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The Distribution of Larval Fishes of the Charleston Gyre
Region off the Southeastern United States in Winter Shaped
by Mesoscale, Cyclonic Eddies

J. J. Govoni,*1 J. A. Hare,2 and E. D. Davenport3

National Oceanic and Atmospheric Administration, National Ocean Service,
National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research,
101 Pivers Island Road, Beaufort, North Carolina 28516, USA

Abstract
Serial, cyclonic, mesoscale eddies arise just north of the Charleston Bump, a topographical rise on the continental

slope and Blake Plateau, and characterize the U.S. outer shelf and upper slope in the region of the Charleston Gyre.
This region was transected during the winters of 2000, 2001, and 2002, and hydrographic data and larval fishes were
collected. The hydrodynamics of the cyclonic eddies of the Charleston Gyre shape the distribution of larval fishes by
mixing larvae from the outer continental shelf and the Gulf Stream and entraining them into the eddy circulation at
the peripheral margins, the wrap-around filaments. Over all years and transects (those that intercepted eddies and
those that did not), chlorophyll a concentrations, zooplankton displacement volumes, and larval fish concentrations
were positively correlated. Chlorophyll a concentrations were highest in filaments that wrapped around eddies,
and zooplankton displacement volumes were highest in the continental shelf–Gulf Stream–frontal mix. Overall, the
concentration of all larval fishes declined from inshore to offshore with highest concentrations occurring over the outer
shelf. Collections produced larvae from 91 fish families representing continental shelf and oceanic species. The larvae
of shelf-spawned fishes—Atlantic Menhaden Brevoortia tyrannus, Round Herring Etrumeus teres, Spot Leiostomus
xanthurus, and Atlantic Croaker Micropogonias undulatus—were most concentrated over the outer shelf and in the
continental shelf–Gulf Stream–frontal mix. The larvae of ocean-spawned fishes—lanternfishes, bristlemouths, and
lightfishes—were more evenly dispersed in low concentrations across the outer shelf and upper slope, the highest
typically in the Gulf Stream and Sargasso Sea, except for lightfishes that were highest in the continental shelf–Gulf
Stream–frontal mix. Detrended correspondence analysis rendered groups of larval fishes that corresponded with a
gradient between the continental shelf and Gulf Stream and Sargasso Sea. Eddies propagate northeastward with a
residence time on the outer shelf and upper slope of ∼1 month, the same duration as the larval period of most fishes.
The pelagic habitat afforded by eddies and fronts of the Charleston Gyre region can be exploited as nursery areas for
feeding and growth of larval fishes within the southeastern Atlantic continental shelf ecosystem of the U.S. Eddies,
and the nursery habitat they provide, translocate larvae northeastward.
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LARVAL FISHES OF THE CHARLESTON GYRE 247

FIGURE 1. The Charleston Gyre region off the southeastern coast of the United States. Gray-scale gradient represents depth >500 m.

A series of recurrent, cyclonic, mesoscale eddies character-
ize the Charleston Gyre region off the southeastern coast of the
United States, and influences the primary, secondary, and fish-
eries production of the southeastern Atlantic coastal ecosystem
(Govoni and Hare 2001). A bathymetric rise on the continental
slope above the Blake Plateau, known as the Charleston Bump
(Figure 1), forces an eastward deflection of the Gulf Stream, a
major western boundary current (Olson 2001) that borders the
southeastern U.S. continental shelf to the east. This deflection, a
result of the vertical compression and subsequent expansion of
the water column as the Gulf Stream overrides the Charleston
Bump, gives repetitive rise to a series of meanders. Meander
crests pull Gulf Stream water onto the shelf and into the Gulf
Stream Front, and also pull shelf water into the Gulf Stream
front. Meanders become unstable and break, spinning off cy-
clonic eddies. Eddies propagate northeastward and decay or

coalesce with the Gulf Stream north of Cape Fear, North Car-
olina. The residence time of eddies within the region ranges
from a week to a month if stranded on the shelf (Pietrafesa
et al. 1985; Lee et al. 1991; Blanton et al. 2003). The cyclonic
circulation of the eddies upwells nutrient-rich water from deep
and off the shelf edge to the euphotic zone, which can result
in enhanced primary and secondary production (Verity et al.
1993). These eddies develop most frequently and are more pro-
nounced in winter (Mathews and Pashuk 1984, 1986) when the
Gulf Stream is in its strongly deflected mode (Lee et al. 1991).

The survival of fish larvae is the principal determinant of
population recruitment and an important contributor to fish-
eries production (Houde 2008). Most marine fishes are pelagic
spawners, while their larvae occupy the upper 200 m (Miller and
Kendall 2009). While the Charleston Gyre region has the poten-
tial to act as spawning and nursery habitat, evidence of the use
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248 GOVONI ET AL.

TABLE 1. Transects and stations occupied across the outer continental shelf and upper slope in the Charleston Gyre region off the southeastern coast of the
United States in the winters of 2000, 2001, and 2002. See Figure 2 for definitions of station abbreviations.

Number of Transect Transect Stations designations
Dates stations occupied number characterization occupied (number)

15 Jan 00 9 1 E deflection CS (2), CS-GS-FM (5), GS (2)
16–17 Jan 00 10 2 Eddy intersection CS-GS-FM (3), GS (1), WAF (5), EC (1)
18–19 Jan 00 9 3 NE of eddy CS-GS-FM (3), GS (6)
24–25 Jan 01 9 4 Eddy intersection CS-GS-FM (1), GS (2), WAF (4), SS (2)
26 Jan 01 8 5 Eddy intersection CS (3), CS-GS-FM (1), GS (1), WAF (1), EC (2)
27–28 Jan 01 8 6 Eddy formation CS (3), CS-GS-FM (1), GS (1), WAF (1), EC (2)
26–27 Jan 02 10 7 Eddy intersection CS-GS-FM (6), GS (3), WAF (1)
28–29 Jan 02 10 8 Eddy intersection CS-GS-FM (5), GS (2), WAF (2), EC (1)
29–30 Jan 02 10 9 Between eddies CS-GS-FM (7), GS (3)
30–39 Jan 02 10 10 Eddy formation CS-GS-FM (8), GS (2)
31 Jan−1 Feb 02 10 11 E deflection CS (2), CS-GS-FM (6), GS (2)

of the pelagic habitats afforded by cyclonic eddies in this region
is limited. Winter is the spawning season for a suite of fishes,
many of which are commercially important (Govoni and Hare
2001; Taylor et al. 2009). High concentrations of larval fishes
are evident in the Charleston Gyre region (Fahay 1975; Powles
and Stender 1976; Yoder 1983), but there is little indication of
high concentrations of fish eggs, aside from those reported for
Atlantic Menhaden Brevoortia tyrannus (Judy and Lewis 1983).
The distribution of larval fishes across the outer shelf and up-
per slope in association with the passage of the cyclonic eddies
is not described, and consequently habitat utilization of these
eddies is undetermined.

The objectives of this study were to (1) transect the
Charleston Gyre region and intercept eddies that arise there,
(2) describe the distribution of chlorophyll a, zooplankton, and
larval fishes in and around these eddies, and (3) describe the
influence of eddies in shaping the distribution of larval fishes.

METHODS
Study area.—The Charleston Gyre region is dynamic across

the outer shelf and upper slope, along the shore and in the vertical
dimensions, changing with the formation and northeastward
propagation of mesoscale cyclonic eddies. In the absence of
eddies, a mix of outer continental shelf and Gulf Stream waters
separates water over the continental shelf from the Gulf Stream.
During formation of an eddy, the mixture of outer shelf and
Gulf Stream water is stretched meridionally and zonally to form
wrap-around filaments that appear as a lens of water near the
surface and extend to ∼25 m depth. Wrap-around filaments
close around an eddy with a core.

With its dynamic character, eddies of the Charleston Gyre
region can provide favorable pelagic habitat for larval fishes.
Localized frontal convergence in the mixed waters of the outer
shelf and the Gulf Stream north of the Charleston Gyre region
account for elevated concentrations of larval fishes (Govoni

1993; Govoni and Pietrafesa 1994; Govoni and Spach 1999).
Within the eddy core, upwelling from below the Gulf Stream
is evident (Bane et al. 2001), and this upwelling stimulates
primary and secondary production (Verity et al. 1993). This
production can provide food for larval fishes (Govoni et al.
2010).

Data collection and processing.—To determine the influence
of cyclonic eddies of the Charleston Gyre region on the distri-
bution of larval fishes, ichthyoplankton collections were taken
along transects that nominally began on the outer shelf, extended
onto the slope, and continued into the Gulf Stream (and on one
transect, in 1 year, into the western edge of the Sargasso Sea).
Stations along transects were occupied in January of 2000, 2001,
and 2002; stations were nominally 16.1 km (10 nautical miles)
apart along transects (Table 1; Figure 2). Transects extended
zonally across the outer shelf and upper slope and meridionally
from the Charleston Bump to Cape Fear (Figure 2). Transects
were oblique and not perpendicular to the axis of the physi-
cal features of the region. Transect and station locations were
modified each year to capture eddy formation and propagation.
Some transects intercepted formed eddies, some did not, and
some intersected eddy formation.

At each station, casts of conductivity, temperature, and depth
(CTD) to a maximum depth of 350 m were taken and surface
chlorophyll a concentrations were measured. At each station,
ichthyoplankton collections were taken with a 60-cm-diameter
bongo net fitted with 333-µm-mesh nets fished obliquely from
near the bottom on the shelf or from 200 m depth to the sur-
face when they were off the shelf break as described by Powell
et al. (2000). Zooplankton displacement volume (including dis-
placement by larval fishes) was measured from ichthyoplankton
collections as described by Smith and Richardson (1977). Outer
shelf and upper slope sections of temperature were derived from
profiles taken from CTD casts.

Larval fishes were sorted from one bongo net and iden-
tified to family or order level when specimens could not be
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LARVAL FISHES OF THE CHARLESTON GYRE 249

TABLE 2. The nominal characteristics of station designations across the outer continental shelf and upper slope in the Charleston Gyre region off the southeastern
coast of the United States in the winters of 2000, 2001, and 2002.

Nominal sea-surface Nominal thermal and
Station designation Abbreviation temperature range (◦C) halocline characteristics

Continental shelf CS 11–19a Isothermal and isohalinea

Continental sshelf–Gulf Stream–frontal mix CS-GS-FM 20–24a Variable, begins ∼50–75 ma,b

Gulf Stream GS 24–26a,b Variable, begins ∼50 ma,b,c

Wrap-around filament WAF 20–24d Variable, begins ∼20 m
Eddy core EC ∼20d Variable, begins ∼30 md

Sargasso Sea SS 20–23e ∼400 me

aXie and Pietrafesa (1995).
bHitchcock et al. (1994).
cSchmitz et al. (1993).
dBane et al. (2001).
eMcGillicuddy et al. (1999).

referred to family because of their condition. Identification fol-
lowed that described by Richards (2006); classification, some of
which were modified owing to recent systematic revisions, gen-
erally followed that of Nelson (1994). The larvae of the herrings
(Clupeidae)—Atlantic Menhaden and Round Herring Etrumeus
teres—and the drums (Sciaenidae)—Spot Leiostomus xanthu-
rus and Atlantic Croaker Micropogonias undulatus—were iden-
tified and selected as indicators of fishes spawned on the shelf.
Atlantic Menhaden and Spot larvae are among the most abun-
dant species collected on the shelf in winter south of Cape Hat-
teras (Checkley et al. 1999; Govoni and Spach 1999; Hare and
Govoni 2005). Larvae of the bristlemouths (Gonostomatidae),
lightfishes (Phosichthyidae), and lanternfishes (Myctophidae)
were selected as indicators of fishes spawned off the shelf in
the open ocean. The larvae of these fishes are among the most
abundant, open-ocean spawned larvae in the western North At-
lantic (Evseenko 1982), as well as in western boundary currents
(Sassa et al. 2004).

Stations were classified as location-based designations
(Table 2) and were not linked to water mass, because water
masses are often separated vertically in the region; collections
were neither depth nor water-mass discrete. Bongo-net casts
obliquely integrated larval fishes within the water column from
200 m to the surface, or from near the bottom to the surface in
depths shallower than 200 m. Consequently, larval fishes could
be collected vertically from different water masses within ret-
rograde frontal zones or from within eddies of the Charleston
Gyre region. Whereas the lack of vertical separation of larval
fish collections could result in the combination of larval fishes
from different water masses, the spatial scale of stations along
transects and location-based station designations ameliorated
the effects of the lack of discrete water-mass sampling.

Examination of advanced very high resolution radiome-
ter (AVHRR) images (Figure 2) of sea-surface temperature
(SST), temperature (T) and salinity (S) profiles for each station
(Figure 3), and sections of T over the outer shelf and upper slope
(Figure 4) were used to classify collections along transects. Sta-
tions were designated as CS, CS-GS-FM, GS, WAF, EC, and

SS (see Table 2 for definitions). Stations WAF and EC were
not evident on transects that did not intercept an eddy. Station
designations were closely concordant with the surface expres-
sion of frontal zones along outer shelf transects north of Cape
Fear (Govoni et al. 2010). These location-based designations
were consonant with the methods employed for ordination of
the larval fish assemblage north of the Charleston Gyre region
(Quattrini et al. 2005).

Data analyses.—For analysis, parametric statistics were
preferred, but nonparametric methods were used when vari-
ances within groups were not homogenous (Zar 1999). Over-
all concentrations of chlorophyll a, zooplankton displacement
volumes, and concentrations of all larval fishes were tested
for association with Kendall’s correlations. For comparisons,
ANOVA was preferred, but Kruskall–Wallis (K-W) nonpara-
metric ANOVA was used when the variances of concentrations
were not homogenous (Levene’s tests). Multiple comparison
tests identified differences among station designations.

Detrended correspondence analysis (DCA) provided ordi-
nation (Ter Braak and Prentice 1988; Legendre and Legendre
1998) of station designations and of families and indicator taxa
of larval fishes. The DCA minimizes edge effects that can in-
terfere with the interpretation of the ordination by simple cor-
respondence analysis. Concentrations of families and indicator
taxa from all station designations were normalized by using
percentage composition. Scores from the first and second axes,
identified by eigenvalues, were plotted for station designations
and concentrations of families and indicator taxa. The proxim-
ity families, indicator taxa, and station designation on axis plots
indicated the coherence of taxa groups with station designations.

RESULTS

Hydrography
Cyclonic eddies were intercepted and traversed in each year

with other transects to the south or north of eddies (Table 1).
Overall, most collections were taken in the CS-GS-FM (n = 51),
followed by the GS (n = 28), WAF (n = 14), CS (n = 7), EC
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250 GOVONI ET AL.

FIGURE 2. Stations (dots), transects (red numerals), and station designations
(black letters) occupied in the Charleston Gyre region off the southeastern
United States, superimposed on representative advanced very high resolution
images of sea-surface temperatures: (A) 16 January 2000; (B) 10 January 2001;
(C) 09 January 2002. CS: continental shelf; CS-GS-FM: continental shelf–Gulf
Stream–frontal mix; GS: Gulf Stream; WAF: wrap-around filament; EC: eddy
core; SS: Sargasso Sea. Stations occupancy and images are not temporally
synoptic; color on images is relative, not absolute, with the temperature scale.

(n = 4), and SS (n = 2). With the exception of CS stations, where
the water column was vertically isothermal, the water column
was stratified, and the thermocline and halocline occurred at
varying depths (Figures 3, 4).

Chlorophyll a Concentrations, Zooplankton Displacement
Volumes, and Larval Fish Correlations

Chlorophyll a concentrations were weakly, but positively,
correlated with zooplankton displacement volumes and lar-
val fish concentrations (Table 3). Zooplankton displacement

FIGURE 3. Representative temperature (blue) and salinity (red) profiles
(downcast and upcast smoothed) for stations designations. See Figure 2 for
definitions of station abbreviations.

volumes had a stronger, positive correlation with larval fish con-
centrations than did chlorophyll a concentrations, though zoo-
plankton displacement volume included, volumetrically, larval
fishes and therefore was not completely independent of larval
fish concentration. Larval fish concentrations had a stronger pos-
itive correlation with zooplankton displacement volumes than
with chlorophyll a concentration.

Chlorophyll a Concentration, Zooplankton Displacement
Volume, and Concentration of Larval Fishes

Over all years and transects (those that intersected the eddies
and those that did not), mean chlorophyll a concentrations,
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LARVAL FISHES OF THE CHARLESTON GYRE 251

TABLE 3. Kendall’s rank correlations (τ) and test statistics (S) of chlorophyll
a concentrations, zooplankton displacement volumes, and concentrations of
larval fishes in the winters of 2000, 2001, and 2002 in the Charleston Gyre
region off the southeastern coast of the United States (an asterisk [*] denotes
significant difference at P < 0.05).

Test
Correlation τ statistic (S) P

Larval fish concentration
versus zooplankton
displacement volume

0.54 7.34 <0.001*

Larval fish concentration
versus chlorophyll a
concentration

0.15 2.23 0.02*

Zooplankton displacement
volume versus chlorophyll
a concentration

0.13 1.78 0.08

FIGURE 4. Representative sections of the outer continental shelf and upper
slope of the Charleston Gyre region in 2000: (A) no eddy present; (B) eastward
deflection of the Gulf Stream at the Charleston Bump; and (C) eddy present.
See Figure 2 for definitions of station abbreviations.

zooplankton displacement volumes, and concentrations of all
larval fishes differed among years and station designations with
no significant interaction between years and station designations
(Table 4). Multiple comparison tests indicated significantly
higher concentrations of chlorophyll a in WAF than in the GS;
concentrations in the CS-GS-FM were significantly higher than
in the GS (Figure 5A). Zooplankton displacement volumes
were significantly higher in the CS-GS-FM than in the GS
(Figure 5B). Concentrations of all larval fishes were signifi-
cantly higher on the CS than in the GS and EC; concentrations
in the CS-GS-FM were significantly higher than in the GS
(Figure 5C).

Taxa of Larval Fishes
Collections produced 91 families of larval fishes represent-

ing the larvae of coastal ground, reef, and pelagic fishes and
oceanic, meso- and benthopelagic, and benthic fishes (Table 5).
Of the indicators of shelf-spawned fishes, Atlantic Menhaden
and Round Herring, comprised almost all of the clupeids and
were consistently present in high concentrations. Spot and At-
lantic Croaker comprised almost all of the sciaenids. Of the indi-
cators of ocean-spawned fishes, most of the bristlemouths were
Cyclothone spp., but Diplophos taenia, Bonapartia pedaliota,
and Gonostoma spp., were included. Most of the lightfishes
were Vinciquerria spp. Lanternfishes included Electrona risso,
Gonichthys cocco, Hygophum spp., Myctophum spp., Cerato-
scopelus spp., Diaphus spp., and Lepidophanes spp. Lantern-
fishes and bristlemouths were consistently present.

Overall, concentrations of the indicators of shelf-spawned
fishes differed and were highest in the CS or CS-GS-FM
(Figure 6), and some significant differences were apparent
among station designations (Table 6). Multiple comparison tests
indicated that concentrations of Atlantic Menhaden were not
significantly different among station designations (Figure 6A).
Concentrations of Round Herring larvae were significantly
higher in the CS-GS-FM than in the GS and WAF (Figure 6B).
Concentrations of Spot larvae were significantly higher in the
CS than in CS-GS-FM and WAF (Figure 6C). Concentrations of
Atlantic Croaker were not significantly different among station
designations. No larvae of shelf-spawned fishes were collected
in the SS.

Concentrations of the larvae of ocean-spawned target fishes
were low and static across the outer shelf and upper slope
(Figure 7), and some significant differences occurred among
station designations (Table 6). Concentrations of lanternfishes
were significantly higher in the GS than in the CS, CS-GS-FM,
and WAF (Figure 7A). Concentrations of lightfishes and bristle-
mouths did not differ significantly among station designations
(Figure 7B, C). No lightfishes were collected in the CS.

Hydrodynamics and the Distribution of Larval Fishes
The hydrodynamics of the eddies of the Charleston Gyre

region shape the outer shelf and upper slope distribution of
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252 GOVONI ET AL.

TABLE 4. Two-way ANOVA of mean chlorophyll a concentrations, zooplankton displacement volumes, and concentrations of larval fishes among years and
station designation in the winters of 2000, 2001, and 2002 in the Charleston Gyre region off the southeastern coast of the United States.

Groups Sum of Mean
Parameter compared df squares square F-value Pr(>F)

Chlorophyll a Year 2 1.66 0.83 1.79 0.17
Station Designation 5 6.34 1.27 2.73 0.02
Year × Station Designation 8 4.15 0.52 1.12 0.36

Zooplankton
displacement volume

Year 2 0.36 0.18 4.95 0.01
Station Designation 5 0.78 0.16 4.35 0.00
Year × Station Designation 8 0.16 0.02 0.54 0.82

Larval fish
concentration

Year 2 14.88 7.44 3.00 0.06
Station Designation 5 42.36 8.47 3.41 0.01
Year × Station Designation 8 12.43 1.55 0.63 0.75

larval fishes by mixing larval fishes from the CS and the GS into
the CS-GS-FM and entraining them into the eddy circulation
at the peripheral margins of filaments, the WAF (Figures 2,
4). In eddy formation, the Gulf Stream veers toward the east
at the Charleston Bump, the CS-GS-FM and WAF stretches,
toward the south, then the east (Figures 2A, 4B), then north
as the filament closes (Figure 4C). Larvae, which were in high
concentrations on the CS and in CS-GS-FM (Figure 6), were
entrained into eddy circulation, the WAF. The overall decrease
in concentrations of the larvae of shelf-spawned fishes across
eddies and in the WAF and ED (Figure 6), and the more even
distribution of the larvae of ocean-spawned fishes (Figure 7),
indicated mixing across eddies by the circulation of the eddies
and by eddy diffusion.

Ordination of larval Fishes
The assemblage of families and indicator taxa of larval fishes

grouped along two axes (Table 7). Overlap in taxa groupings
within station designations is indicated by overlapping poly-
gons that encompass station designations (Figure 8). A gradient
was evident principally along axis 2. The herrings (Clupeidae)
that comprise Atlantic Menhaden and Round Herring, and were
the most abundant family, were consistently grouped toward the
lower end of axis 2, while the Sciaenidae that comprise Spot
and Atlantic Croaker grouped toward the upper end of axis 2
(Figure 8). Spot and Atlantic Croaker typically occupy more
inshore habitats, most frequently the station designation CS,
whereas Atlantic Menhaden and Round Herring occupy more
offshore habitats, the CS-SG-FM. The lanternfishes and bristle-
mouths grouped toward the far right of axis 1. The CS-GS-FM,
EC, and WAF overlap between them and are closer to, or over,
the origin, indicating that these stations contained some of the
indicator taxa. The EC was more similar to the GS than the CS.
Overall, the taxa grouped by the DCA conform with the station
classification, which supports the validity of station classifica-
tion.

DISCUSSION
The action of the eddies of the Charleston Gyre region is

to mix larval fishes from the outer continental shelf (CS) and
Gulf Stream (GS) into the CS-GS-FM and entrain the CS-GS-
FM into the water that wraps around the eddy core (WAF).
Fronts and eddies of the Charleston Gyre region are areas of
elevated abundance of larval fishes. In this region the abun-
dance of larval fishes were greatest on the outer shelf, CS, and
CS-GS-FM, and thirdly in the WAF, because the Gulf Stream
and continental shelf waters contribute larvae that are concen-
trated and mixed within this frontal mix. Eddy diffusion (Blan-
ton 1971; Lillibridge et al. 1990; Churchill et al. 1993) af-
fects this mixing, as is evident in frontal zones to the north of
the Charleston Gyre region (Govoni 1993; Govoni and Spach
1999).

The dynamics of eddies of the Charleston Gyre region shape
the distribution of chlorophyll a, zooplankton, and larval fishes
by concentrating these attributes in and about eddies in ways
similar to those of other mesoscale cyclonic eddies elsewhere in
the world’s oceans. Entrainment of larval fishes and zooplankton
into fronts associated with eddies is evident elsewhere, partic-
ularly along western boundary currents (Nakata et al. 2000;
Everett et al. 2011; Mullaney 2011). In eddies along the west-
ern front of the Kuroshio Current extension, Eulerian and Lan-
grangian observations indicated increased chlorophyll a con-
centrations stimulated by upwelling of nutrients within the eddy
core, followed by a decline in chlorophyll a as eddies mature
with a concomitant increase in the concentration of copepod
nauplii and small copepods (Kimura et al. 1997; Okazaki et al.
2002). Chlorophyll a concentrations, zooplankton abundance,
and larval fish concentrations were positively correlated within
mesoscale cyclonic eddies of the Loop Current, the progeni-
tor of the Florida Current and the Gulf Stream, in the northern
Gulf of Mexico (Biggs and Ressler 2001). Mesoscale eddies
formed in the wake of oceanic islands also result in elevated
chlorophyll a concentrations (Onitsuka et al. 2009), and positive
correlations were evident among chlorophyll a concentrations,
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LARVAL FISHES OF THE CHARLESTON GYRE 253

FIGURE 5. Comparison of means grouped by station designation for (A)
chlorophyll a concentrations, (B) zooplankton displacement volumes, and (C)
larval fish concentrations. See Figure 2 for definitions of station abbreviations.
Error bar represents 1 SE of the mean; letters above bar plots indicate the
results of multiple comparison tests; the asterisk (*) above the letters “B” or
“D” denote significant differences in comparison with the * below the letter “A”
or “C” (P < 0.05); the letter “A” above the letter “B” denotes no significant
difference.

zooplankton displacement volumes, and larval fish concentra-
tions. Zooplankton displacement volumes were highest in the
eddy core, while concentrations of larval fishes were highest in
the periphery of an oceanic, mesoscale, cyclonic eddy formed
adjacent to the Hawaiian Islands (Lobel and Robinson 1986).
Lagrangian model simulations that conform with empirical ob-
servations indicate that invertebrate and vertebrate larvae can
aggregate in high-concentration packets randomly distributed
along SST fronts associated with filaments that spin off the
California Current, an eastern boundary current (Harrison et al.

2013). Lagrangian observations in and about an eddy of the
Charleston Gyre region indicated that initially high concentra-
tions of chlorophyll a decreased, while copepod nauplii and
small copepodites and some other planktonic invertebrates im-
portant in the diets of larval fishes increased as eddies propagated
northeastward (Govoni et al. 2010). In the eddies examined,
and with the classification of stations used here, chlorophyll a
concentrations were highest in the WAF, while zooplankton dis-
placement volumes were highest in the CG-GS-FM; the concen-
tration of all larval fishes was second highest in the CG-GS-FM
and third highest in WAF.

The high taxa richness of larval fishes registered in collec-
tions from the Charleston Gyre region with 91 families was
higher than in cross-shelf collections that penetrated the Gulf
Stream to the north and to the south off the southeastern United
States. Year-round between Cape Canaveral, Florida, and Cape
Fear, Fahay (1975) recognized 51 families and Powles and Sten-
der (1976) recognized 48. North of the Charleston Gyre region,
Powell and Robbins (1994), Powell et al. (2000), and Quattrini
et al. (2005) recognized 85 families from April through De-
cember, and Govoni and Spach (1999) recognized 75 families
in the coalesced outer shelf and Gulf Stream fronts in similar
areas in winter. Marancik et al. (2005) recognized 34 families
along a cross-shelf transect south of the Charleston Gyre re-
gion, from near shore to the Gulf Stream in spring and winter.
To the south, over the Florida Keys and proximal Gulf Stream,
Limouzy-Paris et al. (1994) recognized 91 families in May and
June, and Sponaugle et al. (2005) recognized 66 families year-
round. Farther south in the Florida Straits and along transects
across the Florida current (the progenitor of the Gulf Steam),
Richards et al. (1993) recognized 52 families. While advances
in larval fish taxonomy and changes in systematic classification
through time influence the number of families recognized, mix-
ing of Gulf Stream water and shelf water in the outer shelf front
can explain much of the high taxa richness of larval fishes in the
Charleston Gyre region.

The distribution of taxa and of taxa groups within eddies and
associated fronts of the Charleston Gyre region indicates mix-
ing of shelf and oceanic water. This observation is consonant
with observations in and about anticyclonic, mesoscale eddies
in the Gulf of Alaska, wherein ordination of taxa of larval fishes
resulted in grouping by location inside and outside of eddies
and associated frontal zones (Atwood et al. 2010). Elsewhere,
Lobel and Robinson (1988) found the larvae of pelagic and
mesopelagic fishes and coastal and shore fishes in an eddy off
the Hawaiian Islands, and Sabatés and Olivar (1996) found the
larvae of coastal and mesopelagic fishes displaced by the po-
sition of the shelf-slope front in the Mediterranean Sea. The
dynamics that drive elevated concentrations of larval fishes are
evident also in the Mediterranean Sea (Sabatés 1990; Sabatés
and Masó 1990; Sabatés and Olivar 1996; Olivar et al. 2010), ed-
dies along the margins of western boundary currents (Okazaki
et al. 2002; Sponaugle et al. 2005), and eddies juxtaposed to
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254 GOVONI ET AL.

TABLE 5. Abundance of the families of larval fishes collected in the Charleston Gyre region off the southeastern United States in the winters of 2000, 2001,
and 2002.

Mean concentration Number of Percent of total Rank total
Family (number/m3) occurrences (n) SE composition (%) composition

Anguillidae 0.0042 1 0.05 1
Moringuidae 0.0032 3 0.0003 0.16 18
Ophichthidae 0.0367 54 0.0150 2.97 79
Congridae 0.0062 26 0.0019 1.43 67
Clupeidae 0.6560 75 0.1408 4.12 88
Engraulidae 0.0108 6 0.0045 0.33 34
Argentinidae 0.0045 17 0.0005 0.93 58
Microstomatidae 0.0071 3 0.0020 0.16 18
Gonostomatidae 0.0725 82 0.0064 4.50 89
Chauliodontidae 0.0066 11 0.0027 0.60 50
Sternoptychidae 0.0114 50 0.0015 2.75 77
Phosichthyidae 0.0056 19 0.0009 1.04 60
Stomiidae 0.0044 3 0.0012 0.16 18
Astronesthidae 0.0040 1 0.05 1
Melanostomiidae 0.0035 6 0.0004 0.33 34
Malacosteidae 0.0033 2 0.0001 0.11 12
Aulopidae 0.0045 4 0.0012 0.22 29
Synodontidae 0.0230 57 0.0038 3.13 82
Scopelarchidae 0.0059 27 0.0007 1.48 68
Notosudidae 0.0061 19 0.0007 1.04 60
Paralepididae 0.0170 43 0.0032 2.36 76
Evermannellidae 0.0044 7 0.0007 0.38 39
Myctophidae 0.0778 91 0.0070 5.00 91
Moridae 0.0053 2 0.0017 0.11 12
Bregmacerotidae 0.0230 68 0.0049 3.73 85
Phycidae 0.0839 59 0.0233 3.24 83
Merlucciidae 0.0052 3 0.0010 0.16 18
Macrouridae 0.0031 4 0.0002 0.22 29
Ophidiidae 0.0319 56 0.0060 3.08 81
Carapidae 0.0059 9 0.0019 0.49 46
Antennariidae 0.0022 1 0.05 1
Ceratiidae 0.0034 10 0.0002 0.55 48
Holocentridae 0.0027 1 0.05 1
Melamphaeidae 0.0073 27 0.0018 1.48 68
Trachichthyidae 0.0036 1 0.05 1
Diretmidae 0.0033 3 0.0005 0.16 18
Caproidae 0.0038 3 0.0003 0.16 18
Fistulariidae 0.0037 2 0.0001 0.11 12
Macrorhamphosidae 0.0040 6 0.0007 0.33 34
Scorpaenidae 0.0252 53 0.0036 2.91 78
Triglidae 0.0629 55 0.0171 3.02 80
Acropomatidae 0.0045 11 0.0005 0.60 50
Howellidae 0.0105 1 0.05 1
Serranidae 0.0213 69 0.0023 3.79 86
Opistognathidae 0.0041 1 0.05 1
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TABLE 5. Continued.

Mean concentration Number of Percent of total Rank total
Family (number/m3) occurrences (n) SE composition (%) composition

Priacanthidae 0.0044 3 0.0012 0.16 18
Apogonidae 0.0045 15 0.0005 0.82 56
Epigonidae 0.0093 7 0.0028 0.38 39
Malacanthidae 0.0060 13 0.0010 0.71 53
Haemulidae 0.0081 8 0.0014 0.44 44
Sparidae 0.1652 41 0.0474 2.25 74
Sciaenidae 0.1346 67 0.0332 3.68 84
Gerreidae 0.0815 2 0.0568 0.11 12
Mullidae 0.0104 17 0.0029 0.93 58
Chaetodontidae 0.0073 7 0.0018 0.38 39
Pomacanthidae 0.0048 2 0.0013 0.11 12
Carangidae 0.0084 24 0.0014 1.32 64
Rachycentridae 0.0051 6 0.0019 0.33 34
Coryphaenidae 0.0028 1 0.05 1
Bramidae 0.0047 8 0.0007 0.44 44
Lutjanidae 0.0234 7 0.0129 0.38 39
Mugilidae 0.0077 14 0.0020 0.77 54
Pomacentridae 0.0034 7 0.0004 0.38 39
Labridae 0.0082 38 0.0010 2.09 72
Scaridae 0.0081 42 0.0011 2.31 75
Chiasmodontidae 0.0038 4 0.0001 0.22 29
Labrisomidae 0.0089 5 0.0025 0.27 33
Uranoscopidae 0.0061 14 0.0012 0.77 54
Percophidae 0.0071 4 0.0029 0.22 29
Chaenopsidae 0.0153 1 0.05 1
Blenniidae 0.0102 3 0.0028 0.16 18
Callionymidae 0.0100 34 0.0047 1.87 71
Gobiidae 0.0236 73 0.0033 4.01 87
Luvaridae 0.0076 3 0.0039 0.16 18
Acanthuridae 0.0036 12 0.0003 0.66 52
Sphyraenidae 0.0031 2 0.0001 0.11 12
Gempylidae 0.0061 21 0.0015 1.15 63
Trichiuridae 0.0063 6 0.0018 0.33 34
Scombridae 0.0262 25 0.0063 1.37 66
Nomeidae 0.0150 24 0.0038 1.32 64
Ariommatidae 0.0124 27 0.0024 1.48 68
Tetragonuridae 0.0041 1 0.05 1
Stromateidae 0.0058 10 0.0011 0.55 48
Bothidae 0.0451 82 0.0050 4.50 89
Scophthalmidae 0.0034 3 0.0001 0.16 18
Paralichthiidae 0.0240 39 0.0042 2.14 73
Cynoglossidae 0.0086 15 0.0018 0.82 56
Soleidae 0.0034 3 0.0000 0.16 18
Monacanthidae 0.0053 9 0.0006 0.49 46
Tetraodontidae 0.0059 19 0.0012 1.04 60
Molidae 0.0070 1 0.05 1
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256 GOVONI ET AL.

FIGURE 6. Comparison of means grouped by station designation for indicator taxa of the larvae of shelf-spawned fishes in the Charleston Gyre region off the
southeastern coast of the United States. See Figure 2 for definitions of station abbreviations. Error bar represents 1 SE of the mean: letters above bar plots indicate
the results of multiple comparison tests; the asterisk (*) above the letter “B” denotes significant differences in comparison with the * below letter “A” (P < 0.05);
the letter “A” above the letter “B” denotes no significant difference.

deepwater currents (Brandt 1983; Lobel and Robinson 1986,
1988; Smith et al. 1999).

Upwelling and eddy diffusion within eddies and fronts of
western boundary currents (Olson 2001) can provide enhanced
primary and secondary productivity, as well as favorable habitat
for feeding and consequent growth of larval fishes (Bakun 2006;
Richardson et al. 2009). For larval fishes, enhanced feeding
could shorten larval duration, lower cumulative mortality, and
increase population recruitment (Houde 2008). The enhanced

trophic environments in and about the mesoscale cyclonic ed-
dies of the Charleston Gyre region as they propagate northeast-
ward (Govoni et al. 2010) indicate the potential importance of
these pelagic habitats to the growth, survival, and subsequent
population recruitment of larval fishes (Munk et al. 2003; Godø
et al. 2012). The residence time on the outer shelf and upper
slope is ∼1 month, the same duration as the larval period of
most fishes. These eddies also translocate larvae to the east and
north.

TABLE 6. Results of one-way ANOVAs of the mean concentrations of the larvae of indicator taxa among station designations and Kruskal–Wallis tests of the
ranks of the median concentrations among station designations.

Taxon df Sum of squares Mean square F-value χ2 P-value

One-way ANOVA
Bristlemouths 5 3.3 × 10−2 6.6 × 10−3 2.1 7.4 × 10−2

Lightfishes 4 6.2 × 10−5 1.6 × 10−5 1.1 3.8 × 10−1

Atlantic Menhaden 4 5.3 × 10−1 1.3 × 10−1 1.1 × 10−1 9.8 × 10−1

Round Herring 4 7.5 1.9 2.6 4.2 × 10−2

Atlantic Croaker 4 9.9 × 10−3 2.5 × 10−3 2.2 × 10−1 9.3 × 10−1

Kruskal–Wallis tests
Lanternfishes 5 3.69 × 10 6.15 × 10−7

Spot 4 1.06 × 10 3.15 × 10−2
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LARVAL FISHES OF THE CHARLESTON GYRE 257

TABLE 7. Detrended correspondence analysis (DCA) (axes and eigenvalues)
of families of larval fishes collected in the Charleston Gyre region off the
southeastern United States in the winters of 2000, 2001, and 2002.

DCA1 DCA2 DCA3 DCA4

0.4824 0.3204 0.2451 0.0685

FIGURE 7. Comparison of means grouped by station designation for indicator
taxa of the larvae of ocean-spawned fishes in the Charleston Gyre region off
the southeastern coast of the United States. See Figure 2 for definitions of
station abbreviations. Error bar represents 1 SE of the mean: letters above bar
plots indicate the results of multiple comparison tests; the asterisk (*) above
letter “B” denotes significant differences in comparison with the * below the
letter “A” (P < 0.05); the letter “A” above the letter “B” denotes no significant
difference.

FIGURE 8. Detrended correspondence analysis (axes and eigenvalues) of fam-
ilies of larval fishes collected in the Charleston Gyre region off the southeastern
United States in the winters of 2000, 2001, and 2002. Polygons encompass
groupings and symbols denote groupings of station designations; see Figure 2
for definitions of station abbreviations.
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