
Mapping Reef Fish and the Seascape: Using Acoustics
and Spatial Modeling to Guide Coastal Management
Bryan Costa1,2*, J. Christopher Taylor3, Laura Kracker1, Tim Battista1, Simon Pittman1,4

1 Biogeography Branch, National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, United States of America,

2 Consolidated Safety Services, Fairfax, Virginia, United States of America, 3 Center for Coastal Fisheries and Habitat Research, National Centers for Coastal Ocean Science,

National Oceanic and Atmospheric Administration, Beaufort, North Carolina, United States of America, 4 Marine Institute, University of Plymouth, Plymouth, United

Kingdom

Abstract

Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e.,
aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are
often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey
methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time.
Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were
used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two,
separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically
important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the
benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area
to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large
fish ($29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential
predictors at two spatial scales (100 and 300 m). Models of small (#11 cm) and medium (12–28 cm) fish performed poorly
(i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence
of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and
reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This
integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of
higher conservation value.
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Introduction

The rapid emergence of place-based management strategies,

such as marine protected areas (MPAs), has increased the demand

for reliable information describing the distribution of fish across

large portions (i.e., 10 s to 100 s km2) of the ocean [1,2,3].

Patchiness of fish populations in time and space, combined with

resource constraints on management, often requires that coastal

managers identify spatial priorities. A common strategy to identify

these priorities is to select locations of high conservation value

based on biological characteristics and relative vulnerability

[2,4,5,6]. Fish aggregations (i.e., locations where a suite of

environmental conditions interact to support high densities of

fish) are typically given high priority in MPA network design and

marine spatial planning [7,8,9]. However, locating and charac-

terizing fish aggregations can be challenging over broad

geographic areas (i.e., 10 s to 100 s km2), especially when they

occur in waters too deep for surveys using conventional SCUBA

diving; where turbidity impairs visual surveys; or when aggrega-

tions are transient and only detectable at night. Additional

challenges arise when animal distribution patterns need to be

expanded from fine-scale visual surveys (covering ,100 m2) to

broader spatial scales (covering 10 s to 100 s km2) that are

operationally relevant to coastal and marine management

[10,11,12]. Scaling up patterns from fine-scale surveys is

challenging because there is no single scale at which ecological

patterns should be studied since organisms show variability at a

range of spatial, temporal, and organizational scales [13].

Although underwater acoustic technology is not new, rarely

have coral reef ecosystem studies simultaneously mapped and

quantified the locations and size of fish along with the three-

dimensional structure of the surrounding seafloor. These data

provide an opportunity to model fish-seascape relationships at

multiple spatial scales that are appropriate for studies of highly

mobile organisms. In both tropical and temperate waters, seafloor

structure (derived from bathymetry) has been established as a

useful predictor of fish distributions [9,14,15]. Water depth and

seafloor topography (e.g., rugosity, slope-of-the-slope, slope,

curvature), sometimes combined with relative across-shelf position,

have repeatedly emerged as excellent predictors for fish
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[9,14,15,16]. These data can be analyzed to produce descriptive

maps of fish distributions for discrete size-classes, providing a

unique opportunity to bridge the informational gap between

ecology and management [17].

The importance of structural complexity for maintaining the

integrity and function of coral reef ecosystems is well established at

fine spatial scales (i.e., centimeters to meters) [18,19,20]. The

importance of this complexity at broader spatial scales is less well

studied and understood. To address this research gap, we

quantified seafloor structure (and distance to the shelf edge) at

multiple spatial scales to explore how fish in different sizes classes

are distributed across the seascape [20,21,22]. We acquired

spatially and temporally coincident data with a multibeam

echosounder (MBES) to map seafloor terrain and a splitbeam

echosounder (SBES) to map fish in the water column in two areas

in the U.S. Virgin Islands (USVI). These two areas were chosen

because they contained spawning aggregation sites for commer-

cially important snapper and grouper species. We then used

Boosted Regression Trees (BRT), a machine learning algorithm,

and Geographic Information Systems (GIS) software, to model

and map the spatial relationship between seafloor structure and

the density of fishes in three size classes (Fig. 1). The key questions

addressed were:

1. Which seafloor structure and distance surfaces were the best

predictors of fish occurrence and density?

2. Does fish-habitat data derived from acoustic sensors provide

sufficient information to develop useful spatial predictions of

fish distributions across the seascape?

Methods

Study Areas
This research was conducted in two areas (i.e., St. John Wedge

and Tampo Bank) south of St. John in the USVI (Fig. 2). St. John

Wedge is 22 km2 and Tampo Bank is 62 km2. Both areas were

mapped using multibeam and splitbeam echosounders. No specific

permissions were required to survey these locations because they

are not actively managed by the territorial or federal government,

and this study did not involve endangered or protected species.

These areas were chosen because they were in close proximity to

known spawning sites (i.e., Grammanik Bank) for commercially

important fish species (e.g., Ocyurus chrysurus and Epinephelus guttatus)

[9,6]. Tampo Bank is also suspected to be spawning site for

Mutton Snapper (Lutjanus analis) [23]. BRT models were trained in

St. John Wedge, and validated in Tampo Bank. Depths in these

two areas ranged from 22 to 100 m (Table 1), although over 70%

of each site was shallower than 55 m. Fish density measurements

ranged from 0 to 33 fish per 100 m2.

Figure 1. Diagram of modeling process. Steps used to train and validate the Boosted Regression Tree models developed from the SBES and
MBES datasets.
doi:10.1371/journal.pone.0085555.g001

Figure 2. Map of study areas. Location of the study sites in the U.S.
Virgin Islands. The spatial predictions were developed in one site
(St. John Wedge) and validated in the other site (Tampo Bank).
doi:10.1371/journal.pone.0085555.g002
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Mapping Fish and the Seafloor
Mapping fish using a splitbeam echosounder. SBES data

describing fish sizes, densities and distributions were collected in

St. John Wedge from March 29 – April 16, 2011, and in Tampo

Bank from March 18 – April 6, 2010 using a Simrad EK-60

(120 kHz) splitbeam echosounder. This scientific echosounder was

calibrated using a tungsten carbide sphere, allowing for accurate

measurements of fish size. Splitbeam echosounders detect fish in

the water column by rapidly transmitting pulses of sound (pings)

that reflect off objects of differing densities than the surrounding

water. An internal air filled sac (called the swim bladder) is the

primary contributor to a fish’s acoustic reflection [24]. Larger fish

reflect more sound because they have larger swim bladders.

Survey lines were acquired parallel to depth contours, and spaced

to provide complete MBES coverage of the seafloor. Only a small

percentage of each survey line was sampled by the SBES because it

had a narrower swath (about 7u) than the MBES (about 120u).
SBES data were processed to detect individual fish using

Echoview software version 5.3. The water-seafloor interface was

delineated to separate this acoustic signal from fish detections.

Other acoustic interference (e.g., air bubbles) and faint echoes,

likely representing plankton and other non-fish targets, were

masked or eliminated from the data. Vessel speed (ca 7 kts) and

rapid ping rate (3–8 pulses s21) resulted in multiple, sequential

echoes from each individual fish. These sequential echoes were

grouped using a target tracking algorithm [25] and retained as

individual fish targets. Each fish was assigned a central geographic

position, a depth below the water surface and average, calibrated

target strength measured in decibels (dB). Very few controlled

observations are available to determine specific relationships

between target strength and total length for coral reef fish [26].

Here, we used a species-independent, generalized formula to

convert target strength into fish length [9,27]. Data along the

survey path were binned into 100 m2 intervals to normalize for the

variation in beam width caused by changing depths. Fish densities

were calculated for all fish exceeding 250 dB or a length of about

6 cm. The final dataset was exported as an ArcGIS point shapefile

(referenced to North American Datum 1983 Universal Transverse

Mercator 20 North) with each point representing the centroid of a

100 m2 bin.

The species of individual fish cannot be identified from a single

SBES frequency. Instead, fish targets were sorted into three size

classes with the goal of separating them into ecological groups.

These groups were initially chosen based on size estimates for

species and groups from visual censuses for fish communities in the

region [9,28]. Large fish ($29 cm) are comprised of many

important fishery species (e.g., Serranidae and Lutjanidae) and other

large predatory species (Table 2) [28]. Medium fish (12–28 cm)

include large reef residents and juvenile or small adults of fishery

species (Table 3) [28]. Small fish (#11 cm) represent small reef

resident species, small planktivores and possibly juveniles of fishery

species (Table 4) [28]. Maps of fish density were created for each

size class in the training and validation sites (Fig. 3).

Mapping the seafloor using a multibeam

echosounder. Bathymetry (i.e., depth) was collected concur-

rently with the SBES data in St. John Wedge and Tampo Bank

using a hull-mounted Reson SeaBat 7125 SV1 MBES system

[29,30]. MBES systems measure seafloor depth by transmitting

multiple pulses of sound several times a second and then recording

the time and angle of the acoustic returns. These two pieces of

information are used to create highly resolved images of seafloor

depth and topography. Each study area was mapped using the

400 kHz frequency, producing 262 m depth surface. Depth

surfaces were corrected for sensor offsets, latency, roll, pitch,

yaw, static draft, influence of tides and the changing speed of

Table 1. Depths in the training and validation sites.

Depths % Area

(m) St. John Wedge Tampo Bank

22,35 3.7 1.8

35,45 16.7 3.8

45,55 73.0 64.8

55,65 5.7 29.2

65,75 0.4 0.4

75,85 0.3 0.0

85,100 0.3 0.0

Depths found in St. John Wedge and Tampo Bank ranged from 22 to 100 m.
However, greater than 70% of both areas were less than 55 meters deep.
doi:10.1371/journal.pone.0085555.t001

Table 2. Large fish ($29 cm) commonly found ,55 m deep around St. John.

Number Species Scientific Name Species Common Name Inhabited Depths (m) Preferred Habitat

1 Caranx crysos Blue runner ,100 water-column/seafloor (hardbottom)

2 Lutjanus griseus Gray snapper 0–180 seafloor (hardbottom)

3 Epinephelus guttatus Red hind 2–100 seafloor (hardbottom)

4 Ocyurus chrysurus Yellowtail snapper 10–180 water-column/seafloor (hardbottom)

5 Lutjanus analis Mutton snapper 40–95 water-column/seafloor (hardbottom)

6 Lutjanus apodus Schoolmaster 2–63 water-column/seafloor (hardbottom)

7 Pomacanthus paru French angelfish 3–100 water-column/seafloor (hardbottom)

8 Cephalopholis fulva Coney 2–150 seafloor (hardbottom)

9 Melichthys niger Black durgeon 0–75 water-column/seafloor (hardbottom)

10 Bodianus rufus Spanish hogfish 3–70 seafloor (hardbottom)

Species of large fish commonly found in depths ,55 m around St. John. The 55 m cutoff was used because .70% of both the training and validation sites were
shallower than this depth. The most commonly observed species were identified from surveys conducted from 2001 to 2011 around St. John [28]. These fish species
may represent the species of fish detected in the SBES data.
doi:10.1371/journal.pone.0085555.t002
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sound in the water column. Both surfaces met International

Hydrographic Organization Order 1 standards [31], and had a

maximum horizontal uncertainty of 610.0 m and vertical

uncertainty of 61.39 m. All data were referenced to North

American Datum 1983 Universal Transverse Mercator 20 North

projection and Mean Lower Low Water vertical coordinate

system.

Surfaces describing the three dimensional structure of the

seafloor were derived from these depth surfaces using ArcGIS’s

Spatial Analyst Toolbox and DEM Surface Toolbox [32] (Fig. 4).

The surfaces, including standard deviation of depth, plan (or cross-

sectional) curvature, rugosity and slope of slope (Table 5), were

selected based on their demonstrated utility for predicting coral

reef fish abundances and distributions [14,18]. The Spatial Analyst

Toolbox was also used to calculate the geographic distance of the

center of each grid cell to the shelf edge (i.e., the 183 m isobath).

These six surfaces (i.e., depth, standard deviation of depth, plan

curvature, rugosity, slope of slope, and distance to the shelf edge)

were computed at four additional spatial scales (i.e., mean values

within a radius of 25, 50, 100 and 300 m) to examine the influence

of scale on fish distributions. These spatial scales were chosen

based on previous research, which showed strong fish-seascape

relationships at similar spatial scales [14,18,33,34]. A total of 24

predictors (i.e., 6 surfaces x 4 spatial scales) were included in the

modeling process and used to develop spatial predictions in the

training and validation sites.

Predicting Fish Distributions and Densities
Boosted regression trees. Boosted regression trees (BRT) is

a machine learning technique used effectively in ecology to model

the complex, non-linear relationships between organisms and their

environment. BRTs model these complex relationships by

developing many (sometimes hundreds to thousands) simple

models based on random subsets of the data [35,36]. These

simple models are then combined linearly to produce one final

aggregate (i.e., ensemble) model [37]. The fitted values in this

ensemble model are more stable than values from an individual

model, improving its overall predictive performance [37,38]. The

Table 3. Medium-sized fish (12–28 cm) commonly found ,55 m deep around St. John.

Number Species Scientific Name Species Common Name
Inhabited
Depths (m) Preferred Habitat

1 Clepticus parrae Creole wrasse 8–100 water-column/seafloor (hardbottom)

2 Haemulon flavolineatum French grunt 0–60 seafloor (hardbottom)

3 Cephalopholis fulva Coney 2–150 seafloor (hardbottom)

4 Halichoeres garnoti Yellowhead wrasse 4–60 seafloor (hardbottom)

5 Ocyurus chrysurus Yellowtail snapper 10–70 water-column/seafloor (hardbottom)

6 Decapterus macarellus Mackerel scad 40–200 water-column

7 Pseudupeneus maculatus Spotted goatfish 0–90 seafloor (softbottom)

8 Epinephelus guttatus Red hind 2–100 seafloor (hardbottom)

9 Lutjanus apodus Schoolmaster 2–63 water-column/seafloor (hardbottom)

10 Myripristis jacobus Blackbar soldierfish 2–100 water-column/seafloor (hardbottom)

Species of medium-sized fish commonly found in depths ,55 m around St. John. The 55 m cutoff was used because .70% of both the training and validation sites
were shallower than this depth. The most commonly observed species were identified from surveys conducted from 2001 to 2011 around St. John [28]. These fish
species may represent the species of fish detected in the SBES data.
doi:10.1371/journal.pone.0085555.t003

Table 4. Small fish (#11 cm) commonly found ,55 m deep around St. John.

Number Species Scientific Name Species Common Name
Inhabited
Depths (m) Preferred Habitat

1 Stegastes partitus Bicolor damselfish 0–100 seafloor (hardbottom)

2 Chromis cyanea Blue chromis 10–60 water column/seafloor (hardbottom)

3 Halichoeres garnoti Yellowhead wrasse 4–80 seafloor (hardbottom)

4 Serranus tortugarum Chalk bass 8–90 water column/seafloor (hardbottom)

5 Clepticus parrae Creole wrasse 8–100 water column/seafloor (hardbottom)

6 Chromis multilineata Brown chromis 0–60 water column/seafloor (hardbottom)

7 Sparisoma atomarium Greenblotch parrotfish 20–55 seafloor (hardbottom/softbottom)

8 Cryptotomus roseus Bluelip parrotfish 0–60 seafloor (softbottom)

9 Ocyurus chrysurus Yellowtail snapper 10–180 water column/seafloor (hardbottom)

10 Gramma loreto Fairy basslet 1–60 seafloor (hardbottom)

Species of small fish commonly found in depths ,55 m around St. John. The 55 m cutoff was used because .70% of both the training and validation sites were
shallower than this depth. The most commonly observed species were identified from surveys conducted from 2001 to 2011 around St. John [28]. These fish species
may represent the species of fish detected in the SBES data.
doi:10.1371/journal.pone.0085555.t004
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BRT approach to spatial modeling was used in this study because

it can deal with data that is not normally distributed, is robust to

missing data values, can handle interactions among predictors and

compared favorably (both in terms of predictive performance and

accuracy) to other modeling techniques [14,37,38].

Model development. For this study, 60 BRT models were

generated from MBES and SBES data. Ten of these models

predicted large fish occurrence, 10 predicted medium fish

occurrence, 10 predicted small fish occurrence, 10 predicted large

fish density, 10 predicted medium fish density, and 10 predicted

small fish density. Multiple models for occurrence and density

were created to avoid fitting one model too closely to the data, and

to better understand and quantify the stability of BRT’s variable

selection and predictive performance [37]. BRT models were

developed using the ‘‘gbm.step’’ function in the ‘‘dismo’’ package

version 0.7 [39] implemented in R software version 2.15. Each

BRT model was trained using a different random 50% of the St.

Figure 3. Maps of SBES data. Presence and density of large, medium and small fish in the training site (left) and validation site (right).
doi:10.1371/journal.pone.0085555.g003
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John Wedge SBES data (n = 1,641 points representing 100 m2

bins). The remaining 50% were used for cross validation (CV).

In each of the St. John Wedge and Tampo Bank areas, six

predictive surfaces (i.e., three surfaces predicting fish occurrence

by size class and three predicting fish density by size class) were

produced by averaging each group of 10 BRT models. Spatial

predictions were developed using the ‘‘raster’’ package version 2.0

[40] implemented in R version 2.15. Spatial predictions for fish

occurrence denote the probability that a large, medium or small

fish is present in a 262 m area. Spatial predictions for fish density

denote the number of large, medium and small fish predicted to be

in a 262 m area. These spatial predictions were independently

validated using the Tampo Bank SBES data to simulate and

evaluate how well they would perform in areas that had not been

surveyed with a SBES.

Model performance. When evaluating a model’s perfor-

mance, both its discrimination capacity and the reliability should

be assessed. Discrimination capacity refers to the ability of the

model to differentiate between classes (e.g., presences and

absences), while reliability describes the agreement between the

predicted and observed values at specific locations [41,42]. The

discrimination capacity of the BRT models for large, medium and

small fish occurrence and density was assessed using receiver

operating characteristic (ROC) curves, and their reliability was

Figure 4. Maps of predictor data. Six environmental variables used as predictors in both the training and validation sites. These six variables were
also included in the modeling process at four additional spatial scales. A total of 24 predictors were used to create each boosted regression tree
model and spatial prediction.
doi:10.1371/journal.pone.0085555.g004
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evaluated using mean absolute error (MAE) and root mean square

error (RMSE). MAE and RMSE both measure the average

magnitude of the predictive errors (independent of their direction).

However, MAE weights each error equally in the average, while

RMSE weights large errors much more heavily. Both metrics are

reported here so that the impact on different management

applications can be explored.

The other model performance metric, called ROC curves,

measure a model’s performance by comparing its sensitivity (i.e.,

true positive prediction rate) to its specificity (i.e., false positive

prediction rate) over the continuous range of predicted values. The

diagonal y = x line in a ROC curves denotes how a randomly

generated model would perform. ROC curves above this line

perform better than a random model, while ROC curves below

this line have useful information but are applying it incorrectly

[43]. The area under the curve (AUC) statistic was also calculated,

which describes the overall predictive performance of a model

compared to a random guess. It is equal to the probability that a

model will rank a randomly chosen presence higher than a

randomly chosen absence. AUC values ranging from 0.5 to 0.6

suggest the model is no better at discriminating classes than

random chance; values from 0.6 to 0.7 denote ‘‘poor’’ model

performance; values ranging from 0.7 to 0.8 denote ‘‘acceptable’’

model performance; values from 0.8 to 0.9 denote ‘‘excellent’’

model performance, and values greater than 0.9 denote ‘‘out-

standing’’ model performance [44].

ROC curves have several advantages over traditional accuracy

assessment techniques, including confusion matrices. One notable

advantage is that ROC curves are independent of binary

thresholds (i.e., break points where animals are defined as present

or absent) that are often chosen subjectively [45,46]. ROC curves

do not require that a predictive threshold be selected because they

describe a model’s performance over the complete range of

predicted values. The other important advantage of ROC curves

is that they are unaffected by changes in animal prevalence (i.e.,

unequal amounts of presences and absences) [45,46] because they

are based on ratios (and not summaries) of true presences to false

presences. This independence is particularly important when

developing models for rare animals (i.e., that have low prevalence,

like large fish) because it is possible to get high overall model

accuracy by predicting such animals are absent everywhere [45].

Evaluating model performance. ROC curves and correla-

tion coefficients were developed in R using 10-fold cross validation

data in the St. John Wedge area. In the Tampo Bank area, ROC

curves were developed (along with MAE and RMSE) using an

independent SBES dataset. This independent dataset (n = 5,269)

was used solely for assessing the performance of the final spatial

predictions. A subset of this validation dataset (n = 2,634) was

chosen randomly to avoid biasing the evaluation process in R.

Spatially autocorrelated points were then removed from this data

subset because positive autocorrelation violates the assumption of

independence and biases statistical tests by effectively overestimat-

ing the true sample size [47,48].

These autocorrelated points were identified in the large,

medium and small fish datasets by detrending them using local

polynomial regression, developing three empirical semi-

variograms from the residuals, and fitting spherical models to

the variograms using the ‘‘stats’’ and ‘‘geoR’’ package version 1.7

in R [49,50]. The ranges for the large, medium and small fish

variogram models were 280 m, 503 m and 272 m, respectively.

Table 5. Descriptions of predictors.

Predictor Dataset Unit Description Tool Used

1. Depth Meters Water depth -

2. Depth (Standard Deviation) Meters Dispersion of water depth values about the mean
(in a 363 cell neighborhood)

Focal statistic function in ArcGIS’s Spatial
Analyst

3. Curvature (Plan or Cross-
Sectional)

Concave (2) &
Convex (+)

Curvature of the surface perpendicular to the slope
direction (in a 363 cell neighborhood)

Curvature function in ArcGIS’s Spatial Analyst

4. Distance to Shelf Edge Kilometers Distance of the centroid of each pixel to the 183 m
(100 fathom) isobath

Euclidean distance function in ArcGIS’s
Spatial Analyst

5. Rugosity Ratio value Ratio of surface area to planar area (in a 363 cell
neighborhood)

Surface Area and Ratio function in DEM
Surface Toolbox

6. Slope of the Slope Degrees of degrees Maximum rate of maximum slope change (in a 363
cell neighborhood)

Slope function in ArcGIS’s Spatial Analyst

Environmental variables used to predict large, medium and small fish occurrence and density. Each variable was also included in the modeling process at four additional
spatial scales (i.e., using circles with radii of 25, 50, 100 and 300 m).
doi:10.1371/journal.pone.0085555.t005

Table 6. Frequency of Large Fish Records by Density Class.

Fish Density Class Fish Density Threshold (# fish/100 m2) Percent of Total Records (Training) Percent of Total Records (Validation)

Absent to Low #0.29 93.1% 91.9%

Low 0.30 – 0.63 4.0% 5.0%

Medium 0.64 –1.10 1.2% 1.6%

High $1.11 1.8% 1.5%

Frequency of large fish records by density class in both the training and validation areas. These classes were determined using Jenks Natural Breaks.
doi:10.1371/journal.pone.0085555.t006
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Points closer together than these distances were assumed to be

spatially autocorrelated, and were removed from the validation

process using Matlab. This step removed 2201, 2479 and 2219

points from the large, medium and small fish validation datasets.

The remaining 432, 154 and 415 spatially independent points

were used to create ROC curves and calculate MAE and RMSE

for the large, medium and small fish occurrence and density

predictions.

ROC curves for the fish density predictions were created

differently than those for the fish occurrence predictions because

ROC curves are not designed to handle validation data that is

continuous (i.e., densities). To address this issue, the large, medium

and small fish density data was divided into four classes (i.e., absent

to low, low, medium and high) using Jenks natural breaks in

ArcGIS (Tables 6, 7, 8). This method was chosen because it is well

suited for grouping data with large variances [51]. Six ROC

curves were then created for each of the large, medium and small

fish density predictions by comparing the four density classes in a

pair-wise fashion (i.e., absent vs. low, absent vs. medium, absent vs.

high, low vs. medium, low vs. high and medium vs. high). AUC

was calculated for each curve as well as for the entire multiclass

prediction using the method defined by Hand and Till, 2001 [52].

Spatial distribution of model errors. While ROC curves,

MAE and RMSE describe the discrimination capacity and

reliability of models, they do not describe the spatial distribution

of model errors [53,54]. Analyzing the spatial location and

arrangement of errors can be important because they may offer

clues about missing ecological or biological variables and their

spatial structure [54]. A model with spatially clustered errors

(versus randomly distributed) may indicate that there are

unaccounted for spatially structured variables. To better under-

stand this spatial structure, the large, medium and small fish

validation datasets were subtracted from their corresponding

occurrence and density predictions. Cluster and outlier analysis in

ArcGIS’s Spatial Analyst Toolbox was then used to describe the

spatial distribution and clustering of the residual model errors.

This tool identifies statistically significant spatial clusters of high

values, low values and outliers using inverse distance weighting

and the Anselin Local Moran’s I statistic.

Contribution of predictor variables. Two different metrics

were used to quantify how much each predictor contributed to the

BRT models. The first metric (i.e., ‘the relative influence of each

predictor variable’) is based on the number of times that a

predictor is selected for splitting. This sum is weighted by how

much the model is improved by each split, averaged across all the

trees and scaled so that the sum equals 100 [37]. The higher the

scaled number, the more influence a predictor has on the model

and vice versa. The top three predictors from this analysis were

examined in the discussion for each spatial prediction. The second

metric (i.e., ‘partial dependence plots’) examines how fish

occurrences and densities change over the continuous range of

values for a predictor (after accounting for the average effects of all

other predictors in the model). These plots can be used to identify

thresholds or peaks in the presence and density of large, medium

and small fish for each predictor [37].

Results

Fish Occurrence Models
Large fish. Large fish were observed in 15% of the SBES

records in the St. John Wedge area and 19% of the SBES records

in the Tampo Bank area. In Tampo Bank, the AUC value for the

large fish occurrence prediction (0.6860.06) indicated ‘poor’

model performance (Fig. 5). The average difference between the

predicted and observed probability of occurrence values was

MAE = 30.0% and RMSE = 36.0% (Fig. 6).The majority (79.4%)

of model errors were positive and #MAE, indicating that the BRT

model more commonly over-predicted (vs. under-predicted) the

probability of occurrence for large fish (Fig. 7). Negative errors

(i.e., where the model under-predicted the probability of

occurrence) were much less common (15.3%), but were always

larger than the MAE. Large, positive errors comprised the

remaining 5.3% of the model errors, and were located mainly

along the shelf edge and over hard bottom in the northeast

Table 7. Frequency of Medium Fish Records by Density Class.

Fish Density Class Fish Density Threshold (# fish/100 m2) Percent of Total Records (Training) Percent of Total Records (Validation)

Absent to Low #0.86 89.5% 64.0%

Low 0.87 – 1.88 6.3% 18.8%

Medium 1.89 – 3.93 2.9% 12.4%

High $3.94 1.3% 4.8%

Frequency medium fish records by density class in both the training and validation areas. These classes were determined using Jenks Natural Breaks.
doi:10.1371/journal.pone.0085555.t007

Table 8. Frequency of Small Fish Records by Density Class.

Fish Density Class
Fish Density Threshold (# fish/
100 m2)

Percent of Total Records
(Training) Percent of Total Records (Validation)

Absent to Low #0.37 62.7% 35.4%

Low 0.38 – 0.62 18.0% 5.6%

Medium 0.63 – 1.02 10.8% 7.1%

High $1.03 8.5% 51.9%

Frequency of small fish records by density class in both the training and validation areas. These classes were determined using Jenks Natural Breaks.
doi:10.1371/journal.pone.0085555.t008
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quadrant of Tampo Bank. Large negative errors were located

throughout Tampo Bank, but were clustered primarily along the

shelf edge and over a linear reef in the southwest quadrant of

Tampo Bank. A description the partial dependence plots and

influence of each predictor is not provided because the occurrence

model for large fish performed poorly.

Medium and small fish. Medium and small fish were

observed in 45% and 66% of the SBES records in the St. John

Wedge area and 74% and 79% of the SBES records in the Tampo

Bank area, respectively. In Tampo Bank, the AUC values for the

medium fish (0.4960.10) and small fish (0.5560.07) occurrence

predictions indicated that they performed no better than a random

model (Fig. 5). This weaker model performance is also reflected in

the larger MAE and RMSE values (Fig. 6), which were 3% to 15%

higher for medium and small fish than for large fish

(MAE = 40.0% and RMSE = 45.0% for medium fish, and

MAE = 33.0% and RMSE = 41.0% for small fish). The majority

of errors were negative and ,MAE for medium and small fish

(72.7% and 78.5%, respectively) (Fig. 7). All of the positive model

errors were .MAE and clustered mainly on the insular shelf for

both predictions. A description the partial dependence plots and

influence of each predictor is not provided because the occurrence

models for medium and small fish did not perform better than

would be expected by random chance.

Fish Density Models
Large fish. High densities of large fish were rare (,1.8% of

the SBES records) in both the St. John Wedge and Tampo Bank

areas (Table 6). The multi-class AUC value (0.77) for the large fish

density prediction indicated ‘good’ overall model performance

(Fig. 8), outperforming the large fish occurrence model. Pairwise

comparisons between density classes indicated that the BRT

model was able to reliably distinguish the absent to low and the

low density classes from the medium (AUC = 0.7360.20;

AUC = 0.7060.24, respectively) and high (AUC = 0.8760.05;

AUC = 0.7360.16, respectively) density classes. The model also

reliably differentiated the medium from the high density class

(AUC = 0.7360.19), but not the absent to low from the low class

(AUC = 0.5360.16). The average difference between the predict-

ed and observed large fish density values was MAE = 0.16 and

RMSE = 0.26 fish per 100 m2 (Fig. 9).The majority (78.0%) of

model errors were positive and ,MAE, indicating that the BRT

model more commonly over-predicted large fish densities (Fig. 10).

Negative errors were much less common (12.7%), and were about

equally above and below the MAE. Large, positive errors

comprised the remaining 9.3% of the model errors, and were

located mainly along the shelf edge and over hard bottom in the

northeast quadrant of Tampo Bank. Large negative errors were

located about equally on the insular shelf (n = 12) and along the

insular shelf edge (n = 10) in Tampo Bank, although more

clustering occurred along the shelf edge.

Medium fish. High densities were also uncommon for

medium fish (i.e., ,4.8%) in both project areas, although medium

fish were more often found in low and medium densities (.17%)

than large fish (Table 7). The medium fish density prediction

performed poorly (multi-class AUC = 0.68; Fig. 8). Pairwise

comparisons among the absent to low, the low and the medium

densities classes also indicated that the medium fish density BRT

model performed poorly or no better than a random model

(AUC = 0.55 to 0.62). However, the BRT model was able to

reliably distinguish the high density class from the absent to low,

the low and the medium density classes (AUC = 0.7760.15;

AUC = 0.8060.13; AUC = 0.7360.17, respectively). The average

difference between the predicted and observed medium fish

density values was MAE = 1.0 and RMSE = 1.65 fish per 100 m2

(Fig. 9). Model errors were nearly equally split between being

negative (43.5%) and positive (56.5%), indicating that the BRT

model did not systematically under or over-predict medium fish

densities (Fig. 10). The majority of errors (71.4%) were ,MAE. Of

the 28.6% of errors .MAE, more were negative (21.4%) than

positive (7.1%). The large positive errors were located mainly

along the shelf edge and in the northeast quadrant of Tampo

Bank. The large negative errors were located in all four quadrants

of the Tampo Bank area, but they were clustered along the shelf

edge.

Small fish. Small fish were commonly found at medium and

high densities (.19%) in both areas (Table 8). The BRT model

was no better at predicting small fish densities than a random

model (multi-class AUC = 0.53; Fig. 8), and could not reliably

distinguish between any of the density classes (AUC,0.55). This

weaker model performance is also reflected in the larger MAE and

RMSE values (2.1 and 3.6 fish per 100 m2, respectively; Fig. 9).

The majority (67.6%) of model errors were negative and clustered

mainly in the southwest and northwest quadrants of Tampo Bank

(Fig. 10). Approximately 31.6% of these negative errors were .

MAE. Positive errors were all ,MAE, and located mainly in the

northeast and southeast quadrants. Given that the density models

for small and medium fish both performed poorly, a description

the partial dependence plots and influence of each predictor is not

provided for either model.

High to medium densities of large fish were predicted along the

shelf edge in both the St. John Wedge and Tampo Bank areas

(Fig. 9). Low densities were predicted shoreward at the Tampo

Bank area along hard bottom features with moderate amounts of

structural complexity. Absent to low densities of large fish were

predicted shoreward of the shelf edge over areas with low amounts

of structure. Depth (at two different spatial scales) and standard

deviation of depth were the top three most important environ-

mental variables influencing the density and distribution of large

fish (Fig. 11). These three predictors each explained between 7.8

Figure 5. ROC curve for fish occurrence predictions. These ROC
curves were developed using the independent dataset in the Tampo
Bank area. Area under the curve (AUC) values (at the 95% confidence
interval) are listed in the lower right hand corner.
doi:10.1371/journal.pone.0085555.g005
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Figure 6. Fish occurrence spatial predictions. Three spatial predictions denoting the probability of occurrence for large, medium and small fish
were created for both the training and validation sites. The spatial outputs from 10 different BRT models were averaged to create the spatial
predictions seen here. Metrics describing the performance and accuracy of these models and spatial predictions are located in the lower left corner of
each map.
doi:10.1371/journal.pone.0085555.g006

Mapping Fish and Seascapes for Coastal Management

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e85555



Figure 7. Errors for fish occurrence spatial predictions. The
magnitude and spatial structure of the errors for the fish occurrence
predictions were calculated by subtracting the predicted from observed
probability of occurrence values. Negative values indicate that the
model under-predicted, and positive values indicate the model over-
predicted the probability of occurrence for large, medium and small
fish. The error data was divided into classes based on the MAE. Spatial
autocorrelation of the residuals were analyzed using Anselin Local
Moran’s I statistic. Analyzing the spatial location and arrangement of
errors can be important because they may offer clues about missing
ecological or biological variables.
doi:10.1371/journal.pone.0085555.g007

Figure 8. ROC curves for fish density predictions. These ROC
curves were developed using the independent dataset in the Tampo
Bank area. The multiclass AUC values are listed at the top of the figure
for the large, medium and small fish predictions, and the AUC values (at
the 95% confidence interval) are listed in the lower right hand corner
for each pairwise comparison.
doi:10.1371/journal.pone.0085555.g008
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and 14.6% of the variance in the large fish density data. All of

these predictors had spatial scales $100 m, suggesting that the

BRT density models were more heavily influenced by these

variables at broad spatial scales. Partial dependence plots for these

three predictors showed clear peaks and breakpoints in the

response data (Fig. 12). When all other variables were held at their

average values, large fish were more likely to occur at high

densities where the seafloor was shallower (,38 m) and more

complex (i.e., areas where the depth deviated by .0.29 m)

(Figs. 12 a, b and c).

Figure 9. Fish density spatial predictions. Three spatial predictions denoting the density of large, medium and small fish were created for both
the training and validation sites. The spatial outputs from 10 different BRT models were averaged to create the spatial predictions seen here. Metrics
describing the performance and accuracy of these models and spatial predictions are located in the right left corner of each map.
doi:10.1371/journal.pone.0085555.g009
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Discussion & Conclusions

The novel integration of acoustic sensors offers a new approach

to rapidly acquire spatial data across broad extents to identify both

fish aggregations and areas of low fish occurrence. When

combined with predictive modeling, it also offers a reliable

method for predicting the density of large fish in areas where fish

distributions have not been mapped. While fish acoustic systems

are currently unable to identify fish species, they can collect many

thousand observations (.5000 data points in each location) in a

short amount of time (i.e., days to weeks versus months to years for

SCUBA diver based surveys). These large acoustic datasets can

support analysis—across a range of fish size classes and spatial

scales—linking fish densities with seafloor structure and proximity

to the insular shelf edge. They can also provide insights into

geographic areas that are important for reef and non-reef

associated species, helping coastal managers focus their efforts

and limited resources on locations that may be of higher

conservation value.

Model Performance
Fish size classes. The model results indicate that we can

reliably predict the density of large fish (in areas up to 100 m

deep). Confusion between the absent to low and the low density

classes was most likely due to the threshold chosen, and could be

removed by merging the two classes. These results are comparable

to those previously developed for shallow areas (,30 m) in a

similar tropical coral reef ecosystem using fish distribution data

from SCUBA diver surveys [14,18,33,55,56]. However, we were

unable to produce an ‘acceptable’ model predicting the probability

of occurrence for large fish. The large fish occurrence model may

have performed better if we were able to divide the presence and

absence data by species or trophic groups (instead of size class), as

in previous studies.

Predictions for medium fish occurrence and for small fish

occurrence and density were no more accurate than would be

expected by random chance alone. Models for medium fish

density performed somewhat better (particularly for the absent to

low, the low and the medium versus high density classes), but their

overall performance was still below the acceptable range. We

attribute the poor performance of these models to the unequal

prevalence of small to medium fish in the validation area versus

the training area. No attempt was made to choose areas with

similar prevalences because the main goal of this modeling effort

was to predict fish distributions in un-surveyed (i.e., where

animals’ distributions and prevalences are unknown). However,

this result highlights the need for caution when applying predictive

models to new locations, and the need for an independent

assessment of their accuracy before using them to make

management decisions. In this case, it is difficult to know why

smaller fish were more prevalent in the validation area. However,

one possibility is the distinct shape of the shelf edge in the Tampo

Bank area, which protrudes further out into deeper waters than

the St. John Wedge area (Fig. 2). The importance of promontories

(i.e., bends in the shelf edge, where the steep terrain protrudes into

deeper waters) and shelf edge habitats are discussed in more detail

in section 4.4.

In addition to unequal prevalences, we also attribute the poor

performance of the medium and small fish models to the more

even distribution and higher prevalence of smaller fish (45–79%)

versus large fish (15–19%) overall. Smaller fish were most likely

more prevalent because they experience less fishing pressure than

larger fish, and they were more evenly distributed because they

exploit a wider range of habitats than larger fish. The latter half of

Figure 10. Errors for fish density spatial predictions. The
magnitude and spatial structure of the errors for the fish density
predictions were calculated by subtracting the predicted from the
observed fish density values. Negative values indicate that the model
under-predicted, and positive values indicate the model over-predicted
the density of large, medium and small fish. The error data was divided
into classes based on the MAE. Spatial autocorrelation of the residuals
were analyzed using Anselin Local Moran’s I statistic. Analyzing the
spatial location and arrangement of errors can be important because
they may offer clues about missing ecological or biological variables
and their spatial structure.
doi:10.1371/journal.pone.0085555.g010
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this explanation is supported by the fact that the most commonly

seen small and medium fish groups included species with more

varied habitat preferences and feeding habits than those found in

the large fish class. Notably in Table 2, the most commonly seen

large fish species were associated with only two types of habitats,

whereas the most commonly seen medium and small fish species

(Tables 3 and 4) were associated with three and four types of

habitats, respectively.

Seafloor complexity predictors. The most influential

factors for predicting large fish density were depth and variation

Figure 11. Influence of predictors on large fish density models. This figure shows the relative influence of each environmental variable on the
large fish density spatial prediction. Cross validation data were used to calculate these values and standard errors, which were averaged 10 BRT
model replicates.
doi:10.1371/journal.pone.0085555.g011

Figure 12. Partial dependence plots for large fish density models. Response curves for the three environmental variables that had the
greatest influence on the prediction of large fish density. Collectively, these variables explain approximately 32% of the variance in the response data.
All other variables were held at their average value.
doi:10.1371/journal.pone.0085555.g012
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in depth. Combined, these predictors explained 32% of the

variance in the large fish density data. These influential predictors

are similar to those identified by other reef fish modeling studies.

Notably, depth explained over 10% of the variance in the

occurrence of several fish species, and the abundance and biomass

of piscivores in southwestern Puerto Rico [14,18]. Slope of slope

was also a common predictor for these individual species and

community metrics [18], but it was not an influential factor in our

models (,5% relative influence). Its influence may have been

masked by the variation and overlap in habitat preferences among

fish species grouped by size class. It is likely that both pelagic and

demersal fish were included in our estimates of large fish

occurrence and density, confounding the link between seafloor

structure and large fish densities.

Spatial scale. The top model predictors for large fish density

were important at relatively broad spatial scales (100 and 300 m).

These relationships are similar to other modeling exercises, which

also found linkages between larger fish and habitats at similarly

broad spatial scales (i.e., 100, 200 m and 500 m) [14,18,34,55].

However, some of these same studies also found that smaller fish

responded to habitats at much finer (,25 m) spatial scales whereas

we did not [18,34]. One explanation for this difference may have

to do with the timing of the fish surveys. Several of these studies

used data collected during the day [18,34,55], whereas here, we

used data collected between dusk and dawn. The time of day may

be an important factor because many species make nocturnal

migrations, feeding in habitats adjacent to structured reefs and

hard bottom habitats [57,58,59]. Tagging studies have found that

several reef fish species move 300 m or more diurnally [59] during

these migrations.

Importance of the shelf-edge reefs. The relative influence

of proximity to the shelf edge was relatively low compared to other

factors (e.g., depth) for predicting large fish density. This reduced

influence is most likely because depth and distance to shelf edge

are highly correlated (i.e., the seafloor becomes deeper further

from shore), and are most likely interchangeable as predictors. It

remains that high fish occurrence and densities were observed and

predicted at the shelf edge reefs in both St. John Wedge and

Tampo Bank. High fish densities has also been noted at shelf-edge

reefs in the Great Barrier Reef [60,61] and other reef systems in

the western Atlantic [62,63,64,65]. The shelf-edge reefs are

considered an important ecotone, where shelf waters containing

land-based sources of nutrients converge with clear, oligotrophic

ocean currents. Juveniles of many species, which use near-shore

reefs and vegetated habitats, migrate to shelf edge reefs when they

become adults presumably to rest, forage, and reproduce [66].

Our measure of distance from the shelf edge may also be a

surrogate for other environmental or geophysical parameters that

we did not measure. This explanation is supported by the fact that

the biggest model errors (.MAE) for the large fish density

prediction were spatially clustered along the shelf edge. This

spatial clustering suggests that other physically and biologically

important variables (e.g., nutrients, currents, thermoclines, prey

abundances, fishing pressure) correlated with the shelf edge were

missing from this modeling process. These variables were

intentionally excluded from this study to investigate whether

seafloor complexity would explain much of the variance in fish

distributions. However, in future modeling iterations, additional

oceanographic variables should be included at the very least, since

nutrient supply and photic depth, combined with relatively stable,

warm ocean waters appear to support high abundance of both

oceanic and shelf species across a broad range of trophic guilds in

this area [66]. Our observations of fish of all size classes show that

densities are not the same along the entire shelf edge. Though we

did not include a predictor to formally assess this pattern, higher

densities were apparent along promontories in both regions. The

promontories and submerged capes are notable geomorphologic

features on the insular shelf of the U.S. Caribbean, and are

common features where spawning aggregations for reef fish occur

[6,66]. These features may possess other qualities that support

high densities of large fish during non-spawning periods. While we

anticipated that shelf edge reefs and promontories would be

important habitats, further research is needed to better understand

the ecological processes behind these preferences.

Management Implications and Future Developments
Splitbeam echosounders can rapidly survey fish distributions

over large areas (10 s to 100 s km2) and at relatively fine spatial

resolutions (,100 m2). This capability may make predictive

models unnecessary in some cases. However in other cases,

seafloor structure has been mapped in many areas without

accompanying data describing fish distributions or densities.

Model predictions could be used to provide first-order maps of

large fish densities in these areas. These first order maps could

potentially help managers focus their energies on areas that may

be critical for large fish and that require additional study, as well as

save resources by identifying broad areas that may not require

visual surveys (e.g., over 93% of the sites presented here). These

models could also be used to forecast how habitat use patterns for

larger fish may change under different reef disturbance and

flattening scenarios.

This study further emphasized reef complexity as an important

geophysical feature in coral ecosystems, particularly at the ecotone

of the insular shelf-edge. The shelf-edge habitats are also popular

fishing grounds for pelagic and reef-associated species. Our

findings at St. John Wedge and Tampo Bank have identified

areas of high fish density that may benefit from long-term

conservation and management actions to sustain fish populations.

Visual surveys can also be conducted in these areas to better

understand the environmental conditions attracting higher densi-

ties of fish, as well as to obtain better information on species

comprising these assemblages.

This study also suggests that fish-seascape relationships and

spatial predictions derived from fish acoustic surveys are similar to

those derived from visual observations, although more research is

needed directly comparing the two [14]. We are particularly

encouraged by the performance of our model predicting large fish

density. Coastal and fisheries managers are often most interested

in the distribution of large, commercially valuable and vulnerable

reef fish to identify essential fish habitat, including spawning

aggregation sites. Identifying where large fish are most abundant

will help coastal managers to prioritize sites and focus their efforts

and limited resources on specific areas that may be of the highest

conservation value. This type of targeted resource allocation will

be particularly important as budgets are continually stretched and

reef habitats become increasingly vulnerable, affecting the health

and sustainability of reef fish populations. We propose wider use of

these acoustic remote sensing tools, coupled with continued

improvements in predictive modeling, to map and monitor fish

aggregations in sensitive ecosystems.
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