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Abstract In robust combinatorial optimization with discrete uncertainty, ap-
proximation algorithms based on constructing a single scenario representing
the whole uncertainty set are frequently used. One is the midpoint method,
which uses the average case scenario. It is known to be an N -approximation,
where N is the number of scenarios.

In this paper, we present a linear program to construct a representative
scenario for the uncertainty set, which gives an approximation guarantee that
is at least as good as for previous methods. We further employ hyper heuristic
techniques operating over a space of preprocessing and aggregation steps to
evolve algorithms that construct alternative representative single scenarios for
the uncertainty set.

In numerical experiments on the selection problem we demonstrate that
our approaches can improve the approximation guarantee of the midpoint
approach by more than 20%.

Keywords robust optimization · combinatorial optimization · approximation
algorithms · scenario reduction · scenario preprocessing

1 Introduction

We consider combinatorial optimization problems of the general form

min
xxx∈X

cccxxx
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where ccc ≥ 000 is a cost vector, and X ⊆ {0, 1}n is a set of feasible solutions.
As real-world problems may suffer from uncertainty, robust counterparts to
combinatorial problems have been considered in the literature, see [2, 9] for
surveys on the topic. The resulting robust (or min-max) optimization problem
is then of the form

min
xxx∈X

max
ccc∈U

cccxxx (MinMax)

where U contains all possible cost vectors ccc1, . . . , cccN against we wish to protect.
As robust combinatorial problems are usually NP-hard, approximation

methods have been considered [1]. Two such heuristics stand out in the lit-
erature, the midpoint and the element-wise worst-case algorithm, as they are
easy to use and implement, and have been providing the best-known approxi-
mation guarantee for a wide range of problems. While this guarantee has been
improved for specific problems, they are still the best-known general methods
(see [5]). Both algorithms are based on constructing a single scenario that rep-
resents the whole uncertainty U . For the midpoint algorithm, we use ĉcc with
ĉj = 1/N

∑
i∈[N ] c

i
j for all j ∈ [n]. For the element-wise worst-case algorithm,

we set ccc by using cj = maxi∈[N ] c
i
j . Let us denote by xxx(ccc) a minimizer for the

nominal problem with costs ccc, and set x̂xx := xxx(ĉcc) (the midpoint solution) and
xxx := xxx(ccc) (the element-wise worst-case solution). The following results can be
found in [2].

Theorem 1 The midpoint solution x̂xx is an N -approximation for MinMax.

Theorem 2 The element-wise worst-case solution xxx is an N -approximation
for MinMax.

Frequently, problems with ”nice” structure (such as shortest path, spanning
tree, selection, or assignment) have been considered in the literature, where it
is possible to solve the nominal problem in polynomial time. In particular, this
setting makes it possible to solve both of the above approaches in polynomial
time by solving one specific scenario (i.e., finding xxx(ĉcc) or xxx(ccc)). This can then
be used, e.g., as part of a branch and bound procedure for the (hard) robust
problem.

The approximation guarantees from Theorems 1 and 2 are tight, as the
following two examples for robust shortest path problems demonstrate (see
also [2]).

In Figure 1(a), the midpoint solution cannot distinguish between the upper
edge and the lower edge. Hence, in this case, the N -approximation guarantee
is tight with N = 2. In Figure 1(b), the element-wise worst-case solution
cannot differentiate between the upper and the lower path. This instance is
an example where the N -approximation guarantee is tight for this approach.

Note that the instance from Figure 1(a) can be extended by using more sce-
narios, preserving that the midpoint solution is an N -approximation, without
additional edges. This is not the case for the element-wise worst-case sce-
nario in Figure 1(b): To extend this instance to more scenarios, additional



Scenario Construction for Robust Combinatorial Optimization 3

(a) Hard instance for
the midpoint solution.

(b) Hard instance for the
element-wise worst-case solu-
tion.

Fig. 1 Example instances for robust shortest path with two scenarios.

edges are required. This demonstrates that the midpoint solution is not an n-
approximation, whereas it is easy to show that this is the case for the element-
wise worst-case approach.

Recently, data-driven robust optimization approaches have been investi-
gated in the literature (see, e.g., [3,8]). This paper has a similar research out-
look by using the available data for better approximation guarantees, instead
of ignoring structure that may be present. In a similar spirit, by analyzing the
symmetry of an uncertainty set, [6] is able to derive improved approximation
bounds for the related MinMax Regret problem with compact uncertainty
sets.

One general approach for the automated design of search heuristics is the
use of hyper heuristics (see, e.g., [4, 10]). Hyper heuristics encompass search
methods that operate on the space of search heuristics, constructing improved
search approaches.

The contributions of this paper are as follows. By re-examining the proofs
for Theorems 1 and 2, we present a linear program (LP) to construct a sce-
nario ccc′ that is ”representative” for the uncertainty set U . We show that the
resulting solution xxx(ccc′) has an approximation guarantee that is at least as
good as the guarantee for x̂xx and xxx. In numerical experiments, we compare the
quality of upper and lower bounds of our approach with the midpoint method,
and demonstrate that it is possible to find considerably smaller a-priori and
a-posteriori gaps by solving a simple linear program. We further employ hyper
heuristic techniques to automatically design algorithms that construct alter-
native single-scenario representations for the uncertainty set by searching over
a space of scenario preprocessing and aggregation sub-algorithms. We show
that this approach leads to further improvements in the upper bound quality,
without increasing computation times.
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2 Scenario construction based on the midpoint approach

Let OPT be the optimal objective value of problem MinMax, and let xxx∗ be
any optimal solution. Let some scenario ccc (not necessarily in U) be given. Then

UB(ccc) = max
i∈[N ]

cccixxx(ccc)

is an upper bound on OPT . If it is possible to compute a lower bound from
ccc, we denote this as LB(ccc), and a bound on the ratio as

r(ccc) ≥ UB(ccc)/LB(ccc)

We call r(ccc) an a-priori bound, if it does not require the computation of
xxx(ccc) to find. Otherwise, we call it an a-posteriori bound. The reason for this
distinction is that calculation of xxx can be costly, if the nominal problem is not
solvable in polynomial time.

As an example, the midpoint method uses ĉcc := 1
N

∑
i∈[N ] ccc

i. It comes with

an a-priori bound that is N , but by using LB(ĉcc) = ĉccxxx(ĉcc), we can calculate a
stronger a-posteriori bound.

We now consider the problem of finding a better a-priori bound than N .
To this end, note that Theorem 1 can be proven in the following way.

Proof (of Theorem 1)

UB(ĉcc) = max
i∈[N ]

cccix̂xx
(i)

≤ Nĉccx̂xx ≤ Nĉccxxx∗
(ii)

≤ N max
i∈[N ]

cccixxx∗ = N ·OPT

ut

To mirror the steps of this proof, let us consider the following optimization
problem:

min
t,ccc

t (1)

s.t. max
i∈[N ]

cccixxx(ccc) ≤ t · cccxxx(ccc) (2)

cccxxx∗ ≤ max
i∈[N ]

cccixxx∗ (3)

Lemma 1 Let (t, ccc) be a feasible solution to Problem (1–3). Then, xxx(ccc) is a
t-approximation for MinMax.

Proof Analogous to the proof of Theorem 1: Constraint (2) ensures Inequal-
ity (i), while Constraint (3) ensures Inequality (ii). ut

Note that Problem (1–3) cannot be solved directly, as both the optimal solution
xxx∗ and xxx(ccc) are unknown. To circumvent these two issues, we use different,
sufficient constraints instead.
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Lemma 2 Let ccc fulfil∑
j∈S

cij ≤ t
∑
j∈S

cj ∀i ∈ [N ], S ⊆ [n] : |S| = k (4)

for some value of t, and constant k such that k ≤
∑

j∈[n] xj for all x ∈ X .

Then, (t, ccc) also fulfils (2).

Proof Let X = {j ∈ [n] : xj(ccc) = 1} and S = {S ⊆ [n] : |S| = k, S ⊆ X}.
Then, the number of sets S in S containing a specific item j ∈ X is the same
for all j. Let ` be this number. By summing (4) over all S ∈ S, we find that

`
∑
j∈X

cij ≤ t`
∑
j∈X

cj ∀i ∈ [N ]

and the claim follows. ut

Note that for constant k, it is possible in polynomial time to check if k ≤∑
j∈[n] xj for all x ∈ X . Also, the set S contains polynomially many elements.

As an example, for k = 1, Constraint (4) becomes

cij ≤ tcj ∀i ∈ [N ], j ∈ [n]

and for k = 2, it becomes

cij + ci` ≤ t(cj + c`) ∀i ∈ [N ], j, ` ∈ [n], j 6= `

In general, the constraints for some fixed k also imply the constraints for any
larger k. This means that the larger the value of k, the larger is the set of
feasible solutions to our optimization problem, and the better approximation
guarantees we can get.

Lemma 3 Let ccc be in conv(U) = conv{ccc1, . . . , cccN}. Then, ccc fulfils (3).

Proof Let ccc =
∑

i∈[N ] λiccc
i with

∑
i∈[N ] λi = 1 and λi ≥ 0 for all i ∈ [N ]. Then,

for any xxx ∈ X ,

cccxxx =
∑
i∈[N ]

λiccc
ixxx ≤

∑
i∈[N ]

λi max
j∈[N ]

cccjxxx = max
j∈[N ]

cccjxxx

ut

We now consider the following linear program:

max t (5)

s.t. t
∑
j∈S

cij ≤
∑
j∈S

cj ∀i ∈ [N ], S ⊆ [n] : |S| = k (6)

ccc =
∑
i∈[N ]

λiccc
i (7)
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i∈[N ]

λi = 1 (8)

λi ≥ 0 ∀i ∈ [N ] (9)

Note that we replaced variable t in Problem (1–3) with 1/t to linearize terms.

Theorem 3 Let (t∗, ccc∗) be an optimal solution to Problem (5–9). Then, xxx(ccc∗)
is a 1/t∗-approximation for MinMax, and 1/t∗ ≤ N .

Proof By Lemmas 2 and 3, (1/t∗, ccc∗) is feasible for Problem (1–3). Using
Lemma 1, we therefore find that xxx(ccc∗) is a 1/t∗-approximation for MinMax.

To see that 1/t∗ ≤ N , note that (1/N, ĉcc) is a feasible solution to Prob-
lem (5–9). ut

We note that if one uses the proof of Theorem 2 as a starting point, the
same optimization problem can be derived.

Once a solution (t∗, ccc∗) has been computed, we have found an a-priori
approximation guarantee. If we then compute xxx(ccc∗), we can derive a lower
bound ccc∗xxx(ccc∗), as ccc∗ ∈ conv(U), and an upper bound by calculating the objec-
tive value of xxx(ccc∗) for MinMax. This way, a stronger a-posteriori guarantee
is found.

Example 1 We illustrate our approach using a small selection problem as an
example. Given four items, the task is to choose two of them that minimize
the worst-case costs over three scenarios. The upper part of Table 1 shows the
item costs in each scenario.

item
1 2 3 4 pre UB LB post

ccc1 5 5 3 3
ccc2 3 8 9 7
ccc3 3 2 1 6
ĉcc 3.67 5.00 4.33 5.33 3.00 12 8.00 1.50
ccc′ 3.75 6.88 6.75 5.50 1.33 10 9.25 1.08
ccc′′ 3.00 8.00 9.00 7.00 1.00 10 10.00 1.00

Table 1 Example item costs, with midpoint scenario (ĉcc), our LP-based scenario with k = 1
(ccc′), and with k = 2 (ccc′′).

The midpoint scenario (i.e., the average in each item) is shown in the
row below (ĉcc). An optimal solution for this scenario is to pack items 1 and
3. This means that we have an a-priori approximation ratio of N = 3, and
can calculate a lower bound LB(ĉcc) = ĉccx̂xx = 8 and an upper bound UB(ĉcc) =
maxi∈[N ] ccc

ix̂xx = 12. Combining lower and upper bound, we find the stronger
a-posteriori bound of 1.50.

Using our linear program (5–9) with k = 1, we construct the scenario given
in the next row (ccc′) and find an a-priori guarantee of 1.33. For this scenario, an
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optimal solution is to take items 1 and 4. Accordingly, we find a lower bound
of 9.25, an upper bound of 10, and an a-posteriori ratio of 1.08.

Finally, we also use our LP with k = 2 to find the scenario ccc′′ and an a-
priori guarantee of 1. This means that even before we have solved the problem,
we already know that the resulting solution will be optimal. Indeed, we find
that packing items 1 and 4 gives the optimal solution with objective value 10.

Note that we can also use the linear program (5–9) to strengthen the
approximation guarantee of the midpoint scenario ĉcc without calculating x̂xx, by
only keeping t variable.

We conclude this section by introducing an alternative approach to calcu-
late a-posteriori bounds, which cannot be used for a-priori bounds. To this
end, note that

max
ccc∈conv(U)

min
xxx∈X

cccxxx ≤ min
xxx∈X

max
i∈[N ]

cccixxx

If the nominal problem can be written as a linear program, it can be dualized
to find a compact formulation for the max-min problem. As both ĉcc and the
optimal solution to problem (5–9) are in conv(U), this approach will result in
a lower bound which will be at least as good as the lower bounds of the other
two approaches. This may not result in a better ratio between upper and lower
bound, however. We will test this approach in the experimental section.

3 Boundaries of scenario construction

Let us consider the more general optimization problem of constructing a sce-
nario ccc∗, such that the resulting solution xxx(ccc∗) has a good robust objective
value. Formally, this amounts to

min
ccc∗∈Y

max
ccc∈U

cccxxx(ccc∗) (ScenGen)

Note that (ScenGen) differs from (MinMax) by restricting the choice of
solutions xxx to only those which are optimal for a specific scenario. We write
X ′ = {xxx ∈ X : ∃ccc ∈ Y s.t. cccxxx ≤ cccxxx′ ∀xxx′ ∈ X}.

For the set Y ⊆ Rn, different choices are possible. We discuss the three
natural approaches of using Y = Rn, Y = U , or Y = conv(U).

In the first case of Y = Rn, we get X ′ = X , i.e., we can construct any
desired solution xxx(ccc) by setting cj to be low for elements where we want
xj(ccc) = 1, and by setting cj to be sufficiently high for elements where we
desire xj(ccc) = 0. This way, we find an optimal solution to (MinMax) by
solving (ScenGen); at the same time, this setting does not appear tractable,
so no advantage is reached.

The second case of Y = U is already discussed as a heuristic approach
in [2], where an example is provided that the resulting solution does not give
an approximation guarantee (i.e., can become arbitrarily bad).

In the third case, Y = conv(U). Note that our LP-based approach from the
previous section and the midpoint method both construct scenarios belonging
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to conv(U). We show that no such scenario can lead to a better than N -
approximation algorithm. Let N + 1 items be given, and exactly one of them
needs to be chosen. There are N scenarios, where cij = N for i ∈ [N ] if

i = j, and ciN+1 = 1 + ε for some small ε > 0. All other values are zero.
Let ccc∗ ∈ conv(U), i.e., there is a λλλ ∈ [0, 1]N with

∑
i∈[N ] λi = 1, such that

ccc∗ =
∑

i∈[N ] λiccc
i. Let i∗ = arg mini∈[N ] λi. Then, c∗i∗ <= 1. As c∗N+1 = 1 + ε,

an optimal solution xxx(ccc∗) will not choose item N +1, i.e., the optimal solution
xxx∗ is not contained in X ′.

4 Evolving heuristics

We use the scenario construction approach from Section 2 as part of a hy-
per heuristic, i.e., an optimization over the space of possible algorithms. Each
algorithm consists of a sequence of preprocessing steps, where the set of sce-
narios is modified, and an aggregation step, where the modified uncertainty
set is reduced to a single scenario. The resulting one-scenario problem is then
solved to optimality. Our aim is to find stronger upper bounds, at the cost of
ignoring the approximation guarantee.

In the following, we first discuss possible aggregation and preprocessing
steps, and then explain the genetic algorithm that searches the space of pos-
sible heuristics.

4.1 Aggregation steps

Given a (modified) set of scenarios U = {ccc1, . . . , cccN}, the following six possible
aggregation steps were considered:

1. AGG-EWC: the element-wise worst-case (see Section 1)
2. AGG-ARITH: the arithmetic mean, i.e., the midpoint approach (see Sec-

tion 1)
3. AGG-MEDIAN: the median in each problem dimension
4. AGG-GEOM: the geometric mean in each problem dimension
5. AGG-HARMO: the harmonic mean in each problem dimension
6. AGG-LP: our scenario construction approach from Section 2

4.2 Preprocessing steps

Given a (modified) set of scenarios U = {ccc1, . . . , cccN}, the following eight possi-
ble preprocessing steps were considered. Most of them require further param-
eters, which are also listed below.

1. EMPTY: The uncertainty set is not modified.
2. OUTLIER(NORM,FLOAT,DIR): For each i ∈ [N ], calculate NORM(ccci).

Then remove FLOAT·N many scenarios where this value is DIR.
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3. MERGE(NORM,FLOAT): Repeat the following FLOAT ·N many times:
For each pair of scenarios i, j ∈ [N ], calculate NORM(ccci − cccj). Choose the
pair (i∗, j∗) for which this value is minimal, and replace these two scenarios
with ccc′ = 0.5 · (ccci∗ + cccj

∗
).

4. NONDOM: Remove all dominated scenarios, i.e., remove ccci if there exists
ccck 6= ccci such that ckj ≥ cij for all j ∈ [n].

5. CONVEX: Remove all scenarios that lie in the convex hull of the other
scenarios. To determine if this is the case, we solve a linear program for
each scenario.

6. SCALE(FLOAT,AGG): Calculate a scenario ccc′ through AGG, and set ccci ←
FLOAT · ccc′ + (1 − FLOAT) · ccci for all i ∈ [N ]. Note that the number of
scenarios is not reduced.

7. SAMPLE(FLOAT,INT): We sample a set X ′ ⊆ X with cardinality INT of
random feasible solutions. For each i ∈ [N ], we then calculate the average
costs avi = 1/|X ′| ·

∑
xxx∈X ′ ccc

ixxx. Remove the FLOAT · N scenarios with
smallest costs avi.

8. KMEANS(FLOAT): Use a K-means heuristic to find (1 − FLOAT) · N
clusters of scenarios. Replace each cluster through the average of scenarios
belonging to this cluster.

The possible parameter values we considered are:

– NORM may be ‖ · ‖1, ‖ · ‖2, ‖ · ‖22, or ‖ · ‖∞
– DIR may be “smallest” or “largest”
– FLOAT my be any real in [0, 0.3]
– INT may be any integer in [0, 1000]
– AGG may be any aggregation type from Section 4.1

4.3 Genetic algorithm

The preprocessing and aggregation steps from Sections 4.1 and 4.2 are com-
bined to form heuristic algorithms for problem MinMax. To this end, we fix
that each algorithm does exactly six preprocessing steps, and then one ag-
gregation step. This reduces the number of scenarios to one. The resulting
nominal problem is then solved to optimality.

A set of such algorithms (individuals) forms a population, which is iter-
atively improved using a simple linear genetic programming approach based
on a genetic algorithm. We evaluate each individual on a set of problem in-
stances, and record the average of the ratios between resulting objective value
and optimal objective value, as well as the computation time. Both values are
used to determine the fitness of an individual in a bicriteria way as described
in [7], that is, by determining a Pareto rank and a crowdedness value. The for-
mer promotes individuals that are less dominated, while the latter promotes
a population that is evenly spread.

The initial population is generated by using the six algorithms where one of
the possible aggregation steps is applied, and all preprocessing steps are empty.
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This way, we include the midpoint method and the element-wise worst-case
approach. Additionally, we sample random algorithms until a fixed population
size is reached.

To determine a subsequent population, we double the population size by
choosing random pairs of individuals, crossing them, and mutating them. To
cross two individuals, we randomly choose preprocessing steps and the ag-
gregation step from each with equal probability. To mutate an individual, we
randomly change preprocessing steps, their parameters, and the aggregation
step with low probability. We then halve the population back to the original
size using 2-tournaments.

We iterate this process until an iteration limit is reached. The result is an
improved set of algorithms that represents a trade-off between computation
time and objective value performance.

5 Experiments

We conduct two sets of experiments. In the first set, we focus on the quality
of bounds generated through our scenario generation approach. In the second
set, we evolve heuristics as described in Section 4. For all experiments we used
a computer with a 16-core Intel Xeon E5-2670 processor, running at 2.60 GHz
with 20MB cache, and Ubuntu 12.04. We used CPLEX v.12.6 to solve all
problem formulations, and a C++ library by John Burkardt 1 for K-means
computations.

5.1 Experiment 1: Bounds

5.1.1 Setting

To test the quality of our LP-based scenario construction approach, we con-
sider instances of the selection problem (see, e.g., [9]). Here, X = {xxx ∈ {0, 1}n :∑

j∈[n] xj = p} for some integer parameter p. We generate item costs cij by

sampling uniformly i.i.d. from {0, 1, . . . , 100}. We use N ∈ {2, 5, 10, 50, 100}
for smaller instances with n = 10, p = 3 and larger instances with n = 30,
p = 9. For each parameter combination, we generate 1000 instances and aver-
age results.

5.1.2 Results

Table 2 shows the a-priori bounds for the midpoint approach when using our
linear program (5–9) for evaluation with k = 1, k = 2 and k = 3 (Mid-1-
Pre, Mid-2-Pre, and Mid-3-Pre, respectively). We compare this to the a-priori
bounds that are found when also optimizing over the scenario ccc for k = 1,
k = 2 and k = 3 (LP-1-Pre, LP-2-Pre, and LP-3-Pre, respectively). Note

1 http://people.sc.fsu.edu/~jburkardt/cpp_src/kmeans/kmeans.html

http://people.sc.fsu.edu/~jburkardt/cpp_src/kmeans/kmeans.html
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n p N Mid-1-Pre Mid-2-Pre Mid-3-Pre LP-1-Pre LP-2-Pre LP-3-Pre
10 3 2 1.86 1.75 1.65 1.70 1.57 1.46
10 3 5 2.41 2.09 1.90 1.83 1.67 1.54
10 3 10 2.45 2.13 1.97 1.79 1.65 1.53
10 3 50 2.26 2.10 2.00 1.59 1.53 1.46
10 3 100 2.18 2.08 2.00 1.52 1.48 1.43
30 9 2 1.96 1.92 1.87 1.90 1.84 1.79
30 9 5 2.78 2.45 2.27 2.24 2.08 1.97
30 9 10 2.73 2.42 2.26 2.13 2.03 1.94
30 9 50 2.36 2.22 2.14 1.87 1.83 1.79
30 9 100 2.26 2.16 2.10 1.79 1.77 1.74

Table 2 Average a-priori bounds.

n p N Mid-Post LP-1-Post LP-2-Post LP-3-Post MM-Post
10 3 2 1.30 1.24 1.22 1.21 1.24
10 3 5 1.57 1.35 1.30 1.32 1.29
10 3 10 1.66 1.39 1.34 1.36 1.34
10 3 50 1.82 1.37 1.36 1.38 1.37
10 3 100 1.85 1.35 1.35 1.36 1.35
30 9 2 1.17 1.16 1.15 1.14 1.10
30 9 5 1.32 1.26 1.21 1.20 1.14
30 9 10 1.38 1.30 1.26 1.25 1.19
30 9 50 1.48 1.30 1.28 1.28 1.28
30 9 100 1.52 1.30 1.28 1.28 1.30

Table 3 Average a-posteriori bounds.

that overall, all guarantees are considerably smaller than N . Furthermore, our
approach is able to improve the bound of the midpoint algorithm. On average,
the guarantee that the midpoint approach gives is more than 20% larger than
our guarantee.

We contrast the a-priori bounds with a-posteriori bounds in Table 3, i.e.,
we calculate the solutions xxx(ccc) for the respective scenarios ccc and the resulting
ratio of upper and lower bound. On average, the bound provided by the mid-
point solution is around 17% larger than the bound provided by our approach
with k = 2 or k = 3. The max-min approach (denoted by MM) performs
slightly better than our approach (Mid-Post is on average 19% larger than
MM-Post), but this comes without an a-priori guarantee, at the cost of higher
computational effort, and it is not always possible to compute as explained in
Section 2.

Finally, we show more details on the a-posteriori bounds by providing both
the upper and lower bounds in Tables 4 and 5. We find that our approach gives
both better upper, and better lower bounds than the midpoint approach. While
the max-min approach provides the best lower bounds, its upper bounds are
often worse than for the midpoint solution.
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n p N OPT Mid-UB LP-1-UB LP-2-UB LP-3-UB MM-UB
10 3 2 96.6 108.0 105.3 103.8 103.3 110.3
10 3 5 142.9 169.5 162.8 158.0 158.8 165.9
10 3 10 170.4 199.3 198.2 189.0 189.1 202.0
10 3 50 219.0 248.3 249.8 241.9 239.9 254.1
10 3 100 234.8 260.4 262.6 256.3 253.6 265.4
30 9 2 247.2 276.1 273.9 273.0 271.9 266.0
30 9 5 351.2 416.2 408.6 398.3 395.9 384.1
30 9 10 409.2 491.1 483.3 471.7 467.7 461.6
30 9 50 513.1 605.5 610.3 592.4 588.6 607.0
30 9 100 547.5 638.3 645.1 628.5 623.6 648.3

Table 4 Average upper bounds.

n p N OPT Mid-LB LP-1-LB LP-2-LB LP-3-LB MM-LB
10 3 2 96.6 82.9 85.1 85.8 86.1 90.1
10 3 5 142.9 108.3 121.9 122.1 121.1 129.4
10 3 10 170.4 120.3 143.6 141.6 139.6 151.2
10 3 50 219.0 136.7 183.0 178.2 174.4 186.2
10 3 100 234.8 140.8 194.8 190.6 186.2 196.6
30 9 2 247.2 236.3 237.2 237.5 237.8 242.1
30 9 5 351.2 316.3 325.0 328.3 328.9 337.9
30 9 10 409.2 355.1 373.2 375.6 375.8 389.2
30 9 50 513.1 408.0 467.8 464.3 460.7 475.3
30 9 100 547.5 420.4 495.9 491.5 487.4 500.1

Table 5 Average lower bounds.

5.2 Experiment 2: Evolution

5.2.1 Setting

We generated 750 instances to train our genetic algorithm, and another set of
750 instances in the same way to evaluate our results. Each set consists of 250
instances of three types. Uniform instances, where item costs are generated
uniformly i.i.d. in {1, . . . , 100}. Correlated instances, where for each item j, a
nominal value ĉj is chosen uniformly i.i.d. in {1, . . . , 100}. Scenarios are then
generated by sampling values from [0.7· ĉj , 1.3· ĉj ]. And finally, instances where
for each item, exactly three distinct values chosen from {1, . . . , 100} can be
attained. The smallest and highest values are each chosen with probability
10%, and the middle value with probability 80%.

We let n run from 10 to 50, and K from 10 to 100 in steps of 10. We always
set p = 0.25n. Each setting is repeated 5 times (this makes 5 · 10 · 5 · 3 = 750
instances). All problems were solved to find their respective optimal objective
values.

Our genetic algorithm was run using a population of 30 individuals over
1, 200 generations. As we inject possibly bad solutions after each iteration, the
following evaluation only considers the 20 best individuals out of the available
30.

To speed up computations, all algorithm evaluations were parallelized over
16 threads. Because of variability in computation times, we introduced a bonus
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for the midpoint method without preprocessing, so that it remains part of the
population over all iterations.

5.2.2 Results

We summarize our results in Figure 2. In Figure 2(a), we show average ob-
jective value ratios and total computation times on the (in-sample) training
instances, using blue squares for the starting population, and red diamonds
for the final population. The same is done in Figure 2(b) for the (out-sample)
evaluation instances.
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(a) Population performance on training
set.
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(b) Population performance on evalua-
tion set.

Fig. 2 Experimental results for the evolution approach. Starting population as blue squares,
and final population in red diamonds.

In Figure 2(b) one can observe a distinct clustering of the final population
into two sets: Individuals with higher computation times but better objective
values on the left, and individuals with better computation times but worse
objective values bottom right from the first group. All six individuals from
the first group use AGG-LP for the aggregation step, whereas the fourteen
individuals from the second group use AGG-ARITH (10 times), AGG-EWC
(twice), or AGG-MEDIAN (twice).

The best average objective value ratio with 1.0717 in-sample and 1.0729
out-sample has been reached by the following algorithm:

1. SCALE(0.22, AGG-ARITH)
2. SAMPLE(0.18, 21)
3. SCALE(0.17, AGG-ARITH)
4. SCALE(0.25, AGG-EWC)
5. OUTLIER(‖ · ‖1, 0.20, “smallest”)
6. LP-AGG
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This algorithm’s computation time in-sample is 4.40 seconds, and 4.60 seconds
out-sample. As a representative of the group of faster algorithms not based on
LP-AGG, we show the following individual (omitting empty slots):

1. SCALE(0.29, AGG-EWC)
2. SCALE(0.16, AGG-EWC)
3. AGG-ARITH

This methods reaches an in-sample ratio of 1.0874 (1.0834 out-sample) and
takes 0.27 seconds both in-sample and out-sample. Note that both methods
make use of multiple AGG parameters. The first method uses AGG-ARITH
and AGG-EWC for scaling, and LP-AGG for the aggregation step. The sec-
ond method uses a scaling towards AGG-EWC before aggregating with AGG-
ARITH. In fact, all individuals of the final population (except the midpoint
method) combine at least two aggregation techniques. Intuitively, this is a
reasonable approach to ensure a robust performance, as focussing on a single
aggregation technique may work well in some instances, but worse on others.
By averaging multiple techniques, we achieve a better performance on average.

The final population consists of 20 individuals, with five preprocessing slots
each. Table 6 shows the frequency of preprocessing methods within these 100
available slots. MERGE and CONVEX were both not used at all.

EMPTY SCALE OUTLIER SAMPLE NONDOM KMEANS
44 32 13 7 2 2

Table 6 Frequency of preprocessing methods.

We can conclude that by using preprocessing on the scenario data it is pos-
sible to achieve improved algorithms, which take only slightly longer to run,
but produce better solutions. However, the potential of this approach is limited
by the previous aggregation techniques. Using our LP-based approach, objec-
tive values become significantly better, but at a price of higher computation
times.

6 Conclusion

Most robust combinatorial optimization problems are hard, which has lead to
the development of general approximation algorithms. The two best-known
such approaches are the midpoint method and the element-wise worst-case
approach. Both rely on creating a single scenario that is representative for the
whole uncertainty set. By reconsidering the respective proofs that both are
N -approximation algorithms, we find an optimization problem to construct a
representative scenario that results in an approximation which is at least as
good as for the previous two scenarios.

In computational experiments using the selection problem, we test this
approach numerically. We find that the midpoint method gives a guarantee
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that is about 20% larger than ours, while we only need to solve a simple
linear program to construct the representative scenario. The improved a-priori
guarantee is also reflected in an improved a-posteriori guarantee, with our
approach providing both better upper and lower bounds than before. This
smaller gap could potentially be used within branch-and-bound algorithms for
a more efficient search for an optimal solution.

Additionally we used a hyper heuristic approach to develop algorithms to
construct alternative single scenarios that best represent the whole uncertainty
set in the subsequent solution of the resulting one-scenario robust combinato-
rial problems.
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