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Graphical Lasso

Abstract

The time-evolving precision matrix of a piecewise-constant Gaussian graphical
model encodes the dynamic conditional dependency structure of a multivariate time-
series. Traditionally, graphical models are estimated under the assumption that data
is drawn identically from a generating distribution. Introducing sparsity and sparse-
difference inducing priors we relax these assumptions and propose a novel regularized
M-estimator to jointly estimate both the graph and changepoint structure. The re-
sulting estimator possesses the ability to therefore favor sparse dependency structures
and/or smoothly evolving graph structures, as required. Moreover, our approach ex-
tends current methods to allow estimation of changepoints that are grouped across
multiple dependencies in a system. An efficient algorithm for estimating structure
is proposed. We study the empirical recovery properties in a synthetic setting. The
qualitative effect of grouped changepoint estimation is then demonstrated by applying
the method on a real-world genetic time-course data-set.
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1 Introduction

High-dimensional correlated time series are found in many modern socio-scientific domains

such as neurology, cyber-security, genetics and economics. A multivariate approach, where

the system is modeled jointly, can potentially reveal important inter-dependencies between

variables. However, naive approaches which permit arbitrary (graphical) dependency struc-

tures and dynamics are infeasible because the number of possible graphs becomes expo-

nentially large as the number of variables increases.

For data streams with continuous-valued variables, a penalized maximum likelihood

approach offers a flexible means to estimate the underlying dependency structure and

continues to attract much attention. In this setting a common assumption is that the data

is drawn from a multivariate distribution where the conditional dependency structure is

in some sense sparse— the dependency graph is expected to constitute a small proportion

of the total number of possible edges. Typically, a Gaussian likelihood is accompanied

by a sparsity inducing prior. For example, Banerjee et al. (2008) and Friedman et al.

(2008) penalize the likelihood with an `1 norm applied to the precision matrix (non-convex

penalties have also been investigated, see Chun et al. (2014)). Further extensions have

been considered by Lafferty et al. (2012) who explore graphical model estimation in the

non-parametric case and, more recently, by Lee and Hastie (2015) who study models with

mixed types of variable.

Of particular interest here is how the dependency graph evolves over time and how

some prior knowledge of such dynamics can be exploited to constrain the graph estimation.

Specifically, we consider how a piecewise constant graphical model can be estimated such

that the dependency graphs are constant in locally stationary regions segmented by a set

of changepoints. This is a challenging problem. If the changepoints were known in advance

then local graph estimation could be performed. However, the changepoints cannot be

found without first estimating the graphs. Previous approaches (Angelosante and Gian-

nakis, 2011) have resorted to using dynamic programming alongside the `1 graph learning

approaches. Unfortunately, these are restricted to quadratic computational complexity as a

function of the time-series length. An alternative approach as followed by Ahmed and Xing

(2009); Kolar and Xing (2012) and others is to formulate a convex optimization problem
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with suitable constraints that encourage desired dynamical properties. We refer to such

approaches as fused graphical models.

Our contribution investigates and extends the fused models to enable the estimation

of changepoints that are grouped over multiple edges in a graphical model. Such grouped

changepoints indicate changes in dependency across a system that influence many variables

at once. In many situations there may be a priori knowledge of potential groups (for ex-

ample, grouping over different gene function in genetic data or asset classes in finance).

Grouped changes often indicate some sort of regime or phase change in the system dynamics

which may be of interest to the practitioner. To this end we propose the group-fused graph-

ical lasso (GFGL) method for joint changepoint and graph estimation. We contrast the

proposed grouped estimation of changepoints in graphical models with previous approaches

which enforce changepoints at the level of individual edges only and which therefore fail to

capture such grouping behavior.

In Section 2, we describe current dynamical graphical model estimation; we introduce

our main contribution in the form of the GFGL estimator; and contrast this with previously

proposed fused graphical model approaches. Following this, in Section 3 we present an

efficient alternating-directed method of moments (ADMM) algorithm for estimation with

GFGL. The proposed methodology is demonstrated on simulated examples in Section 4,

before we consider a real application looking at temporal-evolution of gene dependencies

in Section 5. We conclude with a discussion of the work. Technical details are summarized

in the Appendix attached at end of the article.

2 Dynamic Gaussian Graphical Models

Given a P -variate time-series yt ∼ N (µt,Σt) for t = 1, . . . , T , if the precision matrices

Θt := (Σt)−1 are well defined then the dependency structure of the series can be captured

by a dynamic Gaussian Graphical Model (GGM). This comprises a collection of graphs

Gt = (V t, Et), where the vertices V t = {1, . . . , P} represent each component of yt and

the edges Et represent conditional dependency relations between variables over time. More

precisely, the edge (i, j) ∈ Et is present in the graph if the i and jth variables are condition-

ally dependent given all other variables. It follows in the Gaussian case that conditional
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independence yti ⊥ ytj| yt−{i,j} is satisfied if and only if the corresponding entries of the

precision matrix are zero, i.e. Θt
ij = Θt

ji = 0 (Lauritzen, 1996). Therefore, since it encodes

the conditional dependency graph, estimation of the precision matrix is of great interest.

Traditionally, estimation of GGM’s is performed under the assumption of stationarity,

i.e. we have identically distributed draws from a Gaussian model. Letting Y = (y1, . . . ,yT )

be a set of observations and assuming yt iid∼N (0,Σ), one can construct an estimator for

Σ−1 by maximizing the log-likelihood: Θ̂ := arg maxX

[
log
(
det(X)

)
− tr(ŜX)

]
, where

Ŝ = Y Y >/2T . In the case where the number of observations is greater than the number

of variables (T > P ) we can test for edge significance to find a GGM (Drton and Perlman,

2004). However, in the non identical case (where the distribution can change over time),

because only one data-point may be observed at each node per time-step the traditional

empirical covariance estimator Ŝ
t

= yt(yt)>/2 may be rank deficient for P > 1. To this end,

estimation of the precision matrix requires additional modeling assumptions. A strategy

explored in several recent works (Ahmed and Xing, 2009; Danaher et al., 2013; Gibberd

and Nelson, 2014; Monti et al., 2014) is to introduce priors in the form of regularized

M-estimators, viz.

Θ̂
t

:= arg min
Xt∈{Xt

+}Tt=1

[
L({X t})

]
, (1)

with a convex cost function:

L({X t}) =
T∑
t=1

−L(X t,yt) +RShrink({X t}) +RSmooth({X t}) , (2)

where L(X t,yt) is proportional to the log-likelihood and follows from the normal dis-

tribution. The penalty terms RShrink, RSmooth correspond to prior shrinkage/smoothness

assumptions. Typically, the smoothness term will be a function of the difference between

estimates X t − X t−1, whereas the shrinkage term will act at specific time points, i.e.

directly on X t.

One popular approach that is relevant to GGM is to use these regularizers to place

assumptions on the number of dependencies in a graph. For example, in the i.i.d. case,

we need not consider conditional dependencies between all variables, but only a small

subset of those which appear most dependent. This assumption of sparsity can be viewed

as placing a prior on the parameters Θ to induce zeros in the off-diagonal entries of the
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precision matrix. Akin to the Laplace prior associated with the least absolute shrinkage

and selection operator (lasso) Tibshirani (1996) for linear regression, one can construct the

graphical lasso estimator for the precision matrix as: Θ̂ := arg minX

[
−L(X, Ŝ)+λ‖X‖1

]
,

where L(X, Ŝ) = log
(
det(X)

)
− tr(ŜX). This estimator, as examined by Banerjee et al.

(2007); Friedman et al. (2008) allows one to stabilize estimation of the precision matrix in

the high-dimensional regime (where P > T ) and estimate a sparse graph Ĝ (sparsity is

controlled by λ). A full Bayesian treatment for the graphical lasso is given by Wang (2012)

who investigate how representative the mode is of the full posterior.

Several approaches which incorporate dynamics in such graphical estimators have been

suggested. Zhou et al. (2010); Kolar and Xing (2011) utilize a local estimate of the covari-

ance in the term L(X t) by replacing Ŝ in the graphical lasso with a time-sensitive weighted

estimator

Ŝ
t

=
∑
s

wtsys(ys)
>/
∑
s

wts , (3)

where wts = K(|s − t|/h) are weights derived from a symmetric non-negative smoothing

kernel function K(·) with width related to h. The resulting graphs Ĝt are now representa-

tive of some temporally localized data. By making some smoothness assumptions on the

underlying covariance matrix such a kernel estimator can be shown to be risk consistent

(Zhou et al., 2010). Kolar and Xing (2011) go further, and demonstrate that placing as-

sumptions on the Fisher information matrix allows one to prove consistent estimation of

graph structure in such dynamic GGM. In the next section we discuss how one may adapt

these assumptions to estimate piecewise constant GGM.

2.1 The group fused graphical lasso

We propose the Group Fused Graphical Lasso (GFGL) estimator for estimating piecewise

constant GGM. The model assumes data is generated at time-point t = 1, . . . , T according

to RP 3 yt ∼ N (0,Σt), where the distribution is strictly stationary i.e. {Σl = Σm|τ k <

l,m ≤ τ k+1} between k = 0, . . . , K changepoints (note we set τ 0 = 0, τK+1 = T ). We

propose to estimate the covariance and precision matrix at each time by minimizing a cost,
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as in Eq. (1). The GFGL cost is given as:

L({X t}) =
T∑
t=1

−L({Xt},{yt})︷ ︸︸ ︷(
− logdet(X t) + tr(Ŝ

t
X t)

)
︸ ︷︷ ︸

∝−Likelihood

+

RShrink︷ ︸︸ ︷
λ1

T∑
t=1

‖X t
−ii‖1︸ ︷︷ ︸

`1 shrinkage

+

RSmooth︷ ︸︸ ︷
λ2

T∑
t=2

‖X t
−ii −X t−1

−ii ‖F︸ ︷︷ ︸
group `2,1 smoothing

,

(4)

where ‖X t
−ii‖ =

∑
i 6=j |X t

i,j| is the matrix `1 norm with the diagonal entries removed.

In the remainder of this paper we describe how one can efficiently solve the GFGL

problem and demonstrate two key properties, namely:

1. Estimated precision matrices encode a sparse dependency structure whereby many of

the off axis entries are exactly zero, i.e. Θ̂t
i,j = 0.

2. Precision matrices maintain a piecewise constant structure where changepoints tend

to be grouped across the precision matrix, such that for many edges indexed by (i, j)

and (l,m) the estimated changepoints for the two edges are the same, viz. T̂i,j = T̂l,m
where T̂i,j = {τ̂ 1

ij, . . . , τ̂
K̂ij

ij } represents the set of K̂ij estimated changepoints τ kij on

the i, jth edge).

2.2 Relationship to previous proposals

Unlike most previous proposals (see Table 1) GFGL penalizes changes across groups of

edges in the graph. One notable exception to this can be found in the Varying-Coefficient

Varying-Structure (VCVS) model of Kolar and Xing (2012) who propose to select change-

points with an `2 type norm over the differences. The motivation in that work is similar

to ours, however, the authors formulate the graph-selection problem differently, utilizing

a node-wise regularized regression estimator, rather than the multivariate Gaussian likeli-

hood we use. Whilst node-wise estimation can recover the conditional dependency graph, it

does not in general result in a valid (positive definite) precision matrix. This is in contrast

to our approach here, where the positive-definite precision matrices can be used to define

a probabilistic model via the GGM.

In particular we consider comparison to `1 fused methods such as FMGL (Yang et al.,

2012), TESLA (Ahmed and Xing, 2009), SINGLE (Monti et al., 2014) and JGL (Danaher
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Name References Likelihood L Graph Smoothing RSmooth

Dynamic Graphical

Lasso

Zhou et al.

(2010)

{
log
(
det(Xt)

)
− tr(Ŝ

t
Xt)

}T
t=1

via kernel (see Eq. 3)

Temporally

smoothed `1 logistic

regression (TESLA)

Ahmed and

Xing (2009)

∑T
t=1

[
log
(
1 + exp(yt

−iX
t
·,i)
)
−

yt
−iX

t
·,iy

t
i

] λ2
∑T

t=2 ‖X
t
−ii −X

t−1
−ii ‖1

Joint Graphical

Lasso (JGL)*

Danaher

et al. (2013)

∑K
k=1

[
nk
(
log
(
det(Xk)

)
−

tr(Ŝ
k
Xk)

)] λ2
∑

k<k′ ‖Xk −Xk′
‖1

Fused Multiple

Graphical Lasso

(FMGL)*

Yang et al.

(2012)

∑K
k=1

[
nk
(
log
(
det(Xk)

)
−

tr(Ŝ
k
Xk)

)] λ2
∑K

k=1 ‖X
k −Xk−1‖1

SINGLE Monti et al.

(2014)

∑T
t=1

[
log
(
det(Xt)

)
−

tr(Ŝ
t
Xt)

] λ2
∑T

t=2 ‖X
t
−ii −X

t−1
−ii ‖1

VCVS Model Kolar and

Xing (2012)

For each node p = 1, . . . , P∑T
t=1

(
yt,p −

∑
i6=p yt,iβi,t

)2 λ2
∑T

t=1 ‖β·,t − β·,t−1‖2

GFGL (this work)
∑T

t=1

[
log
(
det(Xt)

)
−

tr(Ŝ
t
Xt)

] λ2
∑T

t=2 ‖X
t
−ii −X

t−1
−ii ‖F

Table 1: Overview of likelihood and smoothing approaches for dynamic graphical modeling.

Shrinkage via an `1 term is common to all methods (in VCVS this is applied at the node-

wise level) above when used for edge selection. This is usually applied to off-diagonal

entries in the graph/precision matrix such that RShrink = λ1

∑T
t=1 ‖X

t
−ii‖1. * Note: these

methods are not specifically designed for time-series data but for building fused models

over different k = 1, . . . , K classes/experiments each with nk data-points.

et al., 2013). These methods are similar to each other in that they permit finding a

smoothed graphical model through a fused `1 term. Throughout the paper we will refer to

models of this type as the Independent Fused Graphical Lasso (IFGL) with the same cost

function as GFGL (see Eq. 4), but with the group-smoothing term replaced with an `1

penalized difference, such that Rsmooth = λ2

∑T
t=2 ‖X

t −X t−1‖1. Rather than focusing on

the smoothly evolving graph through the kernel covariance estimator Ŝ
t
, we instead study

the difference between the smoothing regularizer for IFGL and GFGL. Throughout the rest

of this paper we adopt a purely piecewise constant graph model, in this setting, the empirical

covariance is simply estimated with the data at time t according to; Ŝ
t

= yt(yt)>/2. One
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can think of this as using a Dirac-delta kernel for the covariance estimate. For example in

Eq. (3) we can set wts = δ(s− t).

3 Algorithms for the group fused graphical lasso prob-

lem

Since the penalty function of IFGL approaches solely comprises `1 terms it is linearly

separable. As such this permits block-coordinate descent approaches utilized, for exam-

ple, by Friedman et al. (2008); Yang et al. (2012) whereby the precision matrix rows and

columns are sequentially updated. Unfortunately, the GFGL objective (Eq. 4) does not

have the same linear separability structure. This is due to the norm ‖X t −X t−1‖F :=

(
∑

i,j(X
t
i,j −X t−1

i,j )2)1/2 acting across the whole (or at least multiple rows/columns) of the

precision matrix. This lack of linear separability across the precision matrices precludes

a block-coordinate descent strategy (Tseng and Yun, 2009). Instead, we make use of the

separability of the group norm (with respect to time) and propose an Alternating Directed

Method of Moments (ADMM) algorithm. A key innovation of our contribution is to incor-

porate an iterative proximal projection step to solve the Group Fused Lasso sub-problem.

Additionally, we demonstrate how the same framework can be utilized to solve the previ-

ously proposed IFGL problem.

3.1 An alternating directions method of multipliers approach

The ADMM approach we adopt to optimize the GFGL objective Eq. (4) splits L({X t})

into two separate, but related problems. Equivalently to solving Eq. (1) we can solve:

Θ̂ = arg min
{Xt,Zt}Tt=1

[ T∑
t=1

(
− logdet(X t) + tr(StX t)

)
+ λ1

T∑
t=1

‖Zt
−ii‖1 + λ2

T∑
t=2

‖Zt
−ii −Zt−1

−ii ‖F
]

such that : X t −Zt = 0 , (5)
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where {X t} and the auxiliary variables {Zt} are also constrained to be positive-semi-

definite. The augmented Lagrangian for GFGL is given as:

L({X t}, {Zt}, {Y t}) : =
T∑
t=1

(
− logdet(X t) + tr(StX t)

)
+ λ1

T∑
t=1

‖Zt
−ii‖1 . . .

+ λ2

T∑
t=2

‖Zt
−ii −Zt−1

−ii ‖F +
T∑
t=1

〈Y t,X t −Zt〉+
γ

2

T∑
t=1

‖X t −Zt‖2
F ,

where {Y t}Tt=1 is a set of dual matrices Y t ∈ RP×P . The difference between ADMM and the

more traditional augmented Lagrangian method (ALM) (Glowinski and Le Tallec, 1989) is

that we do not need to solve for {X t} and {Zt} jointly. Instead, we can take advantage

of the separability structure highlighted in Eq. (5) to solve {X t},{Zt} separately. By

combining the inner product terms and the augmentation term we find:

L({X t}, {Zt}, {U t}) : =
T∑
t=1

(
− logdet(X t) + tr(StX t)

)
+ λ1

T∑
t=1

‖Zt
−ii‖1 . . .

+ λ2

T∑
t=2

‖Zt
−ii −Zt−1

−ii ‖F +
γ

2

T∑
t=1

(
‖X t −Zt +U t‖2

F − ‖U t‖2
F

)
,

where U t = (1/γ)Y t is a rescaled dual variable. We write the solution at the nth iteration

as {X t
(n)} = {X1

(n), . . .X
T
(n)} and proceed by updating our estimates according to the three

steps below;

1. Likelihood Update (for t = 1, . . . , T ):

X t
(n) = arg min

Xt

[
− logdet(X t) + tr(ŜtX t) +

γ

2
‖X t −Zt

(n−1) +U t
(n−1)‖2

F

]
, (6)

2. Constraint Update:

{Zt
(n)} = arg min

{Zt}

[
γ

2

T∑
t=1

‖X t
(n) −Zt +U t

(n−1)‖2
F + λ1

∑
‖Zt
−ii‖1 . . .

. . .+ λ2

T∑
t=2

‖Zt
−ii −Zt−1

−ii ‖F
]
, (7)

3. Dual Update (for t = 1, . . . , T ):

U t
(n) = U t

(n−1) +
(
X t

(n) −Zt
(n)

)
. (8)
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3.2 Likelihood update (Step 1)

We can solve the update for Θt
(n) through an eigen-decomposition of terms in the covari-

ance, auxiliary and dual variables (Yuan, 2011; Monti et al., 2014). If we differentiate the

objective in Eq. (6) and set the result equal to zero we find:

(X t)−1 − γX t = Ŝ
t
− γ(Zt

(n−1) −U t
(n−1)). (9)

Noting that X t and St − γ(Zt
(n−1) − U t

(n−1)) share the same eigenvectors (see Appendix

for details) we can now solve for the eigenvalues of X t. For each eigenvalue {xh}Ph=1 =

eigval(X t) and {sh}Ph=1 = eigval
(
Ŝ
t
− γ(Zt

(n−1) −U t
(n−1))

)
we can construct the quadratic

equation x−1
h − γxh = sh. The right hand side of Eq. (9) contains evidence from the

data-set via Ŝ
t
, but also takes into account the effect our priors encoded in Zt

(n−1), from

the non-smooth portion of Eq. (5). Upon solving for xh given sh we find:

xh =
1

2γ

(
− sh +

√
s2
h + 4γ

)
.

The full precision matrix X t can now be found through the eigen-decomposition:

X t
(n) = V QV >,

where V contains the eigenvectors of Ŝ
t
−γ(Zt

(n−1)−U t
(n−1)) as columns and Q ∈ RP×P is

a diagonal matrix populated by the eigenvalues xh, ie Qhh = xh. We note that, by choosing

the positive solution for the quadratic, we ensure that X t
(n) is positive-definite and thus

produces a valid estimator for the precision matrix. Since Eq. (6) refers to an estimation

at each time-point separately, we can solve for each X t
(n) independently for t = 1, . . . , T to

yield the set {X t
(n)}Tt=1. Indeed this update can be computed in parallel, as appropriate.

3.3 Group fused lasso signal approximator (Step 2)

The main difference between this work and previous approaches is in the use of a grouped

constraint. This becomes a significant challenge when updating {Zt} in Eq. (7). Unlike the

calculation of {X t
(n)}, we cannot separate the optimization over each time-step. Instead,

we must solve for the whole set of matrices {Zt} jointly. In addition, due to the grouped

term in GFGL, we cannot separate the optimization across individual edges. In contrast
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to independent penalization strategies (Monti et al., 2014; Danaher et al., 2013) it is not

possible to solve GFGL for {X t
ij} independently of {X t

kl}, where (i, j) 6= (k, l). Such an

inconvenience is to be expected as the constraints which extract changepoints in GFGL

can act across all elements in X t.

For notational convenience we re-write step two in vector form. Since each Zt is sym-

metric about the diagonal we can reduce the number of elements by simply taking the

elements above the diagonal zt = (Zt
i,j| for j > i, i = 1, . . . , P )>. We then construct a

matrix form such that Z = (z1, . . . ,zT )> ∈ RT×P (P−1)/2, whereby row t of the matrix

correspond to values at time-step t. We perform similar transformations for X t →X and

U t → U , and set λ̄1 = λ1/γ and λ̄2 = λ2/γ
1. Re-writing the objective in Eq. (7) with

these transformations yields the cost function

G(Z; λ̄1, λ̄2) =
1

2
‖X(n) −Z +U (n−1)‖2

F︸ ︷︷ ︸
L(Z)

+ λ̄1‖Z‖1︸ ︷︷ ︸
R1(Z)

+ λ̄2‖DZ‖2,1︸ ︷︷ ︸
R2(Z)

, (10)

where D ∈ R(T−1)×T is a backwards differencing matrix of the form Di,i = −1, Di,i+1 = −1

for i = 1, . . . , T − 1 and zero otherwise, the the group `2,1 norm is defined as ‖X‖2,1 :=∑
t ‖Xt,·‖2. If one constructs a target matrix A = X(n) +U (n−1) then

Z(A; λ̄1, λ̄2) = arg min
Z

G(Z; λ̄1, λ̄2), (11)

looks like a signal approximation problem, we will refer to this problem as the Group-Fused

Lasso Signal Approximator (GFLSA). This looks similar to the previously studied Fused

Lasso Signal Approximator (FLSA) (Liu et al., 2010) but crucially R2(Z) incorporates a

group `2,1 norm rather than the `1 norm of FLSA.

We note Eq. (11) can also be thought of as a proximity operator, such that Z(A;λ1, λ2) ≡

proxR1+R2
(A). If R1 and R2 were indicator functions of two closed convex sets C and

D respectively, then Z(A;λ1, λ2) would find the best approximation to A restricted to

the set C ∩ D. Unlike FLSA which penalizes the columns of Z independently, we find

proxR1+R2(A) 6= proxR2

(
proxR1(A)

)
and cannot apply the two-stage smooth-then-sparsify

1Note that, since we have essentially split the data in half (due to symmetry), we may wish to adjust

the lambdas to be consistent with the original problem specification in Eq. (4).
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theorem of Friedman et al. (2007); Liu et al. (2010). Instead, we follow the work of Alaíz

et al. (2013) and adopt an iterative projection approach which utilizes Dykstra’s method

(Combettes and Pesquet, 2011) to find a feasible solution for both the group fused `2,1 and

lasso `1 constraints.

For any unconstrained optimal point Z∗ = arg minZ L(Z) there exists a set of param-

eters (λ1, λ2) ∈ [0,∞) which will act to move the optimal point of the regularized case

Z∗r = arg minZ G(Z;λ1, λ2) such that Z∗ 6= Z∗r where:

Z∗r = arg min
Z

L(Z), subject to ‖Z‖1 ≤ l1 and
T∑
t=2

‖(DZ)t,·‖2 ≤ l2.

For a given likelihood term, we can obtain an l1 sparse and l2 smooth solution by solving

a penalized problem instead of the explicitly constrained version above. Such a penalized

form is found in Eq. (10) and, while R1(λ1,Z) and R2(λ2,Z) are not explicitly indicator

functions (i.e. they do not take values ∞ outside some feasible region), there does exist

a mapping between the values of the parameters λ1 ≥ 0 , λ2 ≥ 0 and the corresponding

l1, l2 sparsity and smoothness constraints. To give some intuition, for a given constraint

level l1 and function L(Z), the size of the feasible set given by Cλ1 = {Z | λ1‖Z‖1 ≤

l1}, reduces as λ1 increases. Thus sparsity is a monotonically non-decreasing function of

λ1 The same argument can be constructed for smoothing and the constraint set Dλ2 =

{Z | λ2

∑
t ‖(DZ)t,·‖2 ≤ l2}. The proximal Dykstra method provides a way to calculate

a point Z∗r ∈ Cλ1 ∩ Dλ2 that is, in the sense of the `2 distance, close or proximal to the

unconstrained solution for arg minZ L(Z) = A. By iterating between the feasibility of a

solution in Cλ1 and Dλ2 (see Algorithm 1), a solution can be found which is both suitably

smooth and sparse.
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Result: proxR1+R2
(A)

Z(0) = A ,U (n) = 0 , Q(n) = 0

while not converged, n = 0, 1, . . . do
V (n) = proxR2(Z(n) +U (n))

U (n+1) = Z(n) +U (n) − V (n)

Z(n+1) = proxR1(V (n) +Q(n))

Q(n+1) = V (n) +Q(n) −Z(n+1)

end
Algorithm 1: Dykstras iterative projection algorithm

Given that iterative projection can be used to find a feasible point, the challenge is now

to compute the separate proximity operators for R1 and R2. The proximal operator for the

`1 term proxR1(A) is given by the soft-thresholding operator (Tibshirani, 1996):

proxR1(A;λ1) = arg min
Z

1

2
‖Z −A‖2

F + λ1‖Z‖1

= sign(A)�max(|A| − λ1,0) , (12)

where the max and sign functions act in an element-wise manner and � denotes element-

wise multiplication.

Computing the group-fused term proxR2(A) is more involved and there is no obvious

closed-form solution, instead we tackle this through a block-coordinate descent approach

similar to that considered by Bleakley and Vert (2011) and Yuan and Lin (2006). Our target

here is to find the proximal operator for the group smoothing aspect of the regularizer, which

we write as:

proxR2(A;λ2) = arg min
Z

1

2
‖Z −A‖2

F + λ2‖DZ‖2,1. (13)

Re-writing the above with Ω = DZ and constructing Z as a sum of differences via Zt,· =

ω +
∑t−1

i=1 Ωi,·, (where ω = Z1,·) then one can interpret the proximal operator as a group

lasso problem (Bleakley and Vert, 2011) . Writing the re-parameterized problem in matrix

form one can show that solving for the jump parameters allows us to reconstruct an estimate

for Z. This is formally equivalent to a group lasso (Yuan and Lin, 2006) class of problem:

Ω̂ := arg min
Ω∈R(T−1)×P (P−1)/2

1

2
‖Ā− R̄Ω‖2

F + λ2‖Ω‖2,1 , (14)
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where a bar X̄ denotes a column centered matrix and R ∈ RT×(T−1) is a matrix with

entries Ri,j = 1 for i > j and 0 otherwise. The problem above can be solved through a

block-coordinate descent strategy, sequentially updating the solution for each block Ωt,· for

t = 1, . . . , T − 1 (see Appendix). We can then construct a solution for Ẑ by summing

the differences and noting that the optimal value for ω is given by ω̂ = 11,T (A − RΩ̂).

Correspondingly, the proximal operator for R2 is found via

proxR2(A;λ2) =
(
ω̂>, (ω̂ + Ω̂1,·)

>, . . . , (ω̂ +
T−1∑
i=1

Ω̂i,·)
>)>. (15)

The overall subproblem Eq. (10) can now be solved through iteratively applying the prox-

imity operators according to Dykstra’s algorithm (Alg. 1).

3.4 Dual update and convergence (step 3)

The final step in the ADMM-based method is to update the dual variable via Eq. (8).

Convergence properties of general ADMM algorithms are analyzed in Glowinski and Le

Tallec (1989). The sequence of solutions {X(n)}n∈N can be shown to converge (Eckstein

and Bertsekas, 1992) to the solution of the problem: arg minX∈RN f(X) + g(LX), under

conditions that L>L is invertible and the intersection between relative interiors of domains

is non-empty: (ri dom g) ∩ ri L(dom f) 6= ∅. In the GFGL and IFGL problems considered

here one simply sets L = I, in order to restrict X = Z. Clearly in this case I>I is

invertible and dom g = I(dom f); thus the relative interiors intersect.

Whilst ADMM is guaranteed to converge to an optimal solution, in practice it converges

relatively fast to a useful solution, but very slowly if high accuracy is required. Following the

approach of Boyd et al. (2011) we consider tracking two convergence criteria: one tracking

primal feasibility : rprime =
∑T

t=1 ‖X
t
(n) − Zt

(n)‖2
F , relating to the optimality requirement

X∗ − Z∗ = 0, and the other looking at dual feasibility : rdual =
∑T

t=1 ‖Z
t
(n) − Zt

(n−1)‖2
F ,

which tracks the requirement that 0 ∈ ∇F (X∗) + U ∗, where ∗ denotes optimal value.

The rate at which the algorithm converges is somewhat tunable through the γ parameter,

however it is not clear how to find an optimal γ for a given problem. In practice we find

that a value of order γ = 10 provides reasonably fast convergence which with tolerances

order; rprime < εprime = 10−3 and rdual < εdual = 10−3.
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Data: y1, . . . ,yT

Input: λ1, λ2, γ, εdual, εprime

Result: {Θ̂
1
, . . . , Θ̂

T
}

Calculate covariance matrix: Ŝ
t

= yt(yt)>/2 for t = 1, . . . , T

Initialize: Zt
(0) = X t

(0) = U t
(0) = 0

while not converged (rprime ≥ εprime, rdual ≥ εdual), n = 0, 1, . . . do

for t=1,. . . ,T do

Eigen-decomposition: {sh, vh}Ph=1 = eigen
(
Ŝ
t
− γ(Zt

(n−1) −U t
(n−1))

)
xh =

(
− sh +

√
s2
h + 4γ

)
/2γ

V = (v1, . . . .vP ), Q = diag(x1, . . . , xP )

Apply constraints: X t
(n) = V QV >

end

Z(n) = proxR1+R2(X(n) +U (n−1) ;λ1/γ, λ2/γ) // GFLSA via Dykstras method*

U t
(n) = U t

(n−1) +
(
X t

(n) −Zt
(n)

)
, for t = 1, . . . , T

rprime =
∑T

t=1 ‖X
t
(n) −Zt

(n)‖2
F , rdual =

∑T
t=1 ‖Z

t
(n) −Zt

(n−1)‖2
F

end

Return: {Θ̂
t

= X t, . . .}

Algorithm 2: Outline of ADMM algorithm for GFGL. Note to solve IFGL we simply

replace the update (*) with Z(n) = proxR1+R3(X(n) +U (n−1) ;λ1/γ, λ2/γ) which can be

computed through the sub-gradient finding algorithm as proposed in Liu et al. (2010).

At this point it is worth noting that there are a variety of ways one can break down

Eq. (4) as an ADMM problem. In this paper we proceed by simply adding one set of aux-

iliary variables Z as in Eq. (5), however, one could also adopt a linearized ADMM scheme

(Parikh and Boyd, 2013) to deal with the differencing total-variation term. A linearized

scheme would result in a different set of problems for the proximity updates. The motiva-

tion for splitting the problem up as we have, constraining X t = Zt, is that in the IFGL

case we can solve the constraint update (c.f. Eq. 7) using the efficient fused lasso signal ap-

proximator algorithm of Liu et al. (2010). Given that we are interested in how the solution

of the GFGL and IFGL estimators compare it is prudent to ensure that the formulation of

the algorithm is similar for both objectives. For example, given our formulation, we know at
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each step Z for both IFGL and GFGL will be exactly sparse and the augmented weighting

γ is comparable between problems.

3.5 A solver for the Independent Fused Graphical Lasso

The main comparison in this paper is between the GFGL and the IFGL classes of estimators

that, respectively, fuse edges on an group and individual level. It is worth noting that the

ADMM (Algorithm 2) described for GFGL can easily be adapted for such IFGL problems

by modifying the second step that corresponds to the non-smooth constraint projection.

In place of Eq. (10), we construct a fused lasso problem:

G(Z; λ̄1, λ̄2) =
1

2
‖A−Z‖2

F︸ ︷︷ ︸
L(Z)

+ λ̄1‖Z‖1︸ ︷︷ ︸
R1(Z)

+ λ̄2‖DZ‖1︸ ︷︷ ︸ ,
R3(Z)

(16)

where A = X(n) + U (n−1) and we replace the ‖ · ‖2,1 norm of GFGL with a simple `1

penalty of IFGL. Since the `1 norm is linearly separable, i.e. ‖X‖1 =
∑

ij |Xij|, the

objective can now be viewed as a series of P (P − 1)/2 separate FLSA problems. This can

be solved efficiently with gradient descent. In the IFGL case there is no need to apply the

iterative Dykstra projection as one can show the proximity operator can be calculated as

proxR1+R3(A) = proxR3

(
proxR1(A)

)
(Liu et al., 2010).

4 Synthetic Experiments

IFGL and GFGL are here applied to simulated, piecewise stationary, multivariate time-

series data. This provides a numerical comparison of their relative abilities to (i) recover

the graphical structure and (ii) detect changepoints.

4.1 Data simulation

To validate the graphical recovery performance of the estimators, data is simulated accord-

ing to a known ground truth set of precision matrices {Θt}Tt=1. The simulation is carried out

such that, for a given number K∗ of ground truth changepoints T ∗ = {τ1, . . . , τK∗}, there

are K∗ + 1 corresponding graph structures. For each segment k = 1, . . . , K∗ + 1, graphical
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structure is simulated uniformly at random from the set of graphs with vertex size |Vk| = P

and |Ek| = Mk edges, i.e. G(V,Ek) ∼ ErdösRényi(P,Mk). A draw of G(V,Ek) can then be

used to construct a valid GGM by equating the sparsity pattern of the adjacency matrix

and precision matrix, i.e. (i, j) ∈ Ek ⇐⇒ Θ
(k)
i,j 6= 0.

Precision matrices are formed by taking a weighted identity matrix 1
2
I ∈ RP×P and

inserting off-diagonal elements according to edges Ek that are uniformly weighted in the

range [−1,−1/2] ∪ [1/2, 1]. The absolute value of these elements is then added to the

appropriate diagonal entries to ensure positive semi-definiteness. To focus on the study

of correlation structure between variables, the variance of the distributions are normalized

such that (Θt
ii)
−1 = 1 for i = 1, . . . , P .

4.2 Hyper-parameter selection

With most statistical estimation problems there are a set of associated tuning parameters

(common examples include; kernel width/shape, window sizes, etc.) which must be spec-

ified. In the GFGL and IFGL model, one can consider the regularizer terms RShrink(λ1)

and RSmooth(λ2) in Eq. (4) as effecting prior knowledge on the model parameterization.

Given this viewpoint, selection of tuning parameters (λ1, λ2) corresponds to specification

of hyper-parameters for graph sparsity and smoothing.

The recovery performance will depend on the strength of priors employed. As such

λ1 and λ2 must be tuned, or otherwise estimated, such that they are appropriate for

a given data-set or task. In comparison to models which utilize only one regularizing

term (for example, the graphical lasso of Banerjee et al. (2007)) the potential interplay

between RShrink(λ1) and RSmooth(λ2) sometimes conflates the interpretation of the different

regularizers. For example, whilst λ1 predominantly effects the sparsity of the extracted

graphs, λ2 can also have an implicit effect through smoothing (see Appendix for more

details).

In the synthetic data-setting, the availability of ground-truth or labeled data affords

the opportunity to learn the hyper-parameters via a supervised scheme. In order to avoid

repeated use of data, the simulations are split into test and training groups which share

the same ground-truth structure {Θ1, . . . ,ΘT}, but are independently sampled. The IFGL
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and GFGL problems are then solved for each pair of parameters (λ1, λ2) over a search grid.

Optimal hyper-parameters can then be selected according to a relevant measure of per-

formance, typically (Zhou et al., 2010) one considers either predictive risk (approximation

of the true distribution), or model recovery (estimation of the correct sparsity pattern).

In addition to tuning parameters via cross-validation, we also compared this to estimation

via heuristics such as BIC. However, we found in the high-dimensional setting that such

a methodology would result in poor graph recovery performance (see Appendix for more

details).

4.3 Model recovery performance

Considering the model recovery setting, the problem of selecting edges can be treated as

a binary classification problem. One popular measure of performance for such problems is

the Fβ-score

Fβ =
(1 + β2)TP

(1 + β2)TP + β2FN + FP
, (17)

where TP considers the number of correctly classified edges, whilst FP and FN relate to

the number of false positives and false negatives (Type 1 and Type 2 errors) respectively

(a score of Fβ = 1 represents perfect recovery). Since dynamic network recovery is of

interest, the average F1-score is taken over each time-series to measure the effectiveness

of edge selection. For each training time-series an optimal set of parameters are chosen

which maximise the F1-score, namely {(λ∗1, λ∗2)i = arg max F1(λ1, λ2)i}Ntrain
i=1 . The final,

learnt optimal parameters (λ∗1, λ
∗
2), are computed as the median value in this training set.

A hold-out test set of independently simulated time-series is then used to measure the

generalization performance. Figure 1a provides a typical comparison of the graph-recovery

(F1-score) performance between the IFGL and GFGL methods throughout the time-series

duration. In this example it can be seen that IFGL tends to perform best at points far

from the changepoint, whereas GFGL shows a benefit when estimating a graph close to

the changepoint. We note the primary difference between IFGL and GFGL is the number

of edges effected at each changepoint. This is demonstrated more clearly in Fig. 2. Here

λ1 is fixed and the number of edges which change at each time-point is plotted over a

range of smoothing parameters λ2. Clearly, GFGL results in a greater number of edges
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Figure 1: Comparison of generalization performance between GFGL and IFGL, for a

dataset of size P = 10, T = 50. (a) F1-score as a function of time t, plotted lines are

the averages over Ntest = 200 time-series. Error-bars are omitted for presentation, with

an estimated standard deviation in the F1-scores of σIFGL ≈ 0.15 and σGFGL ≈ 0.14. (b)

Demonstration of GFGL and IFGL graph recovery as a function of the number of estimated

changepoints |T̂ |.

being effected at each changepoint. Due to the grouped estimation of GFGL a good level of

graph recovery F1-score performance is achievable with only a few changepoints (see Figure

1b). In contrast, if one sets λ2 to be large in the IFGL setting, only a few changepoints

are selected - however these represent changes in only very few edges (Fig. 2a). In this

setting IFGL may perform well with regards to changepoint performance but this comes

at the expense of poorer graph recovery as is evident from the F1-scores. Where such

grouped changepoint structure is present across many edges, GFGL enables one to recover

changepoints without sacrificing as much graphical recovery performance.

4.4 Performance scaling

In this section, the recovery performance of the estimators is considered over a range of

different problem sizes. In order to assess changepoint estimation performance and how

this varies with scale, it is insightful to construct an error measure that monitors the

average distance (in time) between estimated and true changepoints. The changepoints

for a given edge (i, j) can be described by considering differences in the precision matrix,

i.e. T̂ij =
{
t :
∣∣Θ̂t

ij − Θ̂t−1
ij

∣∣ 6= 0, t = 2, . . . , T
}

=: {τ̂ kij}
K̂ij

k=1, with K̂ij =
∣∣T̂ij∣∣. These are
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Figure 2: Change-point density plots for IFGL and GFGL in the synthetic setting (P =

10, T = 50, M = 10 λ1 = 0.2), there is a simulated changepoint at T = 25. Color

represents the average number of edges (over N = 100 simulations) which experience a

change at a given time point.

compared with the ground truth changepoints for the i, jth edge (τij) from the changepoint

set Tij via the mean absolute error measure, namely MAE := 1

K̂

∑
i,j

∑K̂ij

k=1

∣∣τ̂ kij − τij∣∣, where
K̂ =

∑
ij K̂ij

2. In these experiments a single changepoint is shared across multiple edges

at T = T/2. To allow fair comparison between experiments at different time-series lengths

(T ), the same precision matrices are used either side of the changepoint. For example, under

scaling T → 2T , the number of data-points either side of the changepoint is simply doubled.

When considering scaling with respect to dimension precision matrices are simulated as

discussed in Sec. (4.1), however the number of active edges scaled as M = P . Experiments

were run with data-sets of size Ntrain = 20 and Ntest = 200 and optimal lambdas were

selected through F -score maximization. The results presented in Fig. 3 demonstrate that

recovery performance improves as more data is made available (increasing T ) and degrades

as the problem task becomes more complex (increasing P ). On average IFGL performs

slightly better at estimating the correct edges. However GFGL performs better in the

changepoint detection task where the relative changepoint error reduces at an improved

rate as T is increased. Such a result coincides with the performance demonstrated in Fig.

1 where GFGL outperforms in the vicinity of a changepoint. If grouped changepoints are

present the experiments suggest GFGL performs better in the changepoint estimation task

2One should note that K̂ =
∣∣T̂ ∣∣ only when no changepoints occur simultaneously across multiple edges;

i.e.
∣∣T̂ ∣∣ = K̂ ⇐⇒

∣∣⋃
ij T̂ij

∣∣ =∑ij

∣∣T̂ij∣∣.
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Figure 3: Estimator performance and scaling: (a) F1-score vs time-series length; (b) relative

changepoint error (MAE/T ) as a function of increasing time-series length T ; (c) F1-score vs

dimension P . Error bars represent 67% confidence intervals as estimated from the empirical

c.d.f. of N = 200 test examples.

without sacrificing graph recovery performance.

The results here display how recovery performance scales with problem dimensionality,

however such performance will also depend on the structure of the ground-truth graph and

precision matrices. As an example, in the stationary setting Ravikumar et al. (2011) sug-

gest for consistent recovery of graphs (with N data-points) one should bound the partial

correlations, [−1,−α] ∪ [α, 1], such that α = Ω(
√

logP/N). To enable better interpreta-

tion of experimental results we left α = 1/2 in these examples. However, it is suspected

that change-point and graph estimation may become harder as the true non-zero partial

correlations Θi,j tend towards zero.

4.5 Computational Complexity

In order to investigate computational scalability, a series of experiments were performed

on problems of various size (the experimental setup is the same as in Sec. 4.4), the results

are summarized in Figure 4. In contrast with the quadratic time complexity for dynamic

programming methods (Angelosante and Giannakis, 2011), it can be observed that the

ADMM routine, as a whole, maintains roughly linear complexity with increasing T . When

considering increases in the estimated number of changepoints K̂, complexity appears to
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Figure 4: Empirical computational performance of ADMM for GFGL: (a) Compute-time

vs time-series length T for a fixed number of changepoints; (b) Compute-time vs number

of estimated changepoints ˆ|T |; (c) Compute-time as a function of dimension P .

follow the quadratic rate of GFLseg (used in Algorithm 2), which scales as ≈ O(TP 2K̂2),

see Bleakley and Vert (2011).

5 Example: Time Evolution of Genetic Dependency Net-

works

In this section we give an example of how methods such as GFGL can be used in an applied

context. In recent years it has become increasingly common to construct experiments which

sample gene-expression activity as a time-series. As an example of such data, we consider

the genetic activity of a fruit-fly (D. melanogaster) from its embryonic birth to final adult

state. The dataset we analyze is a subset of the data collected by Arbeitman et al. (2002),

which measures gene expression patterns for 4096 genes, approximately one third of all D.

melanogaster genes, over T = 67 time-points.

To aid interpretation of the results and for computational feasibility, we consider a

smaller subset of genes (P = 150), which are understood to be linked to certain biological

processes, in this case, immune system response. The link between this subset of genes and

biological function is motivated by considering conserved co-domains of a gene. Where such

co-domains are shared between genes, one can often infer a similar biological function of

the genes, this similarity can be extended to other organisms if the genes are homologous
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(Forslund et al., 2011). In this case, our selection of genes is based on the Flybase (Attrill

et al., 2016) Gene-ontology database. Understanding the dependency between genes in-

volved in a certain process is interesting to biologists who want to examine and understand

why or how regulation of gene activity evolves over time, for example after an intervention

or treatment. Previous work on this data-set by Lèbre et al. (2010) considered estimating

changepoints in a causal VAR-type model. In contrast to this work, we are concerned with

estimating the contemporaneous relationships between genes. Specifically, we model the

innovations εt, where Yt = Yt−1 + εt where εt ∼ N (0,Θt) .

10 20 30 40 50 60

100

150

200

λ
2

Change-Point Density (GFGL)

10 20 30 40 50 60
time

λ
1
=

0.
1

10 20 30 40 50 60

100

150

200
λ

2

10 20 30 40 50 60
time

λ
1
=

0.
2

10 20 30 40 50 60

100

150

200

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
3

10 20 30 40 50 60

100

150

200

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
4

10 20 30 40 50 60

100

150

200

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
5

10 20 30 40 50 60

100

150

200

λ
2

Number of Estimated Edges (GFGL)

10 20 30 40 50 60
time

λ
1
=

0.
1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 20 30 40 50 60

100

150

200

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
2

10 20 30 40 50 60

100

150

200

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
3

10 20 30 40 50 60

100

150

200

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
4

10 20 30 40 50 60

100

150

200

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
5

10 20 30 40 50 60
0

5

10

λ
2

Change-Point Density (IFGL)

10 20 30 40 50 60
time

λ
1
=

0.
1

10 20 30 40 50 60
0

5

10

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
2

10 20 30 40 50 60
0

5

10

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
3

10 20 30 40 50 60
0

5

10

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
4

10 20 30 40 50 60
0

5

10

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
5

10 20 30 40 50 60
0

5

10

λ
2

Number of Estimated Edges (IFGL)

10 20 30 40 50 60
time

λ
1
=

0.
1

0

500

1000

1500

10 20 30 40 50 60
0

5

10

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
2

10 20 30 40 50 60
0

5

10

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
3

10 20 30 40 50 60
0

5

10

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
4

10 20 30 40 50 60
0

5

10

λ
2

10 20 30 40 50 60
time

λ
1
=

0.
5

Figure 5: Change-point density (the color indicates the number of edges which change) and

the number of edges recovered as function of both time and tuning parameters.

Unlike in the synthetic experiments, the time-course data analyzed here was not repli-

cated, i.e. we only have one data-point at each time point in the fly’s development. It

is worth noting that more recent experiments involving time-course microarray data may
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produce replicated experiments. These are thought to be particularly valuable, as it allows

one to gauge the uncertainty due to variation in genetic populations and environmental

factors. With such replicated experiments, there may also be a meaningful way to perform

cross-validation to estimate the hyper-parameters. In the absence of replicates, we adopt an

exploratory approach and consider the inferred structure over a wide range of regularization

parameters. We scan over the range λ1 = 0.1→ 0.5 for both methods, with λ2 = 80→ 200

for GFGL, and λ2 = 1→ 10 in the IFGL case.
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Figure 6: Top: Estimated Edges as a function of time with overlay of physiological life-cycle

stages. Bottom: Estimated graph structure for GFGL and IFGL at 4 different time-points

(t = 5, t = 20, t = 40, t = 62), size of node indicates degree, the positions of nodes

(representing individual genes) are comparable across graphs.

Figure 5 demonstrates how both the sparsity, number and position of changepoints

in the solution behave as a function of λ1, λ2. One can clearly see that both smoothing

(the number of changepoints) and sparsity (the number of edges) are linked to (λ1, λ2)
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jointly. For a given selection of λ1, λ2 we obtain an estimate of the dynamic graph, some

snapshots of such graphs can be seen in Fig. 6. In this example, the graphs are drawn

such that gene-positions (vertices) are comparable both across time, and between methods.

This application to genetic data clearly illustrates the qualitative differences between the

estimators in terms of extracted structure. In both methods we observe that more edges

are detected in the later-half of the life-cycle, it appears there is a large change in struc-

ture in the Larval stage of development. Unlike IFGL which experiences changepoints at

all time-points GFGL clearly has more pronounced jumps i.e. more edges change at each

changepoint (see Fig. 5). Additionally, if one considers the varying size/colour of node (pro-

portional to degree) it appears that the degree of the GFGL estimates are more stable. Such

a feature suggests that the particular GFGL estimate (in Fig. 6) has fewer degrees of free-

dom than the IFGL estimate. Such a property may be appealing in the high-dimensional

setting, where GFGL appears to permit similar graphical structure, but with enhanced

temporal stability in the graph.

6 Discussion

Two classes of estimators have been investigated for piecewise constant GGM. In partic-

ular, we have proposed the GFGL estimator for grouped estimation of changepoints in a

dynamic GGM. Empirical results suggest that GFGL has similar model recovery abilities

to the IFGL class of estimators. However, when simultaneous grouped changepoints are

expected to occur, the group-fused estimator does not appear to sacrifice as much graph-

recovery performance in order to accurately estimate changepoints. Further to this, when

estimating grouped changepoints, the group-fused estimator appears to converge to the true

changepoints at a faster rate. We find that the grouped approach offers a more meaning-

ful and interpretable segmentation of the graphical dynamics. This is especially apparent

when such grouped changes represent systemic phase or regime changes in activity. When

one has a priori knowledge of grouping, it is anticipated that GFGL will offer a useful and

scalable investigative tool to support data exploration and subsequent inference.

Our empirical results on the relative changepoint error and F-score vs T suggest con-

vergence of the estimator. However, we leave further theoretical examination of such con-
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sitency properties as future work. A possible way forward here is to exploit the theory

developed for the individual subproblems, namely changepoint detection with the lasso

(Harchaoui and Lévy-Leduc, 2010) and sparse group lasso (Zhang et al., 2014; Simon et al.,

2013). Such work may build on results in the dynamic graph learning setting by Kolar and

Xing (2011, 2012) and Roy et al. (2015).
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SUPPLEMENTARY MATERIAL

Appendix

6.1 Eigen-decomposition for Likelihood

Proposition. Given the symmetric matrices X, Y ∈ RP×P obey X−1−γX = Y for some

constant γ then X and Y share the same eigenvectors. Further to this, it is also the case

that the ith eigenvalues of X and Y denoted λXi
and λYi will satisfy the quadratic equation

λ−1
Xi
− γλXi

= λYi.

A matrix A is invertible iff all of its eigenvalues are non-zero, thus:

Av = λAi
v ⇐⇒ A−1v =

1

λAi

v.

Letting A−1 = Y + γX, from the above we find A−1vi = vi/λAi
and thus Y vi + γXvi =

vi/λXi
. We now have Y vi = vi/λXi

− γXvi, thus vi/λXi
− γλXi

vi = λYivi. Dividing

through by the common eigenvector we find the quadratic relation λ−1
Xi
− γλXi

= λYi .

6.2 Solving the group lasso a note on GFLSeg

To solve the group lasso problem in the GFGL subroutine we use the GFLseg algorithm

developed by Bleakley and Vert (2011). This algorithm utilizes a natural block structure

in the group lasso problem (we formulate 14 in this form):

Γ̂ := arg min
Γ∈R(T−1)×P

1

2
‖Y −XΓ‖2

2 + λ2‖Γ‖2,1 , (18)

where Y is a data or target matrix and X is referred to as the design matrix. We see that

the group lasso problem as formulated above is linearly separable across the groups, given

by rows in Γ. We can write the regularizer as; ‖Γ‖2,1 =
∑

T−1 ‖Γt,·‖ and note that the sum

of squared term can also be decomposed across such groups (in our application the groups

refer to time slices).

The update for block t can be found according to (Bleakley and Vert, 2011):

Γt,· ←
1

‖X·,t‖2

(
1− λ2

‖e−tt ‖

)
+

e−tt , (19)
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where e−tt = X>·,t,Y −XΓ−t), and Γ−t denotes the matrix Γ with the t-th row set to zero. If

one applies the above update scheme then the estimates are guaranteed to converge (Yuan

and Lin, 2006). To speed up the algorithm Bleakley et al adopt an active set strategy.

This takes advantage of the fact we expect only few active blocks (which would correspond

to changepoints), one simply iterates between adding blocks to the active set A according

to maximal violation of the KKT conditions and updating blocks in A according to the

above. The KKT conditions for the group lasso are given as:

−et +
λ2Γt,·
‖Γt,·‖

= 0 ∀ Γt,· 6= 0 , (20)

‖ − et‖ ≤ λ2 ∀ Γt,· = 0 , (21)

where et = X>·,t(Y −XΓ) is the residual projected along the t-th group.

6.3 Sensitivity to hyper-parameters (λ1, λ2)
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Figure 7: Example of averaged F1-score surfaces for; a) IFGL, and b) GFGL, P = 10, T =

50. Color represents F1-score averaged over each time-series for a particular (λ1, λ2) setting.

The surface formed by F1(λ1, λ2) as a function of hyper-parameters provides intuition

as to how the sparsity and smoothing regularizers constrain the estimate. As the example

in Fig. 7 demonstrates, recovery performance is coupled to both λ1 and λ2. In the IFGL

example, it appears that the performance gradient with respect to smoothing (variation in
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λ2) is fairly independent of λ1. With GFGL the dependence between λ1 and λ2 may be

greater due to the grouping effect of the smoothing regularizer. For example, in the GFGL

case, it appears that to achieve a given level of performance increased sparsity regularization

(increased λ1) is required for a small λ2. In the paper, we fix the sparsity level λ1 and discuss

what happens under a range of smoothing parameters λ2 (see changepoint density plots, i.e.

Fig. 2). In the gene-dependency application, one can quite clearly see the inter-dependency

of the smoothing and sparsity parameters for GFGL, it is less pronounced for IFGL (see

Fig. 5).

6.4 Parameter estimation via BIC

It is interesting to consider the application of in-sample estimation methods for tuning

parameters, in the case of IFGL/GFGL (λ1, λ2). Whilst in traditional linear regression

models, one adopts a degree of freedom based on the number of parameters free to vary, in

our regularized estimators the effective degrees of freedom are much harder to estimate. In

the canonical sparse-estimation model of the lasso Tibshirani (1996), it can be shown that

at least in standard asymptotic settings (i.e. the low-dimensional setting where N > P )

the degree of freedom is given simply by counting the number of non-zero parameters. In

our case, we are primarily dealing with a high-dimensional estimation setting, coupled with

the fact that there may be substantial grouping of parameters in GFGL mean that any

method to use BIC to calculate the degrees of freedom should be treated as a pure heuristic.

One previously suggested estimate of the degrees of freedom (Monti et al., 2014), was

used in IFGL type models and considers counting the number of active edges at t = 1 and

corresponding changes for t = 1, . . . , T . More formally, we can define this as a part corre-

sponding to the changes: kdiff = |{1(Θi,j,t 6= Θi,j,t−1) |∀i 6= j, t = 2, . . . , T}|, and the initial

edges, such that ktotal = kdiff + |{1(Θi,j,1 6= 0) | ∀i 6= j}|. In Fig. (8) below, we compare the

BIC surfaces defined as:

BIC(λ1, λ2) ∝ −2L({Θ̂},Y ) + ktotal(log(T )− log(2π)) . (22)

As BIC is a form of in-sample estimation for the tuning parameters, Fig. (8) only

presents analysis on a single synthetic data-set. This is in contrast to Fig. (7) where the
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Figure 8: Examples of BIC vs F1-score surfaces for IFGL (left) and GFGL (right), P =

10, T = 50.

surfaces are averaged across a set of Ntrain time-series. It is however clear from these exam-

ples that the BIC heuristic implemented does not appropriately select a set of parameters

which will perform well in terms of selecting the correct model structure. We see quite

clearly that the minima of the BIC surface does not correspond with good F1-score results.

We hypothesize that this is due in part to the large bias imparted on the likelihood term

by the shrinkage, and relatively strong priors we are using in this circumstance. One may

attempt to correct for this by using GFGL/IFGL as a first stage screening step and then

re-fitting a GGM based on the identified sparsity pattern. Alternatively, one may adopt a

different measure of the degrees of freedom, we leave this as a potential topic for future
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research.
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