G′ is obtained from G by a
vertex-to-4-cycle operation. Then G′ is independent in RYuv.

Proof. We choose a generic uv-coincident realisation (G, p). Then (G, p) satisfies the hy-
potheses of Lemma 4.4. HenceG′ has a uv-coincident realisation (G′, p′) such thatRY(G′, p′)
has linearly independent rows. It follows that every generic uv-coincident realisation is in-
dependent. �
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We next consider a generalisation of the vertex-to-K4 operation which replaces K4 with
an arbitrary minimally rigid subgraph. It was shown in [10] that this operation preserves
independence in RY . We will need an analogous result for uv-coincident realisations.

Lemma 4.6. Let G = (V,E) be a graph with |E| = 2|V | − 2 and let u, v ∈ V be distinct
vertices. Suppose H ⊂ G is chosen so that either:
(a) u, v ∈ V (H), H is minimally uv-rigid on Y and G/H is minimally rigid on Y, or
(b) |{u, v} ∩ V (H)| ≤ 1, H is minimally rigid on Y and G/H is minimally uv-rigid on Y.
(Taking u or v to be the vertex of G/H obtained by contracting H when {u, v}∩V (H) = {u}
or {u, v} ∩ V (H) = {v}, respectively.)
Then G is uv-rigid on Y.

Proof. (a) Let |V | = n, |V (H)| = r and consider RY(G, p) where (G, p) is a generic
uv-coincident framework on Y and p = (p(v1), p(v2), . . . , p(vn)). By reordering rows and
columns if necessary we can write RY(G, p) in the form(

RY(H, p|H) 0
M1(p) M2(p)

)
where M2(p) is a square matrix with 3(n− r) rows.

Suppose, for a contradiction, that G is not uv-rigid. Then there exists a vector m ∈
kerRY(G, p) which is not an infinitesimal isometry of Y. Since (H, p|H) is uv-rigid we may
suppose that m = (0, . . . , 0,mr+1, . . . ,mn). Consider the realisation (G, p′) where p′ =
(p(vr), p(vr), . . . , p(vr), p(vr+1), . . . , p(vn)) and define the realisation (G/H, p∗) by setting
p∗ = (p(vr), p(vr+1), . . . , p(vn)). Since p∗ is generic, (G/H, p∗) is infinitesimally rigid on Y
by assumption.

Now, M2(p) is square with the nonzero vector (mr+1, . . . ,mn) ∈ kerM2(p). Hence
rankM2(p) < 3(n − r). Since p is generic, we also have rankM2(p

′) < 3(n − r) and
hence there exists a nonzero vector m′ ∈ kerM2(p

′). Therefore we have(
RY(G/H, p∗)

)( 0
m′

)
=

(
p(vr) 0
? M2(p

′)

)(
0
m′

)
= 0,

contradicting the infinitesimal rigidity of (G/H, p∗).
(b) A similar proof holds. We choose a generic uv-coincident framework (G, p), a vector

m ∈ kerRY(G, p) which is not an infinitesimal isometry of R3, and uv-coincident realisations
(G, p′) and (G/H, p∗) as above. We then use the facts that H is rigid on Y and G/H is
uv-rigid on Y to obtain a contradiction. �

We next consider the uv-0-reduction, uv-1-reduction, uv-K4-contraction and uv-4-cycle
contraction operations.

Lemma 4.7. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that
|E| = 2|V | − 2, G is independent in Muv, and d(w) ≥ 3 for all w ∈ V . Then either there
is a vertex z ∈ V \ {u, v} with d(z) = 3 and |N(z) ∩ {u, v}| ≤ 1 or there is a 4-cycle in G
which contains both u and v.

Proof. Since |E| = 2|V | − 2 and d(w) ≥ 3 for all w ∈ V , there are at least 4 vertices of
degree 3. Since G is independent inMuv, G has at most two vertices which are adjacent to
both u and v. Hence, if there is no vertex z ∈ V \{u, v} with d(z) = 3 and |N(z)∩{u, v}| ≤ 1,
then the vertices of degree 3 must induce a C4 in G which contains both u and v. �

Lemma 4.8. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that
G is independent in Muv, and there are vertices a, b such that a, u, b, v is a cycle in G.
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Then the uv-4-cycle contraction which merges u and v results in a simple graph G′ which
is (2, 2)-sparse.

Proof. The independence of G in Muv implies that there is no vertex other than a, b that
is adjacent with both u and v. Thus G′ is simple. Suppose G′ is not (2, 2)-sparse. Then
there exists a (2, 2)-tight set X in G that contains u, v and exactly one of a and b, say a.
Let {X, {u, v, b}} = H. Then i(H) = 2|X| − 2 + 2 and val(H) = 2|X| − 2 + 3 − 2 which
contradicts the independence of G in Muv. �

Lemma 4.9. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that G
is independent inMuv and let z ∈ V \{u, v} with N(z) = {v1, v2, v3} and |N(z)∩{u, v}| ≤ 1.
Then either:
(a) there is a 1-reduction at z which leads to a graph which is independent in Muv, or
(b) z and its neighbours induce a copy of K4 in G, or
(c) vi ∈ {u, v} and vjvk ∈ E for some {i, j, k} = {1, 2, 3}, and there is a tight uv-compatible
family {X1, X2, . . . , Xk} in G such that X1 = N(z) ∪ {u, v, z} and i(X1) ≥ 2|X1| − 4.

Proof. Suppose (a) does not occur. Then, for all 1 ≤ i < j ≤ 3, either vivj ∈ E, or there
exists a tight uv-compatible family Hij in G− z with vivj ∈ cov(Hij) or there exists a tight
set Xij in G − z with {vi, vj} ⊂ Xij and {u, v} 6⊂ Xij . If the second alternative occurs
we may assume that Hij has been chosen to be the unique tight uv-compatible family in
G − z with maximal cover. If G[v1, v2, v3] ∼= K3 then (b) occurs. So we may assume that
v1v2 /∈ E.

We first show that

(4.2) vivj /∈ E and that Hij exists for some 1 ≤ i < j ≤ 3.

Suppose H12 does not exist. Then X12 exists. If v3 ∈ X12 then X12 + z contradicts
the independence of G in Muv. Hence v3 /∈ X12. If v1v3, v2v3 ∈ E then X12 ∪ {v3, z}
contradicts the independence of G in Muv. Hence suppose that v1v3 /∈ E. If X13 exists,
then X12 ∪X13 ∪ {z} contradicts the independence of G in Muv. Hence H13 exists. This
proves (4.2).

Relabeling if necessary we assume that H12 = {X1, X2, . . . , Xk} exists. Since v1v2 ∈
cov(H12) we have v1, v2 ∈ Xi for some 1 ≤ i ≤ k. If v3 ∈ Xi then |Xi| ≥ 4, since
|N(z) ∩ {u, v}| ≤ 1, and the uv-compatible family obtained from H12 by replacing Xi by
Xi + z will contradict the independence of G in Muv. Hence v3 6∈ Xi.

Suppose that {v1, v2}∩{u, v} = ∅. Then |Xi| ≥ 4. Since v3 /∈ Xi, neither v1v3 nor v2v3 are
covered by H12. The maximality of cov(H12) now implies that H13 and H23 do not exist. If
v1v3, v2v3 ∈ E, then the uv-compatible family obtained from H12 by replacing Xi by Xi+v3
would be tight and hence would contradict the maximality of cov(H12), since the new family
would cover v1v3 and v2v3. Relabeling if necessary, we may suppose that v1v3 /∈ E, and
hence X13 exists. Then Xi ∩X13 6= ∅, |Xi| ≥ 4, |X13| ≥ 4 and v1v3 ∈ cov(X13) \ cov(H12).
This contradicts the final part of Lemma 3.7. Hence {v1, v2} ∩ {u, v} 6= ∅ and we may
assume, without loss of generality, that u = v1.

If v3 6∈ V (H12), then Lemma 3.7(c) implies that v1v3 6∈ E and hence X13 exists. This
contradicts the final part of Lemma 3.7 since u ∈ X13 ∩ Xi. Hence v3 ∈ Xj for some
Xj ∈ H12−Xi. The final part of Lemma 3.7 now implies that X23 does not exist and hence
v2v3 ∈ E.

Let X = Xi ∪Xj ∪ {z} and H = (H12 \ {Xi, Xj}) ∪ {X}. We have iG(H) ≥ iG(H12) + 4
since zv1, zv2, zv3, v2v3 ∈ E(X) and val(H) = val(H12) + tx1 + tx2 − tX ≤ val(H12) + 4
with equality only if |Xi| = |Xj | = 3. The facts that G is independent in Muv and H12
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is tight now imply that |Xi| = 3 = |Xj | (so X = N(z) ∪ {u, v, z}), and that H is a tight
uv-compatible family in G with i(X) ≥ 2|X| − 4. �

Lemma 4.10. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that
G is independent in Muv, H = {X1, X2, . . . , Xk} is a tight uv-compatible family in G and
that H−Xi is not tight for all 1 ≤ i ≤ k. Then either:
(a) k = 1 and X1 is tight;
(b) k = 2, |X1| = |X2| = 3 and i(X1) = i(X2) = 2;
(c) k = 2, |X1| ≥ 4, i(X1) = 2|X1| − 3, |X2| = 3 and i(X2) = 2; or
(d) k = 2, |Xi| ≥ 4 and i(Xi) = 2|Xi| − 3 for all i ∈ {1, 2}.

Proof. We have i(H − Xi) = i(H) − i(Xi) and val(H − Xi) = val(H) − (2|Xi| − 2 − ti).
Since i(H−Xi) < val(H−Xi) this gives i(Xi) ≥ 2|Xi| − 2− ti and hence i(Xi) ≥ 2|Xi| − 3
if |Xi| ≥ 4 and i(Xi) = 2 if |Xi| = 3. In both cases we have i(Xi) ≥ val(Xi) − 1. Since G

is independent in Muv we have i(H) ≤ val(H) =
∑k

i=1(val(Xi) − 2) + 2. This proves that
k = 1 or k = 2. The assertion that X1 is tight in (a) and the assertions on i(X1) and i(X2)
in (b), (c) and (d) now follow from the hypothesis that H is tight. �

Note that if alternative (d) holds then X1 ∪X2 is tight so we can reduce to alternative
(a).

Lemma 4.11. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that
G is independent in Muv and that there exists a subgraph H of G isomorphic to K4. Then
either:
(a) there is a vertex x ∈ V \ V (H) such that |N(x) ∩ V (H)| = 2,
(b) |V (H) ∩ {u, v}| = 1 = |N(V (H)) ∩ {u, v}|,
(c) there is a tight uv-compatible family {X1, X2, . . . , Xk} in G such that X1 = V (H) ∪
{u, v}, |X1| = 6 and i(X1) = 8,
(d) there is a tight uv-compatible family {X1, X2, . . . , Xk} in G such that X1 = V (H) ∪
{u, v, a} for some a ∈ V \ (V (H) ∪ {u, v}), |X1| = 6 and i(X1) = 8, or
(e) the contraction of H gives a graph G′ which is independent in Muv.

Proof. Since G is independent in Muv, uv /∈ E and hence |V (H) ∩ {u, v}| ≤ 1. Suppose
that (a), (b) and (e) fail. Since (a) fails, no vertex of V \V (H) is adjacent to two vertices of
H and hence the graph G′ obtained by contracting H has no parallel edges. We label the
new vertex obtained by contracting H as w (taking w = u if u ∈ V (H) and w = v if v if
v ∈ V (H)). It is easy to check that G′ is (2, 2)-sparse. Since (b) fails, uv /∈ E(G′). Since (e)
fails, there is a uv-compatible family H′ = {X ′1, X ′2, . . . , X ′k} for which val(H′) < iG′(H′)
and w ∈ V (H′). Without loss of generality we may assume w ∈ X ′1. If |X ′1| ≥ 4 then we
get a contradiction as the uv-compatible family H = {(X ′1 − w) ∪ V (H), X ′2, . . . , X

′
k} of G

violates independence. If |X ′1| = 3 and V (H) ∩ {u, v} = ∅ then H is the uv-compatible
family described in (c). Finally if |X ′1| = 3 and |V (H) ∩ {u, v}| = 1 then X ′1 = {u, v, a} for
some a ∈ V \ (V (H)∪{u, v}) and H′′ = {V (H)∪{u, v, a}, X2, . . . , Xk} is the uv-compatible
family described in (d). �

Lemma 4.12. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that
G is independent in Muv, z ∈ V \ {u, v} is a vertex of degree 3 with N(z) = {v1, v2, v3},
|N(z) ∩ {u, v}| ≤ 1 and G[N(z) + z] is isomorphic to K4. Suppose further that there is a
vertex x ∈ V \ {z, v1, v2, v3} such that N(x) ∩N(z) = {v2, v3} and {v1, x} 6= {u, v}. Then
the uv-4-cycle contraction operation which contracts x and z into a single vertex x leads to
a graph G′ which is independent in Muv.
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Proof. Suppose G′ is not independent inMuv. Since G′ = G− z+ v1x and xv1 /∈ E, there
exists either a tight uv-compatible family H in G− z with xv1 ∈ cov(H), or a tight set X
in G− z with {x, v1} ⊂ X. Set Y = {z, v1, v2, v3, x}. Then Y is tight in G.

Suppose X exists. Then X∪Y and X∩Y are tight by Lemma 3.4. Since {v1, x} ⊆ X∩Y
and no proper subset of Y containing v1 and x is tight, we have X ∩ Y = Y . This implies
that z ∈ X contradicting the choice of X. Hence H = {X1, X2, . . . , Xk} exists.

Since xv1 ∈ cov(H), we may assume, without loss of generality, that x, v1 ∈ X1. Then
x, v1 ∈ X1 ∩ Y . Since |{u, v} ∩ Y | ≤ 1 by the hypotheses of the lemma, Lemma 3.5 implies
that X1 ∩ Y is tight. Since no proper subset of Y containing v1 and x is tight we have
X1 ∩ Y = Y . This implies that z ∈ X1 and contradicts the choice of H. �

We can now show that RYuv(Kn) = Muv(Kn) for all complete graphs Kn with n ≥ 2.
We do this by proving that, for all G ⊆ Kn, G is independent in RYuv if and only if
G is independent in Muv. Necessity will follow from Lemma 4.1. We prove sufficiency
inductively. We show that a graph G which is independent in Muv can be reduced to a
smaller such graph by the operations of uv-0-extension, uv-1-extension, vertex-to-4-cycle
and vertex-to-K4 and its generalisation. We then apply induction to deduce that the smaller
graph is independent in RYuv. This will imply that G is independent in RYuv since the inverse
operations preserve independence in RYuv.

Theorem 4.13. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Then G is
independent in RYuv if and only if G is independent in Muv.

Proof. Necessity follows from Lemma 4.1. Now suppose that G is independent in Muv.
We prove that G is independent in RYuv by induction on |V |. It is straightforward to check
that G is independent in RYuv when |V | ≤ 4. Hence we may assume that |V | ≥ 5. By
extending |E| to a base ofMuv(K|V |) if necessary, we may also assume that |E| = 2|V |− 2.

Case 1. G contains a vertex of degree 2. First suppose that u has degree 2. Then
G− u is (2, 2)-sparse. Hence, by Theorem 2.1, RY(G− u, p) has linearly independent rows
for any generic p. We can now use Lemma 4.3 to show that G is independent in RYuv.

Now, suppose that there is a vertex w ∈ V \ {u, v} with d(w) = 2. Let N(w) = {a, b}.
Clearly, a 6= b holds. If {a, b} = {u, v} then let H = {{u, v, w}, {V −w}}, where |V −w| ≥ 4.
We have

2|V | − 2 = |E| = iE(H) ≤ val(H) = 2 · 3− 3 + 2(|V | − 1)− 2− 2 = 2|V | − 3,

a contradiction. Hence {a, b} 6= {u, v}, which implies that the 0-uv-reduction operation can
be applied at w to obtain a graph G′ = (V −w,E′) that is independent inMuv and satisfies
|E′| = 2|V −w| − 2. By induction, G′ is independent in RYuv. Now Lemma 4.2 implies that
G is independent in RYuv.

Case 2. There is a 4-cycle in G containing u and v. By Lemma 4.8, we may apply
a uv-4-cycle-contraction (contracting u and v) to obtain a graph H which is simple and
(2, 2)-sparse. Theorem 2.1 implies that any generic realisation (H, p) on Y is infinitesimally
rigid. Now we can use Lemma 4.4 to show that G is independent in RYuv.

Henceforth we assume that Cases 1 and 2 do not occur.

Case 3. There is a proper tight set X containing u and v. Since Case 1 does not
occur, we may suppose X is a maximal proper tight set (where proper means X 6= V and
maximal means there is no vertex w ∈ V \X with more than one neighbour in X). Now by
the maximality of X, G/X is simple and |V \X| ≥ 3. Hence G/X is (2, 2)-tight. Theorem
2.1 implies that any generic framework (G/X1, p) on Y is infinitesimally rigid. We may now
apply Lemma 4.6(a) to show that G is independent in RYuv.
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Henceforth we may assume that Case 3 does not occur.

Case 4. There is a degree three vertex z in G which is contained in a subgraph
H ∼= K4, and a vertex x ∈ V \ V (H) such that |V (H) ∩N(x)| = 2. If {u, v} 6⊂
V (H) ∪ {x} then we may apply Lemma 4.12 to find a graph G′ which is independent in
Muv. We can now use Corollary 4.5 to show that G is independent in RYuv. Thus we may
suppose that {u, v} ⊂ V (H)∪{x}. Then H ∪{x} is tight. This contradicts the assumption
that Case 1 (if H ∪ {x} = V ) or Case 3 (if H ∪ {x} 6= V ) do not occur.

A vertex z of degree 3 in G is bad if either

• z ∈ {u, v}, or
• z is adjacent to both u and v, or
• z satisfies alternative (c) of Lemma 4.9 with X1 = N(z) ∪ {u, v, z} and i(X1) ≥

2|X1| − 3, or
• z belongs to a subgraph H ∼= K4 satisfying alternative (b) of Lemma 4.11.

Otherwise we say that z is good.

Case 5. All degree three vertices are bad. We may use Lemma 4.7 and the fact that
Case 2 does not occur to deduce there exists a degree three vertex v1 ∈ V \ {u, v} with
|N(v1) ∩ {u, v}| ≤ 1. Since v1 is bad either

(i) v1 satisfies alternative (c) of Lemma 4.9 with X1 = N(v1) ∪ {u, v, v1} and i(X1) ≥
2|X1| − 3, or

(ii) v1 belongs to a subgraph H ∼= K4 satisfying alternative (b) of Lemma 4.11.

If (i) occurs then the fact that G is independent inMuv implies that i(X1) ≤ 2|X1| − 2 = 8
and the fact that Case 2 does not occur tells us equality cannot hold. Hence i(X1) =
2|X1|−3 = 7. It follows that we may interchange the labels of u and v and also of v2 and v3
such that L = G[N(v1) ∪ {u, v, v1}] is the graph in Figure 2(a) if (i) occurs and the graph
in Figure 2(b) if (ii) occurs.

u
v3

v1 v2

v

(a)

u
v3

v1 v2

v

(b)

Figure 2. The two alternatives for L.

The fact that G is (2, 2)-sparse implies that, in both cases, there exists a (necessarily bad)
degree three vertex v4 ∈ V \ V (L). Since Case 2 does not occur, v4 is not adjacent to both
u and v. We may now repeat the argument from the previous paragraph to deduce that v4
also belongs to a subgraph L′ which is isomorphic to one of the graphs shown in Figure 2.
Let V (L′) = {v4, u′, v′, v′2, v′3} where {u′, v′} = {u, v}. Since Case 2 does not occur, v′3 = v3.
If v1 ∈ V (L′) then we must have v1 = v′2. Since v4 ∈ N(v′2) = N(v1) ⊆ V (L) this would
contradict the fact that v4 ∈ V \ V (L). Hence v1 /∈ V (L′) and {u, v, v3} ⊆ V (L) ∩ V (L′) ⊆
{u, v, v2, v3}.

We first consider the case when V (L)∩V (L′) = {u, v, v2, v3}. Since Case 2 does not occur
v2 is not adjacent to both u and v and hence u = u′ and v = v′. Since G is (2, 2)-sparse
L ∪ L′ is as shown in Figure 3(a) and (b).
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We next consider the case when V (L)∩V (L′) = {u, v, v3}. Since G is (2, 2)-sparse L∪L′
is as shown in Figure 3(c), (d) and (e) up to a relabeling of u and v.

Since all five graphs in Figure 3 are tight, we may use the fact that Case 3 does not occur
to deduce that G = L ∪ L′. The fact that Case 1 does not occur now tells us that G is not
the graph in Figure 3(a), (b) or (c). The graph in Figure 3(d) cannot be equal to G since
X1 = N(v1) ∪ {u, v, v1} does not belong to a tight uv-compatible family (so v1 is not bad).
Hence G is as shown in Figure 3(e).

u

v1 v2

v

v4

v3

(a)

u
v3

v1 v2

v

v4

(b)

u

v1 v2

v

v4 v′2

v3

(c)

u

v1 v2

v

v4 v′2

v3

(d)

u

v1 v2

v

v4 v′2

v3

(e)

Figure 3. The five alternatives for G.

We will complete the discussion of this case by showing that G is minimally uv-rigid on
Y. Let (G, p) be a generic uv-coincident realisation of G on Y and m be an infinitesimal
motion of (G, p) with m(u) = 0. Since K4 is rigid, m(w) = 0 for all w ∈ V (L) − v. In
particular m(v3) = 0 and hence m(w) = 0 for all w ∈ V .

Case 6. None of the previous cases occur. Let z1, z2, . . . , zk be the good degree three
vertices in G. If the edge set of some 1-reduction of G at zi is independent inMuv then we
may apply induction to the reduced graph and then apply Lemma 4.2 to deduce that G is
independent in RYuv. Hence we may assume that alternative (b) or (c) of Lemma 4.9 holds
for zi.

Suppose alternative (b) of Lemma 4.9 holds for zi. If the contraction of the K4-subgraph
Hi which contains zi results in a graph which is independent in Muv, then we may apply
induction to the reduced graph and then apply Lemma 4.6 to deduce that G is independent
in RYuv. (Note that the contracted graph is minimally rigid since Case 4 does not hold
and since zi is good, zi is adjacent to at most one of {u, v} so |{u, v} ∩ V (Hi)| ≤ 1. Thus
(G,Hi) satisfies the hypotheses of Lemma 4.6(b).) Hence the contraction of Hi in G is
not independent in Muv and alternative (e) of Lemma 4.11 does not occur. In addition
alternatives (a) and (b) of Lemma 4.11 do not occur since Case 4 does not hold and zi is



RIGID CYLINDRICAL FRAMEWORKS WITH TWO COINCIDENT POINTS 19

good. Hence there exists a tight uv-compatible family Hi satisfying alternatives (c) or (d)
of Lemma 4.11.

In summary we have shown that for every good vertex zi either alternatives (c) or (d)
of Lemma 4.11 or alternative (c) of Lemma 4.9 hold. We assume that the first alternative
holds for all 1 ≤ i ≤ l and that the second alternative holds for l + 1 ≤ i ≤ k. Let Xi be
the element of Hi which contains V (Hi) for 1 ≤ i ≤ l, where Hi and Hi are as defined in
the previous paragraph. In addition for all l+ 1 ≤ i ≤ k alternative (c) of Lemma 4.9 holds
so there exists a tight uv-compatible family Hi such that Xi = {zi, u, v} ∪ N(zi) belongs
to Hi. With these definitions we have i(Xi) = 2|Xi| − 4 for all 1 ≤ i ≤ k. (This follows
from Lemma 4.11 when 1 ≤ i ≤ l and from Lemma 4.9 and the fact that zi is good when
l + 1 ≤ i ≤ k.)

Let X =
⋃k

i=1Xi. We will show by induction that i(X) ≥ 2|X| − 4. Suppose that we
have i(X ′) ≥ 2|X ′| − 4 for some X ′ =

⋃s
i=1Xi and some 1 ≤ s ≤ k. If i(X ′ ∪ Xs+1) ≤

2|X ′∪Xs+1|−5, then Lemma 3.1(a) implies that i(X ′∩Xs+1) ≥ 2|X ′∩Xs+1|−3, this would
contradict the fact that G is independent inMuv since the uv-compatible familyH′s+1 which
we get from Hs+1 by replacing Xs+1 by X ′ ∩ Xs+1 would satisfy i(H′s+1) − val(H′s+1) >
i(Hs+1)− val(Hs+1) = 0.

We may apply Lemma 4.10 to a minimal tight uv-compatible subfamily of Hi for all
1 ≤ i ≤ k, and use the facts that Cases 2 and 3 do not occur to deduce that alternatives (a)
and (b) of Lemma 4.10 cannot hold for this family. In addition the remark after Lemma
4.10 implies that (d) cannot hold either so (c) must hold for this minimal subfamily. Hence
there exist sets Yi and {u, v, yi} in Hi with i(Yi) = 2|Yi| − 3 and i({u, v, yi}) = 2. Note
that neither set can be equal to Xi since |Xi| > 3 and i(Xi) = 2|Xi| − 4. Lemma 3.2(b)
implies that Yi ∩Xi = {u, v} = Yi ∩ {u, v, yi} for all 1 ≤ i ≤ k. The fact that we are not

in Case 2 also implies that yi = yj = y, say, for all 1 ≤ i ≤ j ≤ k. Let Y =
⋂k

i=1 Yi. Then
Y ∩X = {u, v} and y 6∈ Y . We can now use Lemma 3.1(a) and the fact that G contains no
proper tight subset containing u and v (since Case 3 does not occur) to prove inductively
that i(Y ) = 2|Y | − 3.

Let W = V \X. Since i(W ) ≤ 2|W |−2 there is an integer t for which i(W ) = 2|W |−2−t.
Since i(Y ) = 2|Y | − 3 and G is (2, 2)-sparse, there are at least 3 edges from Y \ {u, v} to
{u, v}. Since Y \ {u, v} ⊆W , y ∈W \ Y and there are two edges from y to {u, v}, we have
at least five edges between {u, v} and W . Note that the definition of X tells us that all
degree 3 vertices in W are bad.

Suppose that every (bad) degree three vertex in W is adjacent to both u and v. Since
Case 2 does not occur we have at most one degree three vertex in W . Since i(X) ≥ 2|X|−4,
we have |E| − |E(X)| − |E(W )| ≤ 2|V | − 2 − (2|X| − 4) − (2|W | − 2 − t) = 4 + t. Hence
the sum of the degrees of the vertices in W is at most 2(2|W | − 2− t) + 4 + t = 4|W | − t.
Since there is at most one degree three vertex in W , t ≤ 1. If t = 0, then W is tight and
W + u + v violates sparsity since there are at least 5 edges between W and {u, v}. Hence
t = 1 and W + u + v is a proper tight set which contradicts the fact that Case 3 does not
occur.

Now consider the case when there is a (bad) degree three vertex z ∈ W which is not
adjacent to both u and v. Since z is bad there is either a set Z ⊆ V which satisfies
alternative (c) of Lemma 4.9 and has i(Z) ≥ 2|Z| − 3, or z belongs to a subgraph H ∼= K4

that satisfies alternative (b) of Lemma 4.11. We can now deduce, as in Case 5, that
J = G[N(z) ∪ {u, v, z}] is isomorphic to one of the graphs shown in Figure 2, with v1 = z.
The vertex labelled v3 in Figure 2 must be equal to y because Case 2 does not hold. The fact
that y ∈ V (J)\Y implies that Y ∩V (J) 6= V (J). In addition the facts that i(Y ) = 2|Y |−3
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and no U ⊆ V (J)−y, with {u, v} ⊂ U , has i(U) = 2|U |−3 implies that Y ∩V (J) 6= Y . Hence
Y ∩V (J) is a proper subset of both Y and V (J) and hence i(Y ∩V (J)) ≤ 2|Y ∩V (J)| − 4.
Lemma 3.1(a) now implies that Y ∪ V (J) is tight. Since Y ∪ V (J) 6= V , this contradicts
the fact that Case 3 does not occur. �

We can now prove the deletion-contraction characterisation of uv-rigidity stated in the
introduction.

Proof of Theorem 1.1. Necessity follows from the fact that an infinitesimally rigid uv-
coincident realisation of G on Y is an infinitesimally rigid realisation of G − uv, and also
gives rise to an infinitesimally rigid realisation of G/uv by (4.1).

To prove sufficiency, suppose, for a contradiction, that G − uv and G/uv are both rigid
on Y but G is not uv-rigid on Y. By Theorems 3.8 and 4.13 this implies that there is a
thin cover K of G − uv with val(K) ≤ 2|V | − 3. If K consists of subsets of V only, then
rY(G− uv) ≤ 2|V | − 3 follows, which contradicts the fact that G− uv is rigid on Y.

Hence K = {H, H1, . . . ,Hk}, where H = {X1, . . . , Xl} is a uv-compatible family. Con-
tract the vertex pair u, v in G into a new vertex zuv. This gives rise to a cover

K′ = {X ′1, . . . , X ′l , H1, . . . ,Hk}
of G/uv, where X ′j is obtained from Xj by replacing u, v by zuv, for 1 ≤ j ≤ l. Then we
obtain

k∑
i=1

(2|Hi| − tHi) +

l∑
j=1

(2|X ′j | − t(X ′j)) ≤
k∑

i=1

(2|Hi| − tHi)+

+
l∑

j=1

(2|Xj | − t(Xj))− 2l = val(K)− 2 ≤ 2|V | − 3− 2 = 2(|V | − 1)− 3,

which implies that G/uv is not rigid on Y, a contradiction. This completes the proof. �

A similar proof can be used to verify the following more general result:

Theorem 4.14. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Then
rYuv(G) = min{rY(G− uv), rY(G/uv) + 2}.

Theorems 2.1 and 4.14 show that the polynomial-time algorithms for computing the rank
of a count matroid (see e.g. [1, 9]) can be used to test whether G is uv-rigid on Y, or more
generally, to compute rYuv(G).

5. Vertex splitting and global rigidity

Suppose G = (V,E) is a graph with V = {v1, v2. . . . , vn} and (G, p) is a realisation of G
on a family of (not necessarily distinct) concentric cylinders Y = Y1∪Y2∪ . . .∪Yn such that
p(vi) ∈ Yi for 1 ≤ i ≤ n. We say that (G, p) is globally rigid if every equivalent framework
(G, q) on Y, with q(vi) ∈ Yi for all 1 ≤ i ≤ n, is congruent to (G, p).

Let G = (V,E) be a graph and v1 be a vertex of G with neighbours v2, v3, . . . , vt.

A vertex split of G at v1 is a graph Ĝ which is obtained from G by deleting the edges
v1v2, v1v3, . . . , v1vk and adding a new vertex v0 and new edges v0v1, v0v2, . . . , v0vk, for some
2 ≤ k ≤ t. We will refer to the new edge v0v1 as the bridging edge of the vertex split. We
will show in this section that a vertex splitting operation preserves generic global rigidity
on the cylinder if and only if the bridging edge is redundant.

Given a map p : V → R3n, there is a unique family of concentric cylinders Y with
p(vi) ∈ Yi for all 1 ≤ i ≤ n as long as p(vi) does not lie on the z-axis for all 1 ≤ i ≤ n. We
will refer to Y as the family of concentric cylinders induced by p and denote it by Yp.
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Connelly and Whiteley [2, Theorem 13] showed that if a framework (G, p) in Rd is both
infinitesimally rigid and globally rigid then all frameworks (G, q) sufficiently close to (G, p)
are also infinitesimally rigid and globally rigid. We will adapt their proof technique to
obtain an analogous result for the cylinder.

Lemma 5.1. If (G, p) is infinitesimally rigid and globally rigid on Y, then there exists
an open neighbourhood Np of p on Y such that for any q ∈ Np the framework (G, q) is
infinitesimally rigid and globally rigid on Y.

Proof. Suppose |V | ≥ 5 and that for any open neighbourhood Np, there is a p∗ ∈ Np

such that the framework (G, p∗) is not globally rigid on Y. Then there is a convergent
sequence (G, pk) of non-globally rigid frameworks converging to (G, p). For each framework
(G, pk), let (G, qk) be an equivalent but non-congruent realisation on Y. We may assume
that (G, pk) and (G, qk) are in standard position (that is pk(v1) = qk(v1) = (0, 1, 0) as-

suming, without loss of generality, that r1 = 1). By the compactness of R3|V |, there is a
convergent subsequence (G, qm) converging to a limiting framework (G, q). As the limits of
the respective sequences, (G, q) must be equivalent to (G, p).

If (G, q) is not congruent to (G, p) then we contradict the global rigidity of (G, p). So
(G, p) and (G, q) are congruent, i.e. we can transform q to p by a reflection in the plane
x = 0, a reflection in the plane z = 0 or a combination of the two. We apply this same
congruence to all the (G, qm) to obtain a sequence (G, rm) converging to (G, p) with (G, rm)
being equivalent but not congruent to (G, pm) for each m.

We next show that pm− rm gives an infinitesimal motion of (G, p
m+rm

2 ) on Y
pm+rm

2 . For
each edge vivj we have(

pm(vi) + rm(vi)

2
− pm(vj) + rm(vj)

2

)
· ((pm(vi)− rm(vi))− (pm(vj)− rm(vj)))

=
1

2
((pm(vi)− pm(vj)) + (rm(vi)− rm(vj))) · ((pm(vi)− pm(vj))− (rm(vi)− rm(vj)))

=
1

2

(
(pm(vi)− pm(vj))

2 − (rm(vi)− rm(vj))
2
)

= 0.

Recall that p̄m(vi) and r̄m(vi) denote the projections of pm(vi) and rm(vi) onto the plane
z = 0. Since pm(vi) and rm(vi) both lie on Yi, we have p̄m(vi) · p̄m(vi) = r̄m(vi) · r̄m(vi).
Hence for each vertex vi,

(p̄m(vi) + r̄m(vi)) · (p̄m(vi)− r̄m(vi)) = 0.

Since pm and rm are not congruent, pm − rm is a nontrivial infinitesimal motion. This
means that the rank of the rigidity matrix for each framework (G, p

m+rm

2 ) is less than

maximal. Since both pm and rm converge to p, so does pm+rm

2 . Thus (G, p) is a limit of a
sequence of infinitesimally flexible frameworks and hence itself is infinitesimally flexible, a
contradiction. (The fact that (G, p) is infinitesimally rigid implies that the rank of RYq(G, p)

is maximum for all q ∈ R3|V | sufficiently close to p.) �

We can use this lemma and our main result to show that vertex splitting preserves global
rigidity on Y under the additional assumption that the new edge is redundant.

Theorem 5.2. Let (G, p) be a generic globally rigid framework on a family of concentric

cylinders Y. Let Ĝ be a vertex split of G at the vertex v1 with new vertex v0 and suppose
that Ĝ− v0v1 is rigid on Y. Let p̂(v) = p(v) for all v 6= v0 and p̂(v0) = p(v1). Then for any

q on Y which is sufficiently close to p̂, (Ĝ, q) is globally rigid on Y.
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Proof. Since (Ĝ/v0v1, p) = (G, p) is globally rigid on Y and p is generic, Ĝ/v0v1 is rigid

on Y. Since G− v0v1 is also rigid on Y, Theorem 1.1 implies that Ĝ has a v0v1-coincident
generic rigid realisation (Ĝ, p̂), where p̂(v) = p(v) for all v 6= v0 and p̂(v0) = p(v1). Since

(G, p) is globally rigid on Y, (Ĝ, p̂) is also globally rigid on Y. We can now use Lemma 5.1

to deduce that (Ĝ, q) is globally rigid on Y for all q sufficiently close to p̂. �

Suppose G is a graph which has a generic globally rigid realisation on Y. It was shown in
[5] that G−e is rigid on Y for all e ∈ E(G). This result and Theorem 5.2 immediately imply

that Ĝ, a vertex split of G with bridging edge e, has a generic globally rigid realisation on
Y if and only if Ĝ− e is rigid on Y.

6. Concluding remarks

Similarly to our definition of a framework (G, p) on Y we can define a framework on a
family of concentric spheres S = S1∪S2∪· · ·∪Sk where Si = {(x, y, z) ∈ R3 : x2+y2+z2 =
ri} and r = (r1, . . . , rk) is a vector of positive real numbers. We can project a framework on

S to a framework on the unit sphere by mapping p(v) to p(v)
‖p(v)‖ without changing infinitesimal

rigidity. We can then map the framework on the unit sphere to a framework on the (affine)
plane by central projection. In [12, 13] this process was shown to preserve infinitesimal
rigidity for frameworks on the unit sphere. Since the projection also preserves the property
that u an v are coincident, the problem of characterising generic rigidity for frameworks with
two coincident points on concentric spheres is equivalent to the problem of characterising
generic rigidity for frameworks with two coincident points in the plane. We can now use
the characterisation of generic uv-rigidity in the plane [4] to give the following result.

Theorem 6.1. Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Then G is
uv-rigid on a family of concentric spheres S if and only if G− uv and G/uv are both rigid
on S.

Note that a graph G = (V,E) is rigid on S if and only if it has rank 2|V | − 3 in the
(2, 3)-sparse matroid by [10, Theorem 5.1].

We can also replace Y with other surfaces. In particular if we choose a surface with 1
ambient rigid motion (such as the cone, hyperboloid or torus) then the analogue of Theorem
2.1 requires the graph to be (2, 1)-tight [11]. In the uv-coincident case we would define the
value as val(H) = 2|H| − tH where tH = 3 if |H| ∈ {2, 3} and H 6= {u, v}, tH = 2 if
|H| ∈ {0, 4} or H = {u, v} and tH = 1 if |H| ≥ 5. We expect that, using similar techniques
to Section 3, the appropriate count matroid can be established. However we do not know
how to prove an analogue of Theorem 4.13. To make a start on this problem would require
dealing with the case when the only vertices of degree less than 4 are u and v.
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