
REGULARISED ESTIMATION OF 2D-LOCALLY STATIONARY WAVELET PROCESSES

Alex J. Gibberd, James D. B. Nelson

Department of Statistical Science, University College London, Gower Street, London WC1E 6BT

ABSTRACT

Locally Stationary Wavelet processes provide a flexible way
of describing the time/space evolution of autocovariance
structure over an ordered field such as an image/time-series.
Classically, estimation of such models assume continuous
smoothness of the underlying spectra and are estimated via
local kernel smoothers. We propose a new model which per-
mits spectral jumps, and suggest a regularised estimator and
algorithm which can recover such structure from images. We
demonstrate the effectiveness of our method in a synthetic ex-
periment where it shows desirable estimation properties. We
conclude with an application to real images which illustrate
the qualitative difference between the proposed and previous
methods.

1. INTRODUCTION

Locally Stationary Wavelet (LSW) processes, as originally
introduced by Nason et al. [11] provide a statistically well-
principled method to capture the localised covariance of a
signal. Additionally, given their wavelet underpinnings, they
also allow the de-coupling of this covariance structure across
multiple length/time scales.

The extension of the LSW framework and theory to 2-
dimensional fields by Eckley et al. [3, 4] has led to new
applications in the analysis of textured images. Alternative
wavelet based approaches for describing random-fields either
study the distribution of the wavelet coefficients directly [9],
or learn the wavelet coefficients through machine-learning
based multiple-kernel learning algorithms [16]. The well-
principled design of the LSW process means that statistical
properties such as asymptotic bias [11] and variance [10]
of estimators are relatively well understood. Knowledge of
such properties enables the construction of statistical tests for
non-stationarity in both time-series [10] and random fields
[15, 12].

There are however, still some large open research chal-
lenges relating to LSW models, both in terms of how rele-
vant they are to modeling real phenomena (in our case real
world images/textures), and how we can effectively we can
estimate model structure from data. In this paper we attempt
to tackle some of these challenges. In Section 3, we exam-
ine how one might relax the continuous smoothness require-
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ments of the traditional LSW process to allow for piecewise-
variation of spectra. We then show in Section 4 how an Alter-
nating Directed Method of Multipliers (ADMM) algorithm
can be utilised to efficiently find optimal estimates from an
image. Experiments (Section 5) demonstrate that even when
the sample/image size is very small, our proposed estimator
selects structure consistent with an LSW model. In the next
section we formally introduce the 2D-LSW process, and fur-
ther discuss the motivation for extending the LSW modeling
framework.

2. THE 2D LSW PROCESS

Let the 2D-discrete wavelet filters {ψl
j} be defined as a square

matrix of size Lj × Lj , where Lj gives the support of the
wavelet at the jth scale level, i.e. Lj = (2j − 1)(Nf − 1) + 1
and Nf is the number of non-zero elements in the associated
low-pass mirror filter. The individual elements ψl

j,k1,k2
are

defined through the tensor products of the corresponding one-
dimensional wavelets. In the horizontal direction h we have
ψh
j,k = φj,k1

ψj,k2
, in the vertical direction ψv

j,k = ψj,k1
φj,k2

and in the diagonal direction ψd
j,k = ψj,k1

ψj,k2
, where φj,k

are the associated father/scaling wavelets.
In order to construct a LSW process we utilise the non-

decimated wavelet transform such that there is an equiva-
lent number of wavelet coefficients at each scale level j =
1, . . . , J . To achieve this we simply translate the discrete
wavelets {ψl

j} over the space Z2, the non-decimated set of
discrete wavelets are defined as ψl

j,u(r) := ψl
j,u−r for all j, l,

and u, r ∈ Z2 . The 2d-Locally Stationary Wavelet process
can now be defined as a doubly indexed stochastic process
over the field R2, it is indexed by position r = (r1, r2) and
the size of the imageR = (R1, R2) as:

Xr;R =
∑
l

∞∑
j=1

∑
u

wl
j,uψ

l
j,u(r)εlj,u ,

where l = h, v, d refer to horizontal, vertical or diagonal di-
rections. The process is broken down into three components:
1) A stochastic term {εlj,u}, this encodes no independence
structure in itself and is an i.i.d zero-mean random variable,
they are orthogonal such that εlj,u ⊥ εl

′

j′,u′ for all j 6= j′,
u 6= u′ and l 6= l′. 2) The non-decimated wavelets {ψl

j,u−r},
allowing us to separate localise signal in both space and fre-
quency, and 3) A collection of real valued amplitudes {wl

j,u}
which can be interpreted as discrete transfer functions.
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2.1. Smoothness Assumptions
In previous works authors enforce smoothness on the pro-
cess via a Lipschitz continuous transfer function W l

j(u/R),
where the ratio u/R is understood to be component-wise.
This function relates to the discrete amplitudes wl

j,u such that
the maximum deviation between the two functions decays
asymptotically, i.e. supu |wl

j,u − W l
j(u/R)| ≤ O(R−1).

In the original LSW formulation [11, 3], the above con-
straints are used to impose asymptotic smoothness on the
transfer function, as sample size increases the authors then
show asymptotic properties relating to convergence of the
(auto)covariance (of the process) to the Local Wavelet Spec-
trum (LWS), defined as: Sl

j(u/R) = |W l
j(u/R)|2, for

j = 1, . . . , J(R).

Remark 1. Continuously Smooth Spectra – In real images we
do not realistically expect the spectral structure of images to
vary in a continuous manner, rather the spectral properties of
the image may change abruptly – for example where there ex-
ist two or more neighbouring regions of different materials or
textures. In Section 3 we propose an estimator which relaxes
such smoothness conditions and can permit spectral jumps.

2.2. Kernel Estimators for the LWS
Let xr;R be a sample pixel (at position r) drawn from the
corresponding LSW-process Xr;R. A natural estimator for
the spectrum can be constructed around the empirical pe-
riodogram which is defined in as Î lj,r = |dlj,r|2 where
dlj,r =

∑
k ψ

l
j,r−kxr;R are the 2D-wavelet coefficients.

It has been shown by Nason et al [11] in the 1D-case,
and Eckley et al. [3] in the 2D case, that the empiri-
cal periodogram by itself is both biased and inconsistent,
more specifically E[Î lj,r] =

∑
j,lA(j,l),(j′,l′)S

l′

j′(r/R) +

O(min(R)−1). Mixing between scales/directions is en-
coded by the matrix A =

∑
k Ψl

j(k)Ψl′

j′(k) ∈ RJL×JL,
where Ψl

j(τ ) =
∑∞

r ψl
j,rψ

l
j,r(τ ) is referred to as the auto-

correlation wavelet. Such results are extensions of work in
the 1D-case, however, rather than just mixing over scale, in
the 2D-case we observe a dispersion of power over direction
l.

Inverting A now allows one to construct an unbiased es-
timator as Ŝl

j,r =
∑

j′l′ A
−1
(j,l),(j′,l′)Î

l′

j′,r, although unfortu-

nately this estimator is still not consistent, i.e. Var(Ŝ) 6→ 0 as
R → ∞. To encourage consistency one must perform some
kind of smoothing over the image/samples. Typically it is
suggested to smooth Î lj,r and then perform de-biasing, where
smoothing is performed by either a second stage of wavelet
transform and then thresholding, or adopting a moving aver-
age/kernel smoother [11, 4, 10]. In particular, in this paper we
consider comparison to the de-biased kernel estimator given
as:

K̂l
j,r =

∑
j′,l′

A−1
(j,l),(j′,l′)

(∑
k

K(r − k)Î l
′

j′,k

)
, (1)

where K(r − k) is a 2-dimensional kernel function defined
over Z2 with bounded support. For simplicity, in this work
we use a box-car kernel with width h.

Remark 2. Finite Sample Performance – Whilst asymptoti-
cally, one may show that kernel smoothers akin to (1) can re-
cover the LWS spectrum in a consistent manner [10, 14], the
finite sample performance of such estimators is often lacking.
For example, in the multivariate case we demonstrated [5]
such an estimator often produced negative estimates for the
variance, a quantity that through the model construction is
required to be positive.

3. REGULARISED ESTIMATION OF THE LSW
SPECTRUM

An alternative to kernel estimation is to construct a regu-
larised estimator that can incorporate additional prior infor-
mation about the LWS estimate. We define a quadratic loss
function over the whole set of scales j = 1, . . . , J(R) and
directions l = {h, v, d} as:

L(Ī;B) :=
∑
j,l

‖Ī lj,r −
∑
j′,l′

A(j,l),(j′,l′)B
l′

j′,r‖2F , (2)

where Ī lj,r is an estimator of the biased spectrum. We note,
that the above can be written in matrix form as L(Ī;B) :=
‖Ī−AB‖2F , where Ī ∈ RLJ×R1R2 is a reshaped estimate of
the periodogram andB ∈ RR1R2×LJ is our estimator relating
to the set of B. A natural choice for the link function Ī lj,r
would be to use the raw empirical periodogram Ī lj,r = Î lj,r,
however, we instead opt to use the kernel estimator Ī lj,r =

K̄l
j,r :=

∑
kK(r − k)Î l

′

j′,k, we note that when B = K̂l
j,r as

defined in (1), then L(Ī;B) = 0 and is minimised.
Given we have defined a loss function for estimating the

LWS, it is natural that we should consider whether we are
required to incorporate additional constraints into the estima-
tion procedure. The beauty of the formulation in Eq. (2) is
that it allows us to consider estimation of the LWS spectrum
as a convex optimisation problem. For example, since the
LWS estimate should be positive, we can restrict solutions
such that B̂ ≥ 0 through the simple addition of an indicator
function, i.e. lR+(B) = 0 if Bi,j ≥ 0 ∀i, j and +∞ other-
wise. Further to this positivity requirement, we can introduce
additional constraints that relate to how we want or expect
the estimates to behave when applied to real images. Inspired
by work in change-point detection, and image segmentation,
we here introduce a total-variation inspired penalty which ac-
tively constrains the estimator variation across the whole im-
age according to;

Rl
j(B) = λ

R1∑
m=2

R2∑
n=2

|Bl

j,(r
(m)
1 ,r

(n)
2 )
−Bl

j,(r
(m−1)
1 ,r

(n−1)
2 )

| ,

or in matrix form as; R(B) = λ‖[DHB;DVB]‖1, where
DH ,DV are differencing matrices operating respectively in



the horizontal and vertical dimensions. The table below de-
scribes the estimators we consider in this paper.

Name - Abbreviation Loss Fn. Penalty

De-Biased Kernel - K K̂l
j,r n/a

Positive Kernel - K(P) L(K̄l
j,r;B) lR+

TV-Positive - TV(P) L(Î
l

j,r;B) lR+ +R

TV-Kernel Positive - TVK(P) L(K̄l
j,r;B) lR+ +R

Remark 3. Effect of Regularisation – Much like the kernel
estimator in (1) the TV-estimators attempt to smooth the raw
periodogram over space. However, unlike simply using K̂l

j,r

alone, such a TV-constraint fuses estimates across the whole
image resulting in a global estimator. Due to the `1 form of
the norm, such estimators should promote piecewise structure
in the spectra, for example see Harchaoui et al. [6] for an
application in the univariate change-point detection setting.

4. ALTERNATING DIRECTED METHOD OF
MOMENTS ALGORITHM

Due to the biased nature of the raw periodogram we need to
consider jointly all the scale levels within one optimisation
problem. Our strategy here is to tackle this optimisation task
with an Alternating Directed Method of Multipliers (ADMM)
approach. Such methods are becoming increasingly popular
for solving convex optimization problems that are formed as
the sum of convex objectives. The ADMM method allows one
to split up the optimisation problem across linearly separable
portions of the objective.

Taking the K(P)-LWS objective for example, we refor-
mulate the optimisation problem in an explicitly constrained
form; arg minB;U=B ‖K̄ − AB‖2F + lR+(U), where U is
referred to as an auxiliary variable. In practice, and to ensure
sufficient curvature, an augmentation term µ/2‖U −B‖2F is
added to the Lagrangian, in the general case, we introduce
auxiliary variables for each term QB = QR+ = B,QAB =
AB,QD = DQB , i.e. in matrix form FB = GQ, where

F =


A
I
0
I

 , G =


I

I
−D I

I

 .

We now formulate the augmented LagrangianL(B,Q,V ) :=

‖K̄−QAB‖2F +lR+(QR+)+λ‖QD‖1+
µ

2
‖FB−GQ−V ‖2F ,

where V /µ are Lagrange multipliers. The Lagrangian prob-
lem can now be solved through a series of updates, minimis-
ing sequentially, arg minU L(B,Q,V ), arg minQ L(B,Q,V ),
and then updating V to keep track of the cumulative errors
(see [13, 2] for a review)

One benefit of ADMM, is that the updates required
for arg minU L(B,Q,V ) are simply proximity operators.

These can be calculated extremely quickly, projecting onto
the positive real line for lR+ , and updating via the soft-
thresholding operator for the TV-denoising methods. Algo-
rithm 1 provides more details, in practice we utilised a ver-
sion of Iordache et al.’s SunSAL-TV algorithm [7]. Whilst
the ADMM scheme is guaranteed to converge if a solution
exists for any µ > 0, we use µ = 100, which converged
relatively quickly ∼ 1minute for an R = 256 size image, the
algorithm appears to scale computationally as O(R2).

Algorithm 1 ADMM algorithm for LWS smoothing.
Require: µ > 0, Ī,A

1: while not converged do
2: B(k+1) ← arg minB L(B,Q(k),V (k))

3: Q(k+1) ← arg minU L(B(k+1),Q,V (k))
4: Solve via proximity operators
5: i.e. Q(k+1)

R+ ← max(B(k+1) − V (k)
R+ , 0)

6: Q
(k+1)
H ← soft(DHB − V H , λ/µ)

7: V (k+1) ← V (k) + (FB(k+1) −GQ(k+1))
8: end while

5. EXPERIMENTS

To test the recovery ability of our estimators and examine
how they perform as a function of problem size we gener-
ate synthetic data-sets according to a simple piecewise con-
stant texture model. We split variance structure as encoded
through Sl

j,r into a set of blocks with alternating values and
denote the in block structure as {wl

j,b = wl
j,r| ∀r ∈ Rb ⊂

Z2} for blocks b = 1, . . . , B. In this experiment we con-
sider recovery of the true structure {Sl

j,b} from synthetic data
{xr;R} ∼ LSW ({wl

j,b}) where εlj,r ∼ N (0, 1) over images
of varying size. The simulated structure looks broadly like
that estimated in Fig. (1), where dark regions have Sl

j,b = 0

and light regions have Sl
j,b = 1, in these experiments true

signal is restricted to scale j = 1, and is identically dis-
tributed across directions l = h, v, d. In order to exam-
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Fig. 1: Examples of recovered spectrum Ŝ1
1,b (at R = 128),

with a) TV(P)-LWS λ = 20, and b) K(P)-LWS h = 10.

ine statistical properties of the proposed estimators across the
generative distribution, we consider a cross-validation setup.
We first train on Ntrain = 20 images and select an opti-
mal set of tuning parameters (ĥ, λ̂) which minimise the error



εtest(h, λ) =
∑

j,r,l |(|wl
j,r|2− B̂l

j,r)|/JR2D. The error sur-
faces (Fig. 2) can be quite insightful in terms of understanding
how performance trades off when introducing different levels
of prior smoothness knowledge through λ and h.
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Fig. 2: a) The mean cross-validation error surface εtrain , and
b) the standard-deviation of the surface, taken over Ntrain =
20 synthetic images of size R = 128.
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Fig. 3: Test performance of the various LWS estimators. a)
The error at scale level j = 1 as a function of image size, b)
standard-deviation of estimate taken over Ntest = 100 simu-
lations.

Clearly, estimation performance is enhanced by perform-
ing smoothing using either the kernel and/or regularisation.
The distinctive kink in the cross-validation surface is typical
for estimation across image sizes. It is interesting to note, that
whilst optimal performance requires some kernel and some
regularisation, the regularised estimate with h = 1 performs
relatively well. In practice this relates in TV-LWS resolving
more clearly defined edge detail as seen in Fig. (1).

Figure 3 summarises performance of the estimators on a
test set (of size Ntest = 100) with specifically chosen tuning
parameters (ĥ, λ̂) = arg min εtrain(h, λ). These results gives
us some measure of the sample efficiency of the different esti-
mators. We can see that the error for all smoothed estimators
converges, both at scale j = 1 and when averaged across all
scales. This is in contrast to the raw-periodogram, which does
not converge for j = 1 (where all the true spectral structure
is simulated). We see that the hybrid method TVK(P)-LWS
appears to perform best, converging faster at all scales. Addi-
tionally, it appears to have favourable rates of consistency, as
can be established from Fig (3b), which also serves to high-
light the inconsistency of the bias-corrected raw periodogram.
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Fig. 4: Comparison of LWS estimation with regularised and
kernel approach. a) Original image. b) Histogram of z-scored
image (normalised across both rows/columns). c) Estimated
LWS with KLWS h = 16, and d) Estimated LWS with TV(P)-
LWS λ = 10.

5.1. Real Images
We here compare the qualitative effect of regularised LWS
estimation applied to a carpet like texture taken from the Bro-
datz data set (R = 640). Given that we wish to model the
image as a Gaussian process, we first pre-process the image
down-sampling to a size of Reff = 128 × 128 pixels. The
image is then standardized by z-scoring the data with respect
to all pixels in the rescaled image. Figure 4 demonstrates
the output of the analysis and how the pre-processing effec-
tively produces a Gaussian intensity distribution. One clearly
observes how the regularised solution is more parsimonious,
and is positive valued across the spectra, whilst still preserv-
ing the key spectral features, namely, the diagonal banding in
j = 2, l = d.

Conclusion
Typically, wavelet decompositions may be used to break
down an image into a set of features which can then be used
for general image understanding tasks, for example image
classification [8] or clustering [1]. Enhanced estimation of
wavelet spectra may aid in many of these applications.

We have demonstrated in this paper how one can construct
a regularised estimator for the LWS and that this has benefi-
cial estimation properties, such as the ability to model piece-
wise spectra. Future work may attempt to extend the theo-
retical estimation framework of Nason [11] and Eckley [3] to
cope with such piecewise-smoothness.
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