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Abstract 

Background: Infectious disease interventions are increasingly tested using cluster-

randomised trials. These trial settings tend to involve a set of sampling units, such as 

villages, whose geographic arrangement may present a contamination risk in treatment 

exposure. The most widely used approach for reducing contamination in these settings is 

the so-called fried-egg design, which excludes the outer portion of all available clusters from 

the primary trial analysis. However, the fried-egg design ignores potential intracluster spatial 

heterogeneity and makes the outcome measure inherently less precise. While the fried-egg 

design may be appropriate in specific settings, alternative methods to optimise the design of 

cluster-randomised trials in other settings are lacking. 

 

Methods: We present a novel approach for cluster-randomised trial design that either fully 

includes or fully excludes available clusters in a defined study region. The approach includes 

an algorithm that allows investigators to maximise the number of clusters to be included and 

maintain randomness in both the selection of included clusters and the allocation of clusters 

to either the treatment group or control group. The approach was applied to the design of a 

cluster-randomised trial testing the effectiveness of malaria vector control interventions in 

southern Malawi.  
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Conclusions: By identifying potential randomisation design options that meet pre-defined 

contamination risk criteria, this approach recognises the potential for intracluster spatial 

heterogeneity while maximising the number of clusters that can be included. By maintaining 

randomness in the allocation of clusters to either the treatment group or control group the 

approach also permits a randomisation-valid test of the primary trial hypothesis. 

 

Keywords 

Cluster-randomised trial; contamination; study design; randomisation; statistical precision; 

spatial heterogeneity 

 

Key Messages 

• The potential for treatment effect contamination in cluster-randomised trials is widely 

recognised, and we present a new approach for reducing risk of contamination 

among clusters via trial design.  

• Our approach fully includes or fully excludes available clusters in a defined study 

region, thereby allowing both the treatment and measurement of the intervention 

across the entirety of included clusters.  

• We present an algorithm, based on the mathematical field of graphs, that allows 

investigators to maximise the number of clusters to be included. 

• The approach is applicable to cluster-randomised trials investigating a wide range of 

infectious disease interventions, including vaccines, drugs, vector control, and 

behaviour change communication.  

 

Glossary 
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Buffer zone: in the fried-egg design, an area of the CRT cluster, the width of the 

contamination distance, where the households are excluded from the analysis of primary 

CRT outcome 

Cluster: sampling unit in a CRT 

Cluster-group: either a single cluster with no connections to another cluster in the CRT, or a 

group of two or more clusters in the CRT with connections to each other 

Connection: any two clusters that are within the contamination distance of each other 

Contamination distance: minimum distance that should separate clusters allocated to 

different trial treatment arms 

Randomisation design options: alternative sets of clusters to be included in the CRT 

 

Background 

Cluster-randomised trials are increasingly used as defining phase III trials for infectious 

disease interventions for a number of reasons, but especially when a population-level effect 

is the primary endpoint of interest.1 Population-level effects occur when an intervention alters 

the transmission dynamics of the target disease, and many infectious disease interventions 

benefit from this mechanism to show a clear effect.2,3 Contamination is a concern for both 

the study design and statistical analysis.  

Contamination refers to a violation of the basic assumption that one group is 

exposed to the effects of the intervention (i.e. the treatment group), while another is not (i.e. 

the control group).4 In a CRT, the risk of contamination of treatment effects between units of 

randomisation depends on the spatial arrangement of the disease system components (e.g. 

hosts, pathogen, reservoir, vector). If a susceptible host does not overlap in space with the 

pathogen, the host cannot become infected. This necessary contact between the pathogen 

and host is often facilitated by the movement of one or more components of the disease 

system (e.g. human movement, vector dispersal, or pathogen movement in water). The 
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extent of this movement then defines a space within which a susceptible host is more likely 

to become infected, and a threshold distance beyond which infection of a susceptible host 

can be considered unlikely. This space, or focus, would probably be more accurately 

described as a gradient, as opposed to a discrete unit. Similarly, multiple, overlapping foci of 

disease transmission are probably the rule rather than the exception.  

In practice, investigators must define the unit of randomisation based on 

considerations of pathogen transmission, social restrictions or implications, and logistics. To 

reduce the risk of contamination between clusters, the investigators may also define a 

minimum distance that should separate clusters allocated to different trial treatment arms, 

hereafter referred to as the contamination distance. The geographic arrangements of human 

settlements do not always allow for neatly separated clusters. In many cases, potential 

clusters may instead be either directly bordering each other or separated by less than the 

contamination distance. In these cases, it is critical for the investigators to consider methods 

of reducing contamination risk during the design phase of the trial.  

Currently, there are few options available for reducing contamination in CRTs. Many 

CRTs for infectious disease interventions, especially in the 1990s, did not specify a 

contamination distance, although in some cases it was possible to calculate the effect of 

contamination post hoc.5 As the advantages of reducing contamination risk in CRTs were 

increasingly recognized, the one solution that has been used widely is the fried-egg design,6 

whereby a treatment is implemented across the entire area of each respective cluster while 

households on the outer edge of the cluster (i.e. in a buffer zone) are excluded from the 

analysis of the primary CRT outcome (Figure 1). In this way, households included in the 

primary analysis are always located at least the contamination distance away from the 

implementation of other trial treatment arms.  

One potential disadvantage of the fried-egg design is that it ignores the possibility of 

systematic spatial heterogeneity of disease burden within clusters. Yet spatial heterogeneity 
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is commonly found for disease vectors,7,8 pathogens,9-11 and disease burden.12 Limiting 

analyses to data from the centre of a cluster precludes the ability to account for such well-

documented variation. For example, if disease burden is consistently higher near the edge of 

clusters compared to the centre, excluding these households from the analysis of CRT 

outcomes would obscure the true effect of the intervention being tested. On the other hand, 

if the households are included in secondary analyses, there would still be a risk of 

contamination bias. Additionally, reducing the number of households within a cluster makes 

the outcome measure inherently less precise, leading to loss of power.  

 The widespread availability and continuous technological development of GPS, GIS 

and remotely-sensed satellite images provide expanded possibilities for investigators 

designing large-scale intervention trials. In this paper, we present a novel approach for trial 

design that attempts to reduce the risk of contamination while simultaneously accounting for 

systematic spatial heterogeneity. The method presented here also allows investigators to (1) 

maximise the inclusion of clusters in the proposed study region for increased statistical 

power in the analysis of trial outcomes, (2) maintain randomness in the allocation of clusters 

to eliminate potential selection bias, and (3) allow for consideration of social expectations of 

fairness in the exclusion of clusters.  

 

Methods 

The central idea of this approach is that clusters in the study region are either fully included 

or fully excluded from the trial to avoid the problems outlined above for the fried-egg design. 

By excluding some clusters in the study region from the CRT, clusters included in the CRT 

are ensured to be at least the contamination distance from any other cluster assigned to a 

different CRT treatment arm. The steps for implementing the approach are summarised as: 

(1) defining the trial setting; (2) defining optional inclusion criteria; (3) identifying the 

maximum possible number of clusters; and (4) randomisation. 
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Defining the trial setting 

The trial-specific definitions of cluster and contamination distance must be made by the 

investigators of the CRT. In the context of vector-borne disease, the contamination distance 

can reasonably be taken to mean Euclidean distance. In other contexts, a different measure 

(e.g. a measure based on social connectivity) may be more appropriate, but the same 

principles hold. Next, the boundary of each cluster should be mapped. We define a 

connection as any two clusters with boundaries that are within the contamination distance of 

each other (i.e. if the shortest distance between any two houses, one in each of the two 

clusters, is less than the contamination distance). Using the map of all clusters, all 

connections between clusters should be drawn (Figure 2a). Pairs of clusters with 

connections, by definition, cannot be allocated to different treatment arms of the CRT. As 

shown in Figure 2b, excluding some clusters from the CRT leaves the remaining clusters 

without any connections to the other clusters in the CRT. 

 

Defining optional inclusion criteria 

Additional inclusion criteria could be defined by the CRT investigators to suit the needs of 

the trial and study region, but this step is not necessarily required. One option would be to 

allow clusters with connections (i.e. within the contamination distance of each other) to both 

(or all) be included in the CRT, with the restriction that they are allocated to the same CRT 

treatment arm (Figure 2c). This increases the total number of clusters in the CRT and, thus, 

the statistical power in the analysis of trial outcomes. It is then useful to define a cluster-

group as either a single cluster with no connections to another cluster in the CRT, or a group 

of two or more clusters with connections to each other. For statistical efficiency we should 

only allow cluster-groups with more than one cluster where doing so does not decrease the 

total number of cluster-groups included in the CRT. (Figure 2d). This is because the primary 
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analysis is a randomisation-based test for significant treatment effects that must account for 

the restricted randomisation, and whose power is therefore primarily dependent on the 

number of cluster-groups. 

 An additional option for modifying the inclusion criteria is aimed at potential social 

expectations of fairness, because in many cases, CRT interventions are perceived as 

benefits by the communities in the study region. In a typical CRT, people living in clusters 

allocated to the CRT control arm do not receive the perceived benefit of the intervention. 

Still, through proper community engagement, these communities should understand that 

they had a non-zero probability of being allocated to the CRT intervention arm. However, in 

the method proposed in this paper, excluded clusters are not part of the CRT treatment arm 

allocation. Therefore, if it is important that every community have a non-zero probability of 

being included in the CRT, it is possible to set this as an additional inclusion criterion. When 

identifying the potential randomisation options, it would be stipulated that every cluster is 

included in at least one set. This also would reduce the risk of subjective bias when selecting 

clusters. Where this conflicts with other inclusion criteria, it is up to the investigators to 

determine the optimal balance among competing criteria.  

 

Algorithm for identifying potential randomisation design options 

Here, we briefly present an algorithm for identifying potential randomisation design options. 

Each randomisation design option is a set of clusters that meet all inclusion criteria 

described above within a specific study setting. The design algorithm is described formally in 

Supplementary File 1. 

Let n be the total number of clusters available for inclusion in the randomisation 

design. Two clusters are connected if there is potential for contamination between them, as 

defined above. We can represent the set of clusters formally as a graph13 with n vertices 

corresponding to the clusters, and edges corresponding to all connected pairs of vertices. 



McCann	et	al	manuscript	draft:	Randomised	trial	designs	with	spatial	constraints		
(16	Dec	2017,	v1.0)	

	 8	

The left-hand panel of Figure 3 gives an example with n=9 vertices and 11 edges. This 

graph forms a single network, meaning that any two of its vertices can be connected by a 

path along a sequence of edges; the positions of the vertices are irrelevant, only their 

connections matter. A set of k vertices is a valid randomisation unit (cluster-group) if none of 

its members is connected to any of the remaining n-k sampling units. Translating these 

graph-theoretic definitions into the current context, a valid cluster-group is either a single 

vertex or a network. Our primary design criterion is to maximise the number of available 

cluster-groups, whilst a secondary criterion is to minimise the number of excluded clusters. 

Expressed in graph-theoretic terms, this is equivalent to removing vertices from a graph in 

such a way as to maximise the resulting number of disconnected vertices plus networks and, 

within all such solutions, to minimise the number of removed vertices. 

 Our design algorithm therefore operates on the graph of all n clusters by removing 

vertices and their associated edges in such a way as to simultaneously maximise the 

number of networks and minimise the number of removed vertices. When these two criteria 

are in conflict, we prioritise the first, because the networks are the randomisation units. 

However, to meet the social expectations of fairness described above, we also aim to 

construct a number of potential randomisation design options that collectively include every 

vertex. The remaining two panels of Figure 3 illustrate this idea in a simple case. Each 

shows a design containing three clusters whilst retaining n-2 vertices, and which together 

include each of the n original vertices at least once.  

 

Randomisation   

Depending on the geographic arrangement of clusters in the proposed study region, there 

may be multiple potential randomisation options that meet the inclusion criteria. 

To eliminate the chance of selection bias, the set of clusters that is finally included in the 

CRT should be selected randomly from all identified potential options (e.g. Figure 4). Finally, 
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treatment arms can be allocated to the included clusters, remembering that clusters within 

the same cluster-group are restricted to be in the same treatment arm. 

 

Application: CRT of vector control to reduce malaria transmission  

We applied this method to the design of a CRT testing the impact of two vector control 

interventions in southern Malawi (Trial registration number PACTR201604001501493).14 

The trial site is located near Majete Wildlife Reserve in Chikhwawa District, an area of high 

malaria transmission in the Lower Shire River Valley region of southern Malawi.15 The trial is 

being conducted as part of the Majete Malaria Project (MMP), which considers community 

engagement and participation as a central focus of its strategy and implements the trial 

interventions through a community-based approach. 

 

Trial setting 

The objective of the trial is to determine the impacts of structural house improvements and 

larval source management (LSM) on malaria parasite prevalence and entomological 

inoculation rate (EIR) over a 24-month period, when implemented alone or in combination, in 

addition to the Malawi National Malaria Control Program interventions. The trial follows a 

randomised block, 2x2 factorial design, with three blocks of villages situated roughly evenly 

around the wildlife reserve (Figure 5). Prior to the start of baseline data collection for the 

trial, the study population was enrolled in a demographic surveillance system, with data 

managed in the OpenHDS system.16 Using the geolocations of houses from OpenHDS, we 

defined the border of each village in the trial catchment area by demarcating a convex hull 

around the outermost houses of each village, thereby defining the trial clusters. The total 

population living in the trial catchment area was roughly 25 000 people from 65 clusters. 

Each block was delineated to cover the same villages as an existing or planned THP 
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Epicentre, which brings together neighbouring villages as a basis for community-led 

development.17  

Standard practice for LSM dictates that implementation of this intervention should 

account for mosquito dispersal by treating both the target area (in this case a village) and a 

radius around that target area. To account for this prior to the selection of which clusters 

were included in the trial, we delineated a zone 400 m beyond the border of each cluster. 

This distance was based on published records of mosquito dispersal distance and 

accounting for the relatively high human population density of the trial clusters. In this way, 

all houses in LSM clusters would have LSM implemented around them out to a distance of 

at least 400 m. Similarly, houses in clusters not allocated to LSM would be at least 400 m 

from any implementation of LSM. Therefore, the distance between any house in a given 

cluster, and a house in another, unconnected cluster (as defined above), was 800 m.  

 

Inclusion criteria for randomisation design options 

Because of the importance of community engagement for both the project and the 

implementation of trial interventions, we determined that every cluster should have a non-

zero probability of being included in the trial and stipulated that every cluster was included in 

at least one randomisation design option. Because of the geography of the clusters, this was 

only possible after we allowed randomisation design options to have a minimum of Nmax – 1 

cluster-groups, where Nmax is the maximum number of cluster-groups possible in the block. 

Further, we allowed cluster-groups of any size (as opposed to setting a maximum number of 

clusters per cluster-group) as long as every potential design submitted to the randomised 

selection in each block should have at least Nmax – 1 cluster-groups.  

 

Algorithm for identifying potential randomisation design options 
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In one of the three blocks, referred to as Focal Area B (Figure 5), it was possible to include 

all thirteen clusters in the trial, and therefore it was not necessary to identify alternative 

randomisation design options. The maximum possible number of cluster-groups (Nmax) was 

six, with cluster-groups (n) ranging in size from one to three clusters per cluster-group.  

In the other two blocks, referred to as Focal Areas A and C, the geography of the 

clusters resulted in many connections between multiple clusters when using the 800-m 

contamination distance between households within the clusters (Figure 6a). Accordingly, we 

used the algorithm described above to find Nmax for each of the two blocks. Within each 

block, we then used trial and error to identify six different randomisation design options that 

had between Nmax-1 and Nmax cluster-groups, and where the final list of randomisation design 

options included every cluster in the block at least once (Figure 6b-g).  

 

Randomisation 

In Focal Area B, the six cluster-groups were assigned to the four trial arms by drawing lots 

during a public event in the community. In Focal Areas A and C, allocation of trial arms to 

clusters was a two-stage process that took place in each respective community. In the first 

stage, one of the six randomisation design options was selected by drawing lots. In the 

second stage, trial arms were assigned to the cluster-groups in the selected design, again 

by drawing lots. In all three blocks, the randomisation unit was the cluster-group, while the 

sampling unit during data collection was the cluster. 

 

Discussion 

The methods presented here provide a novel approach for reducing the risk of 

contamination in CRTs set in study sites with a well-defined, finite set of sampling units 

whose spatial arrangement presents a risk of treatment contamination. Contamination risk is 

reduced by excluding some potential clusters from the CRT, and potential subjective bias (in 
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the selection of which sampling units are included) is eliminated by choosing at random 

amongst candidate randomisation design options that collectively satisfy the design criteria 

in any specific application. Identifying the design (or designs) with the maximum possible 

number of cluster-groups for a given study site by direct inspection, guesswork or trial-and-

error rapidly becomes infeasible as the number of sampling units grows (see Supplementary 

File 1). The site of the vector control CRT presented here provides one such example. Using 

the algorithm presented here, investigators can overcome this challenge. 

 The primary advantage of the approach is that it allows CRT investigators to include 

full sampling units (e.g. an entire village rather than a portion of the village) in both the 

implementation of the intervention and the primary analysis of the treatment effects. 

Including data from all individuals within each randomisation unit increases statistical 

precision. For example, if the outcome for a cluster is an average of the values from n 

households, and the correlation between households within a cluster is r, the variance of the 

cluster average is proportional to (1+(n-1)r)/n, which decreases as n increases unless, 

implausibly, r=1. This also reduces the risk that the CRT would otherwise implicitly ignore 

any systematic spatial heterogeneity (specifically at the cluster scale) in the transmission or 

burden of the disease being investigated. For example, a common cluster unit of allocation 

is a village. In a region where streams are a common border between villages, and where 

the targeted disease burden is higher near streams, consistently placing these outer 

households in the buffer zone is not an ideal trial design. There may also be consistent 

differences in socio-economic status and living conditions between the edge and interior of a 

cluster. 

To create the contamination distance between sampling units included in the CRT, 

some sampling units must be excluded from the CRT. In cases where this impacts the 

statistical power of the study, investigators may need to compensate for this by expanding 

the geospatial extent of the CRT site to include additional clusters. 
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It is important for investigators to understand the drivers of pathogen movement in 

their specific disease system and how those contribute to contamination risk in their 

particular CRT setting. Both the approach presented here and the fried-egg design assume 

that disease system components are stable over time. Nomadic populations or those with 

specific seasonal movements, for example, would either require additional, or alternative, 

considerations. 

 In settings where human settlements are not systematically mapped by the 

government, the demarcation of cluster borders in the CRT catchment area should be done 

up front. In our example of the vector control CRT, we geolocated all houses in the trial 

catchment area during enrolment to a demographic surveillance system, allowing for simple 

demarcation of the village borders using a convex hull. Alternatively, houses in the 

catchment area could be geolocated using open source satellite imagery,18,19 though this 

may still require input from someone familiar with the area to identify sampling unit 

boundaries when these are not clear from the image. In situations where social or 

administrative boundaries are not critical to the study design, then any method of 

demarcating sampling unit boundaries would be acceptable.  

 We have described the approach in a way that gives flexibility so that investigators 

are able to determine the relative importance of the criteria used in selecting randomisation 

design options. For example, if the design of an intervention requires community 

participation, it would be more important to ensure that all sampling units have a non-zero 

probability of being included in the CRT treatment allocation. Conversely, if statistical 

efficiency is considered more important by the trial investigators than social restrictions, it 

would be reasonable to prioritise the requirement that all randomisation design options 

include Nmax cluster-groups over the potential criterion of including all sampling units in at 

least one design. Additionally, trial outcomes can be measured in the excluded villages, 
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allowing for an empirical estimate of the distance a trial treatment effect extends beyond the 

boundaries of implementation. 

CRTs have become increasingly common over the past few decades for the 

evaluation of complex clinical, public health and health system interventions 20. Over that 

time, there have been surprisingly few methods developed to address potential 

contamination of treatment effects among clusters (but see Delrieu et al.21 for one example). 

The approach presented here is applicable to cluster-randomised trials investigating a wide 

range of infectious disease interventions, including vaccines, drugs, vector control, and 

behaviour change communication. 

 

Conclusion 

Those planning CRTs to evaluate interventions should consider the approach presented 

here when deciding how to reduce the risk of contamination among the CRT randomisation 

units. The approach reduces the risk of contamination while recognising the potential for 

intracluster spatial heterogeneity and maximising the number of units of clusters that can be 

included. The approach also maintains randomness in the allocation of clusters to either the 

treatment group or control group, therefore permitting a randomisation-valid test of the 

primary trial hypothesis. 
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Figures 

Figure 1. Schematic of two generic clusters demonstrating the “fried-egg design”. Red line 

shows “contamination distance”. Both yellow and blue areas are inhabited. One CRT 

treatment arm is implemented in the entirety of the yellow area, while another treatment arm 

is implemented in the entirety of the blue area. The diagonal line pattern represents the 

“buffer zone”, where households are excluded from the analysis of primary CRT outcome. 

 

Figure 2. (A) Schematic of nine generic clusters showing connections between clusters that 

are separated by less than the contamination distance from each other. The red scale bar in 

each panel shows the contamination distance. Blue dotted lines show which clusters have 

connections. Note that clusters D and F are not directly connected, but that they are 

indirectly connected through cluster E. (B) One potential design for excluding clusters in 

such a way that the remaining clusters are not connected and could, therefore, be allocated 

to different arms of a CRT. Light blue clusters are included in the CRT, while grey clusters 

are excluded. Note that this would include five of the nine clusters in the CRT. (C) Allowing 

some connected clusters to be included together in the CRT with the restriction that 

connected clusters be allocated to the same treatment arm of the CRT. In this example, the 

number of cluster-groups would remain at five, but the number of total clusters included in 

the CRT would be seven of the nine clusters. (D) A potential trade-off between the number 

of cluster-groups and the number of clusters included in the CRT. As compared to (C), this 
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design would increase the total clusters to eight out of nine, but the cluster-groups would be 

reduced from five to four. 

 

Figure 3. (A) A graph with n=9 vertices (each representing a cluster) forming a single cluster-

group. (B) and (C) Sub-graphs with seven vertices (i.e. two vertices have been removed), 

each of which forms three cluster-groups and which together include each of the original 

nine vertices at least once. 

 

Figure 4. Four potential, alternative designs for determining which of the nine generic 

clusters to include in a CRT. Light blue clusters are included in the CRT, while grey clusters 

are excluded. This is not an exhaustive list of the all potential designs. Still, the final design 

to be used could be randomly selected from the this set. 

 

Figure 5. (A) Map of Malawi with location of study site indicated by a black square. (B) Map 

of Majete Wildlife Reserve showing surrounding community-based organizations (CBOs) 

and indicating the three blocks of villages (clusters) making up the trial catchment area. (C) 

Map of one of the three blocks showing all clusters in this area. Connections indicate 

clusters that were joined into cluster-groups for allocation of the trial treatment arms, based 

on cluster borders being within 800 m of each other. Two polygons, each indicated by an 

asterisk (*), are small hamlets (27 and 4 houses, respectively) that are socially connected to 

the nearest respective clusters and were therefore allocated to the same trial treatment arm 

as those clusters. The MWR staff housing (polygon indicated in red) was excluded from the 

trial. 

 

Figure 6. All maps show all 21 clusters in this block of the trial catchment area, with 

connections indicating pairs of clusters that would potentially be included and are separated 
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by less than 800 m. (A) If all 21 clusters were to have been included in the trial, this would 

have left one cluster-group with 19 clusters. (B:G) Six potential, alternative designs for which 

clusters to include in the trial. All six designs have six cluster-groups. The final design for the 

trial was randomly selected from among these six designs.  

 


