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Abstract 

 

The Internet of Things (IoT) interconnects physical objects 

including sensors, vehicles, and buildings into a virtual 

circumstance, resulting in the increasing integration of 

Cyber-physical objects. The Fog computing paradigm 

extends both computation and storage services in Cloud 

computing environment to the network edge. Typically, IoT 

services comprise of a set of software components running 

over different locations connected through datacenter or 

wireless sensor networks. It is significantly important and 

cost-effective to orchestrate and deploy a group of 

microservices onto Fog appliances such as edge devices or 

Cloud servers for the formation of such IoT services. In this 
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chapter, we discuss the challenges of realizing Fog 

orchestration for IoT services, and present a software-

defined orchestration architecture and simulation solutions 

to intelligently compose and orchestrate thousands of 

heterogeneous Fog appliances. The resource provisioning, 

component placement and runtime QoS control in the 

orchestration procedure can harness workload dynamicity, 

network uncertainty and security demands whilst 

considering different applications’ requirement and 

appliances’ capabilities. Our practical experiences show that 

the proposed parallelized orchestrator can reduce the 

execution time by 50% with at least 30% higher orchestration 

quality. We believe that our solution plays an important role 

in the current Fog ecosystem. 

 

1. Introduction 

The proliferation of the Internet and increasing integration of 

physical objects spanning sensors, vehicles, and buildings have resulted 

in the formation of Cyber-physical environments that encompass both 

physical and virtual objects. These objects are capable of interfacing and 

interacting with existing network infrastructure, allowing for computer-

based systems to interact with the physical world, thereby enabling 

novel applications in areas such as smart cities, intelligent 

transportation, and autonomous vehicles. Explosive growth in global 

data generation across all industries has led to research focused on 

effective data extraction from objects to gain insights to support Cyber-

physical system design. IoT services typically comprise a set of software 

components running over different geographical locations connected 

through networks (i.e. 4G, wireless LAN, Internet etc.) that exhibit 

dynamic behavior in terms of workload internal properties and resource 

assumption. Systems such as datacenters and wireless sensor networks 

underpin data storage and compute resources required for the operation 

of these objects. 

A new computing paradigm  ̶  Fog computing  ̶  further evolves 

Cloud computing by placing greater emphasis of computation and data 

storage at the edge of the network, allowing for reduced latency and 

response delay jitter for applications[1][25]. These characteristics are 

particularly important for latency-sensitive applications such as gaming 

and video streaming. In this way, the data processing can be greatly 

decentralized by exploiting compute capacities from not only Cloud 
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infrastructures, but from the IoT network itself. In this environment, 

existing applications and massive physical devices can be leveraged as 

fundamental services and appliances respectively. They are composed in 

a mash-up style (i.e., applications are developed using contents and 

services available online [56]) in order to control development cost and 

reduce maintenance overhead. IoT services which involve a great 

number of data-stream and control flows across different regions that 

require real-time processing and analytics are especially suitable to this 

style of construction and deployment. In this context, orchestration is a 

key concept within distributed systems, enabling the alignment of 

deployed applications with user business interests.  

 

 

Figure 1. An orchestration scenario for an e-Health service: 

different IoT appliances (diverse types of sensors and Fog 

nodes) are orchestrated as a workflow across all layers of 

Fog architecture. Several candidate objects can potentially 

provision similar functionality. The Fog orchestrator acts as 

a controller deployed on a workstation or Cloud datacenter 

and across all organization layers based on global 

information. Its primary responsibility is to select resources 

and deploy the overall service workflow according to data 

security, reliability, system efficiency requirements. It is 

noteworthy that the orchestrator is a centralized controller 

only at a conceptual level and might be implemented in a 

distributed and fault-tolerant fashion, without introducing a 

single point of failure.  
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A Motivating Example. Smart cities aim to enhance the quality 

of urban life by using technology to improve the efficiency of services 

to meet the needs of residents. To this end, multiple information and 

communication technology (ICT) systems need to be integrated in a 

secure, efficient and reliable way in order to manage city facilities 

effectively. Such systems consist of two major components: (1) sensors 

integrated with real-time monitoring systems, and (2) applications 

integrated with the collected sensor (or device) data. Currently, IoT 

services are rudimentary in nature, and only integrate with specific 

sensor types. This is resultant of no existing universally agreed 

standards and protocols for IoT device communication, and represents a 

challenge towards achieving a global ecosystem of interconnected 

things.  

To address this problem, an alternative approach is to use an IoT 

service orchestration system to determine and select the best IoT 

appliances for dynamic composition of holistic workflows for more 

complex functions. As shown in Figure 1, the proposed orchestrator 

manages all layers of an IoT ecosystem to integrate different standalone 

appliances or service modules into a complex topology. An appropriate 

combination of these standalone IoT services can be used to facilitate 

more advanced functionality, allowing for reduced cost and improved 

user experience. For example, mobile health sub-systems are capable of 

remote monitoring, real-time data analysis, emergency warning, etc. 

Data collected from wearable sensors that monitor patient vitals can be 

continuously sent to data aggregators and, in the event of detection of 

abnormal behavior, hospital personnel can be immediately notified in 

order to take appropriate measures. 

While such functionality can be developed within a standalone 

application, this provides limited scalability and reliability. The 

implementation of new features leads to increased development efforts 

and risk of creating a monolithic application incapable of scaling 

effectively due to conflicting resource requirements for effective 

operation. For reliability, increased application complexity leads to 

tedious, time-consuming debugging. The use of orchestration allows for 

more flexible formation of application functionality to scale and it also 

decreases the probability of failure correlation between application 

components. 

At present, orchestration within Cloud computing environments 

predominantly address issues of automated interconnection and 

interaction in terms of deployment efficiency and resource satisfaction 

from the perspective of the Cloud provider [8][11]. However, these 

works do not consider the effects of network transmission characteristics 

outside the operational boundary of the datacenter. In reality, the 
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heterogeneity, mobility and the dynamicity introduced by edge devices 

within Fog environments are greater than those found within Cloud 

environments. Additionally, the emergence of 4G or 5G techniques are 

still far from mature in terms of response latency and energy efficiency. 

This has resulted in increasing network uncertainty which may incur 

tailed execution and security hazards. In this context, it is significantly 

important to take all these factors into account within the automated 

resource provisioning and service delivery. Therefore, the Fog 

orchestrator should provide (a) a centralized arrangement of the 

resource pool, mapping applications with specific requests and an 

automated workflow to physical resources in terms of deployment and 

scheduling, (b) workload execution management with runtime QoS 

control such as latency and bandwidth usage; and (c) time-efficient 

directive operations to manipulate specific objects.  

In this chapter, we propose a scalable software-defined 

orchestration architecture to intelligently compose and orchestrate 

thousands of heterogeneous Fog appliances (devices, servers). 

Specifically, we provide a resource filtering based resource assignment 

mechanism to optimize the resource utilization and fair resource sharing 

among multi-tenant IoT applications. Additionally, we propose a 

component selection and placement mechanism for containerized IoT 

microservices to minimize the latency by harnessing the network 

uncertainty and security whilst considering different applications’ 

requirement and appliances’ capabilities. We describe a Fog simulation 

scheme to simulate the above procedure by modeling the entities, their 

attributes and actions. We then introduce the results of our practical 

experiences on the orchestration and simulation.  

2. Scenario and Application 

2.1 Concept Definition  

Prior to discussing technical details of orchestration, we first 

introduce a number of basic terms and concepts.  

Appliance: Appliance is the fundamental entity in the Fog 

environment. Appliances include Fog Things, Fog nodes and Cloud 

servers. Things are defined as networked devices including sensors and 

devices with built-in sensors which can monitor and generate huge 

amount of data. Cloud servers store the data and provide parallelized 

capability of computation. It is noteworthy that a Fog node is defined as 

a particular equipment or middleware residing within the midst of edge 
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things and the remote Cloud. It serves as an agent that collects data from 

a set of sensors, which is then transmitted to a centralized computing 

system that locally caches data and performs load balancing.  

IoT Microservice: It is a software unit that provisions a specific 

type of functionality. For instance, there are a number of demands for 

data collecting, data streaming gateway or routing, data pre-processing, 

user data caching, load balancing, firewall services, etc. These 

functionalities are independently executed, encapsulated into a container 

and then placed onto an appliance (except for sensors that simply 

generate data). Additionally, several candidate objects potentially 

provision similar functionality and one of them will be eventually 

selected and deployed as the running instance.    

IoT Service (IoT Application): A complete IoT application 

typically consists of a group of IoT microservices. All microservices are 

inter-connected to form a function chain that best serve user’s 

requirements. Formally, an IoT application can be depicted as a DAG 

workflow, where each node within the workflow represents a 

microservice. An example is illustrated in Figure 2, where the 

aforementioned e-Health application can be divided into many 

independent but jointly-working microservices.  

Fog Orchestration: The orchestration is a procedure that enables 

the alignment of deployed IoT services with users’ business interests. 

Fog orchestration manages the resource pool; provides and underpins 

the automated workflow with specific requests of IoT service satisfied; 

and conducts the workload execution management with runtime QoS 

control. A full discussion of this concept can be found within Section 4.  

 

Figure 2. e-Health system workflow and containerized 

microservices in the workflow 
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2.2 Fog-enabled IoT Application 

Traditional Web-based service applications are deployed on 

servers within Cloud datacenters that are accessed by end devices such 

as tablets, smart phones and desktop PCs. Similarly to Web-based 

service applications, the Cloud provisions centralized resource pools 

(compute, storage) in order to analyze collected data and automatically 

trigger subsequent decisions based on a pre-defined system logic. The 

most significant difference, however, is the use of Fog nodes that 

transmit data to Cloud datacenters. For example, the vast majority of 

wearable sensor data is collected and pre-processed by smart phones or 

adjacent workstations. This can either significantly reduce transmission 

rates or improve their reliability.  

Table 1:  Comparison between web-based application and Fog-

enabled IoT application  

Attributes Web-based Fog-enabled 

Architecture  Cloud + devices Cloud + Fog + Things 

Communication Centralized Hybrid 

Interfaces  WSDL/SOAP 

protocol 

web service 

MQTT protocol [40]  

Lightweight API 

Interoperability Loosely-decoupled Extremely Loosely-decoupled 

Reliability  Medium Low  

 

We summarize the main differences between Web-based and IoT 

applications in Table 1. 

First, IoT communication is performed using a hybrid 

centralized-decentralized approach depending on context. Most message 

exchanges between sensors or between a sensor and the cloud are 

performed using fog nodes. Purely centralized environments are ill-

suited for applications that have soft and hard real-time requirements. 

For example, neighboring smart vehicles need to transfer data between 

other vehicles and traffic infrastructure to prevent collisions. Such a 

system was piloted in New York City using Wi-Fi to enable real-time 

interactions to assist drivers in navigating congestion and to 

communicate with pedestrians or oncoming vehicles [13]. Furthermore, 

given the huge number of connected devices, the data volume generated 

and exchanged over an IoT network is predicted to become many orders 

of magnitude greater than that of conventional Web-based services, 

resulting in significant scalability challenges. 
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Interoperability is another aspect where Web-based and IoT 

applications diverge. Software-defined networking technologies enable 

the decoupling of software control and heterogeneous hardware 

operations. This approach provides an opportunity to dynamically 

achieve different quality levels for different IoT applications in 

heterogeneous environments [14]. Moreover, application-level 

interoperability benefits from Web technologies, such as the RESTful 

architecture, that provide a high level of interoperability. Using these 

technologies and the MQTT messaging protocol [40], an abundance of 

programming APIs can be distributed across entire fog domains and 

utilized to increase the flexibility of loosely coupled management [15]. 

Lightweight APIs, such as RESTful interfaces, result in agile 

development and simplified orchestration with enhanced scalability 

when composing complex distributed workflows.    

A third aspect is reliability. Physical systems make up a 

significant part of IoT applications, thus the assumptions that can be 

made regarding fault and failure modes are weaker than those for Web-

based applications. IoT applications experience crash and timing failures 

stemming from low-sensor battery power, high network latency, 

environmental damage, etc.[57][58]. Furthermore, the uncertainty of 

potentially unstable and mobile objects increases difficulties in 

predicting and capturing system operation. Therefore, an IoT application 

workflow’s reliability needs to be measured and enhanced in more 

elaborate ways.  

2.3 Characteristics and Open Challenges 

The diversity among Fog nodes is a key issue - location, 

configuration, and served functionalities of Fog nodes all dramatically 

increase this diversity. This raises an interesting research challenge, 

namely how to optimize the process of determining and selecting the 

best software components onto Fog appliances to compose an 

application workflow whilst meeting non-functional requirements such 

as network latency, QoS, etc. We outline and elaborate on these specific 

challenges as follows: 

Scale and complexity. With the increase of IoT manufacturers 

developing heterogeneous sensors and smart devices, selecting optimal 

objects becomes increasingly complicated when considering customized 

hardware configurations and personalized requirements. For example, 

some applications can only operate with specific hardware architectures 

(e.g., ARM, Intel) or operating systems, while applications with high 

security requirements might require specific hardware and protocols to 
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function. Not only does orchestration cater to such functional 

requirements, it must do so in the face of increasingly larger workflows 

that change dynamically. The orchestrator must determine whether the 

assembled systems comprising of Cloud resources, sensors, and Fog 

nodes coupled with geographic distributions and constraints are capable 

of provisioning complex services correctly and efficiently. In particular, 

the orchestrator must be able to automatically predict, detect, and 

resolve issues pertaining to scalability bottlenecks which may arise from 

increased application scale. 

Security criticality. In the IoT environment, multiple sensors, 

computer chips, and communication devices are integrated to enable the 

overall communication. A specific service might be composed of a 

multitude of objects, each deployed within different geographic 

locations, resulting in an increased attack vector of such objects. Fog 

nodes are the data and traffic gateway that is particularly vulnerable to 

such attacks. This is especially true in the context of network-enabled 

IoT systems, whose attack vectors can range from human-caused 

sabotage of network infrastructure, malicious programs provoking data 

leakage, or even physical access to devices. A large body of research 

focuses on cryptography and authentication towards enhancing network 

security to protect against Cyber-attacks [16]. Furthermore, in systems 

comprising of hundreds of thousands electronic devices, how to 

effectively and accurately evaluate the security and measure its risks is 

critically important in order to present a holistic security and risk 

assessment [17]. This becomes challenging when workflows are capable 

of changing and adapting at runtime. For these reasons, we believe that 

approaches capable of dynamically evaluating the security of dynamic 

IoT application orchestration will become increasingly critical for secure 

data placement and processing. 

Dynamicity. Another significant characteristic and challenge for 

IoT services is their ability to evolve and dynamically change their 

workflow composition. This is a particular problem in the context of 

software upgrades through Fog nodes or the frequent join-leave 

behavior of network objects which will change its internal properties 

and performance, potentially altering the overall workflow execution 

pattern [50]. Moreover, handheld devices inevitably suffer from 

software and hardware aging, which will invariably result in changing 

workflow behavior and its properties. For example, low-battery devices 

will degrade the data transmission rate; and unexpected slowdown of 

read/write operations will manifest due to long-time disk abrasions. 

Finally, the performance of applications will change due to their 

transient and/or short-lived behavior within the system, including spikes 

in resource consumption or data generation [57]. This leads to a strong 
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requirement for automatic and intelligent re-configuration of the 

topological structure and assigned resources within the workflow, and 

importantly, that of Fog nodes. 

Fault diagnosis and tolerance. The scale of a Fog system results 

in increased failure probability. Some rare-case software bugs or 

hardware faults which do not manifest at small-scale or testing 

environments have a debilitating effect on system performance and 

reliability. For instance, the straggler problem [18] occurs when a small 

proportion of these tasks experience abnormally longer execution 

compared with other sibling tasks from the same parallel job, leading to 

extended job completion time. At the scale, heterogeneity, and 

complexity we are anticipating, it is very likely that different types of 

fault combinations will occur [19]. To address these, redundant 

replications and user-transparent fault-tolerant deployment and 

execution techniques should be considered in orchestration design. 

2.4 Orchestration Requirements 

According to the discussed user cases within Fog environments, a 

user firstly provides a specification of their requirement that explicitly 

describes the basic topological workflow (e.g., from the data collection 

to the final monitoring system) and the detailed requirements for each 

workflow node in terms of data locality, response latency, reliability 

tolerance level, minimum security satisfactory level, etc. In this context, 

the ultimate objective of the Fog orchestration is to transform the logical 

workflow design from the user perspective into the physically 

executable workflow over different resources of Fog appliances. In this 

procedure, the requirements that should be at least satisfied can be 

primarily summarized as follows: 

1) Exploit Fog appliance heterogeneity. The orchestrator 

should recognize the diversity of edge devices, Fog nodes and Cloud 

servers, and fully exploit the capabilities of CPU, memory, network and 

storage resources over the Fog layers. At present, neither the 

conventional cluster management systems [43]-[48] nor the container 

management frameworks [1][2][3] can efficiently detect and leverage 

the edge resources due to the deficient design of current inter-action 

protocol and state management mechanism.  

2) Enable IoT appliance and application operation. 

Unawareness of resource availability and IoT application status make it 

unfeasible to manipulate any instructions of resource allocation or 

parameter tuning at runtime. This is also a fundamental step for realizing 

the interoperations among different appliances in the workflow.  
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Loosely-coupled functions or APIs should be designed and accessed via 

pre-defined interfaces over the network, which enables the re-use and 

composition to form a chain of functions. 

3) Conduct workflow planning optimization and network 

latency-aware container placement. For general purposes, the 

orchestrator is expected to support topology-based orchestration 

standard TOSCA [6]. Afterwards, according to the topological 

workflow, how to choose the most suitable microservice from the 

candidates and how to choose the most suitable Fog appliances for 

hosting the selected containerized microservices are two research 

problems. Due to the physically widespread in a local or wide area 

network of Fog appliances, the software services are ideally deployed 

close to the data sources or data storage in order to reduce the 

transmission latency. With other factors considered, the orchestrator 

must support a comprehensive placement strategy whilst being aware of 

appliances’ characteristics such as physical capabilities, locations, etc.  

4) Leverage real-time data and learning techniques for 

optimization and simulation. Performance-centric and QoS-aware 

learning can significantly steer the effectiveness and efficiency of 

resource allocation, container placement and the holistic orchestration. 

This is highly dependent of data-driven approach and machine learning 

techniques.  

 

3. Architecture: A Software- 

Defined Perspective  

3.1 Solution Overview 

To fulfill the aforementioned requirements, the initial steps are 

resource allocation and microservice-level planning before those 

microservices are deployed and launched. An exemplified construction 

problem is to firstly find a suitable microservice instance into container, 

and then find a physical entity with adequate resources to host those 

containers. Namely, after obtaining a candidate i that can serve the 

functionality from a candidate list I for a specific type of microservice t 

(which is the node within the whole topology T of IoT application), we 

deploy the selected instance into a container which is hosted by a 



12 
 

physical machine or portable device r from the resource set R. The 

objective is to maximize a utility function (utilFunc) that describes the 

direction of resource selection and container placement (such as 

minimizing the performance interference whilst maximizing the security 

and reliability) under QoS and capacity constraints.  

maximize: 

 ∑ 𝑢𝑡𝑖𝑙𝐹𝑢𝑛𝑐(𝑖, 𝑟), 𝑖 ∈ 𝐶𝑡, 𝑟

𝑡 ∈𝑇

∈ 𝑅 

subject to: QoS(i, r), i ∈ 𝐶𝑡 , r ∈ 𝑅   

 Cap(r), r ∈ 𝑅    

To satisfy the application-specific needs with hard or soft 

constraints, and the platform-level fairness of allocations among 

different IoT applications, it is highly preferable to accurate sort out the 

appliances that can best serve each IoT application. Also, for online 

decision making, real-time or sometimes faster-than real time is urgently 

required. In some cases, orchestration would be typically considered 

computationally intensive, as it is extremely time-consuming to perform 

combination calculation considering all specified constraints and 

objectives.   

After resource selection and allocation, we can obtain an optimal 

or near-optimal placement scheme based on current system status before 

the application deployment. After the IoT application is deployed, 

workload running status and system states should be timely monitored 

and collected to realize dynamic orchestration at run-time with QoS 

guaranteed. Meanwhile, with the huge amount of data generated, data-

driven optimization and learning-based tuning can facilitate and drive 

the orchestration intelligence.  

 

Figure 3. mapping between microservice candidate, 

containerized microservice instance, and the physical 

appliances.   
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Figure 4. Fog Orchestration Architecture  

3.2 Software-Defined Architecture   

A significant advantage of a software-defined solution [60] is the 

de-coupling of the software-based control policies and the dependencies 

on heterogeneous hardware. On one hand, along with the rapid 

development of mobile and embedded operating system, the 

programming API and virtualization techniques can be greatly utilized 

to increase the flexibility of manipulation and management. 

Virtualization, through the use of containerization, can provide 

minimized granularity of resource abstraction and isolated execution 

environment. Resource operations are exposed as interoperable system 

APIs and accessible to upper frameworks or administrators. On the other 

hand, the orchestration controls the software-defined architecture. In 

order to mitigate the overloaded functionalities of control plane in 

previous architecture, the information plane is de-coupled from the 

control plane. The independent information plane can therefore 

provision more intelligent ingredients into the orchestration and resource 

management by integrating pluggable libraries or learning frameworks. 

Additionally, we adopt container technology to encapsulate each task or 

IoT microservice. Containers can ensure the isolation of running 

microservices and create a development and operation environment that 

is immune to system version revision, sub-module updates.  

As shown in Figure 4, the Fog orchestration framework is 

incorporated with the emerging networking and resource management 

technologies. We design the layered architecture according to the 
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popular SDN reference architecture [60][61]. The main components are 

described as follows: 

Data Plane. The first responsibility of data plane is to regulate 

and abstract the resources from heterogeneous Fog entities. It also 

provisions an easily accessed Application Programming Interface (API) 

for resource management and application runtime control across the 

entire Fog system. Furthermore, the monitored system states such as 

resource usage, application-specific metrics etc. are collected and 

maintained in the data plane. The build-in query APIs are provided for 

visualization or administration.  

Control Plane. The control plane is the decision making plane 

that works on the basis of control logic in the overall architecture. It 

dominates both data flow and control flow, and inter-connects with the 

deployment module and operations of underlying entities and running 

appliances. The orchestrator mainly takes charge of resource 

management, workflow planning and runtime QoS control:  

 Resource Manager. The resource manager is responsible for 

the resource pre-filtering according to the basic demands and 

constraints in the requests and available resources in the Fog 

environments. In addition, after the final decision made by 

the planning step, the resource manager also takes the 

responsibility of resource binding and isolation against other 

applications. It also takes charge of the elastic resource 

provisioning during the appliances’ execution. They are 

depicted in Section 4.1.  

 Workflow Planner. The planner calculates the optimal 

mapping of candidate micro-services, containerized 

appliances and the hosting entities. We will detail the 

relevant techniques in Section 4.2. 

 QoS Controller. The controller dynamically tunes the 

allocated resource, the orchestration strategy at run-time with 

the QoS guaranteed. They are detailed in Section 4.3.  

The control module can be implemented in distributed (with each 

sub-orchestrator managing its own resource partitions without global 

knowledge) or centralized (with all resource statuses in the central 

orchestrator), or a hybrid way for the consideration of scalability and 

dependability. 

Information Plane. The information plane lends itself as a 

vertical within this architecture, provisioning data-driven supporting and 

intelligent solutions. By exploiting the stored sensed information and 

system real-time statuses, the data analytic and machine learning sub-
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module can abstract and analyze the application’s behavior pattern and 

give more accurate resource estimation and location preference in the 

resource allocation. Also, with the aid of big data analytics, this module 

can build the performance model based on the QoS and network 

uncertainty modeling, and diagnose system failures preventing them 

from the regular orchestration.  

Application Plane. The application-level plane firstly contains 

an administration portal that aggregates and demonstrates the collected 

data, and allows for visualized interaction. Additionally, a containerized 

deployer is integrated in this plane, providing cost-effective Fog service 

deployment. It automatically deploys the planned IoT application or 

services into the infrastructure and continently upgrade current services.  

The simulation module by leveraging the collected data, modeling the 

user and appliance’s characteristics, resource allocation and placement 

policies, and the fault patterns etc.  

 

Figure 5. Orchestration within the life-cycle management: Main functional 

elements in our Fog Orchestrator: resource allocation for filtering and 

assigning the most suitable resources to launch appliances; the planning 

step for selection and placement; runtime monitoring and control during 

execution; and the optimization step to make data-driven decision based 

on adaptive learning techniques.  

 

4. Orchestration  

In this section, we discuss the detailed research sub-topics that 

we believe are key to tackling the challenges outlined above. As shown 
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in Figure 5, within the life-cycle management, these include the resource 

filtering and assignment in resource allocation phase; the optimal 

selection and placement in planning phase; dynamic QoS monitoring 

and guarantees at runtime through incremental processing and re-

planning; and big data driven analytics and optimization approaches that 

leverage adaptive learning such as machine learning or deep learning to 

improve orchestration quality and accelerate the optimization for 

problem solving. The functionality decomposition based on the life-

cycle perspective is orthogonal to the software-defined architecture. In 

particular, the construction and execution part are mainly implemented 

in the control plane and all functionalities are underpinned by the 

information plane and data plane. The data-driven optimization is 

associated with the information plane.  The application deployment and 

overall administration will manifest in the application plane.  

4.1 Resource Filtering and Assignment 

Fog infrastructures typically consist of heterogeneous devices 

with diverse capacity of compute, memory and storage size. Therefore, 

resource allocation is a very fundamental procedure for system entities 

to be launched and executed. One of the responsibilities of Fog 

orchestrator is to optimize the use of both Cloud and Fog resources on 

top of Fog applications. There are two main tasks in the Fog eco-

systems: containers which encapsulate the microservices and run across 

tiers in Fog eco-system and computation-intensive tasks that run in 

parallel to process the huge volume of data. The resource requests 

proposed by both sides needs to be timely dispatched and handled in the 

resource manager. Meanwhile, the resource manager will trigger new 

iterations of resource allocation by leveraging recently aggregated 

resources (such as CPU, memory, disk, network bandwidth, etc.). 

Allocated resources will be guaranteed and reserved for the requesting 

application. Additionally, the resource manager keeps track of the task 

progress and monitors the service status.  

In essence, the procedure of resource allocation is the 

matchmaking or mapping between the requirements from the 

applications that are waiting for execution and the available resources 

that are dispersed over the Fog environment. Therefore, the resource 

allocation sub-system should fully exploit the diversities and dynamicity 

of computing clusters at massive scale to improve throughput of 

computation jobs and reduce the negative impact of unexpected 

latencies stemming from the jitter of network and occurrence of 

ineffective queuing. Only through recognizing the accurate targets for 

placement can the scheduler mitigate the computation straggler or 
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promote resource utility and compaction. Considering heterogeneity in 

Fog [50] is extremely important when conducting the mapping and such 

heterogeneity leads to different resource capacities and unique machine 

characteristics. We need to find out the machines that are determined to 

be most suitable for specific purposes. In Cloud datacenter, this can be 

typically done through a multi-step filtering process that 

comprehensively considers estimated load, correlative workload 

performance, and queue states. Similarly, fog resource allocation should 

be conducted from the following three aspects: 

Label-based resource representation. In the Fog environment, 

there is a considerably growing trend of the resource heterogeneity 

stemming from the rapid development of IoT devices and new types of 

hardware. This growth provisions more choices for upper applications. 

For example, hardware such as GPU, FPGA, TPU (Tensorflow Process 

Unit, NVM, etc.) make it possible to accelerate the computations and 

data processing in deep learning, vision recognition etc. Moreover, for 

those applications that involve a great many of geo-distributed data 

access and processing, it is preferable to require the affinities between 

tasks and the stored raw data. Therefore, consideration of such data and 

resource affinity is extremely meaningful especially for latency-

sensitive applications. In the procedure of resource filtering, we should 

firstly sort out the collections of destinations that have sufficient 

available resources and satisfy all specific requirements. To this end, we 

can adopt the label-based matchmaking between the requests and 

resources. Formally, the request can be expressed as an n-tuple: ResReqi 

= (Reqi, LatBound, LocPref) where Reqi = {Reqi
1, … Reqi

d} represents 

the requested resource amount of different labels. The label represents a 

specific description of resource dimension or a certain constraint. 

Latency requirement LatBound specifies the detailed acceptance level of 

the latency and response time and the LocPref indicates the preferable 

execution locations according to the data distribution and processing 

requirements. On the other hand, the Fog resources existing in an Fog 

appliance e can be described as Rese = {Rese
1, … Rese

d
, Priority} where 

Rese
i represents the value of ith label and Priority attribute implies the 

prioritized level according to the appliance type.  

Candidate filtering and resource assignment. Combined all 

requests with available resources from all active entities, the resource 

manager tries to rank the candidate Fog appliances according to system 

metrics such as resource status, device load, queuing states, etc. An 

intuitive latency-aware resource allocation strategy is to firstly allocate 

resources of edge devices to microservices requiring lower-delay, and 

microservices with lower level of delay requirement are then allowed 

onto entities such as Fog node or Cloud resources. The resultant 
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collection of candidate entities will be further considered in the next 

phase; and the final resource binding is conducted once the component 

selection and placement is determined. It is worth noting that the pre-

filtering and candidate selection can dramatically reduce the aimless and 

unnecessary calculations. Therefore this step cannot be ignored for Fog 

orchestration.   

Node and executor management. Node Manager in 

conventional cluster management systems is an agent that runs on each 

individual node, and serves two purposes: the resource monitoring and 

the executor (worker process, VM or Docker container) control. The 

latter is made possible through the aid of process launch, monitor, and 

isolation etc. Compared with the clusters in Cloud data centers, the 

network condition, vulnerability of physical devices and communication 

stability are entirely different, resulting in the disability to directly apply 

all current methods of node management in the resource management. 

For example, to handle frequent variations of node status, the resource 

manager should reserve the allocated resources instead of directly 

killing all running processes in face of frequent node joining-in or 

departing and the node anomaly stemming from temporary network 

delays or transient process crashes etc. Additionally, the high-rate data 

exchange between the Cloud and edge devices is fundamental to 

underpin the IoT applications. Long-thin connections between mobile 

users and remote cloud have to be long-lived maintained and isolated for 

the sake of network resource reservation.  

4.2 Component Selection and Placement 

The recent trend in composing Cloud applications is driven by 

connecting heterogeneous services deployed across multiple datacenters. 

Similarly, such a distributed deployment helps improve IoT application 

reliability and performance. However, it also exposes appliances and 

microservices to new security risks and network uncertainty. Ensuring 

higher levels of dependability is a considerable challenge. Numerous 

efforts [20][21] have focused on QoS-aware composition of native VM-

based Cloud application components, but neglect the proliferation of 

uncertain execution and security risks among interactive and 

interdependent components within the DAG workflow of an IoT 

application.  

Cost model. As we discussed in section 3.1, the composition and 

placement of components can be regarded as an optimization problem. 

To be precise, the optimization includes two main factors in order to 

capture the increasing characteristics in Fog environment - the network 
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uncertainties and service dependability (such as security and reliability 

risks). We assume that the uncertainty and security of microservice si are 

defined as Unci and Seci respectively. Importantly, there are parameters 

to represent the dependency relation between two adjacently chained 

microservices. For example, DSecij represents the risk level of 

interconnecting si and sj. Similarly, the uncertainty level between si and 

sj is described as DUncij. Thus, the optimization objectives can be 

formalized as: 

{
𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑖∈𝑆,𝑠𝑗∈𝑆 ∑ 𝑆𝑒𝑐𝑖 + ∑ 𝐷𝑆𝑒𝑐𝑖𝑗  

𝑎𝑟𝑔𝑚𝑖𝑛𝑠𝑖∈𝑆,𝑠𝑗∈𝑆 ∑ 𝑈𝑛𝑐𝑖 + ∑ 𝐷𝑈𝑛𝑐𝑖𝑗  
 

As the equation shows that we need to maximize the security 

whilst minimizing the impact of uncertainties on the services. There are 

two ways to solve this problem: 1) optimize a utility function which 

includes both objectives with different weights; 2) set a constraint for 

one of the objective and then optimize the other one. For some multi-

objective problems, it is unlikely to find a solution that has optimal 

values for all objective functions simultaneously. Alternatively, a 

feasible solution is the Pareto optimal [38] where none of the objectives 

can be improved without degrading an objective. Therefore, IoT service 

composition is to find a Pareto optimal solution which meets users’ 

constraints.   

Parallel computation algorithm. Optimization algorithms or 

graph-based approaches are typically both time-consuming and 

resource-consuming when applied into a large-scale scenario, and 

necessitate parallel approaches to accelerate the optimization process. 

Recent work [22] provides possible solutions to leverage an in-memory 

computing framework to execute tasks in a Cloud infrastructure in 

parallel. However, how to realize dynamic graph generation and 

partitioning at runtime to adapt to the shifting space of possible 

solutions stemming from the scale and dynamicity of IoT services 

remains unsolved. 

Late calibration. To ensure near-real-time intervention during 

IoT application development, a potential approach could be correction 

mechanisms that could be applied even when sub-optimal solutions are 

deployed initially. For example, in some cases, if the orchestrator finds a 

candidate solution that approximately satisfies the reliability and data 

transmission requirements, it can temporarily suspend the search for 

further optimal solutions. At runtime, the orchestrator can then continue 

the improvement of decision results with new information and a re-
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evaluation of constraints, and make use of task and data migration 

approaches to realize workflow re-deployment. 

4.3 Dynamic Orchestration with Runtime QoS 

Apart from the initial placement, the workflow dynamically 

changes due to internal transformations or abnormal system behavior. 

IoT applications are exposed to uncertain environments where variations 

in execution are commonplace. Due to the degradation of consumable 

devices and sensors, capabilities such as security and reliability that 

initially were guaranteed will vary accordingly, resulting in the initial 

workflow being no longer optimal or even totally invalid. Furthermore, 

the structural topology might change in accordance to the task execution 

progress (i.e. a computation task is finished or evicted) or will be 

affected by the evolution of the execution environment. Abnormalities 

might occur due to the variability of combinations of hardware and 

software crashes, or data skew across different management domains of 

devices due to abnormal data and request bursting. This will result in 

unbalanced data communication and subsequent reduction of application 

reliability. Therefore, it is essential to dynamically orchestrate task 

execution and resource reallocation. 

QoS-aware control and monitoring. To capture the dynamic 

evolution and variables (such as dynamic evolution, state transition, new 

operations of IoT, etc.), we should predefine the quantitative criteria and 

measuring approach of dynamic QoS thresholds in terms of latency, 

availability, throughput, etc. These thresholds usually dictate upper and 

lower bounds on the metrics as desired at runtime. Complex QoS 

information processing methods such as hyper-scale matrix update and 

calculation would give rise to many scalability issues in our setting. 

Event streaming and messaging. Such performance metric 

variables or significant state transitions can be depicted as system 

events, and event streaming is processed in the orchestration framework 

through an event messaging bus, real-time publish-subscribe mechanism 

or high-throughput messaging systems (e.g., Apache Kafka[4]), 

therefore significantly reducing the communication overheads and 

ensuring responsiveness. Subsequent actions could be automatically 

triggered and driven by Cloud engine (e.g., Amazon Lambda 

service[5]). 

Proactive recognition. Localized regions of self-updates become 

ubiquitous within Fog environments. The orchestrator should record 

staged states and data produced by Fog appliances periodically or in an 

event-based manner. This information will form a set of time series of 
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graphs and facilitate the analysis and proactive recognition of 

anomalous events to dynamically determine such hotspots [23]. The data 

and event streams should be efficiently transmitted among Fog 

appliances, so that system outage, appliance failure, or load spikes will 

rapidly feedback to the central orchestrator for decision making. 

4.4 Systematic Data-Driven Optimization 

IoT applications include numerous geographically distributed 

devices that produce multidimensional, high-volume data requiring 

different levels of real-time analytics and data aggregation. Therefore, 

data-driven optimization and planning should have a place in the 

orchestration of complex IoT services.  

Holistic cross-layer optimization. As researchers or developers 

select and distribute applications across different layers in the fog 

environment, they should consider the optimization of all overlapping, 

interconnected layers. The orchestrator has a global view of all resource 

abstractions, from edge resources on the mobile side to compute and 

storage resources on the cloud data center side. Pipelining the stream of 

data processing and the database services within the same network 

domain could reduce data transmission. Similar to the data-locality 

principle, we can also distribute or reschedule the computation tasks of 

fog nodes near the sensors rather than frequently move data, thereby 

reducing latency. Another potential optimization is to customize data 

relevant parameters such as the data-generation rate or data-compression 

ratio to adapt to the performance and assigned resources to strike a 

balance between data quality and specified response-time targets. 

Online tuning and History-Based Optimization (HBO). A 

major challenge is that decision operators are still computationally time 

consuming. To tackle this problem, online machine learning can 

provision several online training (such as classification and clustering) 

and prediction models to capture the constant evolutionary behavior of 

each system element, producing time series of trends to intelligently 

predict the required system resource usage, failure occurrence, and 

straggler compute tasks, all of which can be learned from historical data 

and a history-based optimization (HBO) procedure. Researchers or 

developers should investigate these smart techniques, with 

corresponding heuristics applied in an existing decision-making 

framework to create a continuous feedback loop. Cloud machine 

learning offers analysts a set of data exploration tools and a variety of 

choices for using machine learning models and algorithms [24].  
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4.5 Machine-learning for Orchestration  

Although current deployment of orchestration has been explored 

by human experts and optimized by some hand-crafted heuristics 

algorithms, it is still far from meeting the challenge of automated 

management and optimization. Learning-based methods, or more 

precisely, machine learning (ML), open a new door to tackle the 

challenges raised from IoT orchestration. ML approaches automatically 

learn underlying system patterns from historical data and explores the 

latent space of representation. It not only significantly reduces human 

labor and time, but is capable of dealing with multi-dimension and 

multi-variety data in dynamic or uncertain environments.  

Metric Learning. The current evaluation of a given workflow 

normally involves the knowledge of human experts as well as the 

numerical characteristic, quality of hardware, etc. However, the 

dynamicity within heterogeneous environments makes it infeasible and 

inaccurate to handcraft standard metrics for the evaluation over different 

orchestrations. Instead, Metric Learning[62] aims to automatically learn 

the metric from data (e.g., hardware configuration, historical records, 

runtime logs), providing convenient proxies to evaluate the distance 

among objects for better complex objects manipulation. Regarding 

orchestration scenarios, it is interesting if the algorithm can consider the 

topology layout of data during the learning. 

Graph Representation Learning. Connecting Metric Learning 

with the graph structure provides an orthogonal direction for current 

methodologies of resource filtering and resource allocation. However, 

traditional orchestration approaches normally use user-defined heuristics 

to explore the optimal deployment over the original graph with 

structural information. Those summary statistics again significantly 

involve hand-engineered features which are inflexible during learning 

process and design phase. By using Graph Representation Learning 

(GRL), we can represent or encode the complex structural information 

of a given workflow [63]. Furthermore, we can either use it for better 

exploitation of the machine learning models, or provide more powerful 

workflow metrics for better orchestration. For example, the current 

label-based resource representation may easily encounter the issue of 

sparse one-hot representation, and it would be more efficient to 

represent different hardware/services in a low- and dense- latent space 

[64].  

Reinforcement Learning. Design of good heuristic or 

approximation algorithms for NP-hard combinatorial optimization 

problems often requires significant specialized domain knowledge. 
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However, traditional algorithms are often insufficient in such knowledge 

when extreme complicated IoT applications are orchestrated. Given the 

efficient representation of the workflow, graph embedding[65] shows 

the potentiality of using neural network with Reinforcement Learning 

(RL) methods to incrementally construct an optimal solution in dynamic 

environments. There are a great number of research opportunities since 

current Deep RL solutions of combinatorial optimization merely focus 

on the standard traveling salesman problem (TSP) whose scenario is 

much simpler than the IoT application orchestration.   

 

5. Fog Simulation 

 5.1 Overview  

Simulation is an integral part of the process of design and 

analyzing systems in engineering and manufacturing domains. There is 

also a growing trend to analyze distributed computing systems using 

technologies such as CloudSim[26] or SEED[27] for example to study 

resource scheduling or analyze the thermodynamic behavior of a data 

center[28]. In these contexts, it is essential to understand the categories 

of simulation[29]: 

 Discrete event simulation (DES)[30][31] in which the 

system events are modeled as a discrete sequence. 

 Continuous simulations [29] which are typically constructed 

based on ordinary differential equations (ODEs) which 

represent properties of physical systems. 

 Stochastic simulation [32] such as monte-carlo methods. 

 Live, Virtual and Constructed (LVC) simulation providing 

interactive simulations often supported by technologies as the 

IEEE HLA 1516 [33].  

The LVC category of simulation introduces the concept of co-

simulation whereby two or more simulations are run concurrently to 

explore interactions and complex emergent behaviors. In the domain of 

engineering, co-simulation is typically limited to a handful of 

simulations due to the complexity of integrating simulations with 

differing time-steps and simulations of differing types. With the rise of 

IoT, Industry 4.0, and the Internet of Simulation (IoS) paradigm 

[34][35] there is a growing trend to explore the use of simulation as a 
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technology for facilitating online decision making. There are several key 

factors that must be considered in this context: 

 Inter-tool compatibility between simulations and also between 

simulations and other tools/systems. 

 Performance and scalability in terms of the size of the simul- 

ations that need to be run and the time needed to do so. For 

example the use cases for simulation with IoT may require 

simulation to perform in near real-time. 

 Understanding the complexity of the models involved in the 

simulations and understanding the trade-offs between 

complexity and abstraction [36]. 

The remainder of this section explores the application of 

simulation across two key areas: simulation for IoT and also online 

analysis as part of a decision making system such as an orchestrator. 

 

Figure 6. The workflow of system simulation  

5.2 Simulation for IoT application in Fog 

Within the traditional IoT sector there are two broad situation 

categories in which simulation is typically used: 

(a) Design and analysis of devices which may include control 

systems or 3D modeling during the design phases of the engineering 

process. This may occur at the component, system, or system of systems 

level. During the early stages the simulations are typically abstract 

concepts of functional behavior which are then iteratively, ideally using 

co- simulation, expanded upon to provide detailed insight into specific 

behaviors and emergent interactions. This process in the context of 

traditional engineering lifecycles is depicted in Figure 6 where the 

traditional V-model of component and system-level design is integrated 

with component and systems level testing. 
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(b) Analysis of data as described by the Industry 4.0 

movement [37]. In this context, data is collected by IoT sensors and 

systems and fed into analysis systems which increasingly involve 

simulation. An example is the automotive industry where data is 

collected from vehicles as they are used and fed back to the 

manufacturer. In the automotive space this is typically limited to 

periodic data collection during servicing but there is a growing trend 

with connected vehicles to provide more frequent or even a continuous 

data feedback to the manufacturer. As Figure 6 shows, data can be 

collected from deployed systems or devices and fed into simulations for 

further analysis which may or may not occur at the design phase of 

another engineering lifecycle iteration. 

Figure 7 depicts the abstract layers of IoS: virtual or federated 

cloud, traditional service layers (IaaS, PaaS, SaaS, FaaS, etc.). On top of 

this are the simulation layers with virtual things deployed as simulations 

(SIMaaS) and then virtual things becoming virtual systems at the 

workflow service layer (WFaaS). IoT lends itself as another vertical 

within this model providing physical things that can be connected to the 

virtual system workflows.  

 

Figure 7. The architecture of Simulation as a Service  

In order to precisely model and build the Fog simulator, we need 

to depict the attributes and behaviors of Fog appliances and the services. 

For a specific appliance, we include the appliance type, physical 

capacities such as CPU cores, RAM, storage, up/downlink bandwidths, 

and the connection status such as which appliances it is inter-connected 

with and the latency information of connections among different 

appliances. The attributes also contains the hardware specifications (i.e., 
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GPU, FPGA, TPU, etc.), software specifications (i.e., OS version, 

libraries, etc.), and other machine attributes that comprehensively 

described in [7]. All these are implemented as different labels. To 

simulate the service, we should provide the interfaces to define the IoT 

service DAG topology and the dependencies among different 

microservices. The detailed resource requests and other requirements of 

each microservice (the vertex in the DAG) are also determined as inputs 

within the simulator. For example, the main attributes of action 

detection microservice in Figure 2 can be depicted as follows:   

 

{"ActionDetection": { 

"Resource": { 

 "CPU": 2 vcores, 

"RAM": 2GB, 

"DISK": 10GB 

}, 

"Priority": "Medium", 

"Security": "High", 

"Computation": "Medium", 

"Latency": "Low" 

}} 

5.3 Simulation for Fog Orchestration 

Moving away from the traditional IoT sector and the common 

uses of simulation there are two growing trends for simulation adoption 

as part of online decision making systems. The first trend is the 

automated parameterization and deployment of simulations based on 

data to provide immediate data analytics to decision makers. Secondly, 

the use of real-time simulation is in-the-loop with other systems. There 

are two key challenges with both trends which are the need for 

timeliness whilst dealing with the scale of the systems being modeled. 

An example in the context of orchestration is the use of 

simulation as part of both the optimization and planning phases. During 

system execution, the collected data is used to update relevant 

simulation models in terms of system behavior (this could include 

network latencies, server performance, etc.). The optimization process is 

able to use the simulation as a data representation for the machine 

learning algorithms which in turn feeds into the planning phase. For 

example, using the genetic algorithm (GA) based approaches used in 

Section 6, simulations can be run with each individual and generation to 

provide a more detailed and informed fitness function. Although this has 
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the ability to significantly increase the capability of the system, there 

remains a significant trade-off in deciding the complexity of the 

simulation versus the performance that is required. 

 

6. Early Experience 

6.1 Simulation-based Orchestration  

Design Overview: Based on the design philosophy and methods 

discussed, we propose a framework that can efficiently orchestrate Fog 

computing environments. As demonstrated in Figure 8, in order to 

enable planning and adaptive optimization, a preliminary attempt was 

made to manage the composition of applications in parallel under a 

broad range of constraints. We implement a novel parallel genetic 

algorithm based framework (GA-Par) on Spark to handle orchestration 

scenarios where a large set of IoT microservices are composed. More 

specifically, in our GA-based algorithm, each chromosome represents a 

solution of the composed workflow and the gene segments of each 

chromosome represent the IoT microservices. We normalize the utility 

of security and network QoS of IoT appliances into an objective fitness 

function within GA-Par to minimize the security risks and performance 

degradation. 

 

Figure 8. A parallel GA solver to accelerate the handling of 

optimization issues raised in the planning and optimization 

phase 
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To strike a balance between accuracy and time efficiency, we 

separate the total individual population into parallel compute partitions 

dispersed over different compute nodes. In order to maximize 

parallelism, we set up and adjust the partition configuration dynamically 

to make partitions fully parallelized whilst considering data shuffling 

and communication cost with the topology change. To guarantee 

optimal results can be gradually obtained, we dynamically merge several 

partitions into a single partition and then re-partition it based on runtime 

status and monitored QoS. Furthermore, the quality of each solution 

generation can be also maintained by applying an elitist method, where 

the local elite results of each partition will be collected and synthesized 

into global elite. The centralized GA-Par master will aggregate the full 

information at the end of each iteration, and then broadcasts the list to 

all partitions to increase the probability of finding a globally optimal 

solution. 

 

Figure 9. Initial results demonstrate the proposed approach 

can outperform a standalone genetic algorithm in terms of 

both time and quality aspects 

Experiment Setup: To address data skew issues, we also 

conduct a joint data-compute optimization to repartition the data and 

reschedule computation tasks. We perform some initial experiments on 

30 servers hosted on Amazon Web Services (AWS) as the Cloud 

datacenter for the Fog environment. Each server is hosted as an 

r3.2xlarge instance with 2.5GHz Intel Xeon E5-2670v2 CPUs, 61GB 

RAM, and 160GB disk storage. We use simulated data below to 

illustrate the effectiveness of composition given IoT requirements. For 

this, we randomly select four types of orchestration graphs with 50, 100, 

150, and 200 workflow nodes, respectively.  For each node within a 

workflow, we stochastically prepare 100 available IoT appliances as 

simulated agents. The security levels and network QoS levels are 

randomly assigned to each candidate agent. We compare our GA-Par 

with a standalone genetic algorithm (SGA). The metrics quality, 
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execution time and fitness score (with lower values indicating better 

results) are used to evaluate SGA and GA-Par.  

Evaluation: As can be observed in Figure 9, GA-Par 

outperforms SGA. The time consumption of GA-Par has been 

significantly reduced to nearly 50% of that of SGA, while the quality of 

appliance selection in GA-Par is always at least 30% higher than that of 

SGA. However, the scalability of our current approach is still slightly 

affected by increasing numbers of components and requests, indicating 

that we still need to explore opportunities for incremental re-planning 

and on-line tuning to improve both time-efficiency and effectiveness of 

IoT orchestration. 

Figure 10 . Initial results of GA-Par in terms of both time and 

quality aspects 

Figure 10 demonstrates the experimental results under different 

workflow size and candidate number of microservice by using GA-Par. 

We can observe that with the increment of workflow size, the time 

consumption increase accordingly. The linear increase demonstrates that 

the growth of task number in the workflow will augment the searching 

range to find optimal solution, thereby taking longer time to finish the 

overall computation. In Figure 10(a), the number of microservice 

candidate number is not an obvious factor that influence on the time 

consumption. The consumed time slightly fluctuates when the topology 

and size of the workflow is determined. Apparently, given the workflow 

size w and each node in the orchestrated workflow has s candidates, the 

searching space is sw. Thus, the impact of s on the consumed time will 

not be as significant as that of w. Likewise, a similar phenomenon can 

be observed in terms of the fitness calculation. In particular, the 

increased workflow size will naturally degrade the optimization 

effectiveness given the fixed setting of the total population. Compared 

with a smaller-scale workflow, larger workflows with soaring number 
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are less likely to converge and obtain the optimal result once the 

population is set up. 

Discussion: IoT services are choreographed through workflow or 

task graphs to assemble different IoT microservices. Therefore it is very 

worthwhile if we intend to obtain a precise decision and deploy IoT 

services in a QoS guaranteed, context- and cost-aware manner in spite of 

the magnitude of consumed time. In the context of pre-execution 

planning, static models and methods can deal with the submitted 

requests when the application workload and parallel tasks are known at 

design time. In contrast, in some domains, the orchestration is supplied 

with a plethora of candidate devices with different geographical 

locations and attributes. In the presence of variations and disturbances, 

orchestration methods should typically rely on incremental orchestration 

at runtime (rather than straightforward complete re-calculation by re-

running static methods) to decrease unnecessary computation and 

minimize the consumed time.  

Based on the time series of graphs, the similarities and 

dependencies between successive graph snapshots should be 

comprehensively studied to determine the feasibility of incremental 

computation. Approaches such as memorization, self-adjusting 

computation, and semantic analysis could cache and reuse portions of 

dynamic dependency graphs to avoid unnecessary re-computation in the 

event of input changes. Intermediate data or results should also be 

inherited as far as possible, and the allocated resources that have been 

allocated to the tasks should also be reused rather than be requested 

repeatedly. Through graph analysis, operators can determine which sub-

graphs changes within the whole topology by using sub-graph 

partitioning and matching as an automated process that can significantly 

reduce overall orchestration time. 

Another future work is to further parallelize the simulation and 

steer the complexity of GA-Par to achieve better scalability over large-

scale infrastructures. Potential means include using heuristic algorithm 

or approximated computing into some key procedures of algorithm 

execution and value estimation.  

6.2 Orchestration in Container-Based Systems  

There are numerous research efforts and system works that 

address the orchestration functionality in Fog computing infrastructures. 

Most of them are based on the open source container orchestration tools 

such as Docker swarm[1], Kubernetes[2], and Apache Mesos 

marathon[3]. For instance, [39][40] gave an illustrative implementation 
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of a Fog-oriented framework that can deliver containerized application 

onto datacenter nodes and edge devices such as Raspberry Pi. [41] 

comprehensively compared how these tools can meet the basic 

requirement to run IoT applications and pointed out Docker swarm is 

the best fit to seamlessly running IoT containers across different Fog 

layers. Docker swarm provisions robust scheduling that can spin up 

containers on hosts provisioned by using Docker-native syntax.  

Based on the evaluation conclusions drawn by [41], we 

developed the proposed orchestrator as a standalone module that can be 

integrated with the existing Docker Swarm built-in modules. The 

orchestrator will overwrite the Swarm Scheduler and take over the 

responsibility of orchestrating containerized IoT services. Other sensors 

or Raspberry Pi devices are regarded as Swarm workers (Swarm 

Agents) and managed by the Scheduler. We integrate the proposed 

techniques such as label-based resource filtering and allocation, 

microservice placement strategy and parallelized optimization solver 

GA-Par with the provided filter and strategy mechanisms in Swarm 

Scheduler. As a result, whenever a new deployment request from the 

client is received, the Swarm Manager will forward it to the 

orchestrator, and the planner in the orchestrator will try to find the 

optimal placement to place and run containers on the suitable 

appliances. For the scalability and adaptability, we also design the 

planner as a pluggable module which can be easily substituted by 

different policies.  

 

Figure 11. Fog Orchestrator with Docker Swarm 

  

7. Discussion   
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The emergent of fog computing is one of particular interest 

within computer science. Within the coming decades the concept of the 

exascale system will become increasingly commonplace, 

interconnecting billions and tens of billions of different devices, objects, 

and things across a vast number of industries which will likely co-exist 

in some form of Fog eco-system. The challenges pertaining to security, 

reliability and scalability will continue to play a critical concern for 

designing these systems, as well as a number of additional 

characteristics:  

Emergent behavior: Systems operating at scale have begun to 

increasingly operational characteristics not envisioned at system design-

time conception. This is particularly true due to the massive 

heterogeneity and diversity of orchestrating various IoT services in 

tandem. Such emergent behavior encompasses both positive aspects 

such as emergent software [51], but also encompasses failures 

[18][52][53][54][55] unforeseen at design time. As a result, we will 

likely see increased use of meta-learning in order to dynamically adapt 

workflow orchestration in response to user demand and adversarial 

system conditions. 

Energy usage: 10% of global electricity usage stems from ICT 

[59], and coupled with technological innovations and massive demands 

for services will likely see this electricity demand grow in both quantity 

and proportion. Given that these systems will operate services which 

produce vast quantities of emissions and economic cost, the 

environmental impact of these services executing within IoT will likely 

become increasingly important in the coming years. This is particularly 

true if legal measures are created and enforced to control and manage 

such power demand and carbon emissions. 

Centralization vs. Decentralization: Within the past two 

decades, distributed systems have seen paradigms spanning clusters, 

web services, grid computing, Cloud computing, and Fog computing. It 

is noticeable that these paradigms appear to pivot between centralized 

[43][44][45][46] and decentralized architectures [47][48][49] in 

response to technological breakthroughs, combined with demands for 

new types of applications. We foresee that this pattern will continue to 

evolve, and potentially see the realization of massive-scale Fog eco-

systems that are capable of both centralized and decentralized 

architectures combined together in response to demand.  

 

 

 



33 
 

 

Conclusion 

Most recent research related to Fog computing explore 

architectures within massive infrastructures [25]. Although such work 

advances our understanding of the possible computing architectures and 

challenges of new computing paradigms, there are presently no studies 

of composability and concrete methodologies for developing 

orchestration systems that support composition in the development of 

novel IoT applications. In this chapter, we have outlined numerous 

difficulties and challenges to develop an orchestration framework across 

all layers within the Fog resource stack, and have described a prototype 

orchestration system that makes use of some of the most promising 

mechanisms to tackle these challenges. 
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