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Abstract8

The aim of this paper is to set out a strategy for improving the inference for statistical models for the9

distribution of annual maxima observed temperature data, with a particular focus on past and future10

trend estimation. The observed data are on a 25 km grid over the UK. The method involves developing11

a distributional linkage with models for annual maxima temperatures from an ensemble of regional and12

global climate numerical models. This formulation enables additional information to be incorporated13

through the longer records, stronger climate change signals, replications over the ensemble and spatial14

pooling of information over sites. We find evidence for a common trend between the observed data15

and the average trend over the ensemble with very limited spatial variation in the trends over the UK.16

The proposed model, that accounts for all the sources of uncertainty, requires a very high dimensional17

parametric fit, so we develop an operational strategy based on simplifying assumptions and discuss what18

is required to remove these restrictions. With such simplifications we demonstrate more than an order of19

magnitude reduction in the local response of extreme temperatures to global mean temperature changes.20

Keywords: climatological data, distributional linkage, generalised extreme value distribution, spatial ex-21

tremes, temperature data.22

1 Introduction23

Extreme events of environmental processes, such as temperature, sea levels and precipitation, are likely24

to be affected by global climate change. A review of climate extremes encompassing the historical record,25

the challenges they present to climate models and their possible future impacts is given by Easterling26

et al. (2000). The rate of climate change is not expected to be linear in time in the future, due to the27

lagged response of the ocean, and so global mean temperature has frequently been used as a metric to28

represent the time evolution of future climate change (Brown et al. 2014). For extreme temperatures,29
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future changes at a location may not follow the same rate as change as the global mean temperature30

(Clarke et al. 2010), as there can be regional variations in the mean and variance changes, both of which31

effect extreme temperatures. Therefore there is a need to estimate changes in extreme temperatures32

at the local scale and to assess how these relate to global mean temperature change. In our analysis33

we treat the annual global mean temperature as a known covariate and build trend models for extreme34

temperatures relative to that. A full analysis of extreme temperature trends strictly needs to account for35

the uncertainty in this covariate, but that is outside the scope of this analysis.36

When making inferences of univariate extremes of a stationary process, the starting point of most37

environmental statisticians is to model the distribution of the annual maxima by a generalised extreme38

value (GEV) distribution (Coles, 2001). The asymptotic justification for this choice comes from the GEV39

being the only possible non-degenerate limiting distribution of linearly normalised partial maxima of40

weakly mixing stationary series (Leadbetter et al., 1983). The GEV has distribution function41

G(x) = exp

[
−
{

1 + ξ

(
x− µ
σ

)}−1/ξ
+

]
(1)

with parameters: θ = (µ, σ, ξ) ∈ R× R+ × R corresponding to location, scale and shape parameters and42

the notation [y]+ = max(y, 0) leads to range constraints on the GEV variable. For ξ = 0 (taken as the43

limit as ξ → 0) the upper tail is exponential whereas ξ > 0 and ξ < 0 corresponds to long and short44

upper tailed distributions respectively. When there is non-stationarity in the annual maxima then each45

of the GEV parameters can be adapted to be functions of the covariates to descibe different ways that46

the distribution changes (Coles, 2001). However, in a wide range of environmental applications we find47

(based on hypothesis testing) that only the location parameter needs to depend on covariates and it can48

do this in a linear way. Therefore if there is only one suitable covariate then the location parameter µ of49

distribution (1) is replaced in year t by50

µt = α+ βgt

for some covariate gt, with the trend parameter being β. This restricted model for extremes of non-51

stationary data turns out to be sufficient for our analysis. We denote the distribution as being GEV(θt =52

(µt, σ, ξ)). Here we take gt as the annual global mean temperature in year t, so β is giving the change53

in extreme temperature for every 1◦C change in annual global mean temperature. Exploratory analysis54

found that this formulation for the non-stationarity of annual maxima was appropriate for the data studied55

in this paper, see Gabda (2014). Furthermore, Gabda and Tawn (2017) proposed improving on marginal56

inference for the GEV distribution by using objectively determined marginal and spatial penalty functions57

that adapt to the data set being analysed.58

There are other well known extreme value modelling approaches, such as threshold exceedances being59

modelled by the generalised Pareto distribution (GPD) (Davison and Smith, 1990). Threshold methods60

benefit from using more extreme value data and hence can be more efficient in their inferences than annual61

maxima methods (Coles, 2001), however, they suffer from potential sensitivity to the threshold choice62

which is particularly problematic when there are trends (Northrop and Jonathan, 2011). Therefore we63

restrict our developments to the GEV case, but note that the methods we propose in this paper, and64

their benefits, are also directly applicable to the GPD.65
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Trends in extreme values of observed environmental processes are hard to estimate with sufficient66

precision due to the short duration of the observational data and the relatively small climate change67

signal over the observation period relative to inter-annual variability. This is not helped by climate68

processes that can generate decadal scale and longer-term natural variability, a given phase of which can69

encompass a significant portion, if not all, of an observed record. In contrast, climate models can be used70

to obtain projections of future, as well as the past, climate changes with independent and uncorrelated71

realisations of internal variability. In the future the climate change signal will become larger, so climate72

model data has the advantage of both more data and larger signals. If such climate models represent the73

required physical processes adequately then they can provide an additional source of information about74

the current observed changes in extreme temperatures. Specifically, they may then be able to replicate75

the trend and or other parameters of the GEV distribution during the period of the observational data.76

This is the underlying assumption adopted here in the use of climate model data to help infer current77

trends. However, complications with this approach may arise from the observed trend signal potentially78

being so weak and so providing no real constraint on the climate model trends. In addition, different79

climate models can produce significantly different trends that arise from their differing representations of80

the relevant physical processes which complicates their use in inferring the “true” observed changes.81

There has been a range of work aiming to jointly characterise observed and climate model data82

trends. Wuebbles et al. (2013) examined the ability of climate model data to capture the observed trends83

of temperature extremes and heavy precipitation in the United States. Several studies have developed84

methodologies for modelling observed extreme events with considerations to the uncertainty in the pre-85

diction of future climate. Hanel and Buishand (2011) modelled the precipitation from regional climate86

models (RCM) and gridded observations and found that their estimates from the RCM exhibited a large87

bias relative to such estimates from observational data. In contrast Kyselý (2002) modelled the annual88

maximum and the minimum temperatures in observations and RCM and though a multiple regression89

downscaling method they were able to produce realistic return values of annual maximum and minimum90

temperatures. Other examples of similar work are given by Katz (2002), Stott and Forest (2007), Coelho91

et al. (2008), Hanel et al. (2009) and Nikulin et al. (2011).92

A key feature with all of these studies is that when the distribution of the observed extreme events is93

modelled, the parameters have been naively linked, by construction, to the parameters of the distribution94

of extremes for the climate model, but the uncertainty of these linking parameters or of the climate model95

extremal parameters have not been accounted for. Since the future level of climate change is uncertain,96

a wide range of estimates can be made, and therefore it is necessary that such uncertainty is adequately97

accounted for in any analysis of changes in extremes. Brown et al. (2014), for example, model extreme98

events (temperature and rainfall) using the information from an ensemble of models consisting of both99

global climate models (GCM) and RCMs. They find a considerable spread in the temperature dependent100

parameters when fitted to individual ensemble members and that the agreement between values for RCMs101

and their driving GCMs can be poor and in some cases counter physical (see their Figure 8).102

Our objective is to improve inferences for a statistical model of observed temperature maxima by103

linking the parameters of observed UK temperatures to the equivalent parameters from an ensemble of104

RCMs and GCMs representing differing, but plausible, future climates. We will explore the linkages for105

all parameters but pay particular attention to the trends relative to global mean temperature. Unlike106
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previous studies we will jointly account for the uncertainty in the parameters, leading to a statistical107

model for all UK gridpoints. We derive inference for this large number of parameters via Bayesian108

methods which enables us to account for the uncertainty of the parameter estimates and which enables109

us to efficiently pool all the information in our model inferences. However, we have to be aware that110

we are pooling dependent data. This arises from using data from multiple sites on a spatial grid for the111

same year and from inter-connected members of the RCM and GCM ensemble. RCMs require boundary112

conditions which are taken from “parent” GCMs which have the same model formulation as the RCM113

apart from scale dependent parameters. Therefore consideration of the dependence between these models114

is required, and we believe we are the first to account for this feature. Additionally, unlike Brown et al.115

(2014), the philosophy here is to consider the GCM ensemble as random sample of possible GCMs with116

differences assumed to be due to some stochastic process (be it internal sampling variability or GCM117

formulation) and so aim to find links not just from one individual climate model to the observational data118

but a common linkage derived from all climate models that are employed.119

The outline of this article as follows. Section 2 describes the data used in this study and presents our120

outline modelling strategy. Our highly ambitious modelling strategy is described in Section 3 identifies121

key structure in the model parameters. In Section 4 the joint inference of our proposed full model is122

discussed. The results of applying a simplified version of this model, that ignores the spatial dependence123

and treats the GCM parameters as known, are presented in Section 5. Section 6 provides a discussion124

how the simplifications are likely to have affected the results and discusses ways that the inference could125

be improved.126

2 Data and basic model structure127

2.1 Data128

This study uses observed UK temperature annual maxima at each of 439 sites on a 25 km spatial grid129

from 1960 to 2009. From the climate model simulations we have temperature annual maxima data130

from 1950 to 2099 from RCMs with the same spatial grid as the observed data and also from coupled131

GCMs with a larger grid of 300km which results in 5 grid boxes over the UK domain. We denote the132

respective time periods with these different data types by T1 and T2, with | T1 |= 50 and | T2 |= 150.133

The GCM and RCM models form part of the UK Climate Projections (Murphy et al. 2009) and were134

specifically designed to sample uncertainty in the future climate response through the perturbation of135

key but imperfectly understood physical processes. This ensemble provides a range of future climates136

that are consistent with historical observations and with projections from other climate models (Collins137

et al. 2011). We focus on an ensemble consisting of 11 GCM members that run from 1950 to 2006 with138

observed levels of greenhouse gasses and other forcings and thereafter follow the SRES A1B emissions139

scenario (Nakićenović et al. 2000) to 2099. Each of these GCMs provide boundary conditions to force140

an additional RCM ensemble with each RCM member having the same parameter perturbations as its141

“parent” GCM thereby sharing the parameter perturbations and the GCMs’ internally generated natural142

variability. In addition, the annual global mean temperature from 1950 to 2099 for each of the GCMs143

and the observed global mean temperature for the period of 1960-2009 are available as covariates. For144

the five GCM grid boxes regions (r = 1, . . . , 5) the associated RCM models and observational data have145
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hr different sites, (h1, . . . , h5) = (98, 94, 124, 23, 100).146

● ●
●
●

●

● ●

● ●

● ●
● ● ● ● ●

● ●
● ● ● ● ● ●

● ● ● ● ● ●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ●

−12 −10 −8 −6 −4 −2 0 2

50
52

54
56

58
60

62

● ●

●
● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ● ● ●

●

● ● ● ● ● ●

●
● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ●

● ● ● ●
● ●

●
● ● ●

● ● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ●

●
● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ●

● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ●
● ● ●

Figure 1: The location of 5 regions with respective of number of points, hr. Black - Region 1, Red -
Region 2, Green - Region 3, Blue - Region 4, Yellow - Region 5.

2.2 Basic model formulation147

Let Xt,(r,s) denote the observed annual temperature in year t for site s in region r, with t ∈ T1, r = 1, . . . , 5148

and s = 1, . . . , hr. Focusing on a single site, we assume that Xt,(r,s) are independent over t and follow a149

generalised extreme value distribution,150

Xt,(r,s) ∼ GEV
(
αX,(r,s) + βX,(r,s)gX,t, σX,(r,s), ξX,(r,s)

)
(2)

with a linear trend in a location parameter with covariate gX,t being the observed annual global mean151

temperature in year t. Whilst it would be possible to use a more locally defined metric of future change152

(such as the change in mean European temperatures) this would unhelpfully include more unforced153

naturally occurring internal variability of the climate system; here we desire to identify the changes that154

are being forced by greenhouse gas emissions to which the global mean temperature is better suited. Note155

that the parameters (αX,(r,s), βX,(r,s), σX,(r,s), ξX,(r,s)) do not depend on time, but can vary over region156

and site. Our choice for these parameters to be independent of time is based on a range of reasons, which157

include exploratory analysis which shows no evidence of a change in the distribution of residuals around158

a linear trend (Gabda, 2014) and the pooled assessment of fit over all sites, see Section 3.1.159

Now consider the 11 coupled RCM and GCM datasets with maxima in T2. Let Y
(j)
t,(r,s) and Z

(j)
t,r be160

the RCM and GCM annual maxima respectively in year t, region r, for the jth member of an ensemble,161

j = 1, . . . , 11 and for site s in region r for the RCM. Then we model162

Y
(j)
t,(r,s) ∼ GEV

(
α
(j)
Y,(r,s) + β

(j)
Y,(r,s)g

(j)
M,t, σ

(j)
Y,(r,s), ξ

(j)
Y,(r,s)

)
(3)

and163

Z
(j)
t,r ∼ GEV

(
α
(j)
Z,r + β

(j)
Z,rg

(j)
M,t, σ

(j)
Z,r, ξ

(j)
Z,r

)
, (4)

where g
(j)
M,t is the GCM numerical model annual global mean temperature for year t in the jth ensemble164

member.165
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Here the jth GCM is used to drive the jth RCM, so there is potentially dependence between Z
(j)
t,r and166

Y
(j)
t,(r,s), for each s = 1, . . . , hr and for all j, t and r. As (Y

(j)
t,(r,s), Z

(j)
t,r ), represent dependent componentwise167

maxima in year t, it is natural to model their joint distribution by a bivariate extreme value distribution168

(Tawn, 1988). This distribution has GEV marginals and a class of copula that has a restricted formulation,169

limited to a particular form of non-negative dependence, though it cannot be expressed fully through any170

finite closed form family. Therefore it is common to take a flexible parametric family in this class of171

copula, with the most widely used form being the logistic model. Then in year t, the joint distribution of172

(Y
(j)
t,(r,s), Z

(j)
t,r ) has the form:173

G
(j)
t,(r,s)(y, z) = exp

{
−
(
a−1/φy + a−1/φz

)φ}
(5)

where174

ay =

{
1 + ξY

(
y − µY,t
σY,t

)}1/ξY

+

az =

{
1 + ξZ

(
z − µZ,t
σZ,t

)}1/ξZ

+

,

and the dependence parameter 0 < φ ≤ 1 measures the dependence between the regional model data,175

Y
(j)
t,(r,s) and the global model data, Z

(j)
t,r , with dependence increasing from independence (φ = 1) to perfect176

dependence (φ → 0) as φ decreases. The dependence parameter φ is found later to be constant over all177

sites and regions.178

3 Exploratory analysis findings179

3.1 Assessing model fit180

In Section 2.2 we identified the theoretically motivated GEV distribution as a potential model for each181

marginal distribution and proposed it would be sufficient for the trends in global annual mean temperature182

to be modelled through the location parameters only. To assess the validity of this assumption we183

examined the goodness of the GEV fit to the observations and the climatological model data for each184

site through Q-Q plots for a set of randomly selected sites. In all cases the fit appeared good, though of185

course at this level of spatial resolution there are limited data to identify any deviation from the GEV186

assumption. Therefore, additionally, we constructed pooled P-P plots for each of the observed, RCM and187

GCM data separately, in each case pooling over sites, regions and years, see Heffernan and Tawn (2001)188

for a similar example.189

These figures are shown in Figure 2. The observational data pooled P-P plot, left panel, is constructed190

as follows. Let GXt,(r,s)
denote the distribution function of Xt,(r,s) as given by expression (2). Then for191

each t, r, s the values ĜXt,(r,s)
(xt,(r,s)), where ĜXt,(r,s)

and xt,(r,s) denote the marginally fitted distribution192

and the observed data respectively, are sorted and are compared against quantiles of the uniform(0, 1)193

distribution. The RCM and GCM plots have been constructed similarly with additional replications over194

ensemble members. Here, and throughout the exploratory analysis, we use likelihood-based inference195

instead of a full Bayesian analysis for both computational speed and its simplicity of model selection.196

The results show that the GEV with a trend in the location parameter fits the data well, with a near197

linear P-P plot for each data type. It should be stressed that here the respective subplots correspond to198

21950, 724350 and 8250 data values, thus the near perfect straight line shows the model to be an excellent199
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fit in all three cases, given the immense data volume.200
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Figure 2: Pooled P-P plots for observed, RCM and GCM annual maximum temperature data (respec-
tively) under GEV marginal models with a trend in the location parameter that is linear in global annual
mean temperature.

In these models all the GEV parameters are specified as free, not depending in any way on the201

parameters of other variables (observed, RCM and GCM) or on the parameters at different sites. Thus202

the number of parameters is 21292 in total with a break down of 1756 (439 × 4) for observed data,203

19316 (439 × 4 × 11) for RCM data and 220 (5 × 4 × 11) for GCM data. In Sections 3.3 and 3.4204

respectively we explore, through a detailed exploratory analysis, if we can find any structure between the205

different parameters. The reason we search for structure between the parameters is that if we can find206

links, particularly between observation and RCM parameters, then this gives us a greater handle on how207

climate change will affect the observations, reduce the total number of required parameters and help to208

improve the efficiency of inference for the observed maxima data. Specifically, as a result of the analysis209

in Sections 3.3 and 3.4, the number of free parameters is reduced to 1138, a 95% reduction.210

3.2 Basic assessment of trends211

To help get a first impression on the trends in the different data sets and in the distinct periods of these212

data sets we fitted the models set out in equations (2), (3) and (4). Specifically, for region r we have213

hr estimates of βX,(r,s) for each s; 11hr estimates of β
(j)
Y,(r,s) for each s and the 11 ensemble members;214

and 11 estimates of β
(j)
Z,r for the 11 ensemble members. In Figure 3 we present these estimates, in the215

form of kernel density estimates for each region and based on 3 different time periods corresponding to216

the observed data 1960-2009, a future period 2010-2099 covered only by the GCM/RCM models and the217

full GCM/RCM data 1950-2099. These distributions only show the variation in estimates over sites and218

ensembles and do not account in any way for the different uncertainties in these estimates.219

First consider the results in Figure 3 (left panel). Here we can see that a number of the northern220

regions (regions 1,2 and 4) have significant proportion of observed trends with values higher than the221

GCM/RCM models. Some of these are unrealistic e.g., in Northern Ireland with temperatures warming 3222

times faster than global annual mean temperatures. Probably this can be explained by local variability in223

the short observed records and as we will see in Section 3.3 there is no statistically significant difference224

in observed and RCM trends over sites. Furthermore, by comparison of the GCM/RCM trends over225
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this period with the two other periods, we see no reason to identify separate trends, relative to annual226

global mean temperature, in Northern Ireland for the different periods. What we can see from comparing227

Figure 3 left and centre panels is that the RCM/GCM trend estimates seem not to change over the228

1960-2099 time period and from comparing the left and right panels that using the longest time period229

of 1950-2099 gives much less variation in point estimates relative to using just the period of the observed230

data 1960-2009.231
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Figure 3: Distribution of the trend parameter estimates for three different periods for each region, Figure
top-bottom in a sub-plot: Region 1 to Region 5: observed temperatures (black), RCM (red) and GCM
(green). Panels left to right show respectively the estimates based on data for in the intervals correspond-
ing to the observed data 1960-2009, a future period covered only by the GCM/RCM models 2010-2099
and the full GCM/RCM data 1950-2099.

3.3 Observed and RCM parameter linkage232

For each site s, in region r, we test for commonality of the GEV parameters for the observed and the233

RCM data to see which features of the RCM maxima replicate well the features of the observed data234

maxima. Specifically, we test which components of the parameter vectors235

(αX,(r,s), βX,(r,s), σX,(r,s), ξX,(r,s)) and (α
(j)
Y,(r,s), β

(j)
Y,(r,s), σ

(j)
Y,(r,s), ξ

(j)
Y,(r,s))

are equal across ensemble members (j) for each (r, s). We present a full discussion of our analysis for236

the linear gradient parameter and report our findings for the other parameters. Firstly, for the majority237

of model fits likelihood ratio tests (which exploit the independence of observed and RCM data), with238

a 5% significance level, are not rejected over the 4829(= 11 ×
∑5

r=1 hr) tests. However, the proportion239

rejected is significantly greater than 5%, and it is not meaningful to consider the observed data trend as240

being equal to each of the 11 different ensemble trends. Therefore, for each location it is more realistic to241

think that the RCM ensemble members produce a distribution of possible trends, with the mean of these242

representing the observed trend. Thus we instead test the hypothesis that243

βX,(r,s) =
1

11

11∑
j=1

β
(j)
Y,(r,s), (6)
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for each (r, s). Separately for each site, this test involves a joint fit of the observed data and the 11 RCM244

ensemble members, exploiting their independence. This test is rejected with a proportion much closer245

to the size of the test than previously, and therefore we believe that the observed trend is well-captured246

by the mean of the ensemble of the RCM trends. In addition the mean of the ensemble RCM trends is247

estimated with a much smaller standard error than βX,(r,s) when estimated based on observed data alone.248

Thus, this identification of a linkage between the parameters gives improved estimation of βX,(r,s) through249

the additional information provided by the RCM data.250

In terms of other parameters it is clear that the individual, and average, RCM parameters are sta-251

tistically significantly different to the parameters of the observed data for both trend intercept (α) and252

shape parameters (ξ). In contrast, the scale parameters are found to have a similar linkage to the trend253

gradient, so that for each (r, s)254

σX,(r,s) =
1

11

11∑
j=1

σ
(j)
Y,(r,s). (7)

3.4 RCM and GCM parameter linkage255

For each site s in region r we test for commonality of the GEV parameters for the RCM and the GCM256

data to see which features of the GCM maxima replicate well the features of the RCM data maxima.257

Specifically, we test which components of the parameter vectors258

(α
(j)
Y,(r,s), β

(j)
Y,(r,s), σ

(j)
Y,(r,s), ξ

(j)
Y,(r,s)) and (α

(j)
Z,r, β

(j)
Z,r, σ

(j)
Z,r,, ξ

(j)
Z,r)

are equal over j for each (r, s). When testing such hypotheses we need to account for the dependence259

between the RCM and GCM for a given (r, s). Using the bivariate extreme value distribution model260

proposed in Section 2.2, with dependence parameter φ, we model the dependence between the RCM261

Y (j) and the GCM Z(j) for the jth ensemble member. For each (r, s) we get very similar values for262

the estimated φ, with the average value for each of the 5 regions being (0.56, 0.52, 0.55, 0.52, 0.57), with263

the values not being statistically significantly different at the 5% level. Thus there is no evidence for264

dependence between RCM and GCM varying over the UK, and a common value of φ over ensemble and265

site can be taken.266

For computational simplicity we fixed φ = 0.55 and then tested the required hypotheses on the267

marginal parameters at the 5% significance level. Again we focus discussion on the trend gradient pa-268

rameter. Firstly we test for β
(j)
Y,(r,s) = β

(j)
Z,r for all j, r and s, with 83.2% of the tests not rejected, which is269

substantially in excess of the size of the tests. Next we tested if these trends were linearly related over a270

region, i.e., if β
(j)
Y,(r,s) = κ

(r)
β0

+ κ
(r)
β1
β
(j)
Z,r with parameters κrβ0 and κrβ1 . This also did not give a convincing271

fit and additionally led to the estimates of the trends β
(j)
Y,(r,s) having clear jumps at region boundaries. Of272

course a driving feature for this is the discontinuity in the GCM trends over regions.273

As we require observed and RCM trend parameters to change smoothly over a region and across region274

boundaries we now propose smoothing the GCM region trends, across sites in the region, by constructing275

weighted means of GCM region trends. Specifically, we define a jth ensemble smoothed GCM trend276
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β
(j)
Z,(r,s), at site s in region r, as277

β
(j)
Z,(r,s) =

5∑
`=1

w`,sβ
(j)
Z,` (8)

where β
(j)
Z,` is the GCM trend parameter for region, ` for the jth ensemble member, and its weight, w`,s,278

is some monotone decreasing function of the distance d`,s of site s to the centre of region `. Here, for279

simplicity reasons only, we take the function of distance to be the inverse squared distance, so that280

wr,s =
d−2r,s∑5
`=1 d

−2
`,s

. (9)

However, a more flexible alternative, discussed in Section 6, allows for the level of smoothing to adapt to281

the smoothness of the trends in the RCM. We then find that we reject the hypothesis of282

β
(j)
Y,(r,s) = κ

(r)
β0

+ κ
(r)
β1
β
(j)
Z,(r,s)

= κ
(r)
β0

+ κ
(r)
β1

5∑
`=1

w`,sβ
(j)
Z,` (10)

at approximately the size of the test. Thus this linkage between RCM and GCM trends seems reasonable.283

Therefore, exploiting the linkages (6) and (10), the model we adopt to link the GCM to the observed data284

trend is via285

βX,(r,s) = κ
(r)
β0

+ κ
(r)
β1

11∑
j=1

5∑
`=1

w`,sβ
(j)
Z,`/11. (11)

We repeat the same analysis for the location-intercept, scale and shape parameters to give286

α
(j)
Y,(r,s) = κα0 + κα1α

(j)
Z,(r,s) = κα0 + κα1

5∑
`=1

w`,sα
(j)
Z,` (12)

σ
(j)
Y,(r,s) = κ(r)σ0 + κ(r)σ1

5∑
`=1

w`,sσ
(j)
Z,` (13)

σX,(r,s) = κ(r)σ0 + κ(r)σ1

11∑
j=1

5∑
`=1

w`,sσ
(j)
Z,`/11 (14)

ξ
(j)
Y,(r,s) = κξ0 + κξ1ξ

(j)
Z,(r,s), (15)

where α
(j)
Z,(r,s), σ

(j)
Z,(r,s) and ξ

(j)
Z,(r,s) are smoothed GCM parameters, defined similarly to the GCM smoothed287

trend (8).288

4 Joint Modelling289

In Section 3 we identified structure between the parameters of the GEV distributions for observed, RCM290

and GCM data. If this structure is a reasonable approximation this leaves us with 1138 unknown free291

marginal parameters instead of the original 21292 free marginal parameters. Furthermore, the exploratory292
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analysis has shown that we only need 1 dependence parameter φ. The 1138 parameters comprise: 220293

GCM parameters (α
(j)
Z,r, β

(j)
Z,r, σ

(j)
Z,r,, ξ

(j)
Z,r) over r = 1, . . . , 5 and j = 1, . . . , 11; 878 observed data parame-294

ters (αX,(r,s), ξX,(r,s)) over all 439 sites; and 40 linking parameters (κ
(r)
α0 , κ

(r)
α1 , κ

(r)
β0
, κ

(r)
β1
, κ

(r)
σ0 , κ

(r)
σ1 , κ

(r)
ξ0
, κ

(r)
ξ1

)295

for r = 1, . . . , 5. The remaining parameters are given as functions of these parameters through expres-296

sions (11) and (14) and for observed location intercept and shape parameters and expressions (12), (10),297

(13) and (15) respectively for RCM location intercept, gradient, scale and shape parameters, We use all298

the information from the observed extremes data and the RCM and GCM annual maxima to estimate299

these free parameters, thus a total of 754550 data (50 × 439 observed values, 150 × 11 × 439 RCM data300

and 150× 11× 5 GCM data).301

We could impose some additional structure on the remaining 1138 parameters to reduce the di-302

mensionality of the problem. For example, we would expect that the location and shape parameters303

(αX,(r,s), ξX,(r,s)) of the observed data will each individually change smoothly over r and s. In many cases304

in spatial environmental extreme value modelling no evidence is found for the shape parameter to vary305

over space. However, those conclusions are often derived from analyses over small spatial regions and306

limited data. Over larger regions there is evidence for the shape parameter to change, but to change307

slowly and smoothly. So one approach could be to impose some measure of smoothness over space for308

the shape parameter, e.g., parametric models (Coles, 2001), smoothing splines (Jonathan, et al., 2014)309

or generalised additive models (Chavez-Demoulin and Davison, 2005) with latitude and longitude as co-310

variates. However, we anticipate that there are likely to be coastal effects and that they may be lost by311

immediately fitting such a smooth model over the whole of the UK. We are even less confident about312

spatial smoothing for the location parameters, at least without much further investigation. This is due to313

the location parameters being likely to be influenced by distance from the coast, altitude and other topo-314

graphic features. Therefore at a first level of investigation we prefer not to impose such smooth structure315

on these parameter, but in Section 6 we return to this issue when we have gathered more information316

from fitting our unconstrained model.317

Given the complex structure of the model, with the very large number of parameters, Bayesian infer-318

ence is implemented as opposed to our earlier use of likelihood-based methods as the Bayesian approach319

represents the information in the likelihood surface better, it avoids problems such as getting stuck in local320

modes, and it fully accounts for all parameter uncertainty in subsequent inferences. As there is no infor-321

mation available about the parameters, other than from the data, we set priors to be non-informative with322

a large variance, e.g., N(0, 1002), after the parameters are transformed via a link function onto the space323

(−∞,∞). We apply random walk Metropolis Hastings algorithm to obtain a sample from the posterior324

distribution of the parameters of our proposed model, where we update each parameter by independently325

drawing a proposal from the Normal distribution with mean equal to the current value and a value of326

the variance (tuning parameter) chosen to ensure that the chain mixes suitably, typically set so that the327

acceptance probability is about 1/4 (Roberts and Rosenthal, 2001). We undertook 10,000 iterations for328

each region, after a suitable burn-in period.329

We need to derive the likelihood for our model, however this is complex due to the various variables,330

parameter linkages and spatial dependence structure. First consider the likelihood function for a given331

site located at (r, s). By considering the dependency between the RCM and GCM in region r, and the332

independence over ensemble members and the independence of the RCM/GCM data from the observed333
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data, then the likelihood function can be written as follows334

L(r,s) =

∏
t∈T1

g
(
xt,(r,s);θX,(r,s)

)
∏
t∈T2

11∏
j=1

g2

(
y
(j)
t,(r,s), z

(j)
t,r ;θ

(j)
Y,(r,s),θ

(j)
Z,r, φ

)
(16)

where T1 = {1960, 2009} and T2 = {1950, 2099}, g and g2 are the GEV density and the density for335

the bivariate extreme value distribution (5), and θX,(r,s) = (αX,(r,s), βX,(r,s), σX,(r,s), ξX,(r,s)),θ
(j)
Y,(r,s) =336

(α
(j)
Y,(r,s), β

(j)
Y,(r,s), σ

(j)
Y,(r,s), ξ

(j)
Y,(r,s)) and θ

(j)
Z,r = (α

(j)
Z,r, β

(j)
Z,r, σ

(j)
Z,r,, ξ

(j)
Z,r).337

Here we use the pseudo likelihood which combines the likelihoods for each individual site under the338

false working assumption of independence over space, i.e.,339

Lfalse =
5∏
r=1

hr∏
s=1

L(r,s). (17)

To offset this false assumption of spatial independence, we follow the methods developed by Ribatet et340

al. (2012) for handling such a false assumption in a Bayesian context, by making the adjustment to the341

likelihood of342

Ladjusted = Lkfalse,

where k, 0 < k ≤ 1, is a value to be estimated. If Ifalse and Iadjusted denote the observed hessian matrix343

for Lfalse and Ladjusted respectively then344

Iadjusted = kIfalse (18)

then variances of the parameters estimated using Lfalse will be k−1 times larger when estimated using345

likelihood Ladjusted and consequently the widths of parameter uncertainty intervals from Lfalse will346

be increased by a factor k−1/2. So here k can be interpreted as the reduction factor in the amount of347

information about the parameters by using Ladjusted instead of Lfalse. Then k needs to reflect the loss348

of information in the data from the presence of spatial dependence in comparison to spatial independence.349

Thus, careful selection of k is required. Ribatet et al. (2012) propose estimating k by exploiting the actual350

spatial dependence for the data of interest, through setting351

k =
p∑p
j=1 λj

where (λ1, . . . , λp) are the eigenvalues of the Godambe information matrix. If the values that contribute to352

each of the likelihood terms L(r,s) are independent then k = 1 and if the sites were perfectly dependent over353

space then k = 1/
∑5

r=1 hr = 1/439. For our case though neither such simplification is as straightforward354

as the data for the GCM in a region r is identical for all sites s in this region. Thus, in practice, we expect355

0 < k � 1.356

Recall though that we are proposing using Bayesian inference rather than likelihood inference. We357
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therefore have a pseudo-posterior distribution for the parameters of358

π(θ | data ) ∝ Ladjusted × π(θ) = Lkfalse × π(θ)

where π(θ) is the prior. Changing the adjustment factor k leaves the positions modes of the posterior359

unchanged, but scales the curvature around these modes by k. The impact of this on the inference is360

that this does not really change in terms of the point estimates but that credibility interval widths are361

increased by a factor of approximately k−1/2.362

In summary, in this section we have set out a coherent modelling and inference strategy for getting valid363

improved efficiency for trend estimates for observations by borrowing information from GCM/RCM data.364

The problem in implementing this strategy though is its computational complexity. So, in the following365

section, we illustrate the approach under strongly simplified assumptions which help to overcome the366

computational burden whilst retaining sufficient features of the strategy that broadly retain its integrity.367

5 Illustration of modelling strategy from an over-simplified model368

The ideal formulation for the inference, as set out in Sections 3 and 4, is challenging to implement369

in full. So, to demonstrate the potential benefits of this approach we present results of an analysis370

which makes strong simplifying assumptions to this ideal formulation. These assumptions will lead to371

under estimation of the standard deviations for the distribution of trends parameters and hence produce372

approximate credible intervals that are too narrow to give the nominal coverage. However, in so doing,373

we illustrate the key steps of the proposed method and show some of its potential benefits. The areas374

where we make major over-simplifications are:375

Spatial penalty adjustment k being fixed Here we take both k = 1 and a value of k which depends376

only on the number of spatial sites, and so we do not evaluate the required adjustment as set out in377

Section 4. We know in practice k should be much less than 1 and hence using k = 1 leads to under378

estimation of credibility intervals. We also illustrate the analysis with a value of k which we argue379

is a reasonable approximation, based on intuition, and we explore the differences between the two380

inferences.381

GCM parameters being fixed Here we fix θ
(j)
Z,r = (α

(j)
Z,r, β

(j)
Z,r, σ

(j)
Z,r,, ξ

(j)
Z,r) for r = 1, . . . , 5 and j =382

1, . . . , 11, thus 220 parameters are treated as fixed in the analysis so their false certainty transmits to383

under-estimation of uncertainty on the other related parameters. We estimate these 220 parameters384

using only the GCM data using marginal analysis separately for all r and j. A more complete385

Bayesian analysis would treat all of these parameters as unknown and the resulting trend estimates386

would be expected to have wider credible intervals.387

Regional instead of UK analysis We undertake the analysis separately for each region, thus instead388

of using the full pseudo likelihood (17) we use a regional version Lfalse,r =
∏hr
s=1 L(r,s).389

Thus for the analysis in each region we have 204, 196, 256, 54 and 208 parameters for each of the 5390

respective regions.391
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The trend gradient parameters of the observed data are given in terms of the GCM trends parameters392

{β(j)Z,r; r = 1, . . . , 5, j = 1, . . . , 11} through expression (11). However, as we have taken these GCM393

parameters as known, the only source of uncertainty in the estimates of βX,(r,s) comes via the unknown394

linking parameters (κ
(r)
β0
, κ

(r)
β1

) for the region of interest r. Thus only 2 of the 57 parameters that directly395

determine the observed trend estimates are being appropriately treated as unknown in this illustrative396

analysis.397

Our primary interest is inference for the trend parameter of the observed extreme data and so we focus398

our discussion on this. We compare three estimates of βX,(r,s): the naive maximum likelihood estimator399

using only observed data from the site itself, and, for two fixed choices of k, our proposed posterior400

estimator using additional information from the RCM and GCM. We give the results focusing on regions401

3 and 5 corresponding to all of Wales and for the part of England south of the north-midlands. We402

take k = 1 corresponding to the false likelihood and k = h−1r which presumes that there is very strong403

dependence over the data from the sites in the region and so pooling over sites provides no additional404

benefit. Thus, this second choice of k is probably too small. For regions 3 and 5 hr ≈ 100 and so405

k−1/2 ≈ 10, and hence when we use the second choice of k we will get credible intervals which are about406

10 times wider than if we use the false likelihood (k = 1).407

Before presenting inference results for βX,(r,s), we first examine the estimates of the linking parameters408

κ
(r)
β1

over regions, which gives us information about how the trends of the observed temperature maxima409

relates to trends in the GCM data (and thus indirectly in the RCM data). Table 1 shows the posterior410

means and 95% credible intervals of κ
(r)
β1

. Here we see the benefit for the use of the Bayesian-adjusted411

analysis over the Bayesian-false method, with the adjustment for spatial dependence giving much wider412

credible intervals for these parameters. The Bayesian-false inferences give the impression that a different413

κ
(r)
β1

is required for each region, as the credible intervals are non-overlapping under this analysis. Note that414

the posterior modes for κ
(1)
β1
, κ

(2)
β1

and κ
(4)
β1

are 0.59, 0.88 and 0.88 respectively also appear to support this.415

However, with the spatial adjustment, it is seen that all credible intervals for κ
(r)
β1

will overlap substantially,416

and thus at least for this linkage parameter we can potentially pool information over regions, though we417

do not take that approach here on simplicity grounds. Also note that the posterior distributions put the418

vast majority of their mass in the range 0 < κ
(r)
β1

< 1 for all regions, it shows that the range of trends in419

the observed data is likely to be less than in the RCM data.420

Region Method Estimate 95% Uncertainty

3 Bayesian-false 0.49 (0.43, 0.54)
Bayesian-adjusted 0.49 (-0.17, 1.04)

5 Bayesian-false 0.36 (0.31, 0.41)
Bayesian-adjusted 0.36 (-0.14, 1.26)

Table 1: The average (and corresponding 95% uncertainty intervals) of estimates for the linkage parame-

ters κ
(r)
β1

for GEV trend parameters between the RCM and the GCM (and hence also link observed data
with GCM) evaluated using our Bayesian method with the false and adjusted likelihood. In the adjusted
likelihood k in region r is taken as 1/hr.

Table 2 gives the regional average trend parameter estimate for the observed maxima temperature421

process from the three inference methods presenting both estimates and associated 95% uncertainty422

intervals. The naive estimates give a larger average trend estimate in each region than our two Bayesian423
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analyses. This feature suggests that the information from RCM/GCM indicate a lower response rate to424

changes in annual global average temperature, which is consistent with the exploratory analysis illustrated425

in Figure 3. However, the key difference is the change in the width of the uncertainty intervals where we426

can see the potential major benefit from our approach. Firstly, note that the naive estimate gives a 95%427

confidence interval which shows that the estimates do not significantly differ from 0, and the intervals428

are very wide. In comparison the false and adjusted likelihoods have credible intervals widths which are429

reduced by a factor of approximately 400 and 40 respectively relative to the naive interval widths. For430

both of the values of k that we consider there appears strong evidence of a clear positive trend in extremes431

with global mean temperatures.432

The reason for this level of reduction in uncertainty comes from two factors: our efficient use of the433

combined information from observed, RCM and GCM data and from our over-simplifying assumptions.434

Clearly, although we do not expect the reduction in intervals to be as much as 400, as basic knowledge435

of the data suggests that the false likelihood (when k = 1) is failing to account for strong spatial depen-436

dence. Taking k = h−1r over compensates for the spatial dependence and whilst not addressing the other437

simplifying assumptions that we make it offsets their effects to some degree.438

We anticipate that a full analysis without the simplifying assumptions will give estimates and credible439

regions that are broadly similar to that found here when k = h−1r , i.e., offering a 40 factor reduction440

in uncertainty relative to the current naive method estimates. To help put this gain of information into441

context, if we had just used the observed temperature maxima data at a single site then we would have442

needed a sample of 1, 600 times the current data length (i.e, 80, 000 years) to gain this level of reduction443

of credible interval width. Of course, to be sure of this, in the future we need to overcome the numerical444

complexities of the full method and that will enable us to relax these over-simplifying assumptions and445

rigorously estimate k.

Region Method Estimate 95% Uncertainty

3 Naive 1.311 (-0.506, 3.129)
Bayesian-false 0.802 (0.797, 0.806)

Bayesian-adjusted 0.802 (0.746, 0.846)

5 Naive 0.868 ( -0.237,1.973)
Bayesian-false 0.816 (0.811, 0.819)

Bayesian-adjusted 0.816 (0.766, 0.846)

Table 2: The average (and corresponding 95% uncertainty intervals) of estimates of the trend parameter
for the observed temperature maxima over each region evaluated using three different methods: naive
analysis of observed data only and our Bayesian method with the false and adjusted likelihood. In the
adjusted likelihood k in region r is taken as 1/hr.

446

Figure 4 shows the comparisons of these trend parameter estimates and associated uncertainty intervals447

for the the naive and Bayesian adjusted likelihood methods over these two regions. As already discussed in448

Section 4, a key feature is the change in uncertainty estimates at each site, whereas here we also see there449

is a substantial reduction in the spatial variation in the point estimates (a feature not practically affected450

by our choice of k). From the naive estimates the trends appeared least responsive in the west of the451

regions (Wales, Cornwall and Devon) and with some spuriously strong positive trends on the south coast,452

with a 3◦C difference in change over these regions for a 1◦C change in annual global mean temperature.453
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Such substantial differences in warming response over relatively small spatial scales are difficult to explain454

physically. These west-east trend features are reversed in our analysis but with a much smaller variation455

and a greater spatial coherence to the estimates. There does seem to be a distinctive feature on the456

Wales-England border in Figure 4 bottom left panel. We believe this feature is an artefact of the grid of457

the RCM not exactly lining up with the GCM grid, as can be seen in Figure 1. As this artificial feature458

is seen to be a very small change, once the scale of the plot is accounted for, we note that it does not459

detract from the main conclusion of our analysis.460
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Figure 4: Maps of the trend estimates for observed temperature maxima over sites in regions 3 and 5:
(a) the naive estimator and (b) our Bayesian adjusted method. In both, the middle (left, right) panels
correspond to the estimated values and (lower and upper endpoints of 95% uncertainty intervals).

To help with interpretation we focus on these implications for London, corresponding to coordinate461

(51.5N, 0.3E) in region 3, and for clarity we exclude the uncertainty associated with global mean tem-462

perature change. The analysis based on the observed data alone gives that annual maximum daily463
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temperatures in London have increased over 1960-2009 by an estimated 1.22◦C, with 95% confidence464

interval of (−0.35, 2.79)◦C, whilst global annual mean temperature has increased by 0.88◦C. In contrast,465

our analysis, using all the climate model data as well with the choice of k = h−1r , gives that over this past466

period the estimated trends has a 95% confidence interval of (0.68, 0.71)◦C. Furthermore, for a future467

2◦C increase in global annual mean daily temperature the London annual maximum daily temperature468

will increase by an estimated 1.59◦C with a 95% confidence interval of (1.54, 1.63)◦C. Thus the inclusion469

of more evidence has reduced the estimated rate of the response in annual maximum temperatures in470

London to global mean temperature change and that this estimate now has a level of uncertainty (though471

subject to caveats due to the residual strong assumptions that we still make) which is of a more helpful472

magnitude for decision making.473

6 Discussion474

We have been trying to address the question ‘What are the magnitudes and uncertainties of present475

and future changes in extreme temperatures?’ Adaptation pathways, so that society can endure future476

extreme temperatures, could incur significant cost and therefore it is highly desirable to consider and477

quantify the uncertainty in projections of future changes in extremes.478

This question can be answered through a convolution of the local response to global temperature479

changes and its uncertainty with the uncertainty in global temperature change at a future date of inter-480

est. This paper only deals with the first aspect, looking at the local response sensitivity across climate481

models. Addressing the question of how the global climate will change is of course the source of extensive482

independent study, e.g., Knutti et al. (2017), with estimates for the latter part of the century critically483

depending on different emissions scenarios (Collins et al. 2013).484

We have proposed a modelling strategy that utilises the information from climatological model data485

for the inference of the distribution of observed temperature extremes and their changes through time.486

The approach here is to take advantage of the additional information from climatological model data487

with a longer time period to address stochastic uncertainty together with an ensemble of climate model488

runs to address physical modelling uncertainty. Essentially the analysis is able to efficiently balance the489

information about the magnitude and uncertainty of the observed trends in the past data with similar490

information from climate models on past and future changes. Our exploratory analysis has shown which491

areas of the observed data and climate models can be linked leading to substantial simplification of the492

statistical modelling. However, implementing such a model remains non-trivial, so to demonstrate the493

potential advantages of the approach we present an analysis where major assumptions are made. Whilst494

not being a true representation of reality this analysis shows that considerable reductions in uncertainty495

can be expected in the estimation of historical and future changes in extreme temperatures relative to496

using observed data alone. For example, with such simplifications and neglecting any uncertainty in the497

changes of global temperature, we estimate the annual maximum daily temperatures in London have498

increased by between 0.68◦C and 0.71◦C (95% confidence) over the period 1960-2009 in contrast to the499

naive approach using only observed data which gives a range of −0.35◦C to 2.79◦C. Furthermore, the500

high and somewhat unrealistic spatial variability of changes in temperature extremes seen across the UK501

with the naive approach is greatly reduced resulting in a more physically plausible trend pattern across502
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the UK.503

Future work is necessary to overcome the restrictive assumptions we made in Section 5. What is504

required is to undertake the computationally intensive procedure (simply due to the high dimensionality505

of the matrix required) described in Section 4 to give a sample based estimate of k, the metric by which506

likelihoods are adjusted to account for spatial dependence. In addition we have undertaken an analysis507

with 918 parameters (split over 5 separate regions), so no analysis needed more than 256 parameters to508

be simultaneously fitted. To address the issues of the GCM parameters being fixed and to expand the509

analysis to cover the whole UK, we need to extend our fits to having 1138 parameters fitted simultaneously510

in the Bayesian methods. Conceptually this provides no new problems, but computationally this will be511

much slower and much more checking is required to ensure that the Markov chain Monte Carlo methods512

are producing suitably mixing chains to ensure we get convergence of the algorithms. The best way to513

do this is to trial methods on subsets of the parameters, and this is what we have reported. Additional,514

complications potentially could arise from strong inter-dependence between the parameters, which may515

require some blocks of parameters to be jointly updated, rather than to update one by one in turn as our516

present algorithm does. These issues will only really become apparent when we start to implement the517

method and monitor convergence.518

At the start of Section 4 we decided not to impose smooth spatial structure on the parameters519

(αX,(r,s), ξX,(r,s)) in our initial analysis of the data. This resulted in us needing 878 free parameters for520

this element of the model. Based on the initial analysis it would appear that it is worth exploring now the521

viability of using smooth estimates of these parameters over space, particularly for the shape parameter.522

If a simple model form is found to be appropriate for the shape parameter this would substantially reduce523

the parameter space (reduced by approximately a third). We are less confident in being able to find a524

sufficiently good smooth model for the location parameters, but once an efficient model is in place for the525

shape parameters this is worth investigating this aspect further.526

We would also like to explore further the simple choice of weighting function (9), to see whether an527

extension such as528

wr,s =
d−δr,s∑5
`=1 d

−δ
`,s

.

where δ > 0 provides a better fit. We also expect to find that when the GCM trend estimates are not529

fixed at the marginal estimates then the κ
(r)
β1

parameters determining the linkage of RCM to observed530

data trends will become more spatially coherent, and then it may be possible to see if their regional531

differences can be removed to produce a more parsimonious model. Both of these extensions though532

are less important than fully addressing the three areas identified above, that of determining the spatial533

dependence penalty, fixed GCM parameters and fitting to all UK regions simultaneously.534

Acknowledgements535

Darmesah Gabda is thankful to the Universiti Malaysia Sabah and Ministry of Higher Education, Malaysia536

for providing her PhD scholarship. Simon Brown was supported and data provided through the Joint UK537

BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101).538

18



References539

Albert, J. (2007). Bayesian Computation with R. Springer.540

Brown, S. J., Murphy, J., Sexton, D. and Harris, G. (2014). Climate projections of future extreme541

events accounting for modelling uncertainties and historical simulation biases. Climate Dynamics, 43,542

2681-2705.543

Chavez-Demoulin, V. and Davison, A. C. (2005). Generalized additive modelling of sample extremes.544

Journal of the Royal Statistical Society: Series C (Applied Statistics), 54, 207-222.545

Clark, R. T. and Murphy, J. M. and Brown, S. J. (2010). Do global warming targets limit heatwave546

risk? Geophys. Res. Lett., 37, L17703, doi:10.1029/2010GL043898.547

Coelho, C. A. S., Ferro, C. A. T., Stephenson, D. B. and Steinskog, D. J. (2008). Methods for exploring548

spatial and temporal variability of extreme events in climate data. Journal of Climate, 21, 2072-2092.549

Coles, S. G. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, London.550

Collins, M., Booth, B. B. B., Bhaskaran, B., Harris, G., Murphy, J. M., Sexton, D. M. H., and Webb,551

M. J. (2011). Climate model errors, feedbacks and forcings: a comparison of perturbed physics and552

multi-model ensembles, Climate Dynamics, 36, 1737-1766.553

Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J.554

Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, (2013). Long-555

term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The556

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the In-557

tergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K.558

Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press,559

Cambridge, United Kingdom and New York, NY, USA560

Davison, A. C. and Smith, R. L., (1990). Models for exceedances over high thresholds (with discussion),561

Journal of the Royal Statistical Society, B, 52, 393-442.562

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R. and Mearns, L. O. (2000).563

Climate extremes: Observations, modeling and impacts. Atmospheric Science, 289, 2068-2074.564

Gabda, D. (2014). Efficient Inference for Nonstationary and Spatial Extreme Value Problems. Lancaster565

University, PhD thesis.566

Gabda, D. and Tawn, J. A. (2018). Univariate extreme value inference from small sample sizes in567

environmental contexts. Submitted to Extremes.568

Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo. Stochastic Simulation for Bayesian569

Inference. Second edition. Texts in Statistical Science Series. Chapman and Hall/CRC.570

Hanel, M. and Buishand, T. A. (2011). Analysis of precipitation extremes in an ensemble of transient571

regional climate model simulations for Rhine basin. Climate Dynamics, 36, 1135-1153.572

19



Hanel, M., Buishand, T. A. and Ferro, C. A. T (2009). A nonstationary index flood model for precipi-573

tation extremes in transient regional climate model simulations, Journal of Geophysical Research, 114,574

1-16.575

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.576

Biometrika, 57(1), 97-109.577

Heffernan, J. E. and Tawn, J. A. (2001). Extreme value analysis of a large designed experiment: a case578

study in bulk carrier safety. Extremes, 4, 359-378.579

Hoff, P.D. (2009). A First Course in Bayesian Statistical Methods. Springer.580

Jonathan, P., Randell, D., Wu, Y. and Ewans, K. (2014). Return level estimation from non-stationary581

spatial data exhibiting multidimensional covariate effects. Ocean Engineering, 88, 520?532.582

Katz, R.W. (2002). Techniques for estimating uncertainty in climate change scenarios and impact583

studies. Climate Research, 20, 167-185.584

Knutti, Reto and Rugenstein, Maria A. A. and Hegerl, Gabriele C. (2017). Beyond equilibrium climate585

sensitivity. Nature Geoscience, 10, 727+.586
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