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Abstract

We describe a new algorithm and R package for peak detection in genomic data sets using constrained
changepoint algorithms. These detect changes from background to peak regions by imposing the con-
straint that the mean should alternately increase then decrease. An existing algorithm for this problem
exists, and gives state-of-the-art accuracy results, but it is computationally expensive when the num-
ber of changes is large. We propose the GFPOP algorithm that jointly estimates the number of peaks
and their locations by minimizing a cost function which consists of a data fitting term and a penalty
for each changepoint. Empirically this algorithm has a cost that is O(N log(N)) for analysing data of
length N . We also propose a sequential search algorithm that finds the best solution with K segments
in O(log(K)N log(N)) time, which is much faster than the previous O(KN log(N)) algorithm. We show
that our disk-based implementation in the PeakSegDisk R package can be used to quickly compute
constrained optimal models with many changepoints, which are needed to analyze typical genomic data
sets that have tens of millions of observations.

1 Introduction

1.1 Peak detection via changepoint methods

There are many applications, particularly within genomics, that involve detecting regions that deviate from
a usual/background behaviour, and where qualitatively these deviations lead to an increased mean of some
measured signal. For example, ChIP-seq data measure transcription factor binding or histone modification
[Barski et al., 2007]; ATAC-seq data measure open chromatin [Buenrostro et al., 2015]. In these data we
have counts of aligned reads at different positions along a chromosome, and we would like to detect regions
for which the count data are larger than the usual background level.

One approach to detecting these regions is through algorithms that detect changes in the mean of the
data. This paper builds on recent work of Hocking et al. [2017] and presents a new changepoint algorithm,
and its implementation in R. This algorithm is based on modeling count data using a Poisson distribution,
and using the knowledge that we have background regions with small values and peak regions with large
values. This imposes constraints on the directions of changes, with the mean of the data alternately increasing
then decreasing in value. A particular challenge with genomic data is that for an algorithm to be widely
used, it must scale well to large data in terms of both time and memory costs.

There are other algorithms for tackling this type of problem, for example based on hidden Markov models
[Choi et al., 2009]. One drawback of such methods is that they assume the background/peak means do not
change across large genomic regions, whereas such long-range changes are observed in many real data sets.
For a detailed comparison of other algorithms with changepoint approaches we refer the reader to [Hocking
et al., 2016]; we focus the remainder of the paper on optimal changepoint models.
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1.2 Optimal changepoint models with no constraints between adjacent segment
means

Denote the data by z1, . . . , zN . We assume the data is ordered: for genomic applications the ordering will
be due to position along a chromosome, for time-series data the ordering is commonly by time. The aim of
changepoint analysis is to partition the data in to K segments that each contain consecutive data points,
such that features of the data are common within a segment but differ between segments. The feature of
the data that changes will depend on the application, but could be, for example, the mean of the data, the
variance, or the distribution. Detecting changes of different features requires different statistical algorithms.

Throughout we will let K be the number of segments, with the changepoints being 0 = t0 < t1 < · · · <
tK−1 < tK = N . This means that the kth segment will contain data points ztk−1+1, . . . , ztk . We denote the
segment-specific parameter for the segment by mk. For the problem of detecting changes in ChIP-seq count
data, the simplest statistical model uses Poisson random variables with segment-specific mean parameters
for that segment. Change detection is then an attempt to detect the points along the chromosome where
the mean of the data changes.

The algorithm we present is based on detecting changes via minimizing a measure of fit to the data, with
this measure of fit being the negative log-likelihood under our Poisson model. This corresponds to using the
loss function `(m, z) = m−z logm for fitting a non-negative count data point z ∈ Z+ with a mean parameter
m ∈ R+. If we know the number of segments K we can estimate the location of the segments by solving the
following minimization problem,

minimize
m∈RK

0=t0<t1<···<tK−1<tK=N

K∑
k=1

tk∑
i=tk−1+1

`(mk, zi). (1)

Optimizing by naively searching over all possible arrangements of changepoints is an expensive O(NK) time
operation. However, solving (1) can be achieved efficiently using dynamic programming. The first such
algorithm was the Segment Neighborhood algorithm, which computes the series of optimal segmentations
with 1 to K segments in O(KN2) time [Auger and Lawrence, 1989]. The classical algorithm for solving the
Segment Neighborhood problem is available in R as changepoint::cpt.mean. Recent research has led to
faster algorithms, based on pruning the search space of the Segment Neighborhood algorithm [Rigaill, 2015,
Johnson, 2013], and these algorithms empirically take O(KN logN) time. The novelty of these techniques
is a functional representation of the optimal cost, which allows pruning of the O(N) possible changepoints
to only O(logN) candidates (while maintaining optimality). The original implementation of the PDPA
was available in R as cghseg:::segmeanCO for the Normal homoscedastic model, but cghseg has been
removed from CRAN as of 18 December 2017. The PDPA for the Normal homoscedastic model is now
available as jointseg::Fpsn on Bioconductor [Pierre-Jean et al., 2015]. Cleynen and Lebarbier [2014]
described a generalization of the PDPA for other likelihood/loss functions (Poisson, negative binomial,
Normal heteroscedastic). These are available in R as Segmentor3IsBack::Segmentor.

In practice it is unusual to know how many segments there are present in the data. To estimate K it is
common to use some information criteria that takes account both of the measure of fit to the data and the
complexity of the segmentation model being fitted. The most natural measures of complexity are linear in the
number of changepoints. Whilst it is possible to estimate K by solving the Segment Neighborhood problem
for an appropriate set of changes, and calculating the value of the information criteria for each value of the
number of segments, it is faster to jointly estimate both K and the changepoint locations that minimise
the information criteria. The first algorithm to do so was the Optimal Partioning algorithm introduced
by Jackson et al. [2005]. Optimal partitioning is an O(N2) algorithm, and can be significantly faster than
Segment Neighborhood for large K.

There has also been substantial research into speeding up the optimal partitioning algorithm, using
various ideas to prune the search space. In particular the Pruned Exact Linear Time (PELT) algorithm
of Killick et al. [2012], which is implemented within changepoint::cpt.mean, and Functional Pruning
Optimal Partitioning (FPOP) of Maidstone et al. [2016] which is available in R as fpop::Fpop [Rigaill and
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Problem No changepoint pruning Functional pruning
Segment Dynamic Prog. Algo. (DPA) Pruned DPA (PDPA)

Neighborhood Optimal, O(KN2) time Optimal, O(KN logN) time
K segments Auger and Lawrence [1989] Rigaill [2015]

changepoint jointseg
Optimal Optimal Partitioning Algorithm FPOP

Partitioning Optimal, O(N2) time Optimal, O(N logN) time
Penalty λ Jackson et al. [2005] Maidstone et al. [2016]

fpop

Table 1: Previous work on algorithms for optimal changepoint detection with no constraints between adjacent
segment means.

Hocking, 2016]. These algorithms have a computational cost of O(N) if K increases linearly with N . The
FPOP algorithm has a computational cost that is empirically O(N logN) in situations where K increases
sub-linearly with N . See Table 1 for a summary of the different dynamic programming algorithms and
implementations.

Whilst solving the optimal partitioning problem is faster than solving (1) for a range of K, the drawback
is that you only get a single segmentation for a single value K of the number of segments. Furthermore the
choice of penalty that you impose with the information criteria – which corresponds the improvement in fit
to the data needed to add an additional changepoint – can be hard to tune and have an important impact
on the accuracy of the estimate of the number of changepoints. One way to ameliorate this concern is to
find segmentations for a range of penalties, which can be done efficiently [Haynes et al., 2017].

There are alternative approaches to fitting changepoint models, the most common of which are based on
specifying a test for a single change and then repeatedly applying this test to identify multiple changepoints.
Such approaches can be applied more widely than the dynamic programming based approaches described
above, and often have strong computational performance with algorithms that are O(N logN) for the Seg-
ment Neighborhood problem. In situations where both procedures can be used, these methods are often
identical if we wish to identify at most one changepoint. The advantage that the dynamic programming
approaches have is that they jointly detect multiple changepoints which can lead to more accurate estimates
[see e.g. Maidstone et al., 2016]. Several of these alternative algorithms are available in R. For example, the
wbs package implements the wild binary segmentation method of Fryzlewicz [2014]. An efficient implemen-
tation of the classical binary segmentation heuristic is available as fpop::multiBinSeg. The stepR package
implements the SMUCE algorithm for multiscale changepoint inference [Frick et al., 2014].

1.3 Models with inequality constraints between adjacent segment means

The models discussed above are unconstrained in the sense that there are no constraints between mean
parameters mk on different segments. However, as described above, constraints can be useful when data need
to be interpreted in terms of pre-defined domain-specific states. In the ChIP-seq application the changepoint
model needs to be interpreted in terms of peaks (large values which represent protein binding/modification)
and background (small values which represent noise).

In this context, Hocking et al. [2015] introduced a O(KN2) Constrained Dynamic Programming Algo-
rithm (CDPA) for fitting a model where up changes are followed by down changes, and vice versa (Table 2).
These constraints ensure that odd-numbered segments can be interpreted as background, and even-numbered
segments can be interpreted as peaks. Although the CDPA provides a sub-optimal solution to the Segment
Neighborhood problem in O(KN2) time, Hocking et al. [2016] showed that it achieves state-of-the-art peak
detection accuracy in a benchmark of ChIP-seq data sets.

Because the quadratic time complexity of the CDPA limits its application to relatively small data sets,
Hocking et al. [2017] proposed to generalize the functional pruning method for changepoint models with
constraints between adjacent segment means. The resulting Generalized Pruned Dynamic Programming
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No changepoint pruning Functional pruning
Segment Neighborhood Constrained DPA Generalized PDPA

K segments Sub-optimal, O(KN2) Optimal, O(KN logN)
Hocking et al. [2015] Hocking et al. [2017]

PeakSegDP PeakSegOptimal
Optimal Partitioning Generalized FPOP

Penalty λ Optimal, O(N logN)
This work

PeakSegDisk

Table 2: Algorithms for optimal changepoint detection with up-down constraints on adjacent segment means.
Previous work is limited to solvers for the Segment Neighborhood problem; this paper presents Generalized
Functional Pruning Optimal Partitioning (GFPOP), Algorithm 1.

Algorithm (GPDPA) reduces the number of candidate changepoints from O(N) to O(logN) while enforcing
the constraints and maintaining optimality. The GPDPA computes the optimal solution to the up-down con-
strained Segment Neighborhood problem in O(KN logN) time. The PeakSegOptimal R package provides
an in-memory solver for the up-down constrained Segment Neighborhood model [Hocking et al., 2017].

1.4 Contributions

This paper presents two new algorithms for constrained optimal changepoint detection (Section 3), along
with an analysis of their empirical time/space complexity in a benchmark of genomic data (Section 4). The
algorithms are implemented in the R package PeakSegDisk on GitHub.1

First, we present a new algorithm for solving the Optimal Partitioning problem with up-down constraints
between adjacent segment means (GFPOP, Algorithm 1). The fastest existing algorithm for the up-down
constrained changepoint model was the O(KN logN) solver for the Segment Neighborhood problem (Ta-
ble 2). In large genomic data sets, we are only interested in models with many segments/changepoints, so
it is a waste of time and space to compute all models from 1 to K segments using Segment Neighborhood
algorithms. Our proposed GFPOP algorithm solves the Optimal Partitioning problem, so yields one optimal
model with K segments (without having to compute the models from 1 to K−1 segments). We show that the
empirical complexity of our GFPOP implementation is O(N logN) time, O(N logN) space, and O(logN)
memory, which makes it possible to compute optimal models with many peaks for typical genomic data sets
on common laptop computers.

Although solving the Optimal Partitioning problem is faster by a factor of O(K), the user is unable
to directly choose the number of segments K. The user inputs a penalty λ, and gets one of the optimal
changepoint models as output. Thus, we also propose a sequential search (Algorithm 2) which computes
the optimal model for a specified number of segments K. It repeatedly calls GFPOP to solve Optimal
Partitioning with different penalties λ, until it finds the maximum likelihood model with at most K segments.
We empirically show that the sequential search only requires O(logK) evaluations of GFPOP. Overall the
proposed algorithm is thus O(N log(N) log(K)) time, O(N logN) disk, O(logN) memory. In an analysis of
benchmark genomic data sets, we show that this algorithm can compute an optimal model with O(

√
N) >

1000 peaks for N = 107 data using only hours of compute time and gigabytes of storage (which is much less
than weeks/terabytes which would be required for the Segment Neighborhood solver).

1 https://github.com/tdhock/PeakSegDisk
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2 Statistical models and optimization problems

2.1 Unconstrained Optimal Partitioning problem

Define our loss function to be the Poisson loss, `(m, z) = m− z logm, and let λ > 0 be a penalty for adding
a changepoint. Then we can infer the number of segments and the location of the changes by solving the
Optimal Partitioning problem

minimize
m∈RN

N∑
i=1

`(mi, zi) + λ

N−1∑
i=1

I(mi 6= mi+1). (2)

The first term measures fit to the data, and the second term measures model complexity, which is proportional
to the number of changepoints. The non-negative penalty λ ∈ R+ controls the tradeoff between the two
objectives (it is a tuning parameter that must be fixed before solving the problem). Larger penalty λ values
result in models with fewer changepoints/segments. The extreme penalty values are λ = 0 which yields N
segments (N − 1 changepoints), and λ =∞ which yields 1 segment (0 changepoints).

Below we write an equivalent version of the Optimal Partitioning problem, in terms of changepoint
variables ci and state variables si:

minimize
m∈RN , s∈{0}N

c∈{0,1}N−1

N∑
i=1

`(mi, zi) + λ

N−1∑
i=1

I(ci = 1) (3)

subject to no change: ci = 0⇒ mi = mi+1 and si = si+1,

change: ci = 1⇒ mi 6= mi+1 and (si, si+1) = (0, 0). (4)

Note that the state si and changepoint ci variables could be eliminated from the optimization problem —
si = 0 and ci = I(mi 6= mi+1) for all i. We include them in problem (3) in order to show the relationship
with the problem in the next section, with constraints between adjacent segment means.

Hocking et al. [2017] proposed to use a graph to represent a constrained changepoint model. The graph
that corresponds to problem (3) is shown in Figure 1, left. In such graphs, nodes represent possible values
of state variables si and edges represent possible changepoints ci 6= 0. Each edge/changepoint corresponds
to a constraint such as (4).

2.2 Optimal Partitioning problem with up-down constraints between adjacent
segment means

For genomic data such as ChIP-seq [Barski et al., 2007], it is desirable to have a changepoint model which
is interpretable in terms of peaks (large values) and background noise (small values). We therefore propose
a model based on the graph shown in Figure 1, right. It has two nodes/states: s = 0 for background, and
s = 1 for peaks. It has two edges/changes: c = 1 for a non-decreasing change from background s = 0 to a
peak s = 1, and c = −1 for a non-increasing change from a peak s = 1 to background s = 0. Furthermore,
the model is constrained to start and end in the background state (because peaks are not present at the
boundaries of genomic data sequences). Maximum likelihood inference in this model corresponds to the
following minimization problem:

F (λ) = min
m∈RN , s∈{0,1}N

c∈{−1,0,1}N−1

N∑
i=1

`(mi, zi) + λ

N−1∑
i=1

I(ci = 1) (5)

subject to no change: ci = 0⇒ mi = mi+1 and si = si+1,

non-decreasing change: ci = 1⇒ mi ≤ mi+1 and (si, si+1) = (0, 1),
non-increasing change: ci = −1⇒ mi ≥ mi+1 and (si, si+1) = (1, 0),
start and end down: s1 = sN = 0.

5



s = 0

c = 1, λ s = 1

s = 0start end

c = 1, λ,≤ c = −1, 0,≥

Figure 1: State graphs for two changepoint models. Nodes represent states and solid edges represent change-
points. Left: one-state model with no constraints between adjacent segment means, problem (3). Right:
two-state model with up-down constraints between adjacent segment means, problem (5). State s = 0 repre-
sents background noise (small values) whereas state s = 1 represents peaks (large values). Constraint c = 1
enforces a non-decreasing change via the min-less operator (≤) with a penalty of λ; c = −1 enforces a non-
increasing change via the min-more operator (≥) with a penalty of 0. The model is additionally constrained
to start and end in the background noise s = 0 state (s1 = sN = 0).

Note how the problem (5) with up-down constraints is of the same form as the previous unconstrained
problem (3). Again there is one constraint for every edge/changepoint in the state graph (Figure 1). The
difference is that in problem (5), we have inequality constraints between adjacent segment means (e.g. when
ci = 1, we must have a non-decreasing change in the mean mi ≤ mi+1). Another difference is the model
complexity in problem (5) is the total number of ci = 1 non-decreasing changes, which is equivalent to
the number of peak segments P , and is linear in the total number of segments K = 2P + 1 and changes
K − 1 = 2P .

The solution to the Optimal Partitioning problem (5) can be computed by first solving the Segment
Neighborhood version of the problem [Maidstone et al., 2016]. In R the PeakSegDP package provides a
sub-optimal solution in O(KN2) time, and the PeakSegOptimal package provides an optimal solution
in O(KN logN) time. However in genomic data the number of peaks/segments K increases with N , so
it is intractable to solve the Segment Neighborhood problem because both N and K are large. Therefore
in the next section we propose a new algorithm for directly solving the constrained Optimal Partitioning
problem (5), which can yield a large number of peaks in O(N logN) time.

3 Algorithms and Software

3.1 Generalized Functional Pruning Optimal Partitioning (GFPOP)

In this section we propose a generalization of the FPOP algorithm [Maidstone et al., 2016] which allows
optimal inference in models with inequality constraints between adjacent means, such as problem (5). In
particular we implemented the optimal changepoint model using the Poisson loss and the up-down con-
straints. The state graph (Figure 1, right) can be converted into a directed acyclic graph (Figure 2) that
represents the dynamic programming updates required to solve problem (5). Each node in the computation
graph represents an optimal cost function, and each edge represents an input to the min{} operation in the
dynamic programming equations (12) and (13) below.
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C1,i−1

C0,i−1

C1,i

C0,i

C1,2

C0,2

C1,N−1

C0,N−1 C0,NC0,1

C1,i−1

C≥
1,i−1

C0,i−1

C≤
0,i−1 + λC≤

0,1 + λ

C0,1

C≥
1,N−1

C0,N−1· · ·

· · ·

· · ·

· · ·

Figure 2: Directed acyclic graph (DAG) representing dynamic programming computations (Algorithm 1) for
changepoint model with up-down constraints between adjacent segment means. Nodes in the graph repesent
cost functions, and edges represent inputs to the the MinOfTwo sub-routine (solid=changepoint, dotted=no
change). There is one column for each data point and one row for each state: the optimal cost of the peak
state s = 1 at data point i is C1,i (top row); the optimal cost of the background noise state s = 0 is C0,i
(bottom row). There is only one edge going to C0,2 and C1,2 because the model is constrained to start in
the background noise state (s1 = 0).

More precisely, we define the optimal cost of mean µ in state σ at any data point τ ∈ {1, . . . , N} to be

Cσ,τ (µ) = min
m∈Rτ , s∈{0,1}τ

c∈{−1,0,1}τ−1

τ∑
i=1

`(mi, zi) + λ

τ−1∑
i=1

I(ci = 1) (6)

subject to ci = 0⇒ mi = mi+1 and si = si+1,

ci = 1⇒ mi ≤ mi+1 and (si, si+1) = (0, 1),
ci = −1⇒ mi ≥ mi+1 and (si, si+1) = (1, 0),
s1 = sN = 0,
mτ = µ, sτ = σ. (7)

Note how the objective and constraints above are identical to the up-down constrained Optimal Partitioning
problem (5) up to τ − 1 data points, but with two added constraints at data point τ (7). At data point τ
the mean is constrained to be mτ = µ and the state is constrained to be sτ = σ. The optimal cost Cσ,τ (µ) is
a real-valued function that must be computed by minimizing over all previous means m1, . . . ,mτ−1, states
s1, . . . , sτ−1, and changes c1, . . . , cτ−1. It can be computed recursively using the dynamic programming
updates that we propose below.

The algorithm begins by initializing the optimal cost of the background state at the first data point,

C0,1(µ) = `(µ, z1). (8)

The computations for the second data point are also special, because the model is constrained to start in
the background state s1 = 0. To get to the background state s2 = 0 at the second data point requires no
change (c1 = 0), with a cost of

C0,2(µ) = C0,1(µ) + `(µ, z2). (9)

Similarly, to get to the peak state s2 = 1 at the second data point requires a non-decreasing change (c1 = 1),
with a cost of

C1,2(µ) = min
m1≤µ

C0,1(m1) + λ+ `(µ, z2) = C≤0,1(µ) + λ+ `(µ, z2). (10)

Note that we were able to re-write the optimal cost function in terms of a single variable µ by using the
min-less operator,

f≤(µ) = min
x≤µ

f(x). (11)
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The min-less operator was introduced by Hocking et al. [2017] in order to compute the optimal cost in the
functional pruning algorithm that solves the Segment Neighborhood version of this problem.

More generally, the dynamic programming update rules can be derived from the computation graph
(Figure 2). The optimal cost of the peak state s = 1 at data i > 2 is

C1,i(µ) = `(µ, zi) + min{C1,i−1(µ), C≤0,i−1(µ) + λ}. (12)

Note how the inputs to the min{} operation are the same as the edges leading to the C1,i node in the
computation graph (Figure 2).

Similarly, the optimal cost of the background state s = 0 is

C0,i(µ) = `(µ, zi) + min{C0,i−1(µ), C≥1,i−1(µ) + λ}, (13)

where the min-more operator is defined as

f≥(µ) = min
x≥µ

f(x). (14)

These dynamic programming computations are summarized in Algorithm 1, Generalized Functional Pruning
Optimal Partitioning. The key to implementing the algorithm is to use a PiecewiseFunction data structure
that can exactly represent an optimal cost function Cs,i. In the case of the Poisson loss, each Cs,i(µ) is a
piecewise function where each piece is of the form αµ+β logµ+γ. Therefore the optimal cost can be stored
as a list of intervals of µ ∈ [MIN,MAX], each with coefficients α, β, γ.

Algorithm 1 Generalized Functional Pruning Optimal Partitioning (GFPOP) for changepoint model with
up-down constraints between adjacent segment means.

1: Input: data set z ∈ RN , penalty constant λ ≥ 0.
2: Output: vectors of optimal segment means U ∈ RN and ends T ∈ {1, . . . , N}N
3: Initialize 2×N empty PiecewiseFunction objects Cs,i either in memory or on disk.
4: Compute min z and max z of z.
5: C0,1 ← OnePiece(z1, z, z)
6: for data point i from 2 to N : // dynamic programming
7: M1 ← λ+ MinLess(i− 1, C0,i−1) //cost of non-decreasing change
8: C1,i ← MinOfTwo(M1, C1,i−1) + OnePiece(zi, z, z)
9: M0 ← MinMore(i− 1, C1,i−1) //cost of non-increasing change

10: C0,i ← MinOfTwo(M0, C0,i−1) + OnePiece(zi, z, z)
11: mean,prevEnd,prevMean← ArgMin(C0,n) // begin decoding
12: seg← 1; Useg ← mean; Tseg ← prevEnd
13: while prevEnd > 0:
14: if prevMean <∞: mean← prevMean
15: if seg is odd: cost← C1,prevEnd else C0,prevEnd

16: prevEnd,prevMean← FindMean(mean, cost)
17: seg← seg + 1; Useg ← mean; Tseg ← prevEnd

Discussion of pseudocode. Algorithm 1 begins on line 3 by initializing the array Cs,i of optimal cost
functions (either in memory or on disk). It then computes the min z and max z of the data (line 4) and
uses the OnePiece sub-routine to initialize the optimal cost at the first data point (line 5). Since the Poisson
loss is `(µ, z1) = µ− z1 logµ, this first optimal cost function is represented as the single function piece with
interval/coefficients (α = 1, β = −z1, γ = 0,MIN = z,MAX = z).

The dynamic programming recursion in this algorithm is a loop over data points i (line 6). To compute
C1,i, the penalty constant λ is added to all of the result of MinLess (line 7), before computing MinOfTwo
and adding the cost of the new data point (line 8). The computation for C0,i is similar, but uses MinMore
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and does not add the penalty λ (lines 9–10). The details about how the MinLess/MinMore/MinOfTwo
sub-routines process the PiecewiseFunction objects have been described previously [Hocking et al., 2017].

After computing the optimal cost functions, the decoding of optimal parameters occurs on lines 11–17.
The last segment mean and second to last segment end are first stored on line 12 in (U1, T1). For each other
segment i, the mean and previous segment end are stored on line 17 in (Ui, Ti). Note that there should
be space to store (Ui, Ti) parameters for up to N segments. In practice our implementation writes these
parameters to a text output file on disk.

Computational complexity. The complexity of Algorithm 1 is O(NI), where I is the mean number of
intervals (function pieces) that are used to represent the Cs,i cost functions. Theoretically there are some
pathological data sets for which the algorithm computes I = O(N) intervals, which results in the worst-case
complexity of O(N2). Since the number of intervals in real data is empirically I = O(logN) (see Figure 5),
the overall complexity of Algorithm 1 is on average O(N logN). Using disk-based storage its complexity is
O(N logN) time, O(N logN) disk, O(logN) memory.

Usage in R. We implemented the disk-based version of Algorithm 1 in C++ code with an interface in the
R package PeakSegDisk. To illustrate its usage we first load a set of genomic data,

> library(PeakSegDisk)

> data(Mono27ac, package="PeakSegDisk")

> Mono27ac$coverage

chrom chromStart chromEnd count

1: chr11 60000 132601 0

2: chr11 132601 132643 1

3: chr11 132643 146765 0

4: chr11 146765 146807 1

5: chr11 146807 175254 0

---

6917: chr11 579752 579792 1

6918: chr11 579792 579794 2

6919: chr11 579794 579834 1

6920: chr11 579834 579980 0

6921: chr11 579980 580000 1

>

Note that the 4 column bedGraph format shown above must be used to represent a data set. Futhermore
a run-length encoding should be used for data sets that have runs of the same values. Each row represents
a sequence of identical data values. For example the first row means that the value 0 occurs on the 72601
positions in [60000,132601), the second row means a value of 1 for the 42 positions in [132601,132643), etc.
This run-length encoding results in significant savings in disk space and time [Cleynen et al., 2014]; for
example in the data set above there are only 6921 lines used to represent 520000 data values.

In order to handle very large data sets while using only O(logN) memory, the algorithm reads input
data from a text file on disk (and never actually stores the entire data set in memory). So before using the
algorithm we must save the data set to disk, in bedGraph format (the four columns shown above, separated
by tabs). Note that the file name must be coverage.bedGraph:

> data.dir <- file.path("Mono27ac", "chr11:60000-580000")

> dir.create(data.dir, showWarnings=FALSE, recursive=TRUE)

> write.table(

+ Mono27ac$coverage, file.path(data.dir, "coverage.bedGraph"),

+ col.names=FALSE, row.names=FALSE, quote=FALSE, sep="\t")

>

9



After saving the file to disk, we can run the algorithm using the code below:

> ## Compute one model with penalty=10000

> fit <- PeakSegDisk::problem.PeakSegFPOP(data.dir, "10000")

>

For the first argument you must give the folder name (not the coverage.bedGraph file name) to the
problem.PeakSegFPOP function. Note that the second argument must be a character string that represents
a penalty value (non-negative real number, larger penalties yield fewer peaks). The smallest value is "0"

which yields max peaks, and the largest value is "Inf" which yields no peaks. It must be an R character
string (not a real number) because that string is used to create files which are used to store/cache the results.
If the files already exist (and are consistent) then problem.PeakSegFPOP just reads them; otherwise it runs
the dynamic programming C++ code in order to create those files.

The returned fit object is a named list of data.tables. The fit$loss component shown below is one
row that contains general information about the computed model:

> fit$loss

penalty segments peaks bases mean.pen.cost total.loss equality.constraints

1: 10000 15 7 520000 0.2189332 43845.26 0

mean.intervals max.intervals

1: 14.42581 41

>

Above we can see that the optimal model for λ = 104 had P = 7 peaks (K = 15 segments/K − 1 = 14
changepoints). The fit$segments component is used to visualize three of those peaks in a subset of the
data below.

> library(ggplot2)

> gg <- ggplot()+theme_bw()+

+ geom_step(aes(chromStart, count), color="grey50", data=Mono27ac$coverage)+

+ geom_segment(aes(chromStart, mean, xend=chromEnd, yend=mean),

+ color="green", size=1, data=fit$segments)+

+ coord_cartesian(xlim=c(2e5, 3e5))

> print(gg)

>
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3.2 Sequential search algorithm for P ∗ peaks

Note that in GFPOP (Algorithm 1), the user inputs a penalty λ, and is unable to directly choose the number
of segments/peaks. In this section, we propose an algorithm that allows the user to specify the number of
peaks. The algorithm then repeatedly calls GFPOP until it finds the most likely model with at most the
specified number of peaks.

To understand how the algorithm works, we must review the relationship between the Optimal Parti-
tioning and Segment Neighborhood problems [Maidstone et al., 2016]. We define the optimal loss for a given
number of peaks P as

LP = min
m∈RN , s∈{0,1}N

c∈{−1,0,1}N−1

N∑
i=1

`(mi, zi) (15)

subject to ci = 0⇒ mi = mi+1 and si = si+1,

ci = 1⇒ mi ≤ mi+1 and (si, si+1) = (0, 1),
ci = −1⇒ mi ≥ mi+1 and (si, si+1) = (1, 0),
s1 = sN = 0,

P =
N−1∑
i=1

I(ci = 1). (16)

The problem above is the Segment Neighborhood version of the Optimal Partitioning problem that GFPOP
solves (5). The penalty λ is absent, and the model complexity (the number of peaks) has moved to a
constraint (16). Recall that F (λ) is the minimum value of the Optimal Partitioning problem (5). It can be
written in terms of the solution to the Segment Neighborhood problem (15),

F (λ) = min
P∈{0,1,...,Pmax}

LP + λP. (17)

The equation above makes it clear that there are only a finite number of optimal changepoint models (from
0 to Pmax peaks). F (λ) is a concave, non-decreasing function that can be computed as the minimum of a
finite number of affine functions fP (λ) = LP + λP .

We now assume the user wants to compute the optimal model with a fixed number of peaks P ∗. To
compute that model we will maximize the function

G(λ) = F (λ)− P ∗λ = min
P∈{0,1,...,Pmax}

LP + λ(P − P ∗)︸ ︷︷ ︸
gP (λ)

. (18)

From the equation above it is clear that G(λ) is a concave function that can be computed as the minimum
of a finite number of affine functions gP (λ) = LP + λ(P − P ∗). For an example G function see Figure 3.

Discussion of pseudocode. Algorithm 2 summarizes the sequential search. The main idea of the sequen-
tial search algorithm is to keep track of a lower bound p < P ∗ and upper bound p > P ∗ on the number of
peaks computed thus far. The algorithm starts with λ = 0, p = Pmax (line 2) and λ =∞, p = 0 (line 3). At
each iteration of the algorithm, we find the intersection of the affine functions gp(λ) = gp(λ), which leads to

a new candidate penalty λnew = (Lp − Lp)/(p − p) (line 5). As previously described [Haynes et al., 2017],
there are two possibilities for the solution to the Optimal Partitioning problem:

• GFPOP(λnew) yields p or p peaks (line 7). In that case maxλG(λ) = G(λnew) = gp(λnew) = gp(λnew)
and there is no Optimal Partitioning model with P ∗ peaks. We terminate the algorithm by returning
the model with p peaks.

• GFPOP(λnew) yields a new model with pnew peaks. If pnew = P ∗ then maxλG(λ) = LP∗ and we
return this model (line 8). Otherwise it must be true that p < pnew < p. If p < pnew < P ∗ then we use
pnew for a new lower bound p (line 9); otherwise we use it for a new upper bound p (line 10).
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Figure 3: Example of a G(λ) function which is maximized in order to find the most likely model with at
most P ∗ = 75 peaks. Red dots show G(λ) values evaluated by the algorithm; grey lines show affine functions
gP (λ) = LP + (P − P ∗)λ used to determine the next λ value (line 5 of Algorithm 2). Left: iteration 1 runs
GFPOP with λ ∈ {0,∞}, resulting in initial lower bound of p = 0 peaks and upper bound of p = 29681
peaks. In iteration 2 the algorithm finds the intersection of the upper/lower bound lines g0(λ) = g29681(λ)
at λ = 90.9; running GFPOP with that penalty reduces the upper bound to p = 3445. Right: In the last
iteration (13), we run GFPOP with λ = 2522.1 (which is where g74 intersects g76), resulting in 76 peaks
when we already have p = 76 as an upper bound (computed in iteration 12). The maximum of G is thus
G(2522.1) = g74(2522.1) = g76(2522.1); the algorithm returns the model with P = 74 peaks.

Algorithm 2 Sequential search for P ∗ peaks using GFPOP.

1: Input: data z ∈ RN , target peaks P ∗.
2: L, p← GFPOP(z, λ = 0) // initialize upper bound to max peak model
3: L, p← GFPOP(z, λ =∞) // initialize lower bound to 0 peak model
4: While P ∗ 6∈ {p, p}:
5: λnew = (L− L)/(p− p)
6: Lnew, pnew ← GFPOP(z, λnew)
7: If pnew ∈ {p, p}: return model with p peaks.
8: If pnew = P ∗: return model with pnew peaks.
9: If pnew < P ∗: L, p← Lnew, pnew // new lower bound

10: Else: L, p← Lnew, pnew // new upper bound

Computational complexity. The space complexity is the same as GFPOP:O(N logN) disk andO(logN)
memory. Its time complexity is linear in the number of iterations of the while loop (line 4). Empirically we
see O(logP ∗) iterations (Section 4.4), which implies an overall time complexity of O(N log(N) log(P ∗)).

Usage in R. The R code below computes the optimal model with 17 peaks:

> ## Compute the optimal model with 17 peaks.

> fit <- PeakSegDisk::problem.sequentialSearch(data.dir, 17L)

>

If you want to see how many iterations/penalties the algorithm required in order to compute the optimal
model with 17 peaks, you can look at the fit$others component:

> fit$others[, list(iteration, under, over, penalty, peaks, total.loss)]

iteration under over penalty peaks total.loss

1: 1 NA NA 0.0000 3199 -130227.291
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Figure 4: One ChIP-seq data set with three peak models. (green horizontal segment means; green dotted
vertical lines for changepoints; blue bars for peaks; blue dots for peak starts) Top: the MACS2 algorithm (a
heuristic from the bioinformatics literature) computed a sub-optimal model with five peaks for these data.
Middle: the most likely model with five peaks contains one equality constraint between segment means (see
zoomed figure on the right), which suggests that there are less than five easily interpretable peaks. Bottom:
the most likely model with three peaks is also more likely than the MACS2 model.

2: 1 NA NA Inf 0 375197.873

3: 2 0 3199 157.9947 224 -62199.931

4: 3 0 224 1952.6688 17 2640.128

>

The output above shows that the algorithm only used three iterations to compute the optimal model
with 17 peaks. The under and over columns show the current values of p and p, respectively. The peaks

and total.loss are pnew, Lnew from the model that resulted from running GFPOP with λ = penalty. Note
that iteration 1 evaluates both extreme penalties λ ∈ {0,∞} in parallel (and λ =∞ is the trivial model with
0 peaks that can be computed without dynamic programming), so these two models are considered a single
iteration.

4 Results on genomic data

In this section we discuss several applications of our algorithms in some typical genomic data sets. We
downloaded the chipseq data set from the UCI machine learning repository [Newman and Merz, 1998]. We
considered 4951 data sets ranging in size from N = 103 to N = 107 data points to segment (lines in the
bedGraph file).

4.1 Application: Computing the maximum likelihood model with a given num-
ber of peaks

In this section we show that our algorithms can be used to compute the most likely model for a given number
of peaks. A subset of one data set is shown in Figure 4, along with three segmentation/peak models. In
the top panel, we show the peak model that results from running MACS2, a heuristic algorithm from the
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Figure 5: In our empirical tests, the computational requirements of the GFPOP algorithm were log-linear
O(N logN) in the number of data points N to segment. Left: we analyzed the number of intervals I
(candidate changepoints) stored in the Ct(µ) cost functions, because the total time/space complexity is
O(NI). We observed empirically that the mean number of intervals I = O(logN) (red curve). Even
the maximum number of intervals (blue curve) is much less than N . Right: storage on disk (top panel)
and computation time (bottom panel) are empirically O(N logN). Error bands show median and 5%/95%
quantiles over several data sets of a given size N ; black dots and text show computational requirements for
the most extreme data sets.

bioinformatics literature [Zhang et al., 2008]. It detects five peaks, so we ran Algorithm 2 with P ∗ = 5 on
these data in order to compute the most likely model with at most 5 peaks (shown in middle panel). It is
clear that the optimal 5 peak model is a better fit in terms of likelihood (as expected); it is also a better fit
visually, especially for the peak on the left. Furthermore the optimal 5 peak model actually has one equality
constraint between adjacent segment means, suggesting that there are less than five easily interpretable
peaks. Therefore we also computed the optimal 3 peak model (bottom panel), which also has a higher
log-likelihood than the 5 peak MACS2 model. Overall it is clear that our algorithms can be used to compute
models which are both more likely and simpler (with fewer peaks) than heuristics such as MACS2.

4.2 GFPOP is empirically log-linear

To measure the empirical time complexity of GFPOP (Algorithm 1), we ran it on all 4951 genomic data sets,
with a grid of penalty values λ ∈ (logN,N) for each data set of size N . The overall theoretical time/space
complexity is O(NI), where I is the number of intervals (candidate changepoints) stored in the Cs,t optimal
cost functions. During each run we therefore recorded the mean and max number of intervals over all s, t.
We observed that the empirical mean/max number of intervals increases logarithmically with data set size,
I = O(logN) (Figure 5, left). Remarkably, for the largest data set (N = 11, 499, 958) the algorithm only
computed a mean of I = 19 intervals. The most intervals computed to represent any single Cs,t function
was 512 intervals for one data set with N = 4, 583, 432.

Since empirically I = O(logN) in these genomic data sets, we expected an overall time/space complexity
of O(N logN). The empirical measurements of time and space requirements are consistent with this expec-
tation (Figure 5, right). For the largest data sets (N = 107), the algorithm takes only about 80 gigabytes of
storage and 1 hour of computation time. Overall these results suggest that GFPOP can be used to compute
optimal peak models for genomic data in O(N logN) space/time.

4.3 Disk storage is slower than memory by a constant factor

In the previous section, we discussed how tens of gigabytes of storage are required to run GFPOP when
N = 107. Since typical computers may not have enough memory, our implementation uses disk-based
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Figure 6: The disk-based storage method is only a constant factor slower than the memory-based method.
We benchmarked both methods on several small data sets (N ≤ 462, 890) for which optimal models could
be computed using 1GB of storage. Left: computation time is empirically O(N logN) for both storage
methods, but the disk-based method is slower by a constant factor. Median line and quartile band computed
over several penalty values for a given data set. Right: fixing one data set data set with N = 106, 569, the
computation time increases with penalty value λ for both storage methods.

storage. We compared our disk-based implementation to another memory-based implementation, in terms
of computation time on small data sets for which GFPOP uses < 1GB of storage. We observed that disk
storage is slower than memory storage by a constant factor (1.7–2.3×, Figure 6), which was expected.

4.4 Sequential search is faster than Segment Neighborhood

In this section we compare the number of O(N logN) dynamic programming iterations required for the
proposed sequential search (Algorithm 2) and the previous Generalized Pruned Dynamic Programming Al-
gorithm (GPDPA) of Hocking et al. [2017]. Both algorithms compute the solution to the Segment Neighbor-
hood problem (optimal model with at most P peaks). The GPDPA requires exactly 2P iterations of dynamic
programming, each of which is an O(N logN) operation. In contrast, the proposed sequential search (Al-
gorithm 2) needs to solve for a sequence of penalties, each of which is done via GFPOP in O(N logN)
time.

For two data sets with N ≈ 106 we therefore recorded the empirical number of times GFPOP was called
by the sequential search algorithm. We observed that the number of GFPOP calls grows logarithmically
with P (Figure 7, left). For a large number of peaks (P > 5), it is clearly faster to use the sequential search
algorithm (Figure 7, right). Overall these experiments indicate that the time complexity of the sequential
search in genomic data is O(N log(N) log(P )) for N data and P peaks.

4.5 Application: computing a zero-error peak model

In this section we study the perfomance of the proposed algorithms in a typical application. In the UCI
chipseq data set, there are labels that indicate subsets of the data with or without peaks. In this context
the labels can be used to compute false positive and false negative rates for any peak model. For example
Figure 8 shows one data set with six labels and four peak models computed via GFPOP. Small penalties
result in too many peaks, and large false positive rates. Large penalties result in too few peaks, and large
false negative rates. A range of intermediate penalties/peaks achieves zero label errors. The labels can thus
be used to determine an appropriate number of peaks (with zero errors) for each data set.

More generally, after computing GFPOP models for a range of penalties for each data set, we computed
the label error of each model. For each data set we computed the min/max peaks that achieves zero label
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Figure 7: Comparison of time to compute optimal model with at most P peaks using Segment Neigh-
borhood (grey lines) and Optimal Partitioning with proposed sequential search (green dots). GFPOP with
sequential search (Algorithm 2) was used to compute optimal models with different numbers of peaks P ,
for two data sets with N ≈ 106. Left: the number of iterations is linear O(P ) for Segment Neighborhood
(grey line) but empirically O(logP ) for Optimal Partitioning with sequential search (green dots). Right:
Optimal Partitioning is empirically faster for computing models with P > 5 peaks (10 segments); Segment
Neighborhood is faster for smaller models.
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Figure 8: Labels are used to compute an error rate for each peak model (blue bars), defined as the sum of
false positive and false negative labels (rectangles with black outline). This H3K36me3 ChIP-seq data set
has N = 1, 254, 751 data to segment on a subset of chr12, but in the plot above we show only the 82,233 data
(grey signal) in the region around the labels (colored rectangles). The model with penalty=6682 results in
320 peaks, which is too many (three false positive labels with more than one peak start/end). Conversely,
the model with penalty=278653 results in 33 peaks, which is too few (only two peaks in the plotted region,
resulting in two false negative labels on the right where there should be exactly one peak start/end). The
range of penalties between 9586 and 267277 results in models with between 34 and 236 peaks, and achieves
zero label errors.

errors (34/236 in Figure 8), along with the mean of those two values, (34 + 236)/2 = 135. We plot the mean
number of peaks that achieves zero label errors as a function of data set size in Figure 9. In these data it is
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Figure 9: The model with minimal label errors has O(
√
N) peaks in a data set of size N . For each data

set we computed peak models with minimal label errors (see Figure 8); we then plot the number of peaks in
minimal error models as a function of data set size N . Black median line and grey quartile band computed
over several data sets of a given size N ; asymptotic reference lines shown in red.

clear that models with O(
√
N) peaks achieve zero label errors.

Computing the optimal model with O(
√
N) peaks is computationally expensive using the Segment Neigh-

borhood algorithm (PeakSegOptimal package), because the overall complexity would be O(N
√
N logN).

For example in N = 107 data, P = O(
√
N) = 1414 peaks achieves zero label errors. Computing the optimal

model with Segment Neighborhood would thus require 2828 O(N logN) DP iterations. If we assume that
each iteration would have similar computational requirements as one O(N logN) run of GFPOP, each would
require about 1 hour and 80 gigabytes (Figure 5). Overall that would mean 220 terabytes of storage and 17
weeks of computation time, which is much too expensive in practice.

Instead, we can use the proposed sequential search (Algorithm 2) to compute a zero-error model with
O(
√
N) peaks. In our empirical tests, we observed that only O(logN) GFPOP calls are required to compute

O(
√
N) peaks (Figure 10, left). In particular for N = 107 data only 10–15 GFPOP calls are required, which

is significantly fewer than the 2828 DP iterations that would be required for the Segment Neighborhood
solver in the PeakSegOptimal package.

We also observed that the empirical timings of the sequential search are only a log-factor slower than
solving for one penalty (Figure 10, right). In particular for N = 107 data the sequential search takes on the
order of hours, which is much less than the weeks that would be required to solve the Segment Neighborhood
problem. Overall these empirical results indicate that the sequential search algorithm in the PeakSegDisk
package can be used to compute a model with O(

√
N) peaks in O(N(logN)2) time.

5 Summary and discussion

This paper presented two new algorithms for constrained optimal changepoint detection. We presented
Generalized Functional Partitioning Optimal Partitioning (GFPOP) which computes the optimal model for
one penalty λ. We also proposed a sequential search algorithm which repeated calls GFPOP in order to
compute the most likely model with at most P peaks.

We analyzed the proposed algorithms by running them on a set of genomic data sets ranging from N = 103

to N = 107. First, we showed that the algorithms can be used to compute models which are more likely
than existing heuristics, and often simpler (fewer peaks).

Second, we studied the empirical complexity of GFPOP as the a function of the number of data N . We
showed that GFPOP requires O(N logN) time, O(N logN) space, and O(logN) memory. We furthermore
showed that using disk-based storage is only a constant factor slower than memory-based storage. Overall
we showed that GFPOP can be used to compute optimal peak models for up to N = 107 data in reasonable
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Figure 10: Computing a zero-error model with O(
√
N) peaks is possible in O(N(logN)2) time using

our proposed Optimal Partitioning Search algorithm. Left: Segment Neighborhood requires O(
√
N) dy-

namic programming iterations to compute a model with O(
√
N) peaks; our proposed Optimal Partitioning

search algorithm requires only O(logN) iterations. Right: Optimal Partitioning solves for one penalty in
O(N logN) space/time (median line and 5%/95% quantile band over data sets and penalties); finding the
zero-error model with O(

√
N) peaks takes O(N(logN)2) time/space – only a log factor more (points).

amounts of time (minutes).
Third, we studied the empirical complexity of sequential search as a function of data size N and number

of peaks P . We showed that it requires O(N log(N) log(P )) time, O(N logN) disk, O(logN) memory. In
particular we showed that it is always faster than Segment Neighborhood solvers for models with P > 5
peaks.

Finally we analyzed the labels in our benchmark of genomic data, which indicated that an appropriate
number of peaks is P = O(

√
N). We showed that sequential search computes the model with O(

√
N) peaks

in O(N(logN)2) time, whereas existing Segment Neighborhood algorithms would be O(N
√
N logN). We

showed that for N = 107 data our approach only requires hours/gigabytes of time/space to compute optimal
models. Our algorithms thus make it practical for the first time to compute optimal models with many peaks
for genomic data sets.

Reproducible research statement. The source code and data used to create this manuscript (including
all figures) is available at https://github.com/tdhock/PeakSegFPOP-paper
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