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Summary 26 

Wildfires produce substantial CO2 emissions in the humid tropics during El Niño-mediated 27 

extreme droughts, and these emissions are expected to increase in coming decades. Immediate 28 

carbon emissions from uncontrolled wildfires in human-modified tropical forests can be 29 

considerable owing to high necromass fuel loads. Yet, data on necromass combustion during 30 

wildfires are severely lacking. Here, we evaluated necromass carbon stocks before and after the 31 

2015–2016 El Niño in Amazonian forests distributed along a gradient of prior human disturbance. 32 

We then used Landsat-derived burn scars to extrapolate regional immediate wildfire CO2 33 

emissions during the 2015–2016 El Niño. Before the El Niño, necromass stocks varied 34 

significantly with respect to prior disturbance and were largest in undisturbed primary forests (30.2 35 

± 2.1 Mg ha-1, mean ± s.e.) and smallest in secondary forests (15.6 ± 3.0 Mg ha-1). However, 36 

neither prior disturbance nor our proxy of fire intensity (median char height) explained necromass 37 
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losses due to wildfires. In our 6.5 million hectare (6.5 Mha) study region, almost 1 Mha of primary 38 

(disturbed and undisturbed) and 20 000 ha of secondary forest burned during the 2015–2016 El 39 

Niño. Covering less than 0.2% of Brazilian Amazonia, these wildfires resulted in expected 40 

immediate CO2 emissions of approximately 30 Tg, three to four times greater than comparable 41 

estimates from global fire emissions databases. Uncontrolled understorey wildfires in humid 42 

tropical forests during extreme droughts are a large and poorly quantified source of CO2 43 

emissions. 44 

 45 

1. Introduction 46 

Increased concentrations of atmospheric CO2 during El Niño Southern Oscillation events [1,2] 47 

have largely been attributed to emissions from the tropics [3,4], with wildfires playing an important 48 

role [4,5]. In recent decades, despite a global reduction in burned vegetation area [6,7], relatively 49 

low-intensity understorey wildfires that spread from agricultural lands have increased in the fire-50 

sensitive Amazon rainforest [8–11]. CO2 emissions from such wildfires are expected to grow 51 

further [10] as fire-conducive weather patterns increase across the humid tropics, particularly in 52 

South America [12]. 53 

Large-scale understorey wildfires in Amazonia are unprecedented in recent millennia. During pre-54 

Columbian times, fires were limited to those occurring naturally from lightning strikes and 55 

prescribed burns by indigenous peoples [13]. These fires were localized, and prescribed burns 56 

were planned in accordance with environmental and ecological conditions [13]. However, 57 

pervasive human modification of tropical forest landscapes, through, for example, road building, 58 

cattle ranching and timber exploitation, combined with severe drought events and the widespread 59 

use of fire as a land management tool, has fundamentally altered Amazonian fire regimes. Today, 60 

uncontrolled large-scale understorey wildfires are being witnessed in the Amazon with sub-61 

decadal frequency [14]. Such wildfires result in high rates of tree mortality [15,16], shifts in forest 62 

structure [17,18] and drier microclimatic conditions [19], ultimately leading to increased 63 

susceptibility to future wildfires [19–21]. 64 

Carbon emissions from understorey wildfires can be split into committed and immediate 65 

emissions. Committed emissions result from the complex interplay between delayed tree mortality 66 

and decomposition, and are dependent on future climatic conditions and human influences. 67 

Research indicates that long-term storage of carbon in wildfire-affected Amazonian forests can 68 

be compromised for decades: even 31 years after a fire event, burned forests store approximately 69 

25% less carbon than unburned control sites owing to high levels of tree mortality that are not 70 

compensated by regrowth [22]. Immediate understorey emissions are those that occur during 71 

wildfires and, in contrast to committed emissions, are relatively simple to estimate. Biome- and 72 

continent-wide analyses that rely on satellite observations (known as top-down studies) suggest 73 

that these immediate emissions from tropical forests can be substantial [23,24] and, for example, 74 



can transform the Amazon basin from a carbon sink to a large carbon source during drought years 75 

[25]. 76 

One potentially important source of immediate carbon emissions during wildfires is dead organic 77 

matter found on forest floors. This necromass, which includes leaf litter and woody debris, is a 78 

fundamental component of forest structure and dynamics and can account for up to 40% of the 79 

carbon stored in humid tropical forests [26–28]. During long periods of drought, this large carbon 80 

pool can become highly flammable [29]. However, studies quantifying necromass stocks have 81 

overwhelmingly focused on undisturbed primary forests [27]; studies that estimate necromass in 82 

human-modified tropical forests—forests that have been structurally altered by anthropogenic 83 

disturbance, such as selective logging and fires, and those regenerating following deforestation 84 

(commonly called secondary forests; table 1)—are rare (cf. [30,31]). This represents a key gap in 85 

our understanding because human-modified tropical forests are increasingly prevalent [32] and 86 

increasingly vulnerable to wildfires [33–35]. While many local-scale, bottom-up studies have 87 

quantified combustion characteristics and carbon emissions following fires related to 88 

deforestation and slash-and-burn practices (see Van Leeuwen et al. [36] for a recent review), we 89 

know of no study that quantifies necromass before and after uncontrolled understorey wildfires in 90 

human-modified Amazonian forests. These knowledge gaps and data shortfalls limit our 91 

understanding of immediate carbon emissions from understorey wildfires. Improving such 92 

estimates is essential for refining Earth Systems models and both national and global estimates 93 

of greenhouse gas emissions. 94 

Here, we address these knowledge gaps using a hybrid bottom-up/top-down approach to study a 95 

human-modified region of central-eastern Amazonia that experienced almost 1 million hectares 96 

(1 Mha) of understorey wildfires during the 2015–2016 El Niño (figure 1). We combine data from 97 

a previously published large-scale field assessment of carbon stocks [37] with on-the-ground 98 

measures of woody debris before and after the 2015–2016 El Niño, proxies of fire intensity and 99 

coverage within study plots, and remotely sensed analyses of fire extent across the region. 100 

Specifically, we (a) quantify carbon stocks vulnerable to combustion across human-modified 101 

tropical forests in central-eastern Amazonia, (b) use post-burn measures to investigate the factors 102 

influencing the loss of necromass during wildfires, (c) estimate region-wide immediate carbon 103 

emissions from wildfires and (d) compare these region-wide emission estimates with those 104 

derived from widely used global fire emissions databases. 105 

2. Methods 106 

(a)  Quantifying necromass stocks in human-modified Amazonian forests 107 

We established 107 plots (0.25 ha) in human-modified forests in central-eastern Amazonia in 108 

2010 (figure 1). Plots were located in the municipalities of Santarém, Belterra and Mojuí dos 109 

Campos in the state of Pará, Brazil, and form part of the Sustainable Amazon Network (Rede 110 

Amazônia Sustentável (RAS) in Portuguese [38]). Study plots covered a range of prior human 111 

impacts (table 1) and included undisturbed primary forests (n = 17), primary forests selectively 112 



logged prior to 2010 (n = 26), primary forests burned prior to 2010 (n = 7), primary forests logged 113 

and burned prior to 2010 (n = 24) and secondary forests recovering after complete removal of 114 

vegetation (n = 33; table 1). 115 

Summary carbon estimates for these 107 plots can be found in Berenguer et al. [37]. Here, we 116 

focused on carbon stored in their necromass pools. We estimated necromass stocks in dead-117 

standing tree and palm stems, coarse woody debris (CWD; ≥ 10 cm diameter at one extremity), 118 

fine woody debris (FWD; ≥ 2 and < 10 cm diameter at both extremities) and leaf litter (including 119 

twigs < 2 cm diameter at both extremities, leaves, and fruits and seeds). Full carbon estimation 120 

methods can be found in Berenguer et al. [37]. In brief, in each plot, we measured the diameter 121 

and height of all large (greater than or equal to 10 cm diameter at breast height (DBH)) dead tree 122 

and palm stems. We measured the diameter and height of all small dead tree and palm stems 123 

(≥2 and < 10 DBH) in five subplots (5 × 20 m) in each plot. We used the allometric equations of 124 

Hughes et al. [39] and Cummings et al. [40] to estimate, respectively, carbon stocks for dead-125 

standing trees and palms. Subplots were also used to estimate the diameters and lengths of all 126 

pieces of fallen CWD. We estimated the volume of each piece of CWD using Smalian’s formula 127 

[27] after accounting for the extent of damage (i.e. void space). We multiplied the volume of each 128 

CWD piece by its decomposition class to calculate CWD mass [30]. In all study plots, we 129 

established five smaller subplots (2 × 5 m) to assess FWD. This was sampled and weighed in the 130 

field. A subsample (≤ 1 kg) was collected in each subplot and oven-dried to a constant weight. 131 

The wet-to-dry ratios of the FWD samples were used to estimate the total FWD stocks per plot. 132 

To estimate the biomass of leaf litter, ten 0.5 × 0.5 m quadrats were established in each plot. We 133 

oven-dried leaf litter samples to a constant weight to get an estimate of the leaf litter stocks in 134 

each plot. Biomass estimates for each necromass component were then standardized to per 135 

hectare values, and the carbon content was assumed to be 50% of biomass dry weight [41]. See 136 

electronic supplementary materials (§1) for all equations we used to estimate necromass 137 

biomass. 138 

(b)  Longitudinal monitoring of coarse woody debris 139 

To estimate necromass change through time, we continued to monitor 18 of the 107 RAS plots 140 

(figure 1). These 18 plots were chosen because they are spatially distributed across the region 141 

and we were able to secure long-term authorization to monitor them. They included undisturbed 142 

primary forests (n = 5), primary forests logged prior to 2010 (n = 5), primary forest logged and 143 

burned prior to 2010 (n = 4), and secondary forests (n = 4; table 1).We conducted surveys of the 144 

18 plots between November 2014 and September 2015, using a slightly altered sampling design 145 

to align with the Global Ecosystem Monitoring protocol (see [42] for details). We established five 146 

1 × 20 m subplots in each of the 18 plots, measured all pieces of CWD, and estimated their 147 

biomass and carbon content following the methods outlined above (see Methods (a)). 148 

(c)  Impacts of El Niño-mediated wildfires on necromass stocks 149 



Extensive understorey wildfires burned seven of our 18 study plots during the 2015–2016 El Niño, 150 

including two previously undisturbed primary forests, four primary forests logged prior to 2010, 151 

and one primary forest that was logged and burned prior to 2010. To investigate necromass 152 

carbon stock losses due to these wildfires, we resurveyed all 18 plots in June 2017.We re-153 

measured each individual piece of CWD and estimated biomass using the methods described 154 

above (Methods (a)). By comparing CWD stocks before and after the El Niño in the 11 plots that 155 

did not experience wildfires, we were able to estimate CWD background decomposition rates. By 156 

comparing CWD stocks before and after the El Niño in the seven plots that burned, we were able 157 

to measure CWD combustion completeness. 158 

We used values from the 2010 surveys to provide estimates of the pre-El Niño carbon stocks in 159 

leaf litter and FWD. Based on visual inspection of the sites (electronic supplementary material, 160 

figure S1), we assumed 100% combustion completeness of these necromass components in the 161 

fire-affected proportion of burned plots. Recognizing that this is a strong assumption, we consider 162 

the validity of it in our Discussion. We did not consider wildfire-mediated changes in necromass 163 

carbon stocks in dead-standing trees and palms, owing to a lack of data on combustion 164 

completeness. 165 

In the seven plots that burned, we calculated average char height for each stem, defined as the 166 

sum of the maximum and minimum char heights divided by two. We then used these average 167 

stem char heights to calculate the plot-level median char height, which we used as our proxy for 168 

fire intensity. In addition, we used the proportion of sampled stems with burn scars as an estimate 169 

of the area of each plot that burned (electronic supplementary materials). To increase our sample 170 

of fire-affected plots (to 16), we also measured the area burned in an additional nine of the original 171 

RAS plots that were sampled during the 2010 censuses and burned during 2015–2016 (table 1). 172 

Prior to the wildfires, these additional plots included undisturbed primary forests (n = 3), primary 173 

forests logged prior to 2010 (n = 1), primary forests logged and burned prior to 2010 (n = 4), and 174 

secondary forests (n = 1). 175 

We used these data to estimate the per hectare necromass loss (NL) attributable to wildfires using 176 

the following equation: 177 

𝑁𝐿 =  𝐹𝐿𝐶𝑊𝐷 × (𝐶𝐶𝐶𝑊𝐷 − 𝐷𝐶𝑊𝐷) + 𝐹𝐿𝐿𝐿𝐹𝑊𝐷 × 𝐵𝐴 (1) 178 

where FLCWD is the per hectare fuel load of CWD estimated from the 107 RAS plots surveyed in 179 

2010, CCCWD is the combustion completeness of CWD estimated from seven of the 18 CWD 180 

monitoring plots that burned during the 2015–2016 El Niño, DCWD is the background CWD 181 

decomposition rate estimated from the 11 CWD monitoring plots that did not burn during the 182 

2015–2016 El Niño, FLLLFWD is the per hectare fuel load of leaf litter and FWD estimated from the 183 

107 plots surveyed in 2010, and BA is the proportion of the plot that burned estimated from the 184 

16 RAS plots that burned (seven necromass monitoring sites and nine additional sites in which 185 

burned area was estimated) during the 2015–2016 El Niño (table 1). 186 

 (d)  Data analysis 187 



We used the Kruskal–Wallis test to investigate variation across forest classes of prior human 188 

disturbance (table 1) and used the Conover–Iman test with Bonferroni adjustments to perform 189 

multiple pairwise comparisons of forest class medians. We assessed differences across forest 190 

classes in: carbon stocks stored in each necromass component (i.e. dead-standing stems, CWD, 191 

FWD and leaf litter) from the 2010 survey; total and percentage necromass carbon stock losses 192 

in the 18 plots surveyed between 2014 and 2017; and the proportion/area of plots burned during 193 

the 2015–2016 El Niño. We used linear regression to investigate the relationship between: 194 

necromass carbon stocks before and after the 2015–2016 El Niño; fire intensity and stock losses; 195 

and the burned area in each plot and stock losses. 196 

 197 

(e) Quantification of burned area and estimation of region-wide emissions from forest fires 198 

To estimate wildfire-mediated carbon emissions from necromass across our study region, we first 199 

calculated the cumulative area of primary and secondary forest that experienced understorey 200 

wildfires during 2015–2016 in the central-eastern region of the Amazon, an area of approximately 201 

6.5 Mha (figure 1). We built a time-series of Landsat (5, 7 and 8) imagery from 2010 to 2017 for 202 

the RAS study region and the surrounding area from the EROS Science Processing Architecture 203 

(ESPA)/U.S. Geological Survey (USGS) website (https://espa.cr.usgs.gov). We performed an 204 

unsupervised classification of raw imagery, followed by manual correction of classification errors, 205 

to identify several land-uses throughout the time-series (see electronic supplementary material, 206 

table S2 for all land-use classes and §2 for a detailed description of burned area detection). We 207 

then used the burned area of primary and secondary forests and estimates of per hectare 208 

necromass stock losses from wildfires (equation (1)) to determine region-wide necromass carbon 209 

emissions, using a conversion factor of 3.286 kg of CO2 per kg of C [43]. This conversion factor 210 

does not include other forms of emitted C (such as CO), in keeping with global fire emissions 211 

databases. 212 

We took two approaches to account for uncertainty in expected regional necromass emissions. 213 

First, we considered four land-use scenarios using two sets of primary and secondary forests 214 

(electronic supplementary material, table S1). To account for potential variation in fire 215 

susceptibility across primary forest disturbance classes, we estimated the five variables in 216 

equation (1) using all undisturbed and disturbed primary forest classes (prim1) and then only 217 

disturbed primary forests (prim2). For secondary forests, we used CCCWD and FLLLFWD from all 218 

secondary forests, used DCWD and BA from all forest classes combined, and used CCCWD from all 219 

primary forest classes because none of the secondary forest plots we were monitoring for 220 

changes in CWD burned during 2015–2016 (sec1). Our other scenario for secondary forests 221 

(sec2) was more restrictive: we used the fuel load (FLCWD, FLLLFWD), decomposition (DCWD), and 222 

BA values from secondary forests only and combined these with all CCCWD values we had from 223 

disturbed and undisturbed primary forests. 224 

Second, to account for uncertainty in the distribution of the variables in equation (1), we ran 1000 225 

bootstrap with replacement simulations to determine each variable’s mean value and standard 226 

error. We calculated the standard error of equation (1) using the variable standard errors, 227 



accounting for error propagation, and we constructed 95% confidence intervals for equation (1) 228 

as its mean value ± 1.96 times the standard error of the mean. 229 

(f) Quantitative comparisons with GFED and GFAS 230 

We compared our region-wide CO2 emission estimates with two fire emissions databases 231 

frequently used in Earth Systems models and carbon budgets: the Global Fire Emissions 232 

Database (GFED) version 4.1s [44] and the Global Fire Assimilation System (GFAS) version 1.1 233 

[45]. For both datasets, we obtained data for our study period (August 2015–July 2016) and 234 

cropped them to our approximately 6.5 Mha study region, shown in figure 1. We first calculated 235 

cumulative emissions from GFED and GFAS (electronic supplementary material) and compared 236 

these with our emissions estimates. Second, to investigate potential sources of discrepancy 237 

between estimates, we spatially mapped GFED, GFAS and our CO2 emissions estimates. At both 238 

GFED and GFAS resolutions (0.25° and 0.1°, respectively), we mapped our mean (across land-239 

use scenarios; electronic supplementary material, table S1) expected emissions assuming that 240 

emissions were constant in a burned area (i.e. if a cell contained x% of the burned area, we 241 

assumed it accounted for x% of the total emissions). Finally, because GFED also provides 242 

estimates of the area burned at 0.25°, we used our land-use map to estimate burned area at that 243 

resolution. 244 

3. Results 245 

(a) Necromass carbon stocks across human-modified Amazonian forests 246 

Total necromass and its components varied significantly with respect to forest class (p < 0.05 in 247 

all cases; figure 2). Primary forests contained significantly higher total necromass than secondary 248 

forests (p < 0.01 for all pairwise comparisons), with the highest total found in undisturbed primary 249 

forests (30.2 ± 2.1 Mg ha-1, mean ± s.e.). By contrast, secondary forests contained only half as 250 

much necromass as undisturbed primary forests (15.6 ± 3.0 Mg ha-1). Variation in total necromass 251 

was driven in large part by variation in CWD, which accounted for 61.3 ± 2.7% of the total 252 

necromass stocks across forest classes. Leaf litter was the next most important component of 253 

total necromass, with 19.8 ± 2.7% residing in this component. Dead-standing stems accounted 254 

for 14.4 ± 1.8% of total necromass. Finally, FWD was by far the smallest necromass component, 255 

harbouring just 4.6 ± 0.2% of the total. 256 

(b) Impacts of El Niño mediated wildfires on necromass stocks 257 

On average, 87.1 ± 2.7% of the ground area of our fire-affected study plots burned, and there was 258 

no significant difference in the total unburned area of fire-affected plots across forest classes (𝜒3
2 259 

= 2.1; p = 0.56). For CWD, all but two pieces had burned from a total of 34, and CWD carbon 260 

stocks losses from combustion varied from 38% to 94% (mean = 65.4%, SE = 7.1%). 261 

Necromass carbon stock losses in the seven burned plots were unrelated to median char height 262 

(R2 = 0.09; p = 0.51; figure 3a) and area of plot burned (R2 = 0.10; p = 0.49; figure 3b). Forest 263 



class did not predict necromass carbon stock losses in burned sites when expressed as either 264 

percentage (𝜒2
2 = 2.25; p = 0.32) or total (𝜒2

2 = 1.12; p = 0.57) loss. Similarly, forest class did not 265 

predict necromass losses in unburned sites when expressed as either percentage (𝜒3
2 = 1.58; p = 266 

0.66) or total (𝜒3
2 = 2.18; p = 0.54) loss. 267 

On average, burned sites lost 73.0 ± 4.9% of their pre-El Niño necromass stocks (figure 4), 268 

compared to a 26.1 ± 4.8% reduction in unburned sites (from decomposition). As expected, pre-269 

El Niño necromass stocks strongly predicted post-El Niño necromass in our unburned sites (R2 = 270 

0.95; p < 0.001; figure 4a). This relationship disappeared in fire-affected plots (R2 = 0.08; p = 0.54; 271 

figure 4b), indicating that combustion completeness was insensitive to initial necromass stocks. 272 

Despite our small sample size, visual inspection suggests that these findings were unaffected by 273 

forest class. 274 

 (c) Region-wide burned area and estimates of carbon stock losses 275 

During the 2015–2016 El Niño, 15.2% of our study region and 982, 276 ha of forest experienced 276 

understorey wildfires. These wildfires were overwhelmingly concentrated in primary forests: less 277 

than 2% of the burned area was in secondary forests, despite these accounting for 9% of the 278 

forest cover in our study region. When considering all primary and secondary forest plots (prim1 279 

+ sec1), resultant necromass carbon stock losses amounted to 10.06 Tg (95% confidence 280 

interval, 5.85–14.27 Tg). Converting to CO2, this is equivalent to expected emissions of 33.05 Tg 281 

(95% confidence interval, 19.22–46.87 Tg; figure 5). Our mean CO2 emission estimates were 282 

relatively insensitive to the land-use scenarios (figure 5). However, the 95% confidence interval 283 

was substantially wider with land-use scenario prim2 (scenarios b and d; figure 5) owing to greater 284 

uncertainty in decomposition rates when restricted to disturbed primary forest only compared with 285 

all primary forests—undisturbed and disturbed—combined. 286 

(d) Comparing our results with global fire emission databases 287 

Both GFED and GFAS vastly underestimated expected wildfire CO2 emissions for our study 288 

region and period. Respectively, these databases suggest cumulative emissions that are 77% 289 

and 68% lower than the expected value we found with land-use scenario a (prim1 + sec1; figure 290 

5). These discrepancies can be explained by the underdetection of understorey wildfires by both 291 

GFED and GFAS algorithms. This can be seen across our whole study region but is particularly 292 

evident in areas free from historic deforestation (figure 6). GFED and GFAS appeared to be more 293 

successful at detecting fires in agricultural areas with lower levels of forest cover (figure 6). 294 

Highlighting the insensitivity of GFED to understory wildfires, this database suggests that, at most, 295 

6% of any given 0.25° cell across our study region, and approximately 90,000 ha in total, burned 296 

during the 2015–2016 El Niño (figure 6e). By contrast, we show that as much as 74% of a cell 297 

(figure 6f) and almost 1 Mha of forest was affected by understory wildfires. 298 

4. Discussion 299 

(a) Region-wide carbon emissions from El Niño-mediated wildfires 300 



We investigated necromass carbon stocks in human-modified forests before and after large-scale 301 

understorey wildfires in central-eastern Amazonia that occurred during the 2015–2016 El Niño. 302 

Our novel assessment revealed that expected immediate necromass CO2 emissions from these 303 

wildfires are around 30 Tg (figure 5). This is equivalent to total CO2 emissions from fossil fuel 304 

combustion and the production of cement in Denmark, or 6% of such emissions from Brazil, in 305 

2014 [46]. Consequently, wildfire-mediated immediate carbon emissions, which are not currently 306 

considered under national greenhouse gas inventories [47], represent a large source of CO2 307 

emissions. Moreover, these immediate emissions will be greatly exacerbated by further 308 

committed emissions resulting from tree mortality, which can be as high as 50% [16] and may not 309 

be balanced by post-fire regrowth on decadal time scales [22]. 310 

Our results add to work on prescribed burns associated with deforestation [36], contributing 311 

important information about the role of El Niño-mediated wildfires. The scale of the immediate 312 

emissions we estimated, coupled with future committed emissions, make wildfires particularly 313 

relevant to climate change mitigation programmes such as REDD+ [9,48]. For REDD+ to succeed 314 

in Amazonia, we demonstrate that forests must be protected from wildfires, as even the immediate 315 

emissions from large-scale wildfires can equal those from whole countries. Future climate change 316 

will make this only more imperative, with extreme droughts, higher temperatures, and reduced 317 

rainfall all predicted for the Amazon basin in the near future [49–51]. Wildfires may also undermine 318 

the important role that protected areas have historically served as carbon stores [52], as illustrated 319 

by the large areas burned in the Tapajós National Forest and the Tapajós-Arapiuns Extractive 320 

Reserve (figure 1). 321 

(b)  Fuel loads in humid tropical forests 322 

Total necromass carbon stocks in the 107 RAS plots surveyed in 2010 did not vary significantly 323 

between disturbed and undisturbed primary forests (figure 2e). The mean value we found for total 324 

necromass carbon stocks in undisturbed forests was 30.2+2.1 Mg ha-1. This value is broadly 325 

consistent with previous estimates for the eastern Amazon. For example, Keller et al. [30] and 326 

Palace et al. [31] found necromass carbon stocks of, respectively, 25.4 and 29.2 Mg ha-1 in 327 

undisturbed primary forests in the Tapajós region of Pará. In primary forests disturbed by reduced-328 

impact logging, these studies found, respectively, 36.4 and 42.75 Mg ha-1 of necromass carbon. 329 

However, our estimates for necromass stocks in disturbed primary forests are markedly lower 330 

(figure 2e). This discrepancy is likely a function of time since disturbance. Keller et al. [30] and 331 

Palace et al. [31] assessed necromass carbon stocks soon after disturbance, when necromass 332 

stocks are likely to be higher. By contrast, disturbance of RAS sites occurred between 1.5 and 25 333 

years before the 2010 surveys. Necromass stocks can be highly dynamic, with residence times 334 

for most CWD estimated at less than a decade [28], especially in the case of small diameter and 335 

low wood density tree species [53]. Thus, necromass stocks in many of our disturbed primary 336 

forest sites may have had time to decrease to an equilibrium level, similar to that of undisturbed 337 

forests, where input and decomposition are largely balanced. 338 



We did, however, find significantly larger necromass stocks in primary forests compared with 339 

secondary forests. This may be explained by (a) pre-abandonment secondary forest land-uses 340 

removing all fallen biomass with machinery or intensive fires; (b) the smaller necromass input pool 341 

in secondary forests owing to lower levels of aboveground live biomass [37]; and (c) the lower 342 

wood density of stems in secondary forests [54], resulting in more rapid CWD decomposition. 343 

(c)  Impacts of El Niño-mediated wildfires on necromass stocks 344 

On average, we estimate that wildfires burned 87.1 ± 2.7% of our fire-affected necromass 345 

monitoring plots (figure 3b). This figure is substantially higher than the 62–75% burn coverage 346 

measured during experimental fires in previously undisturbed transitional Amazonian forests [18]. 347 

The areal extent of these wildfires reduced necromass (in CWD, FWD and leaf litter) carbon 348 

stocks by 46.9 ± 6.9%, when gross necromass loss (73.0 ± 4.9%) was corrected for 349 

decomposition (26.1 ± 4.8%). The understorey wildfires that affected our burned plots were 350 

relatively low intensity, with maximum median char height of 20.5 cm. Nonetheless, our findings 351 

demonstrate that these low-intensity wildfires can dramatically diminish necromass stocks in 352 

human-modified tropical forests. Further, both area of plot burned and necromass carbon stock 353 

losses showed little variation across disturbance classes. This may indicate that the 2015–2016 354 

El Niño, which was one of the strongest in recorded history, produced drought conditions so 355 

severe that necromass moisture content was reduced across all forest classes to a level that 356 

permitted combustion and sustained fires, overriding any pre-existing microclimatic differences 357 

that may have existed owing to the initial disturbance. This is further corroborated by the fact that 358 

wildfires did not distinguish between largely undisturbed forests (mostly inside protected areas) 359 

and those that have been modified by humans (mostly outside protected areas), burning vast 360 

areas of both types of forest (figure 1). 361 

 (d)  Caveats 362 

Though our dataset is the first to our knowledge that allows for quantification of necromass carbon 363 

stocks pre- and post-uncontrolled understorey wildfires in human-modified Amazonian forests, 364 

our sample size was limited, with just 18 necromass monitoring plots, of which seven burned 365 

during the 2015–2016 El Niño. Consequently, results that follow from these samples should be 366 

treated with a degree of caution. In particular, we found that necromass stock losses were not 367 

significantly related to our plot-level estimate of burned area and that fire susceptibility did not 368 

appear to vary across disturbance classes. In both cases, the lack of significance may reflect the 369 

small sample sizes rather than a genuine lack of relationship.  370 

Moreover, owing to the limitations of our data, we assumed 100% combustion of leaf litter and 371 

FWD in the fraction of plots that burned when calculating necromass carbon losses (equation (1)). 372 

In a recent review, Van Leeuwen et al. [36] found that mean combustion completeness of leaves, 373 

litter and smaller classes of woody debris was 73–94%. However, as they acknowledge, 374 

combustion completeness can be significantly higher during El Niño years. Thus, given the 375 



strength of the 2015–2016 El Niño, and our personal observations (electronic supplementary 376 

material, figure S1), our combustion completeness assumption is likely to be reasonable.  377 

Because of our small sample size, the 95% confidence intervals for our region-wide CO2 378 

immediate emissions were wide, ranging from around 8 Tg to almost 48 Tg. Future research 379 

efforts should prioritize necromass monitoring in a larger number of sites, across a range of 380 

tropical forests, to better constrain these values; as we show, such emissions have the potential 381 

to significantly exacerbate global climate change.  382 

Despite the above limitations, there are reasons to suspect that our necromass stock loss and 383 

carbon emission estimates are highly conservative. First, we did not measure wildfire induced 384 

carbon changes in the soil organic layer, yet research from the same region suggests that wildfires 385 

significantly reduce soil carbon pools [55]; nor could we estimate combustion of dead-standing 386 

stems, which accounted for approximately 15% of total necromass (figure 2). Second, none of 387 

the disturbed primary forest plots in which we monitored necromass changes was recently 388 

disturbed prior to the 2015–2016 wildfires, allowing time for decomposition to reduce high levels 389 

of post-disturbance necromass. Had our sample included recently disturbed sites, necromass 390 

losses would have been greater. Third, detection of low-intensity understorey wildfires continues 391 

to present a remote sensing challenge. Although manual correction of our unsupervised land-use 392 

classifications revealed only a small number of misclassifications, it is possible that some wildfire-393 

affected sites were missed, leading to an underestimation of regional emissions.  394 

In addition to showing that wildfire carbon emissions can be substantial, we also showed that 395 

such emissions remain poorly quantified. GFED and GFAS, CO2 emission databases that are 396 

widely used in Earth Systems models and carbon budgets, returned considerably lower emission 397 

estimates for our study region and period than our expected values (figure 5). Nevertheless, the 398 

scale of this discrepancy is underestimated for several reasons. First, we focused solely on 399 

necromass carbon losses from understory wildfires, whereas GFED and GFAS include emissions 400 

from all land-use classes combined. Both databases therefore account for grassland and 401 

agricultural fires, which can affect large areas of human-modified tropical landscapes. Second, 402 

GFED includes both committed and immediate CO2 emissions. Third, and again with respect to 403 

GFED, fuel loads are much high than those present in our post-disturbance plots, because they 404 

are primarily derived from slash-and-burn and deforestation studies. 405 

(e)  Conclusions 406 

We demonstrate that there was a substantial loss of necromass following El Niño-mediated 407 

wildfires in the central-eastern Amazon. We conservatively estimate that wildfires in this region 408 

burned 982,276 ha (15.2% of our study region) of primary and secondary forest, resulting in 409 

expected immediate CO2 emissions of approximately 30 Tg. Better understanding this large and 410 

poorly quantified source of atmospheric carbon is crucial for climate change mitigation efforts. 411 
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 599 

Figure 1. (a) The 2017 land-use map across the ~6.5 million ha study region. (b) The land-use 600 

map within the RAS study area (shown by the white border in (a)). Also shown in this panel are 601 

the locations of the 107 study plots (black circles). The 18 of these that were used for necromass 602 

monitoring are shown as orange circles. The inset shows the Santarém study region (red circle) 603 

within South America, the Brazilian Amazon (green), and Pará (white border). 604 

 605 



 606 

Figure 2. Necromass carbon stocks in leaf litter (a), fine woody debris (FWD; b), coarse woody 607 

debris (CWD; c), dead standing stems (d), and the total across all components (e) in human-608 

modified Amazonian forests. Boxplots show the interquartile range. Letters above the boxplots 609 

show the results from multiple pairwise comparisons of forest class medians. Classes that do not 610 

share a letter have significantly different medians (p < 0.05). 611 

 612 



 613 

Figure 3. The relationship between percentage reduction in necromass carbon stocks and fire 614 

intensity (a), as measured by median char height, and plot-level estimates of burned area (b) in 615 

human-modified Amazonian forests. 616 

 617 



 618 

Figure 4. Pre- vs post-El Niño necromass carbon stocks in unburned control sites (a) and sites 619 

burned in 2015-16 (b), and pre-El Niño necromass carbon stocks vs post-El Niño necromass 620 

losses in unburned control sites (c) and sites burned in 2015-16 (d) in human-modified Amazonian 621 

forests. In panel (a) the black line shows the significant (p < 0.001) relationship between pre- and 622 

post-El Niño necromass carbon stocks in unburned sites. The equation for this relationship is 623 

shown in the panel. The grey band represents 1 s.e.m. Note that, due to data limitations, pre- and 624 

post-El Niño necromass totals are based on coarse and fine woody debris and leaf litter only (i.e. 625 

dead standing stems are not included). 626 

 627 



 628 

Figure 5. CO2 emissions for wildfires in central-eastern Amazonian human-modified tropical 629 

forests. Points show expected emissions for four land-use scenarios (see Section 2e and table 630 

S1): a, prim1 + sec1; b, prim2 + sec1; c, prim1 + sec2; d, prim2 + sec2. Error bars show CO2 631 

emission 95% confidence intervals. Also shown are cumulative CO2 emissions for our study 632 

region and period from the Global Fire Emissions Database (dotted line) and the Global Fire 633 

Assimilation System (dashed line). 634 

 635 



 636 

Figure 6: Comparing our findings to those from the Global Fire Assimilation System (GFAS) and 637 

the Global Fire Emissions Database (GFED). CO2 emissions for our study region and period from 638 

GFAS (a) and our emissions shown at the same scale (0.1 degrees; (b)). CO2 emissions from 639 

GFED (c) and our emissions shown at the same scale (0.25 degrees; (d)). The proportion of land 640 

burned for our study region and period from GFED (e) and our estimate of burned area shown at 641 



the same scale (0.25 degrees; (f)). In all panels, our Landsat-derived fire map is shown in dark 642 

green, deforestation in light grey, and water in blue. 643 

Table 1: Forest classifications for pre-El Niño forest disturbance classes and the plot samples in 644 

2010, 2014-15 and 2017. The 2015-16 sample occurred after the extensive wildfires and is a 645 

subset of the 2014-15 sample. 646 

Pre-El Niño 

forest class 
Definition 

Necromass 

assessment 

(2010) 

Monitoring of 

coarse woody 

debris (2014-

2015) 

Burned 

in 2015-

16 and 

sampled 

in 2017 

Fire 

intensity 

and plot 

burned 

area 

(2017) 

Undisturbed 

primary 

forest 

Primary forest with no 

evidence of human 

disturbance, such as 

fire scars or standing 

tree damage 

17 5 2 3 

Logged 

primary 

forest 

Primary forest with 

evidence of logging, 

such as logging debris 

26 5 4 1 

Burned 

primary 

forest 

Primary forest with 

evidence of recent 

fire, such as fire scars 

7 0 0 0 

Logged-and-

burned 

primary 

forest 

Primary forest with 

evidence of both 

logging and fire 

24 4 1 4 

Secondary 

forest 

Forest regenerating 

after complete 

removal of native 

vegetation 

33 4 0 1 
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