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Abstract—Opportunistic schedulers such as MaxRate and
Proportional Fair are known for trading off between throughput
and fairness of users in cellular networks. In this paper, we
propose a novel solution that integrates opportunistic scheduling
design principles and cooperative D2D communication capabili-
ties in order to maximize fairness without sacrificing throughput.
Specifically, we develop a mathematical approach and design a
smart tie-breaking scheme which maximizes the fairness achieved
by the MaxRate scheduler. However, our approach could be
applied to improve fairness of any scheduler. In addition, we show
that users that cooperatively form D2D clusters benefit from both
higher throughput and fairness. Our scheduling scheme is simple
to implement, scales linearly with the number of clusters, and is
able to double the throughput of Equal Time schedulers and to
outperform by 20% or more Proportional Fair schedulers, while
providing a user fairness index comparable to or better than
Proportional Fair.

Index Terms—Cellular networks; Opportunistic scheduling;
D2D communications; Tie-breaking.

I. INTRODUCTION

It has been shown that the cellular throughput can be dra-
matically improved by using opportunistic schedulers such as
MaxRate [1] and Proportional Fair [2]. However, opportunistic
schedulers proposed for cellular networks face a trade off
between throughput and fairness when it comes to prioritizing
the users based on their channel qualities [3]. Hence, with the
existing cellular architectures, opportunistic schedulers cannot
achieve maximum throughput and fairness at the same time,
unless all users experience the very same channel quality [4].

In contrast, in this work, we show how to evolve the
cellular architecture by leveraging device-to-device (D2D)
communications to achieve maximum throughput and maxi-
mum fairness. In particular, we explore the possible gain from
having D2D-assisted connections within clusters of mobile
users, as shown in Fig. 1, where each cluster is treated by
the base station as a regular mobile user in a cell. We propose
to change the normal cellular operation (e.g,. in LTE-A) as
follows: at each scheduling frame, the scheduled mobile user
is responsible for the traffic of its entire cluster, i.e., it acts as
cluster head. The cellular traffic managed by the cluster head
is then immediately exchanged within the cluster via D2D
communications on a secondary wireless interface (e.g., an
802.11-based protocol like WiFi-Direct or WiGig). Note that
the cluster head is, in principle, opportunistically different at
any frame, thereby achieving maximum throughput.

In turn, fairness is achieved in the following way. The
scheduler selects some of the connections for transmission,

Fig. 1. Example scenario: three clusters in a base station, with five, ten and
fifteen mobile users, respectively.

however, there are situations in which two or more schedulable
connections are in tie, i.e., they can be scheduled with the
same transmission rate. These ties are usually ignored or
broken randomly [5]. In contrast, we show that a smart tie-
breaking strategy allows to compensate for the channel quality
differences randomly experienced by data connections that are
active in the cellular network.

So far, nobody has investigated the possibility of enhancing
fairness of opportunistic schedulers by utilizing tie-breaking
methods. Thus, we are the first to explore tie-breaking schemes
for improving the fairness achieved with a MaxRate scheduler,
though other opportunistic schedulers could also be enhanced
with our approach. We select the MaxRate scheduler since
it maximizes system throughput, and we show that improved
fairness levels can be achieved without paying any throughput
cost, i.e., we study how to break ties in order to maximize
connection fairness while maintaining the maximum cell throu-
ghput. However, our approach could be applied to improve
fairness of any scheduler.

We propose a novel solution—and design an algorithm—
that integrates opportunistic scheduling design principles and
cooperative D2D communication capabilities to maximize
both fairness and throughput in cellular networks. Our main
contributions can be summarized as follows:

1) we develop a mathematical framework for the evalua-
tion of fairness in an architecture based on cooperative
D2D clusters and opportunistic scheduling in cellular
networks;

2) we formulate a problem and show how to optimize tie-
breaking based on the knowledge of average channel
qualities;

3) we analytically derive MaxRate-MaxFair, an optimal tie-
breaking scheduler for the case of two connections;
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4) based on the analysis, we design PIKe, a novel tie-
breaking heuristic to provide improved fairness under
MaxRate scheduling with multiple connections;

5) we evaluate the performance of the proposed solution
through an extensive numerical simulation study.

The remainder of this paper is organized as follows. In
Section II, we review the literature on works relevant to
our proposal. Our system model is presented in Section III.
Section IV analytically tackles fairness issues which are due to
MaxRate scheduling, and discusses a few schemes to improve
the level of fairness in the system without reducing the total
throughput. For the simple case of a system with two active
data connections, we analytically design MaxRate-MaxFair, a
scheme that achieves the highest possible fairness and maxi-
mum throughput. Inspired by the results of the two-connection
case, in Section V, we propose PIKe, a heuristic for solving the
generic case of N connections to be scheduled. In Section VI,
we use numerical simulations to evaluate the throughput and
the fairness that can be achieved with our proposal in a variety
of realistic scenarios. PIKe can achieve 50% higher throughput
than conventional networks while providing a user fairness
index close to one. Finally, we summarize and conclude the
paper in Section VII.

II. RELATED WORK

D2D communications. D2D communications include all
technologies that allow direct communication among users
without involvement of an infrastructure or an access point [6].
D2D communications may be utilized in a variety of scenarios
such as cooperative communications, packet forwarding, and
relaying. In [6] and [7], the authors explore some applications
of D2D communications in cellular networks such as P2P, mul-
tiplayer gaming, and multicast transmissions. Doppler et al. [8]
explore D2D communications establishment and management
in LTE-A networks. They show that D2D communications
using the very same cellular resources (inbound relay) increase
the throughput by up to 65%. The authors of [9] propose to
introduce fixed ad hoc relay stations, operating on licensed
or unlicensed bands, to enable P2P communications within
a cell or adjacent cells. Their approach reduces the call
blocking probability by routing new calls to less congested
cells. The authors of [10] propose to use D2D communications
by forming clusters among mobile users with single antenna to
emulate a MIMO device. Yu et al. [11] propose D2D commu-
nications in cellular networks for local traffic handling. In that
work, D2D transmissions are meant to handle communications
among two mobile devices, however users do not help each
other to relay traffic to the base station. Also, all transmissions
occur over the same interface as cellular communications, and
D2D resources are allocated by the base station.

Opportunistic scheduling. The notion of opportunistic sche-
duling was introduced by Knopp and Humblet in [1] by
proposing the MaxRate scheduler. MaxRate exploits multiuser
diversities in wireless channel by scheduling the user with the
highest transmission rate in each frame. The greedy behavior

of MaxRate leads to unfairness among users with heteroge-
neous channels. Therefore, MaxRate is rarely used, whereas it
is commonly referred to as an upper bound for the achievable
throughput. Furthermore, MaxRate does not define a strategy
to break scheduling ties, and common implementations use
uniformly random tie-breaking [5].

Some of the proposed opportunistic schedulers can provide
certain notion of fairness at the expense of reducing through-
put. For instance, Proportional Fair (PF) represents the state-
of-the-art opportunistic scheduling with fairness constraints.
PF gives priority to users with relative good channel quality
and who have received less throughput in the past, i.e., PF
uses the r.v. Rn(t)/µn(t) as scheduling priority at time t,
where Rn(t) is the rate achievable in the current frame,
and µn(t) is the average throughput received by user n and
computed via a low pass filter. The PF scheduler, patented
by Qualcomm for High Data Rate (HDR) system 1xEV-
DO [2], was shown to maximize the aggregate logarithmic
throughput, not the cumulative throughput [12]. While the
network capacity is fully achievable in case of homogeneous
users [13], this is not the case in presence of multi-class flows
[4]. Other opportunistic schedulers, e.g., MaxWeight [14] and
Exponential rule [15], take scheduling decisions based on a
metric that combines queue sizes and transmission rates. These
schedulers do not achieve the maximum possible throughput.

Tie-breaking. Advanced tie-breaking can be used to improve
performance in network and computer systems. In [5], Neely
proposed to break ties in favor of the user with the longest
queue. The authors of [16] proposed a modification of the
MaxWeight scheduler, to serve the user with highest product of
head-of-line packet’s waiting time and actual transmission rate,
with ties broken in favor of older packets. In [17], the authors
proposed the oldest-first tie-breaking rule in which the sched-
uler breaks ties based on the life-time of the flows (i.e., packet
waiting time in the queue). For flow-level models, in which
users randomly arrive and depart, the authors of [4] and [18]
proposed prioritization of flows with higher departure prob-
ability. Indeed, [19] proved that opportunistic schedulers fail
to achieve fluid-optimality unless the tie-breaking prioritizes
such flows. The majority of the existing literature overlooks
the existence of scheduling ties, whereas the few authors that
take ties into consideration either opt for uniformly random
tie-breaking [20] or leverage a secondary constraint to break
ties [5], [16], [17], [21], [22].

All these works have one common assumption, i.e., ties
are expected to happen in rare events and their impact on
system performance is marginal. In contrast, this paper focuses
on scheduling ties as an important part of the scheduling
decision, which allows for achieving high user fairness with
aggressive opportunistic scheduling schemes. Moreover, note
that the clustering mechanism we adopt in this work to
boost throughput also generates frequent tie opportunities (see
results in Section VI-A). Therefore, the study of tie-breaking
with respect to fairness consequences becomes very relevant.
As we remark, to date, there is not work exploiting D2D com-
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munications and tie-breaking in opportunistic scheduling to
improve fairness while achieving maximum throughput, while
the feasibility of opportunistic scheduling of D2D clusters has
been recently demonstrated in [23].

III. SYSTEM MODEL

In this section we present our D2D-based opportunistic
scheduling system that can be leveraged to maximize both
throughput and fairness in a cellular system.

A. Connections
We consider a cellular network with a set N of N persis-

tent connections of users to a base station, using dedicated
wireless channels. In the following, we focus on downlink
communications, though the model is applicable also to uplink
communications. The base station operates in a synchronous
time-slotted way, and its task is to schedule connections for
transmission in every frame t = 0, 1, . . . . We also assume
that the base station has a queue for storing packets to be
delivered to each connection, and queues are never empty
(fully backlogged assumption), so that we can evaluate the
behavior of the system in saturation, i.e., under the worst
scheduling operational conditions.

Transmission channels are heterogeneous, i.e., not satisfying
the i.i.d. assumption common to many works on cellular
networks. The channel is characterized by stationary Rayleigh
fading. Therefore, the SNR can be described as a random pro-
cess C(t) with mean γ and Cumulative Distribution Function
(CDF) given by F (z) = 1 − e−

z
γ , z ≥ 0, γ ∈ Γ, n ∈ N ,

where, for the sake of tractability, we have introduced Γ as the
discrete set of average values for the SNR of transmissions.

We assume that the information available at the base station
corresponds to the steady-state distribution of SNR. Note that,
for practical systems, in which measured channel conditions
form a discrete set, existing patents [24], [25] propose to keep
track of historical observations of SNR values to provide an
estimate of the steady-state distribution of SNR.

We assume that the selection of Modulation and Coding
Scheme (MCS) is perfect (i.e., transmissions are affected by
negligible error rate), so that we ignore retransmissions. Each
possible MCS k ∈ {1, . . . ,K} is selected by connection n
with probability pn,k, and achieves transmission rate rk, which
only depends on the instantaneous SNR value. Eventually, we
consider a system with no power control, which is realistic
for downlink transmission schemes in LTE, although this
assumption can be easily relaxed.

B. Scheduling of Clusters of Users
In the previous discussion we had implicitly associated

every connection with a single user. However, mobile users
may form clusters using cooperative D2D communications, in
which only one of the users, namely the cluster head, connects
in a given frame to the base station and relays traffic for the
other users. A cluster is formally defined as follows.

Definition 1. (Cluster) A cluster is a group of mobile users
that can communicate with each other using a data rate more

advantageous than with the cellular base station. Only one
cluster member, namely the cluster head, is allowed to receive
data from the base station. The downlink traffic received at
the cluster head can belong to any of the cluster members,
and it is distributed in the cluster using D2D techniques.

The scheduling algorithm is MaxRate, i.e., the cluster that
contains the user with the highest MCS is scheduled. We
propose to operate clusters in opportunistic way: (i) the cluster
head can change on a per-frame basis, as it is opportunistically
selected as the cluster member with the highest current MCS;
(ii) an entire cluster is scheduled as an individual user
whose MCS is the highest among members; (iii) the cluster
head relays the downlink packets to the final destination on
a secondary wireless interface, using D2D for intra-cluster
communications. Therefore, in this work, a connection n can
be a user or, more in general, a cluster composed by mn ≥ 1
mobiles, and its instantaneous SNR is the highest SNR among
the mobile users composing the cluster. In particular, the
probability pn,k that a scheduled connection n receives data
encoded according to the k-th MCS can be computed based
on the cluster members’ SNR CDF and the MCS thresholds
used in the cellular system (see Appendix A).

As detailed in Section VI-A, scheduling clusters instead
of users not only brings advantages in terms of system
throughput, but also in terms of fairness. However, we will
mainly focus on inter-cluster fairness, since the actual per-
user fairness depends on the way resources are shared within
a cluster. Accordingly, when we refer to throughput and
fairness, we assume that cluster resources are divided equally
between cluster members. Note that throughput unfairness due
to heterogeneous channel qualities within the same cluster is
smoothed by the adopted cooperative D2D communications.
However, the particular mechanism to manage intra-cluster
fairness is left out of the scope of this manuscript. Here, we
rather focus on studying possible gains in throughput and in
fairness among connections.

IV. MAXIMAL FAIRNESS WITH MAXRATE SCHEDULING

Maximum throughput is achieved in our setting by using
MaxRate, which in each frame transmits data to a connec-
tion with the highest instantaneous SNR, i.e., the process
of selecting connection A(t) must satisfy, for every t, that
A(t) = n implies that the transmission rate of connection n
is higher than or equal to the one of any other connection in
N . Therefore, by definition, MaxRate is throughput-optimal,
and so is our proposal.

The objective here is to study when it is possible, and how,
to achieve perfect fairness (i.e., equal throughputs) given that
the scheduler is MaxRate. We focus on fairness in the sense
of equalizing the expected time-average throughput across
connections, independently of their average channel quality.
This maximizes the widely adopted Jain’s fairness index. The
only degree of freedom that the system offers to play with
fairness consists in the occurrence of ties in the scheduling
scheme, which can be frequent in systems using only few
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discrete MCS values. Note also that adopting clusters with
opportunistically selected cluster heads allows to increase the
probability to transmit with high MCS, which in turn increases
the probability of tie between connections. This effect can be
exploited by designing a smart tie-breaking rule to employ if
at least two connections compete for being scheduled with the
same MCS. Formally, we use the following definitions.

Definition 2. (Best setM and best MCS k)M(t, k(t)) is the
set of connections that can be scheduled with the k-th MCS in
frame t, and k is the best MCS that can be used in the system
in frame t, according to the SNR of the connections. We will
use M as short for M(t, k(t)).

Definition 3. (Tie) A tie occurs when, in a given frame t, two
or more connections can be scheduled by MaxRate with the
same MCS k, which is the best possible MCS in the system at
that scheduling epoch, that is: |M(t, k(t))| > 1.

Definition 4. (Tie-breaking) A tie-breaking scheme is a
procedure to select exactly one connection i ∈ M(t, k(t))
to be scheduled when a tie occurs at time t.

In what follows, we first examine the multiple-connection
case, finding it intractable to solve exactly. Then we study
the two-connection case in detail, for which we give complete
answers and which serves to develop fundamental intuition.
In Section V, inspired by the results achieved for two connec-
tions, we design a heuristic for the multi-connection case.

In many of the arguments below we will rely on the fact that
the expected long-term fairness (throughput distribution over
an indefinitely long interval) is equivalent to the expected one-
slot fairness (average per-slot throughput distribution), due to
the stationarity channel assumption we made earlier.

A. Analysis of the Multiple-Connection Case

Let us denote by Qn,k :=

k−1∑
l=1

pn,l the probability that

connection n ∈ N has an MCS strictly worse than k. Note that
Qn,1 = 0. Let hn ∈ {0, 1} denote whether the current MCS
of connection n is higher than or equal to the current MCS
of any other connection (hn = 1) or not (hn = 0). Then,
vector h := (hn)n∈N identifies with elements 1 precisely
those connections that are allowed to transmit under MaxRate.
Note that, by definition, h = 0 cannot happen.

We can now define

Rh :=

K∑
k=1

(
rk

∏
n:hn=1

pn,k
∏

n:hn=0

Qn,k

)
, (1)

which represents the expected (both one-slot and time-average)
cumulative throughput of the system in situation h (i.e., when
exactly the connections specified by h are in a tie situation).
Rh is therefore the “tie throughput” to be shared between
connections for which hn = 1.

The number of 1’s in vector h is denoted by L0(h) (so-
called zero “norm”). If L0(h) = 1, then there is a single
connection with highest MCS, so it will be scheduled. If

L0(h) ≥ 2, then there are several connections in a tie, and the
scheduler must decide who to serve. Without loss of generality
this can be done randomly. Then we need to define L0(h)
parameters 0 ≤ αh

n ≤ 1 for every connection n such that
hn = 1, denoting the probability of serving connection n in
situation h.

Let us denote by H1 := {h : L0(h) ≥ 1} the set of all
vectors h 6= 0. Then the aggregate throughput of the system
under MaxRate scheduler is equal to

∑
h∈H1

Rh, and the
perfectly fair share is thus R∗ :=

∑
h∈H1

Rh/N . We further
denote by H2 := {h : L0(h) ≥ 2} the set of all vectors
representing ties (of at least two connections). Then, achieving
perfect fairness means that the following equalities hold:

Ren +
∑

h∈H2:hn=1

αh
nR

h = R∗, ∀n ∈ N ; (2)∑
n∈N

αh
n = 1, ∀h ∈ H2; (3)

where en is the unit vector with 1 at n-th position, and 0’s
otherwise, representing the situation when connection n is the
unique connection achieving the highest transmission rate.

It is easy to calculate that there are 2N−1 vectors belonging
to H1 and 2N − N − 1 vectors belonging to H2. Therefore,
there are 2N − 1 equations (out of which one is redundant),
while having N2N−1 − N unknowns, which is significantly
more (except for N = 2).

We can reformulate the above problem formally as a linear
programming (LP) problem:

max 0 (4)∑
h∈H2:hn=1

αh
nR

h = R∗ −Ren , ∀n ∈ N ; (5)∑
n∈N :hn=1

αh
n = 1, ∀h ∈ H2; (6)

αh
n ≥ 0, ∀h ∈ H2 and ∀n ∈ N

such that hn = 1. (7)

The constant objective (max 0) indicates that we are in
fact interested in finding whether there is a feasible solution
satisfying all the constraints. Because of the non-negativity of
αh
n (expressed in (7)), feasibility of (5) necessarily requires

having 0 ≤ R∗ − Ren for all n. Moreover, it is easy to see
that every h ∈ H2 gives one necessary condition (by adding
up (5) for all n such that hn = 1, and simplifying using (6) for
all vectors g ≤ h and using (7) for the remaining unknowns).
For instance, a two-connection tie h = en,m gives

Ren,m ≤ (R∗ −Ren) + (R∗ −Ren). (8)

This means that the throughput associated to ties of connec-
tions n and m cannot be higher than what n and m need to
reach perfect fairness.

B. Analysis of the Two-Connection Case

If there are many connections, the size of the problem
becomes too large to be solvable at milliseconds scale in
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a real base station. Therefore, we analyze the case of two
connections with the aim to get more insight into the problem
in order to design a heuristic. The two-connection case can
be analyzed and solved without the need of using numerical
methods. To make the notation more intuitive, we denote the
following quantities:

R(1) := Re1 =

K∑
k=2

rkp1,kQ2,k, (9)

R(2) := Re2 =

K∑
k=2

rkp2,kQ1,k, (10)

R(X) := Re1,2 =

K∑
k=1

rkp1,kp2,k, (11)

which represent the expected (both one-slot and time-average)
transmission rates in the following three cases: Eq. (9) ex-
presses the rate of connection 1 when it has an MCS strictly
better than connection 2; Eq. (10) is for connection 2 having an
MCS strictly better than connection 1; and Eq. (11) is for the
case of tie. Note that the aggregate throughput of the system
under MaxRate scheduler is equal to R(1) +R(2) +R(X).

In the following proposition we give a sufficient and nec-
essary condition for a scheduler that achieves both maximal
throughput and perfect fairness (i.e., all connections achieve
the same throughput).

Proposition 1. The MaxRate scheduler can achieve both one-
slot and time-average fairness if and only if∣∣∣R(1) −R(2)

∣∣∣ ≤ R(X). (12)

The proof is given in Appendix B. Here, it is worth to
discuss when such a condition might hold. Indeed, there are
some intuitive sufficient conditions stated next, which are
independent of the transmission rates rk.

Proposition 2. The MaxRate scheduler can achieve both
one-slot and time-average fairness if any of the following
conditions hold:

1) p1,k = p2,k for all k ≥ 2 (i.e., the channels of the two
connections are statistically equal);

2) |p1,kQ2,k − p2,kQ1,k| ≤ p1,kp2,k for all k ≥ 2;
3) p1,k ≥ p2,k for all k ≥ 2 and p2,K ≥ 1/2.

The proof uses arguments similar to the ones used in the
proof of Proposition 1 and is thereby omitted for brevity.
Moreover, there may be weaker conditions which make it
likely that perfect fairness is achievable. For instance, if one of
the following conditions holds, perfect fairness is achievable:

1) p1,kp2,k is large enough for all k large enough;
2) |p1,kQ2,k − p2,kQ1,k| small enough for all k large

enough;
3) probabilities pn,k for all k large enough are approxi-

mately equal for the two connections;
4) the expression p1,kQ2,k − p2,kQ1,k often changes sign

as k grows.

Finally, taking into account that transmission rates rk grow
somewhat exponentially with k (see Table I in Appendix A),
it is much more important that the two connections are
statistically similar in the upper MCS range rather than in
the lower MCS range.

Let us define now the MaxRate-MaxFair scheduler for two
connections, by introducing a bias in the tie-breaking rule of
the MaxRate scheduler as described in the following definition.

Definition 5. (MaxRate-MaxFair scheduler) In case a tie
occurs under MaxRate scheduling, serve connection 1 with
probability α(X) and serve connection 2 with probability 1−
α(X), where

α(X) :=
1

2
+
R(2) −R(1)

2R(X)
. (13)

Moreover, if α(X) /∈ [0, 1], then it is not a proper probability
value, thus we cut such values off:{

if α(X) < 0 then α(X) := 0;

if α(X) > 1 then α(X) := 1.
(14)

The following proposition establishes when α(X) is a proper
probability value, so that no cut-off is needed. The proof is
immediate, therefore we omit it.

Proposition 3. Condition (12) is equivalent to α(X) ∈ [0, 1]
as defined in (13).

Using MaxRate-MaxFair, connection 1 receives R(1) +
α(X)R(X), while the throughput of connection 2 is R(2) +
(1−α(X))R(X). Such a throughput distribution is the fairest
possible, and the aggregate is maximum, as stated in the fol-
lowing proposition, which is the main result of this section and
validates the MaxRate-MaxFair name of the above scheduler.

Proposition 4. If (12) holds, then the MaxRate-MaxFair
scheduler achieves maximum throughput, and both one-slot
and time-average fairness. If (12) does not hold, then the
MaxRate-MaxFair scheduler achieves maximum throughput,
and the difference between individual throughputs is the min-
imum achievable with tie-breaking schemes.

The proof is presented in Appendix C. According to Propo-
sition 4, when condition (12) does not hold, the scheduler
still achieves maximum throughput, but will not be perfectly
fair anymore. Nevertheless, the difference between individual
throughputs will be the minimum possible, and may signif-
icantly outperform randomized tie-breaking. Note that, from
the proof of Proposition 4, it follows that, using the Jain’s
fairness index as metric, the MaxRate-MaxFair scheduler
achieves the smallest possible distance from the perfectly
fair throughput distribution. In fact, the Jain’s fairness index
is maximized when differences are minimized. The result is
formalized in the following corollary.

Corollary 1. MaxRate-MaxFair scheduler achieves the high-
est possible Jain’s fairness index achievable by means of any
tie-breaking scheme.
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V. MAXIMAL FAIRNESS WITH MAXRATE SCHEDULING OF
MULTIPLE CONNECTIONS

Having developed fundamental intuition based on exact
results for the case of two connections, we now set out to
design a tie-breaking scheme for MaxRate schedulers for a
generic number of connections N, achieving better fairness
than with randomized tie-breaking. Note that, as discussed
in Section IV-A, extending the analytical approach from the
two-connection case would require N2N−1− N tie-breaking
parameters for all possible ties of 2, 3,. . ., N connections,
which grows too fast to be implementable (2, 6, 28, 75,. . .).
Instead, we focus on scalable solutions that rely on at most N
tie-breaking parameters.

A. WRR Tie-breaking

We design a scheduler in which tie-breaking is resolved as
if Weighted Round Robin (WRR) was implemented (only for
ties). Thus, we assume that for each connection n there is a
non-negative parameter αn used as follows.

Definition 6. (WRR Tie-breaking) If, at a given scheduling
epoch t,M is the set of connections that are currently tied in
the highest MCS (see Definition 2), then the probability (or,
the average fraction of time) that connection n ∈M is served
in such situations is as follows:

αn

/ ∑
m∈M

αm, where αm ≥ 0 ∀m ∈M. (15)

The expected throughput of connection n under MaxRate with
WRR tie-breaking is then:

K∑
k=1

rk
∑
M3n

 αn∑
m∈M

αm

∏
m∈M

pm,k

∏
m/∈M

Qm,k

 , (16)

where M3 n denotes any set of connections that includes n.

Using (16) it is, however, intractable to obtain values of αn

which would equalize the expected individual throughput of
all connections, since it leads to a large system of non-linear
equations. Hence, in the following we propose a heuristic.

B. The PIKe Heuristic

To compute αn for each connection n, we propose a
heuristic that follows the scheme used for α(X) in a two-
connection system (see Eq. (13)) and that scales linearly with
the number of connections. With our heuristic, connection
n competes with the rest of connections, which we globally
indicate as virtual connection “−n” , and we assume that the
target of connection n is to achieve a portion 1/N of the cell
throughput. We name our heuristic Priority Keying (PIKe),
since it essentially maps channel qualities onto connection
priorities in order to break ties.

Following the ideas from the two-connection case, we
first define Q−n,k as the CDF for the best MCS of all the

connections except connection n, Q−n,k :=

N∏
m=1,m 6=n

Qm,k,

and p−n,k as the probability that at least one of the connections
(except connection n) is in MCS k and no other connection is
in a better MCS, formally, p−n,k = Q−n,k+1 −Q−n,k. Then,
(9) to (11) can be rewritten as follows, for n = 1 . . . N :

R(n) :=

K∑
k=2

rkpn,kQ−n,k; (17)

R(−n) :=

K∑
k=2

rkp−n,kQn,k; (18)

R(X)
n :=

K∑
k=1

rkpn,kp−n,k. (19)

The total cellular throughput of MaxRate is RTot = R(n) +

R(−n) +R
(X)
n , which is the same for all values of n, as it can

be easily verified.

Proposition 5. The MaxRate scheduler for a system with
N ≥ 2 connections can achieve both one-slot and time-
average fairness if and only if∣∣∣R(n) −R(−n)

∣∣∣ ≤ R(X), ∀n ∈ N . (20)

The proof of the Proposition 5 derives from the proof of
Proposition 1. The value of the tie-breaking probability αn is
computed from the following equation:

R(n) + αnR
(X)
n =

1

N
RTot. (21)

The resulting value of αn is then:

αn =
1

N
+

K∑
k=1

rk [p−n,kQn,k − (N − 1) pn,kQ−n,k]

N
K∑

k=1

pn,kp−n,krk

. (22)

However, when the expected transmission rate of connection
n is strictly higher than the average fair individual share
(i.e., R(n) > 1

NRTot), then αn is negative, which is not
acceptable for the WRR scheduling scheme. This corresponds
to a situation in which the resources in ties are not enough to
equalize the connection throughputs without loss of throughput
maximality. Therefore, we propose the following transforma-
tion which preserves the order of αn, i.e., preserves the priority
list among connections, without wasting throughput:

min
m∈N

αm < 0⇒ αn := αn−min
m∈N

αm,∀n ∈ N . (23)

In the next section we will quantify the level of fairness
achieved in the system with our heuristic. Although we will
use static clustering scenarios to illustrate the advantages of
PIKe, we remark that our methodology and findings apply to
clusters whose composition varies in time, as some users may
turn on/off their devices or migrate to another cluster or an-
other cell. In particular, we note that in presence of flows with
limited duration, probabilities pn,k described in Session III can
be adapted to represent the steady-state probabilities of flow
n given the arrival and flow-size distributions.
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Fig. 2. Probability that perfect fairness cannot be achieved.

VI. EVALUATION

In this section we validate numerically our proposal. We
use the Jain’s fairness index to compare the effectiveness of
PIKe as compared to commonly deployed Equal Time (ET)
and Proportional Fair (PF) schedulers with unclustered mobile
users. Additionally, we compare PIKe to a MaxRate scheduler
applied to connections (i.e., clustered users) in which tie-
breaking is operated uniformly at random (denoted as MR).
As for the throughput, we normalize it to cell capacity. Since
our work does not investigate intra-cluster mechanisms, we
assume that the total connection throughput can be equally
shared among clustered members within the connection.

For the sake of tractability, in what follows we assume that
mobile users belong to one of three predefined SNR classes,
which correspond to poor, average, and good average SNR,
i.e., set Γ contains three elements only. The designated average
SNR for different classes are chosen in a manner that the mean
achievable rates for poor, average, and good users are 20%,
50%, and 80% of the maximum transmission rate achievable
in the system, respectively. Therefore, with the MCS values
reported in Table I in Appendix A and the assumed Rayleigh
fading model, the average SNR values for poor, average and
good users are γn = 7 dB, 16 dB, 23 dB, respectively.

A. Impact of Cluster Size on Tie-breaking Opportunities

We start by evaluating the importance of clustering for fair
tie-breaking operations. Under MaxRate scheduling, both user-
based and cluster-based scheduling are throughput-optimal.
However, the advantage of clustering is twofold: (i) oppor-
tunistic cluster head selection yields higher channel qualities
used to transmit in the system, which contributes to equalize
transmission rates among connections (note that efficiency
curves increase logarithmically according to Shannon’s re-
sults); and (ii) clustering offers the possibility to re-distribute
the throughput among cluster members, thus yielding poten-
tially higher fairness. We exemplify these effects by consider-
ing the specific case of two connections. In this case, the exact
analysis of Subsection IV-B applies, and PIKe implements
exactly the MaxRate-MaxFair the-breaking of Definition 5.

Fig. 2, which is the result of 20, 000 random instances
for two connections with random number and quality of
clustered users, is in line with our intuition on the effect
of clustering. The figure shows the probability that α(X) is

 0

 20

 40

 60

 80

 100

2 3 4 5 6

A
g

g
re

g
a

te
 t

h
ro

u
g

h
o

u
t 

[%
]

Number of connections

ET
PF

PIKe

Fig. 3. Throughput comparison (average and standard deviation) of connec-
tions with 1 to 10 clustered users, with uniform quality distribution.

outside the acceptable range [0, 1], when the perfect fairness
can not be achieved. The figure reveals that perfect fairness
can be achieved almost surely when both connections consist
of more than 5 clustered users. The probability of fairness non-
achievability radically increases as the cluster size drops below
5 users, since the average connection qualities can be very
unbalanced and yield large |R(1) − R(2)|. In contrast, when
clusters are large enough (i.e., with more 5 − 10 members),
the fact that each cluster head exhibits the highest SNR in its
cluster makes the probability to use the best MCS close to 1,
and thus |R(1) − R(2)| approximates 0, while increasing the
probability of ties. Therefore, (12) is met with high probability.

B. Throughput of Connections
The clustering gain versus the conventional cellular archi-

tecture is illustrated here with simple numerical calculations.
Fig. 3 shows the difference in throughput achieved by ET,

PF1 and PIKe as a function of the number of connections
in the network. Results are averaged over 2, 000 random
instances, and user qualities are uniformly distributed among
poor, average, and good. Cluster sizes are chosen at random,
ranging uniformly from 1 to 10 members. Of course, the
throughput of ET and PF only depends on the number of
mobile users and their channel qualities, but we keep using
the number of connections as reference. Interestingly, PIKe
doubles the throughput of ET and outperforms PF by more
than 20%. Most importantly, PIKe can nearly achieve 100%
of the achievable throughput.

C. Fairness between Connections

Finally, we validate our proposed PIKe heuristic for max-
imum rate with maximum fairness by comparing its fairness
performance figures with the ones obtained under legacy ET
and PF schedulers, and under MR. Note that, according to the
common understanding, PF should have much higher fairness
than MaxRate-based approaches [26], while we show that the
opposite is true with PIKe. For ET and PF, we numerically
simulate the scheduling of single users, then we sum up the
throughput of users according to which cluster/connection they
belong to. Note that PIKe and MR use both MaxRate, hence
they achieve the same throughput.

1PF results are obtained by simulating a scheduling process in which
the average user throughput is computed with an autoregressive filter with
exponential time constant equal to 1, 000 frames. However results computed
with time constant in the range 50 to 5, 000 do not significantly differ.
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Fig. 4 reports fairness indexes for the different scheduling
schemes for systems with 2 to 6 connections, each formed by
1 to 10 members. Fairness indexes are shown in terms of box-
and-whiskers plots, reporting minimum and maximum values
recorded over the set of simulations performed, the 25th and
75th percentiles of their values, and the average (the solid
dashes in the boxes reported in the figure). Interestingly, the
level of fairness achieved by our proposed scheme is very high,
and PIKe achieves at least as much fairness as PF. Recalling
that the throughput achieved by PF is much lower than the
one achieved by PIKe, this result is very encouraging.

Even more interestingly, simulations accounting for connec-
tions with at least 5 clustered users reveal that PIKe can out-
perform ET and PF in terms of fairness, as depicted in Fig. 5,
where the boxes delimited by the 25th and 75th percentiles
are very close to 1 for the PIKe scheme. Specifically, Figs. 4
and 5 also show that PIKe reduces the distance from perfect
fairness (i.e., from 1) by 50% with respect to MR.

To conclude, we remark that PIKe is beneficial for both
throughput and fairness, which means that it would allow
better worst-case performance in comparison to ET and PF.
Indeed, Fig. 6 shows that the minimum throughput received
by a cluster member in the system, using PIKe, is much higher
that the one achieved with ET (by a factor ∼ 1.5 or more),
and PF (by a factor ∼ 2).

VII. CONCLUSIONS

In this paper, we have shown how tie-breaking can lead
to maximal fairness in cellular networks without sacrificing
any throughput. Although scheduling ties are usually ignored
and uniformly random tie-breaking is an accepted practice,
we have shown that this practice is rather inefficient. Our
simulations indicate that there is a great potential for fairness
and throughput enhancements in customized tie-breaking as
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Fig. 6. Minimum throughput attained by a cluster member (with connections
comprising 5 to 10 clustered users).

soon as tie probability becomes relevant, as achieved, e.g.,
with D2D and opportunistic clustering strategies. We have
rigorously formulated a tie-breaking scheme that achieves
maximal fairness and maximal throughput. The complexity
of the optimal approach is not tractable for more than two
connections. Inspired by the optimal solution for the case of 2
connections, we have designed PIKe, a heuristic that scales lin-
early with the number of connections. Our results confirm that
PIKe achieves almost perfect fairness and maximal throughput
and largely benefits of D2D-assisted opportunistic clustering
schemes.
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APPENDIX

A. Transmission Rates and Cluster MCS Selection
The instantaneous achievable rate of connection n at slot t,

Rn(t) = rk, depends on the adopted MCS k = 1, 2, . . . ,K.
We assume that the actual MCS for connection n at slot t is
selected as a function of the instantaneous SNR Cn(t), i.e.:

R(t)=rk ⇐⇒ MCSn(t)=k ⇐⇒ Cn(t) ∈ [ck; ck+1[ ,

0 = c1 < c2 < · · · < cK < cK+1 =∞,
0 = r1 < r2 < · · · < rK .

A connection n is a cluster composed by mn mobiles, and
its instantaneous SNR is the highest SNR among the users
composing the cluster. Hence, the probability pn,k that a
scheduled connection n receives data encoded with MCS k can
be computed based on the SNR CDF and the MCS thresholds:

pn,k =

∫ ck+1

ck

dFn(z), (24)

where Fn(z) is the CDF of the maximum of mn random
variables representing the SNR values of each of the mn

mobiles forming cluster n:

Fn(z) =

mn∏
j=1

(
1− e−

z
γj

)
, z ≥ 0, n ∈ C. (25)

Table I shows a list of possible modulation and cod-
ing schemes for LTE-like networks [27], their coding rate,
and the SNR threshold (in dB) that has to be reached to
achieve a negligible error rate. The table also contains the
net transmission rate, in bits per symbol, achieved with each
MCS. The Implementation Margin (IM) in Table I is a value
that represents the noise due to non-ideal receiver. In our
simulation, MCS thresholds ck include both SNR and IM.

TABLE I
MODULATION AND CODING SCHEMES AND THEIR THRESHOLDS

Modulation Coding SNR IM SNR+IM Bits per
Rate (dB) (dB) (dB) symbol

QPSK

1/8 -5.1

2.5

-2.6 0.25
1/5 -2.9 -0.4 0.4
1/4 -1.7 0.8 0.5
1/3 -1 1.5 0.67
1/2 2 4.5 1
2/3 4.3 6.8 1.3
3/4 5.5 8.0 1.5
4/5 6.2 8.7 1.6

16QAM

1/2 7.9

3

10.9 2
2/3 11.3 14.3 2.66
3/4 12.2 15.2 3
4/5 12.8 15.8 3.2

64QAM
2/3 15.3

4
19.3 4

3/4 17.5 21.5 4.5
4/5 18.6 22.6 4.8

B. Proof of Proposition 1

Proof: Observe first that R(n) is the minimum achiev-
able transmission rate for connection n = {1, 2} under the
MaxRate scheduler, since this connection must be served if it
has an MCS strictly better than the other connection. More-
over, R(n)+R(X) is the maximum achievable transmission rate
for connection n = {1, 2} with a MaxRate scheduler. Then,
fairness cannot be achieved if either R(1) > R(2) + R(X) or
R(2) > R(1) + R(X), which is equivalent to

∣∣R(1) −R(2)
∣∣ >

R(X). In contrast, fairness can be achieved if (12) holds, as
shown in (4). Therefore, the equivalence holds.

C. Proof of Proposition 4

Proof: Consider the MaxRate scheduler with randomized
tie-breaking with bias α ∈ [0, 1] for connection 1. Then,
the expected time-average and one-slot individual throughputs
are R(1) + αR(X) and R(2) + (1 − α)R(X), respectively.
It is straightforward to verify that, if (12) holds, plugging
α(X) for α the throughput of each connection is equal to(
R(1) +R(2) +R(X)

)
/2.

If (12) does not hold, then suppose that R(1) > R(2)+R(X)

(case R(2) > R(1) + R(X) is analogous). The difference in
the individual throughputs is R(1) + αR(X) − (R(2) + (1 −
α)R(X)) = R(1)−R(2)−R(X)+2αR(X), which is minimized
if α = 0. Indeed α(X) = 0, because of the cut-off of a negative
value given by (13).
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