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ABSTRACT
Background: Newspaper headlines still regularly report latent
software defects. Such defects have often evaded testing for many
years. It remains difficult to identify how well a system has been
tested. It also remains difficult to assess how successful at finding
defects particular tests are. Coverage and mutation testing are fre-
quently used to asses test effectiveness. We look more deeply at
the performance of commonly used JUnit testing by assessing how
much JUnit testing was done and how effective that testing was at
detecting defects in seven open source systems.
Aim:We aim to identify whether defective code has been effectively
tested by JUnit tests as non-defective code. We also aim to identify
the characteristics of JUnit tests that are related to identifying
defects.
Methodology:We first extract the defects from seven open source
projects using the SZZ algorithm. We match those defects with
JUnit tests to identify the proportion of defects that were covered
by JUnit tests. We also do the same for non-defective code. We
then use Principal Component Analysis and machine learning to
investigate the characteristics of JUnit tests that were successful in
identifying defects.
Results:Our findings suggest that most of the open source systems
we investigated are under-tested. On average over 66% of defective
methods were not linked to any JUnit tests. We show that the
number of methods touched by a JUnit test is strongly related to
that test uncovering a defect.
Conclusion: More JUnit tests need to be produced for the seven
open source systems that we investigate. JUnit tests need to be
relatively sophisticated, in particular they should touch more than
just one method during the test.
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1 INTRODUCTION
Effectively testing software remains problematic. Latent defects
often evade testing and can remain dormant in the system for
many years. A good example of this is the shut down of London
airspace on a Friday afternoon in the run up to Christmas 2014.
This shutdown affected some 240,000 passengers and was caused
by a latent defect which had been in the code since the system was
deployed in 1994. Testing had not uncover this defect.

In this paper we investigate the effectiveness of JUnit testing in
seven open source Java systems. JUnit testing is a very common
approach to generating tests for Java code. We divide our analysis
into looking at the Java methods in each system in terms of four
quadrants: 1) Defective methods that have not been JUnit tested
2) Defective methods that have been JUnit tested 3) Non-defective
methods that have been JUnit tested 4) Non-defective methods that
have not been JUnit tested. Using these quadrants we investigate
whether there is any relationship between the JUnit testing of code
and defects in that code. We then identify the features of successful
JUnit tests.

Most previous studies have used coverage and mutation testing
to estimate how effective a test suite is. Coverage usually determines
the percentage of code which gets tested by a test suite, in terms of
either lines or branches. The effectiveness of mutation testing relies
on how many mutants, or seeded faulty programs, that a test suite
can uncover. Both approaches can be useful to establish testing
goals when resources are scarce. The estimation of the usefulness
of the two approaches is limited to the code that test suites cover.
In the case of mutation testing, an additional limitation is that
artificially inserted defects may not represent the real world [15].

In our approach we establish whether there are any character-
istics that distinguish effective from non-effective JUnit tests by
identifying a set of test code metrics based on existing testing prin-
ciples [7]. We develop a tool to collect this set of metrics from the
JUnit tests in seven open source Java systems. These seven sys-
tems are selected from the GitHub repository, and vary in size and
application area. The number of JUnit test cases associated with
these seven systems ranges between 164 to 1612. We use principal
component analysis (PCA) to identify patterns that distinguish ef-
fective from non-effective tests. Logistic Regression, Naïve Bayes,
and Random Forest (implemented in Weka [17]) are then used to
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establish the usefulness of each metric in terms of distinguishing
effective from non-effective JUnit tests.

This study addresses two research questions:
RQ1. Are fewer defects found in code that has associated JUnit

tests?
RQ2. What are the characteristics of effective JUnit tests?
Our contributions are as follows. We reveal that large numbers

of defects are never covered by JUnit tests. No JUnit tests seem
to have been run on large amounts of defective code. More JUnit
testing is needed in the seven systems that we investigate.

We also report that the most influential characteristic of a JUnit
test likely to detect a defect is the number of methods that test
touches. More JUnit tests that touch multiple methods may be
needed.

The rest of the paper is organised as follows. The next section
discusses previous work in software testing, with a particular focus
on test effectiveness. We then describe our methodology in Section
3, followed by reporting our results in Section 4 and discussion in
Section 5. Finally threats to validity, and conclusions and future
work are presented in Sections 6 and 7, respectively.

2 BACKGROUND
Software testing is an essential activity for ensuring software qual-
ity. Substantial effort is expended on a variety of testing activities,
such as the development and maintenance of test code [43]. eX-
treme Programming, amongst other agile software development
approaches, has put an growing emphasis on the importance of
testing, “as a desirable and effective way to develop software” [29].
The importance of unit testing has meant the development of tools
that can assist practitioners in the automated generation of unit
tests [12]. Several studies have shown optimistic results using those
test tools to improve test quality [13, 14]. However, detecting com-
plex defects [2], and achieving effective automatically generated
tests [32] remain challenges. These challenges may be mitigated by
understanding what characteristics underpin those unit tests that
are effective at detecting defects.

In software testing, a common approach to measuring test qual-
ity is by calculating test suite effectiveness. Test effectiveness has
traditionally been determined using the following process [19].
First, defective versions of programs get seeded into the system.
This step is followed by creating test suites composed of available
test cases. In the third stage, coverage of each test suite is measured
based on a set of test goals. Finally, effectiveness is determined as
the number of defective versions of subject programs that can be
detected by a test suite [27]. Test cases that uncover these defective
subject programs contribute to the positive effectiveness of test
suites [18]. To be effective, therefore, test suites should be success-
ful at identifying as many defective versions of covered subject
programs as possible.

Two cornerstone techniques have been used for establishing test
effectiveness: coverage and mutation testing. Traditionally, studies
that use coverage usually aim to find a link between the amount
of covered code and the number of detected defects [19, 42]. The
underlying assumption is that tested code should be less prone to
defects. Despite many efforts to determine whether coverage is a
useful metric for effectiveness, consensus has not yet been reached.

Ahmed et al. found a weak but significant correlation between
code coverage and the number of defects [1]. When looking at the
correlation between code coverage and the probability of defects
impacting a product unit, Mockus et al. showed that an increase
in coverage proportionally reduces the number of defects [26].
However, other studies suggest that high coverage values do not
necessarily correlate to test effectiveness. Inozemtseva and Holmes
observed that many studies were done with adequate test suite
sizes, which are rare in practice, and may lead to results that are
not generalisable [19]. In addition, many studies used small subject
programs that do not reflect systems in the real world (e.g. [11, 16]).
By taking these shortcomings into account, and performing an
experiment on large systems, they concluded that coverage is not a
good proxy for effectiveness. Another large scale study, including
100 Java projects by Kochhar et al., established that coverage has
an insignificant correlation with post-release defects [24]. Wei et
al.’s empirical study also demonstrated that branch coverage is not
a useful indicator of test effectiveness [40], whilst Tengeri et al.
established that code coverage is rarely an indicator of the project’s
defect density [36].

Mutation testing has also played a substantial role in assessing
test effectiveness. Mutation testing relies on mutants that are auto-
matically inserted into code. Mutants are created by making minor
syntactical modifications to the subject program [44]. Good test
cases should be capable of detecting such modifications. Although
the process is usually automatic, some concerns have been raised
about its usefulness to replace real world defects [15], and the risks
to external validity when used incautiously [28]. Other researchers
have been in favour of mutants as a suitable replacement for real
defects [3, 21].

More recent studies have started analysing other factors that
could influence test effectiveness. For example, the size of test suite
has been shown to correlate with test suite effectiveness [27], where
the size is measured by the number of tests in the test suite. Each
added test increases the chance that a test will detect a new defect.
Namin et al. showed that both, coverage and size, independently
contribute to a test suite’s effectiveness with a non-liner relation-
ship. Schwartz and Hetzel used over 20 different defect types to
investigate if all have the same chance of being discovered. Evalu-
ating six open source datasets, they found a subset of defect types
being consistently missed by test suites [31].

The quality of test code itself has been shown to have an impact
on test effectiveness. Waterloo et al. found several test code patterns
can detect defects in tests with high precision [39]. Several studies
have used test smells, which are poorly designed tests [38], and
showed their negative impact on test maintenance, comprehension,
and ultimately effectiveness. For example, some test smells influence
code smells to appear in production code [37]. Bavota et al. did a
large empirical study including over 20 systems to investigate the
effect of test smells on testmaintainability [6]. They found that some
test smells pose a potential risk to test maintenance. Athanasiou et
al. also empirically demonstrated that the quality of test code has a
negative impact on production code [4].

Occasionally studies analyse test suite effectiveness beyond test-
covered code. If a test suite is effective, we should expect fewer
defects in the covered as opposed to non-covered code. Bach et
al. analysed large industrial software to investigate whether test
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covered code is related to fewer defect-fixes compared to non-
covered code [5]. Bach et al. report that the distribution of defects
in covered versus non-covered code is not uniform, and that more
defects appear in code which has not been tested. However, it
remained unclear how many “out of reach” defects remain in the
non-tested code.

A priori knowledge about the characteristics of tests which are
more likely to detect a defect is useful for test case prioritisation. In
regression testing, test case prioritisation determines which tests
should be executed first to potentially improve the defect detection
rate [8]. Various prioritisation techniques have been proposed in
the literature [20, 41], one of which is total function coverage. Total
function coverage prioritises test cases by sorting them from the
test invoking most to least number of functions [10]. The empirical
study by Elbaum et al. demonstrated that total function coverage
in some cases performs well [9].

3 EXPERIMENTAL DESIGN
3.1 Selection of Datasets
For this study we systematically selected seven Java open source
projects from the GitHub repository. GitHub is one of the largest
open source repositories commonly used in software engineering
studies. We detail the steps for selecting the open source datasets
used in this study:

(1) We identified an initial list of 5508 GitHub Java project candi-
dates by selecting: a) Java project; b) with git version control
system; c) has defect linking commits; d) has a defect track-
ing system; e) has at least 100 fixed defects (we adopted this
selection from [34]);

(2) From that initial list of 5508 projects, we selected the first
150 projects with the highest number of issues;

(3) Out of these 150 projects, we selected only Maven projects
that have compilable test sets (since our tool operates on
byte code); 22 projects remained after this step;

(4) Out of the 22 projects, we tried to collect JHawk data for
each (needed to calculate our test metrics). JHawk was able
to calculate metrics for 15 out of the 22 projects1;

(5) Three out of the 15 projects that JHawk could calculate were
very small (less than 20 Java source code files), so we ignored
those projects, ending up with 12 projects in this step;

(6) Five out of the 12 remaining projects had less than three
test methods which found defects. We ignored these projects
which left 7 projects;

Table 1: OSS datasets selected for this analysis

Repo Commit MetCnt TestCnt MetDef
reddeer 3060878 4395 1159 426
gephi acf94e5 6750 238 163
nutz bb802d0 4818 1167 86
graylog2-server 3767534 5128 1612 79
OpenTripPlanner c53497a 4391 420 41
k 8ba6f16 3702 247 13
rultor b719e3e 353 164 7

1As JHawk is a proprietary software we could not fix the root cause of the problem.

Table 1 shows the seven datasets we selected. The Repo column
is the name of a GitHub project, Commit represents a snapshot
commit, MetCnt is a method count, TesCnt is a test method count,
andMetDef is the number of defective methods. A snapshot commit
is a point in time at which all data was collected. In our study, each
snapshot commit maps to a certain git commit of a project. For
every project, we selected the first commit after the 1st of July 2017.
We chose recent commits for snapshots as from our experience
those are more likely to compile. The method and test counts were
obtained with our in-house developed tool.

3.2 Data Extraction for Code Covered by JUnit
tests

For each git project in Table 1 we first cloned a local copy to our
machine. We then checkout the appropriate commit set in Table
1 before compiling each project. Each project was compiled by
invoking ‘mvn test-compile’. The maven command compiles all
production and test code, turning it into byte code. By using our in-
house developed tool, we then extracted information about defects
and how well JUnit tests links to production code. Table 2 contains
the metrics we collected for answering the first research question.

Table 2: Test code metrics used in this study

Metric Brief description
TestLinkToDefectCnt Test cases linked to defective meth-

ods.
TestLinkToCleanCnt Test cases linked to defect-free

methods.
TestNotLinkCnt Test cases not linked to production

code.
DefectiveCnt Total number of defective methods.
CleanCnt Total number of defect-free meth-

ods.
DefectiveLinkToTestCnt Defective methods linked to test

cases.
DefectiveNotLinkToTestCnt Defective methods not linked to

any test cases.
CleanLinkToTestCnt Defect-free methods linked to test

cases.
CleanNotLinkToTestCnt Defect-free methods not linked to

test cases.

In this study we used the method level of granularity: a method
in production code, and a test case in JUnit test code. A test case
is a single Java method. We define covered defects as production
methods that have been defective and have at least one test case
invoking that method. We allowed the invocation of a production
method from a test case to be transitive. In other words, any test
case calling a defective method directly or indirectly counts as a
test which covers that defective method. The transitive approach is
similar to Kochhar et al. as they consider cases where a method is
invoked either directly or indirectly by a test case [24].

There are other possible scenarios that can occur between pro-
duction and test code. Tests that invoke non-defective production
methods we denote as clean methods. It is possible that some of



PROMISE’18, October 10, 2018, Oulu, Finland J Petrić et al.

those production methods have been defective in the past, how-
ever at the snapshot point they were defect-free. Other tests are
never linked to any production methods. For example, tearDown()
or helper methods that appear in test code may never link to pro-
duction code. We excluded empty methods from our analysis.

A single test case can invoke multiple methods. However, the
same is true for a method, which can be linked to multiple tests. For
this reason we recorded which production methods are associated
with which tests. For example, if a defective method is called by
a test(s), we record it as a defective method linked to a test. If the
same was true for a defect-free method, then it would be a clean
method linked to a test.

3.3 Data Extraction for Test Effectiveness
In this study we assessed test effectiveness in the following way.
We ran our in-house developed tool over a previously compiled
copy of each project, for the commits specified in Table 1. Table
3 shows the metrics which our tool recorded. We adapted these
metrics from the testing principles defined in our previous work [7].
These metrics capture multiple facets of test quality and have been
repeatedly used in the literature for the purpose of determining test
quality. For that reason, we used them as independent predictors
of test effectiveness in this work.

Table 3: JUnit test metrics used in this study

Metric Brief description
ISM Number of source code methods invoked from a test.
BRH Number of branching (conditionals) in a test.
CLA Number of comment-less asserts.
AST Number of asserts in a test.
SLC Number of source lines of code a test is exercising.
NAT Number of different assert types in a test.
SBA Number of statements before first assert.
IUM Number of unique source code methods invoked by a

test.
IFK Number of methods belonging to mock/stub/fake frame-

works invoked from a test.
m_cnt Subset of source code methods invoked from a test, ex-

cluding Java related methods.
avg_loc Average lines of code of source methods invoked, exclud-

ing Java related methods.

Our tool generated the following data: methods, tests invoking
those methods, and the metrics described in Table 3. This data was
then transformed into the following: We grouped every test by the
number of production methods it invokes, and recorded this metric
asm_cnt .m_cnt differs from the ISM and IUM metrics described in
Table 3 in respect thatm_cnt is a subset of the two metrics.m_cnt
excludes method calls to Java library, such as size() and sort().

To calculate the effectiveness of tests, we then extracted defects
from the subject systems using the SZZ algorithm (described in
the next Section) and assigned ‘1’ to those methods that have been
defective, and ‘0’ otherwise. For each test the effectiveness was
calculated as a ratio between the number of defective and the total
number of methods invoked. To distinguish between effective and

non-effective tests we used the Pareto principle [30]. We first sorted
all tests by their effectiveness, classifying the top 20% of the tests
as effective, and the bottom 80% as non-effective.

3.4 Extracting Defects
We determined defective methods by the defect insertion and fix
points. To identify both, we used the SZZ approach [35] used in
many previous studies. The SZZ algorithmmatches the fix described
in the bug tracking system with the corresponding commit in the
version control system that removed the defect. By backtracking
through the version control records, it is possible to identify earlier
code changes which ended up being fixed. It is assumed that the
earlier code changes inserted the defect if it occurred before the
fault was reported. The module of code is therefore labelled as
defective between the time the fault was inserted and the time
it was fixed. Using this technique it is possible to identify, for a
particular snapshot of the code, which methods were faulty and
which are not. For each project we used GitHub’s issue tracking
system.

3.5 Classification
We used machine learning to demonstrate the usefulness of the
metrics listed in Table 3. We defined a classification problem with
the metrics as independent variables, and effectiveness as a depen-
dent variable. Effectiveness is a nominal dependent variable, where
‘1’ indicates a test in the top 20% of effectiveness, and ‘0’ for all
other tests.

In this study we used three classifiers: Logistic Regression, Naïve
Bayes and Random Forest. Logistic Regression is a simple classifier
which does not require a linear relationship between the dependant
and independent variables. This type of classifier finds the best
weights for each independent variable to predict the dependent
variable. Naïve Bayes is a commonly used classifier in machine
learning which uses probabilities to make final predictions. Random
Forest is an ensemble technique that combines several tree-based
classifiers and uses their outputs to make final decisions. We chose
these three classifiers as they work on different principles, and are
commonly used in software engineering tasks that require machine
learning algorithms.

We used the WEKA machine learning tool to perform our pre-
dictions. For each dataset and learner we repeated the experiment
100 times using 10-fold cross validation. Repeating experiments 100
times and using cross validation should help reduce performance
variance in different experimental runs.

To evaluate the usefulness of our models we used precision,
recall, F-measure, and Matthews Correlation Coefficient (MCC) as
performance indicators. All these performance measures are based
on the confusion matrix shown in Table 4. Precision and recall

Table 4: Confusion matrix

Predicted effective Predicted non-effective
Observed
effective

True Positive
(TP)

False Negative
(FN)

Observed
non-effective

False Positive
(FP)

True Negative
(TN)
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are commonly used metrics in machine learning to interpret the
usefulness of a prediction model:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
F-measure represents the harmonic mean between precision and
recall:

F −measure =
2 × Recall × Precision

Recall + Precision
In addition we used MCC as it takes all four quadrants of the
confusion matrix into consideration:

MCC =
TP ×TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
MCC is a suitable performance measure when datasets are imbal-
anced [33], as is the case in this study.

4 RESULTS
Overall our results show that a large number of defective methods
are not covered by JUnit tests. For all systems we analysed, with the
exception of reddeer, more than half of the defective methods were
not covered by JUnit tests. In three out of the seven systems, the
proportion of non-JUnit tested defective methods goes beyond 70%.
In terms of the effectiveness of tests, our results suggest that the
most successful tests to reveal defective methods are those which
touch many methods.

RQ1. Are fewer defects found in code that has associated JU-
nit tests?

The left-hand side of Figure 1 shows the proportion of defective
methods which are either covered or not covered by JUnit tests.
Each stacked bar plot represents one project, whilst the y-axis holds
the absolute number of defective methods. The top part of each bar
plot shows the proportion of defective methods not covered by tests,
whilst the bottom part indicates those defective methods covered by
a single or multiple tests. In all projects (except reddeer) the majority
of defective methods were not covered by automated tests. The
gephi system has a particularly low number of defective methods
that were covered (6%). Gephi is the project with the second highest
number of defects (after reddeer) compared to the other systems
in our study (163 defects), which is nearly double the number of
defects than the third most defective system in our study, nutz (86
defects). A similar lack of testing is found in nutz, as the number
of defective methods covered by JUnit tests is the second lowest
amongst the analysed systems.

Figure 2 shows the linkage of tests towards production code
methods. For all seven systems we did not find any tests not linked
with production methods. On the other hand, we did find that the
majority of JUnit tests do not cover defective methods. Three sys-
tems have more than 90% of JUnit tests that do not cover defective
methods. For gephi and OpenTripPlanner the percentage of JUnit
tests not covering defective methods is above 80%. We acknowledge
that JUnit covered non-defective methods may not contain defects
as those components have been tested and the defects removed.
However, it is concerning that the majority of historical defects
never seem to get JUnit covered, as such coverage could decrease

the chance of these defects reappearing. Amongst the analysed
projects, reddeer is the only exception where the number of JU-
nit tests covering defective code is higher than the non-defective
code (76%). Reddeer is also a system with the highest number of
discovered defects.

RQ2. What are the characteristics of effective tests?
Figure 3 illustrates the first two components of PCA plots for

five out of the seven systems. Two systems, k and rultor, were left
out as they have less than 10 effective tests making it impossible
to perform 10-fold cross validation. Each PCA plot contains two
classes. Where blue coloured dots represent the top 20% of tests
in terms of their effectiveness to cover defects, red coloured dots
are the bottom 80%. Two out of the five systems show an apparent
pattern of method count as a proxy for how effective tests are
to cover defective methods. In OpenTripPlanner the most effective
tests to cover defects are those that cover a high number of methods,
with no exceptions (Figure 3d). Similar is observed for graylog2-
server as the highest concentration of effective tests follows the
direction of increase in method count (Figure 3b). Gephi separates
effective tests in two groups, where one group follows the trend
of increase in method count (Figure 3a). Nutz on the other hand
demonstrates mixed results for effective tests, however there is a
slight tendency for more effective tests to cover more defective
methods (Figure 3c). Finally, reddeer is an exception to the majority
of our observations. Figure 3e shows that method count is not a
useful indicator to distinguish between effective and non-effective
tests. Contrary, amongst tests with the highest number of method
calls are those that fit in the bottom 80% of effective tests.

In addition to the PCA plots which show method count as a
useful proxy for an effective test, we consider the use of machine
learning to demonstrate the power of method count in predicting
effective tests. Figure 4 demonstrates the prediction performances
of three different machine learners in terms of precision, recall,
F-measure, and MCC. The two systems, graylog2-server and Open-
TripPlanner, which show a reasonable separation between effective
and non-effective tests on PCA, achieve relatively good prediction
performances. In particular, OpenTripPlanner achieves a very high
0.725 (± 0.134) MCC value when Logistic Regression is used as a
predictor. In fact, a perfect precision of 0.988 (± 0.058), recall of
0.599 (± 0.180), and F-measure that shows the harmonic mean be-
tween precision and recall of 0.729 (± 0.149) were achieved. For
graylog2-server the learners achieved slightly lower results than for
OpenTripPlanner. This was expected as graylog2-server has greater
mixture between the classes in the part where effective tests dom-
inate. Nevertheless, all three learners achieved similar results in
terms of MCC: 0.377 (± 0.103) for Logistic Regression, 0.396 (±
0.101) for Naïve Bayes, and 0.458 (± 0.086) for Random Forest. In
terms of other datasets, Naïve Bayes achieved similar MCC perfor-
mances to graylog2-server with nutz: 0.410 (± 0.102). It is worth
noting that machine learners frequently used in software defect
prediction rarely achieve MCC values above 0.400.

Figure 4 shows that Random Forest outperforms the other two
classifiers with remarkably high prediction performances in four
out of the five projects. We performed additional checks to estab-
lish whether Random Forest is over-fitting the results. To do that,
we conducted an additional classification experiment. We used
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Figure 1: The proportion of defective and non-defective (clean) methods covered by tests

Table 5: Cross-over test effectiveness prediction with Random Forest

Train Test Precision Recall F-measure MCC

gephi nutz 0.329 0.718 0.451 0.284
gephi OpenTripPlanner 0.345 0.972 0.509 0.412
gephi reddeer 0.168 0.646 0.267 −0.147
nutz gephi 0.842 0.400 0.542 0.521
nutz OpenTripPlanner 0.255 0.194 0.220 0.058
nutz reddeer 0.178 0.469 0.258 −0.060
OpenTripPlanner gephi 0.667 0.150 0.245 0.254
OpenTripPlanner nutz 0.310 0.067 0.110 0.058
OpenTripPlanner reddeer 0.157 0.531 0.242 −0.160
reddeer gephi 0.583 0.175 0.269 0.243
reddeer OpenTripPlanner 0.404 0.958 0.568 0.484
reddeer nutz 0.269 0.487 0.347 0.131

0.376 0.481 0.336 0.173
(±0.215) (±0.304) (±0.147) (±0.232)

the cross-prediction approach, where we trained a learner on one
dataset, and validated it on another dataset. For the training pur-
poses we selected all four datasets that significantly outperform
the other two classifiers: gephi, nutz, OpenTripPlanner and reddeer.
As the validation set, we combined all the three remaining datasets.
For example, when gephi was used for the training, nutz, OpenTrip-
Planner and reddeer were used for the validation. All learners are
trained and validated under the same conditions.

The results from this cross-over prediction analysis are presented
in Table 5 which shows that When nutz was used as a training set

and reddeer as a validation set, the prediction was no better than
random (MCC=-0.060). Similar was true when reddeer served as
the training set, whilst nutz was a validation set (MCC=0.131).
In both cases we could establish the likeliness of Random Forest
over-fitting the results. On the other hand, Random Forest was
exceptionally successful at predicting gephi’s effective tests when
nutz was used as a training set (MCC=0.521). As gephi has three
relatively clear subsets of effective tests (observable from the PCA
plot), tree-based classifiers such as Random Forest should be good
at predicting those. A relatively acceptable MCC performance was
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Figure 2: The proportion of test cases linking to defective
and non-defective methods

achieved when using reddeer as a training set, and predicting gephi
(MCC=0.243). With the exclusion of the pairs (nutz, gephi) and
(reddeer, OpenTripPlanner), where the projects on the left were used
for training, and projects on the right for validation, Random Forest
did not achieve the exceptional results as when the same dataset
was used for training and validation. Although each project in our
analysis is contextually very different from each other, the tendency
of effective tests to cover a greater number of methods is present
in multiple datasets. Therefore, we would expect Random Forest to
achieve better prediction performances taking into account that it
does remarkably well on the same dataset. As it is possible that the
results from Random Forest are overinflated, we take a conservative
approach by considering the other two learners.

5 DISCUSSION
Traditional unit tests usually cover limited functionality invoking
only a small number of methods. This relative simplicity makes
unit testing relatively cheap and easy, compared to other types of
testing. Our results suggest that there is widespread under using of
unit testing. In most of the seven systems that we investigated the
majority of code did not have associated unit test code linked to
it, which is in alignment with the previous findings by Kochhar et
al. [23, 25]. This under testing of code represents a significant risk
that systems will fail.

Our analysis also suggests that more defects are discovered when
unit tests touchmultiple methods. Given that defects are more likely
to appear when the complexity of code increases, traditionally
designed simple unit tests may be less effective than previously
thought at detecting defects. The design of unit tests may need to
be reconsidered.

Our results may offer some explanation as to why there is no
consensus between studies investigating the effectiveness of code
coverage. While covering as much code as possible with tests may
be useful, our results suggest that tests should go beyond only
coverage. Defects are less likely in simple code units and more
likely in complex code units. Tests should be more sophisticated
to try and detect defects in complex code. In particular our results
suggest that unit tests should touch multiple code units, as defects
seem to appear in the gaps between code units. However even
simple unit tests are certainly useful as a first line of defence.

Our results suggest that many of the metrics that we use to
evaluate the effectiveness of JUnit tests (Table 3) do not explain a
test’s ability to detect a defect or not. These metrics may be useful to
determine the code quality of unit tests as described in [7], however
our analysis suggests that these metrics are not useful in relation
to the defect detection capacity of tests. Method count is the only
useful metric. This means there remains much work needed to
identify the features of JUnit tests that underpin their effectiveness
at detecting defects.

6 THREATS TO VALIDITY
Although we have been careful to avoid errors in our experiment,
there are some potential threats to validity left in our study. We
consider three types of threats to validity: construct, conclusion,
and external validity.

To minimise threats imposed by construct validity, a study has
“to establish correct operational measures for the concepts being
studied” [22]. We mitigated this threat by carefully collecting defect
data using the approach described in Section 3.4. For the tool that
collects the test metrics described in Table 3 we wrote JUnit tests
to validate its core functionalities. To ensure the correctness of
links between production and test code, we have considered the
links from production to test code and vice versa. Figures 1 and
2 demonstrate this, where Figure 2 shows that all tests have been
linked to the production methods. We also acknowledge that some
of the Java methods that we classified as clean may have previously
contained a defect that had been detected by a unit test.

In relation to conclusion validity, which relies on the ability
to draw statistically correct conclusions, we paid special care to
properly calculate all performance measures. We also performed ad-
ditional checks to establish whether Random Forest truly provides
superior results, or whether that could be due to over–fitting.

External validity considers the extent to which our results can
generalise. We tried to reduce this threat by systematically selecting
seven open source systems, as detailed in Table 1. We needed to
select projects with the highest number of issues as it is impossible
to perform any analysis of whether tests find defects if there are few
or no reported defects in the system. We chose the 150 out of 5508
systems as for an analysis of the effectiveness of tests we needed
to compile the source and test code of the systems. In most cases
a manual intervention was needed, as code was not compilable at
many snapshots, was linked to commercial dependencies, or was
linked to abandoned dependency repositories. Consequently our
rigorous analysis of seven projects. We cannot claim that our results
would generalise to other systems, as this could only be established
by replicating our study on other datasets. However, the selected
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Figure 4: Performance values for predicting test effectiveness on six datasets

systems cover different types of domains, and vary in size of tests
to methods ratio, as well as by the number of defects.

7 CONCLUSIONS AND FUTUREWORK
We evaluated seven open source systems and found that on average
the majority of defective methods never get invoked by JUnit tests.
JUnit tests are relatively quick and easy tests to produce and it
seems clear that more of these tests are needed in most of these
seven systems. This finding is an immediate actionable finding for
developers. As without any unit testing code is likely to be highly
susceptible to failure.

Our results also suggest that JUnit tests become more effective
when they touch a several methods. Such tests may be more likely
to detect defects that occur when the complexity of code increases.
Most of our models demonstrated good prediction performances
when method count and average lines of code metrics are used as
independent variables to predict the effectiveness of JUnit tests.
This finding is an immediate actionable finding for developers.
The design of unit tests should go beyond testing only within the
method and additionally touch related methods.

None of the other unit test metrics that we used were good pre-
dictors of unit tests detecting defects. There remains work needed

to identify more features of good unit tests. This finding is an im-
mediate actionable finding for researchers. Identifying the features
of unit tests that effectively detect defects, as well as the associated
measures of those features, could make a significant difference to
the number of latent defects affecting software.

In the future we plan to expand our analysis to more datasets,
including commercial systems. We also intend to investigate alter-
native test effectiveness measures to try and identify more metrics
than the number of methods touched that we report here. We would
also like to look in more detail at whether any relationships exist
between defect types and the features of unit tests that detect those
defect types.
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