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Abstract

This paper examines the long-run behavior of learning with bandit feedback in
non-cooperative concave games. The bandit framework accounts for extremely low-
information environments where the agents may not even know they are playing a
game; as such, the agents’ most sensible choice in this setting would be to employ
a no-regret learning algorithm. In general, this does not mean that the players’
behavior stabilizes in the long run: no-regret learning may lead to cycles, even
with perfect gradient information. However, if a standard monotonicity condition
is satisfied, our analysis shows that no-regret learning based on mirror descent with
bandit feedback converges to Nash equilibrium with probability 1. We also derive
an upper bound for the convergence rate of the process that nearly matches the best
attainable rate for single-agent bandit stochastic optimization.

1 Introduction

The bane of decision-making in an unknown environment is regret: noone wants to realize in
hindsight that the decision policy they employed was strictly inferior to a plain policy prescribing
the same action throughout. For obvious reasons, this issue becomes considerably more intricate
when the decision-maker is subject to situational uncertainty and the “fog of war”: when the only
information at the optimizer’s disposal is the reward obtained from a given action (the so-called
“bandit” framework), is it even possible to design a no-regret policy? Especially in the context of
online convex optimization (repeated decision problems with continuous action sets and convex
costs), this problem becomes even more challenging because the decision-maker typically needs to
infer gradient information from the observation of a single scalar. Nonetheless, despite this extra
degree of difficulty, this question has been shown to admit a positive answer: regret minimization is
possible, even with bandit feedback (Flaxman et al., 2005; Kleinberg, 2004).

In this paper, we consider a multi-agent extension of this framework where, at each stage n = 1, 2, . . . ,
of a repeated decision process, the reward of an agent is determined by the actions of all agents via a
fixed mechanism: a non-cooperative N -person game. In general, the agents – or players – might
be completely oblivious to this mechanism, perhaps even ignoring its existence: for instance, when
choosing how much to bid for a good in an online auction, an agent is typically unaware of who
the other bidders are, what are their specific valuations, etc. Hence, lacking any knowledge about
the game, it is only natural to assume that agents will at least seek to achieve a minimal worst-case
guarantee and minimize their regret. As a result, a fundamental question that arises is a) whether the
agents’ sequence of actions stabilizes to a rationally admissible state under no-regret learning; and
b) if it does, whether convergence is affected by the information available to the agents.
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Related work. In finite games, no-regret learning guarantees that the players’ time-averaged,
empirical frequency of play converges to the game’s set of coarse correlated equilibria (CCE), and
the rate of this convergence is O(1/n) for (λ, µ)-smooth games (Foster et al., 2016; Syrgkanis et al.,
2015). In general however, this set might contain highly subpar, rationally inadmissible strategies: for
instance, Viossat and Zapechelnyuk (2013) provide examples of CCE that assign positive selection
probability only to strictly dominated strategies. In the class of potential games, Cohen et al. (2017)
recently showed that the actual sequence of play (i.e., the sequence of actions that determine the
agents’ rewards at each stage) converges under no-regret learning, even with bandit feedback. Outside
this class however, the players’ chosen actions may cycle in perpetuity, even in simple, two-player
zero-sum games with full information (Mertikopoulos et al., 2018a,b); in fact, depending on the
parameters of the players’ learning process, agents could even exhibit a fully unpredictable, aperiodic
and chaotic behavior (Palaiopanos et al., 2017). As such, without further assumptions in place,
no-regret learning in a multi-agent setting does not necessarily imply convergence to a unilaterally
stable, equilibrium state.

In the broader context of games with continuous action sets (the focal point of this paper), the long-run
behavior of no-regret learning is significantly more challenging to analyze. In the case of mixed-
strategy learning, Perkins and Leslie (2014) and Perkins et al. (2017) showed that mixed-stratgy
learning based on stochastic fictitious play converges to an ε-perturbed Nash equilibrium in potential
games (but may lead to as much as O(εn) regret in the process). More relevant for our purposes is
the analysis of Nesterov (2009) who showed that the time-averaged sequence of play induced by a
no-regret dual averaging (DA) process with noisy gradient feedback converges to Nash equilibrium
in monotone games (a class which, in turn, contains all concave potential games).

The closest antecedent to our approach is the recent work of Mertikopoulos and Zhou (2018) who
showed that the actual sequence of play generated by dual averaging converges to Nash equilibrium
in the class of variationally stable games (which includes all monotone games). To do so, the authors
first showed that a naturally associated continuous-time dynamical system converges, and then used
the so-called asymptotic pseudotrajectory (APT) framework of Benaïm (1999) to translate this result
to discrete time. Similar APT techniques were also used in a very recent preprint by Bervoets
et al. (2018) to establish the convergence of a payoff-based learning algorithm in two classes of
one-dimensional concave games: games with strategic complements, and ordinal potential games
with isolated equilibria. The algorithm of Bervoets et al. (2018) can be seen as a special case of
mirror descent coupled with a two-point gradient estimation process, suggesting several interesting
links with our paper.

Our contributions. In this paper, we drop all feedback assumptions and we focus on the bandit
framework where the only information at the players’ disposal is the payoffs they receive at each
stage. As we discussed above, this lack of information complicates matters considerably because
players must now estimate their payoff gradients from their observed rewards. What makes matters
even worse is that an agent may introduce a significant bias in the (concurrent) estimation process of
another, so traditional, multiple-point estimation techniques for derivative-free optimization cannot
be applied (at least, not without significant communication overhead between players).

To do away with player coordination requirements, we focus on learning processes which could
be sensibly deployed in a single-agent setting and we show that, in monotone games, the sequence
of play induced by a wide class of no-regret learning policies converges to Nash equilibrium with
probability 1. Furthermore, by specializing to the class of strongly monotone games, we show that
the rate of convergence is O(n−1/3), i.e., it is nearly optimal with respect to the attainable O(n−1/2)
rate for bandit, single-agent stochastic optimization with strongly convex and smooth objectives
(Agarwal et al., 2010; Shamir, 2013).

We are not aware of a similar Nash equilibrium convergence result for concave games with general
convex action spaces and bandit feedback: the analysis of Mertikopoulos and Zhou (2018) requires
first-order feedback, while the analysis of Bervoets et al. (2018) only applies to one-dimensional
games. We find this outcome particularly appealing for practical applications of game theory (e.g.,
in network routing) because it shows that in a wide class of (possibly very complicated) nonlinear
games, the Nash equilibrium prediction does not require full rationality, common knowledge of
rationality, flawless execution, or even the knowledge that a game is being played: a commonly-used,
individual no-regret algorithm suffices.
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2 Problem setup and preliminaries

Concave games. Throughout this paper, we will focus on games with a finite number of players
i ∈ N = {1, . . . , N} and continuous action sets. During play, every player i ∈ N selects an action
xi from a compact convex subset Xi of a di-dimensional normed space Vi; subsequently, based on
each player’s individual objective and the action profile x = (xi;x−i) ≡ (x1, . . . , xN ) of all players’
actions, every player receives a reward, and the process repeats. In more detail, writing X ≡

∏
i Xi

for the game’s action space, we assume that each player’s reward is determined by an associated
payoff (or utility) function ui : X → R. Since players are not assumed to “know the game” (or even
that they are involved in one) these payoff functions might be a priori unknown, especially with
respect to the dependence on the actions of other players. Our only structural assumption for ui will
be that ui(xi;x−i) is concave in xi for all x−i ∈ X−i ≡

∏
j 6=i Xj , i ∈ N .

With all this in hand, a concave game will be a tuple G ≡ G(N ,X , u) with players, action spaces
and payoffs defined as above. Below, we briefly discuss some examples thereof:

Example 2.1 (Cournot competition). In the standard Cournot oligopoly model, there is a finite set of
firms indexed by i = 1, . . . , N , each supplying the market with a quantity xi ∈ [0, Ci] of some good
(or service), up to the firm’s production capacity Ci. By the law of supply and demand, the good is
priced as a decreasing function P (xtot) of the total amount xtot =

∑N
i=1 xi supplied to the market,

typically following a linear model of the form P (xtot) = a− bxtot for positive constants a, b > 0.
The utility of firm i is then given by

ui(xi;x−i) = xiP (xtot)− cixi, (2.1)

i.e., it comprises the total revenue from producing xi units of the good in question minus the associated
production cost (in the above, ci > 0 represents the marginal production cost of firm i).

Example 2.2 (Resource allocation auctions). Consider a service provider with a number of splittable
resources s ∈ S = {1, . . . , S} (bandwidth, server time, GPU cores, etc.). These resources can
be leased to a set of N bidders (players) who can place monetary bids xis ≥ 0 for the utilization
of each resource s ∈ S up to each player’s total budget bi, i.e.,

∑
s∈S xis ≤ bi. Once all bids

are in, resources are allocated proportionally to each player’s bid, i.e., the i-th player gets ρis =
(qsxis)

/
(cs +

∑
j∈N xjs) units of the s-th resource (where qs denotes the available units of said

resource and cs ≥ 0 is the “entry barrier” for bidding on it). A simple model for the utility of player i
is then given by

ui(xi;x−i) =
∑
s∈S

[giρis − xis], (2.2)

with gi denoting the marginal gain of player i from acquiring a unit slice of resources.

Nash equilibrium and monotone games. The most widely used solution concept for non-
cooperative games is that of a Nash equilibrium (NE), defined here as any action profile x∗ ∈ X that
is resilient to unilateral deviations, viz.

ui(x
∗
i ;x
∗
−i) ≥ ui(xi;x∗−i) for all xi ∈ Xi, i ∈ N . (NE)

By the classical existence theorem of Debreu (1952), every concave game admits a Nash equilibrium.
Moreover, thanks to the individual concavity of the game’s payoff functions, Nash equilibria can also
be characterized via the first-order optimality condition

〈vi(x∗), xi − x∗i 〉 ≤ 0 for all xi ∈ Xi, (2.3)

where vi(x) denotes the individual payoff gradient of the i-th player, i.e.,

vi(x) = ∇i ui(xi;x−i), (2.4)

with ∇i denoting differentiation with respect to xi.1 In terms of regularity, it will be convenient to
assume that each vi is Lipschitz continuous; to streamline our presentation, this will be our standing
assumption in what follows.

1We adopt here the standard convention of treating vi(x) as an element of the dual space Yi ≡ V∗i of Vi,
with 〈yi, xi〉 denoting the duality pairing between yi ∈ Yi and xi ∈ Xi ⊆ Vi.
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Starting with the seminal work of Rosen (1965), much of the literature on continuous games and their
applications has focused on games that satisfy a condition known as diagonal strict concavity (DSC).
In its simplest form, this condition posits that there exist positive constants λi > 0 such that∑

i∈N
λi〈vi(x′)− vi(x), x′i − xi〉 < 0 for all x, x′ ∈ X , x 6= x′. (DSC)

Owing to the formal similarity between (DSC) and the various operator monotonicity conditions
in optimization (see e.g., Bauschke and Combettes, 2017), games that satisfy (DSC) are commonly
referred to as (strictly) monotone. As was shown by Rosen (1965, Theorem 2), monotone games
admit a unique Nash equilibrium x∗ ∈ X , which, in view of (DSC) and (NE), is also the unique
solution of the (weighted) variational inequality∑

i∈N
λi〈vi(x), xi − x∗i 〉 < 0 for all x 6= x∗. (VI)

This property of Nash equilibria of monotone games will play a crucial role in our analysis and we
will use it freely in the rest of our paper.

In terms of applications, monotonicity gives rise to a very rich class of games. As we show in the
paper’s supplement, Examples 2.1 and 2.2 both satisfy diagonal strict concavity (with a nontrivial
choice of weights for the latter), as do atomic splittable congestion games in networks with parallel
links (Orda et al., 1993; Sorin and Wan, 2016), multi-user covariance matrix optimization problems
in multiple-input and multiple-output (MIMO) systems (Mertikopoulos et al., 2017), and many other
problems where online decision-making is the norm. Namely, the class of monotone games contains
all strictly convex-concave zero-sum games and all games that admit a (strictly) concave potential,
i.e., a function f : X → R such that vi(x) = ∇i f(x) for all x ∈ X , i ∈ N . In view of all this (and
unless explicitly stated otherwise), we will focus throughout on monotone games; for completeness,
we also include in the supplement a straightforward second-order test for monotonicity.

3 Regularized no-regret learning

We now turn to the learning methods that players could employ to increase their individual rewards in
an online manner. Building on Zinkevich’s (2003) online gradient descent policy, the most widely used
algorithmic schemes for no-regret learning in the context of online convex optimization invariably
revolve around the idea of regularization. To name but the most well-known paradigms, “following
the regularized leader” (FTRL) explicitly relies on best-responding to a regularized aggregate of the
reward functions revealed up to a given stage, while online mirror descent (OMD) and its variants use
a linear surrogate thereof. All these no-regret policies fall under the general umbrella of “regularized
learning” and their origins can be traced back to the seminal mirror descent (MD) algorithm of
Nemirovski and Yudin (1983).2

The basic idea of mirror descent is to generate a new feasible point x+ by taking a so-called “mirror
step” from a starting point x along the direction of an “approximate gradient” vector y (which we
treat here as an element of the dual space Y ≡

∏
i Yi of V ≡

∏
i Vi).3 To do so, let hi : Xi → R be a

continuous and Ki-strongly convex distance-generating (or regularizer) function, i.e.,

hi(txi + (1− t)x′i) ≤ thi(xi) + (1− t)hi(x′i)− 1
2Kit(1− t)‖x′i − xi‖2, (3.1)

for all xi, x′i ∈ Xi and all t ∈ [0, 1]. In terms of smoothness (and in a slight abuse of notation)
we also assume that the subdifferential of hi admits a continuous selection, i.e., a continuous
function ∇hi : dom ∂hi → Yi such that ∇hi(xi) ∈ ∂hi(xi) for all xi ∈ dom ∂hi.4 Then, letting

2In a utility maximization setting, mirror descent should be called mirror ascent because players seek to
maximize their rewards (as opposed to minimizing their losses). Nonetheless, we keep the term “descent”
throughout because, despite the role reversal, it is the standard name associated with the method.

3For concreteness (and in a slight abuse of notation), we assume in what follows that V is equipped with the
product norm ‖x‖2 =

∑
i‖xi‖

2 and Y with the dual norm ‖y‖∗ = max{〈y, x〉 : ‖x‖ ≤ 1}.
4Recall here that the subdifferential of hi at xi ∈ Xi is defined as ∂hi(xi) ≡ {yi ∈ Yi : hi(x

′
i) ≥ hi(xi) +

〈yi, x′i − xi〉 for all x′i ∈ Vi}, with the standard convention that hi(xi) = +∞ if xi ∈ Vi \ Xi. By standard
results, the domain of subdifferentiability ∂hi ≡ {xi ∈ Xi : ∂hi 6= ∅} of hi satisfies X ◦i ⊆ dom ∂hi ⊆ Xi.
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h(x) =
∑
i hi(xi) for x ∈ X (so h is strongly convex with modulus K = miniKi), we get a

pseudo-distance on X via the relation

D(p, x) = h(p)− h(x)− 〈∇h(x), p− x〉, (3.2)

for all p ∈ X , x ∈ dom ∂h.

This pseudo-distance is known as the Bregman divergence and we have D(p, x) ≥ 0 with equality
if and only if x = p; on the other hand, D may fail to be symmetric and/or satisfy the triangle
inequality so, in general, it is not a bona fide distance function on X . Nevertheless, we also have
D(p, x) ≥ 1

2K‖x − p‖
2 (see the paper’s supplement), so the convergence of a sequence Xn to p

can be checked by showing that D(p,Xn) → 0. For technical reasons, it will be convenient to
also assume the converse, i.e., that D(p,Xn) → 0 when Xn → p. This condition is known in the
literature as “Bregman reciprocity” (Chen and Teboulle, 1993), and it will be our blanket assumption
in what follows (note that it is trivially satisfied by Examples 3.1 and 3.2 below).

Now, as with true Euclidean distances, D(p, x) induces a prox-mapping given by

Px(y) = arg min
x′∈X

{〈y, x− x′〉+D(x′, x)} (3.3)

for all x ∈ dom ∂h and all y ∈ Y . Just like its Euclidean counterpart below, the prox-mapping (3.3)
starts with a point x ∈ dom ∂h and steps along the dual (gradient-like) vector y ∈ Y to produce a
new feasible point x+ = Px(y). Standard examples of this process are:

Example 3.1 (Euclidean projections). Let h(x) = 1
2‖x‖

2
2 denote the Euclidean squared norm. Then,

the induced prox-mapping is
Px(y) = Π(x+ y), (3.4)

with Π(x) = arg minx′∈X ‖x′ − x‖2 denoting the standard Euclidean projection onto X . Hence, the
update rule x+ = Px(y) boils down to a “vanilla”, Euclidean projection step along y.

Example 3.2 (Entropic regularization and multiplicative weights). Suppressing the player index
for simplicity, let X be a d-dimensional simplex and consider the entropic regularizer h(x) =∑d
j=1 xj log xj . The induced pseudo-distance is the so-called Kullback–Leibler (KL) divergence

DKL(p, x) =
∑d
j=1 pj log(pj/xj), which gives rise to the prox-mapping

Px(y) =
(xj exp(yj))

d
j=1∑d

j=1 xj exp(yj)
(3.5)

for all x ∈ X ◦, y ∈ Y . The update rule x+ = Px(y) is widely known as the multiplicative weights
(MW) algorithm and plays a central role for learning in multi-armed bandit problems and finite games
(Arora et al., 2012; Auer et al., 1995; Freund and Schapire, 1999).

With all this in hand, the multi-agent mirror descent (MD) algorithm is given by the recursion

Xn+1 = PXn
(γnv̂n), (MD)

where γn is a variable step-size sequence and v̂n = (v̂i,n)i∈N is a generic feedback sequence of
estimated gradients. In the next section, we detail how this sequence is generated with first- or
zeroth-order (bandit) feedback.

4 First-order vs. bandit feedback

4.1 First-order feedback.

A common assumption in the literature is that players are able to obtain gradient information by
querying a first-order oracle (Nesterov, 2004). i.e., a “black-box” feedback mechanism that outputs
an estimate v̂i of the individual payoff gradient vi(x) of the i-th player at the current action profile
x = (xi;x−i) ∈ X . This estimate could be either perfect, giving v̂i = vi(x) for all i ∈ N , or
imperfect, returning noisy information of the form v̂i = vi(x) + Ui where Ui denotes the oracle’s
error (random, systematic, or otherwise).
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Having access to a perfect oracle is usually a tall order, either because payoff gradients are difficult to
compute directly (especially without global knowledge), because they involve an expectation over a
possibly unknown probability law, or for any other number of reasons. It is therefore more common
to assume that each player has access to a stochastic oracle which, when called against a sequence
of actions Xn ∈ X , produces a sequence of gradient estimates v̂n = (vi,n)i∈N that satisfies the
following statistical assumptions:

a) Unbiasedness: E[v̂n | Fn] = v(Xn).

b) Finite mean square: E[‖v̂n‖2∗ | Fn] ≤ V 2 for some finite V ≥ 0.
(4.1)

In terms of measurability, the expectation in (4.1) is conditioned on the history Fn of Xn up to stage
n; in particular, since v̂n is generated randomly from Xn, it is not Fn-measurable (and hence not
adapted). To make this more transparent, we will write v̂n = v(Xn) + Un+1 where Un is an adapted
martingale difference sequence with E[‖Un+1‖2∗ | Fn] ≤ σ2 for some finite σ ≥ 0.

4.2 Bandit feedback.

Now, if players don’t have access to a first-order oracle – the so-called bandit or payoff-based
framework – they will need to derive an individual gradient estimate from the only information
at their disposal: the actual payoffs they receive at each stage. When a function can be queried
at multiple points (as few as two in practice), there are efficient ways to estimate its gradient via
directional sampling techniques as in Agarwal et al. (2010). In a game-theoretic setting however,
multiple-point estimation techniques do not apply because, in general, a player’s payoff function
depends on the actions of all players. Thus, when a player attempts to get a second query of their
payoff function, this function may have already changed due to the query of another player – i.e.,
instead of sampling ui(·;x−i), the i-th player would be sampling ui(·;x′−i) for some x′−i 6= x−i.

Following Spall (1997) and Flaxman et al. (2005), we posit instead that players rely on a simultaneous
perturbation stochastic approximation (SPSA) approach that allows them to estimate their individual
payoff gradients vi based off a single function evaluation. In detail, the key steps of this one-shot
estimation process for each player i ∈ N are:

0. Fix a query radius δ > 0.5

1. Pick a pivot point xi ∈ Xi where player i seeks to estimate their payoff gradient.
2. Draw a vector zi from the unit sphere Si ≡ Sdi of Vi ≡ Rdi and play x̂i = xi + δzi.6

3. Receive ûi = ui(x̂i; x̂−i) and set

v̂i =
di
δ
ûi zi. (4.2)

By adapting a standard argument based on Stokes’ theorem (detailed in the supplement), it can be
shown that v̂i is an unbiased estimator of the individual gradient of the δ-smoothed payoff function

uδi (x) =
1

vol(δBi)
∏
j 6=i vol(δSj)

∫
δBi

∫
∏

j 6=i δSj
ui(xi+wi;x−i+z−i) dz1 · · · dwi · · · dzN (4.3)

with Bi ≡ Bdi denoting the unit ball of Vi. The Lipschitz continuity of vi guarantees that ‖∇i ui −
∇i uδi ‖∞ = O(δ), so this estimate becomes more and more accurate as δ → 0+. On the other
hand, the second moment of v̂i grows as O(1/δ2), implying in turn that the variability of v̂i grows
unbounded as δ → 0+. This manifestation of the bias-variance dilemma plays a crucial role in
designing no-regret policies with bandit feedback (Flaxman et al., 2005; Kleinberg, 2004), so δ must
be chosen with care.

Before dealing with this choice though, it is important to highlight two feasibility issues that arise
with the single-shot SPSA estimate (4.2). The first has to do with the fact that the perturbation
direction zi is chosen from the unit sphere Si so it may fail to be tangent to Xi, even when xi is
interior. To iron out this wrinkle, it suffices to sample zi from the intersection of Si with the affine

5For simplicity, we take δ equal for all players; the extension to player-specific δ is straightforward, so we
omit it.

6We tacitly assume here that the query directions zi ∈ Sdi are drawn independently across players.
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hull of Xi in Vi; on that account (and without loss of generality), we will simply assume in what
follows that each Xi is a convex body of Vi, i.e., it has nonempty topological interior.

The second feasibility issue concerns the size of the perturbation step: even if zi is a feasible direction
of motion, the query point x̂i = xi + δzi may be unfeasible if xi is too close to the boundary of Xi.
For this reason, we will introduce a “safety net” in the spirit of Agarwal et al. (2010), and we will
constrain the set of possible pivot points xi to lie within a suitably shrunk zone of X .

In detail, let Bri(pi) be an ri-ball centered at pi ∈ Xi so that Bri(pi) ⊆ Xi. Then, instead of
perturbing xi by zi, we consider the feasibility adjustment

wi = zi − r−1i (xi − pi), (4.4)

and each player plays x̂i = xi + δwi instead of xi + δzi. In other words, this adjustment moves each
pivot to xδi = xi − r−1i δ(xi − pi), i.e., O(δ)-closer to the interior base point pi, and then perturbs xδi
by δzi. Feasibility of the query point is then ensured by noting that

x̂i = xδi + δzi = (1− r−1i δ)xi + r−1i δ(pi + rizi), (4.5)

so x̂i ∈ Xi if δ/ri < 1 (since pi + rizi ∈ Bri(pi) ⊆ Xi).
The difference between this estimator and the oracle framework we discussed above is twofold. First,
each player’s realized action is x̂i = xi + δwi, not xi, so there is a disparity between the point at
which payoffs are queried and the action profile where the oracle is called. Second, the resulting
estimator v̂ is not unbiased, so the statistical assumptions (4.1) for a stochastic oracle do not hold. In
particular, given the feasibility adjustment (4.4), the estimate (4.2) with x̂ given by (4.5) satisfies

E[v̂i] = ∇i uδi (xδi ;xδ−i), (4.6)

so there are two sources of systematic error: an O(δ) perturbation in the function, and an O(δ)
perturbation of each player’s pivot point from xi to xδi . Hence, to capture both sources of bias and
separate them from the random noise, we will write

v̂i = vi(x) + Ui + bi (4.7)

where Ui = v̂i−E[v̂i] and bi = ∇i uδi (xδ)−∇i ui(x). We are thus led to the following manifestation
of the bias-variance dilemma: the bias term b in (4.7) is O(δ), but the second moment of the noise
term U is O(1/δ2); as such, an increase in accuracy (small bias) would result in a commensurate
loss of precision (large noise variance). Balancing these two factors will be a key component of our
analysis in the next section.

5 Convergence analysis and results

Combining the learning framework of Section 3 with the single-shot gradient estimation machinery
of Section 4, we obtain the following variant of (MD) with payoff-based, bandit feedback:

X̂n = Xn + δnWn,

Xn+1 = PXn
(γnv̂n).

(MD-b)

In the above, the perturbations Wn and the estimates v̂n are given respectively by (4.4) and (4.2), i.e.,

Wi,n = Zi,n − r−1i (Xi,n − pi) v̂i,n = (di/δn)ui(X̂n)Zi,n (5.1)

and Zi,n is drawn independently and uniformly across players at each stage n (see also Algorithm 1
for a pseudocode implementation and Fig. 1 for a schematic representation).

In the rest of this paper, our goal will be to determine the equilibrium convergence properties of this
scheme in concave N -person games. Our first asymptotic result below shows that, under (MD-b), the
players’ learning process converges to Nash equilibrium in monotone games:
Theorem 5.1. Suppose that the players of a monotone game G ≡ G(N ,X , u) follow (MD-b) with
step-size γn and query radius δn such that

lim
n→∞

γn = lim
n→∞

δn = 0,

∞∑
n=1

γn =∞,
∞∑
n=1

γnδn <∞, and
∞∑
n=1

γ2n
δ2n

<∞. (5.2)

Then, the sequence of realized actions X̂n converges to Nash equilibrium with probability 1.
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Algorithm 1: Multi-agent mirror descent with bandit feedback (player indices suppressed)

Require: step-size γn > 0, query radius δn > 0, safety ball Br(p) ⊆ X
1: choose X ∈ dom ∂h # initialization
2: repeat at each stage n = 1, 2, . . .
3: draw Z uniformly from Sd # perturbation direction
4: set W ← Z − r−1(X − p) # query direction

5: play X̂ ← X + δnW # choose action
6: receive û← u(X̂) # get payoff
7: set v̂ ← (d/δn)û · Z # estimate gradient
8: update X ← PX(γnv̂) # update pivot
9: until end

X

X1

.
X̂1

.

γ(d/δ) û1z1
δz1

.
X2

Π
.
X̂2

.
X3

γ(d/δ) û2z2

δz2

Figure 1: Schematic representation of Algorithm 1 with ordinary, Euclidean projections. To reduce visual
clutter, we did not include the feasibility adjustment r−1(x− p) in the action selection step Xn 7→ X̂n.

Even though the setting is different, the conditions (5.2) for the tuning of the algorithm’s parameters
are akin to those encountered in Kiefer–Wolfowitz stochastic approximation schemes and serve a
similar purpose. First, the conditions limn→∞ γn = 0 and

∑∞
n=1 γn = ∞ respectively mitigate

the method’s inherent randomness and ensure a horizon of sufficient length. The requirement
limn→∞ δn = 0 is also straightforward to explain: as players accrue more information, they need to
decrease the sampling bias in order to have any hope of converging. However, as we discussed in
Section 4, decreasing δ also increases the variance of the players’ gradient estimates, which might
grow to infinity as δ → 0. The crucial observation here is that new gradients enter the algorithm with
a weight of γn so the aggregate bias after n stages is of the order ofO(

∑n
k=1 γkδk) and its variance is

O(
∑n
k=1 γ

2
k/δ

2
k). If these error terms can be controlled, there is an underlying drift that emerges over

time and which steers the process to equilibrium. We make this precise in the supplement by using a
suitably adjusted variant of the Bregman divergence as a quasi-Féjér energy function for (MD-b) and
relying on a series of (sub)martingale convergence arguments to establish the convergence of X̂n

(first as a subsequence, then with probability 1).

Of course, since Theorem 5.1 is asymptotic in nature, it is not clear how to choose γn and δn so as to
optimize the method’s convergence rate. Heuristically, if we take schedules of the form γn = γ/np

and δn = δ/nq with γ, δ > 0 and 0 < p, q ≤ 1, the only conditions imposed by (5.2) are p+ q > 1
and p− q > 1/2. However, as we discussed above, the aggregate bias in the algorithm after n stages
is O(

∑n
k=1 γnδn) = O(1/np+q−1) and its variance is O(

∑n
k=1 γ

2
k/δ

2
k) = O(1/n2p−2q−1): if the

conditions (5.2) are satisfied, both error terms vanish, but they might do so at very different rates.
By equating these exponents in order to bridge this gap, we obtain q = p/3; moreover, since the
single-shot SPSA estimator (4.2) introduces a Θ(δn) random perturbation, q should be taken as large
as possible to ensure that this perturbation vanishes at the fastest possible rate. As a result, the most
suitable choice for p and q seems to be p = 1, q = 1/3, leading to an error bound of O(1/n1/3).
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We show below that this bound is indeed attainable for games that are strongly monotone, i.e., they
satisfy the following stronger variant of diagonal strict concavity:∑

i∈N
λi〈vi(x′)− vi(x), x′i − xi〉 ≤ −

β

2
‖x− x′‖2 (β-DSC)

for some λi, β > 0 and for all x, x′ ∈ X . Focusing for expository reasons on the most widely used,
Euclidean incarnation of the method (Example 3.1), we have:

Theorem 5.2. Let x∗ be the (necessarily unique) Nash equilibrium of a β-strongly monotone game.
If the players follow (MD-b) with Euclidean projections and parameters γn = γ/n and δn = δ/n1/3

with γ > 1/(3β) and δ > 0, we have

E[‖X̂n − x∗‖2] = O(n−1/3). (5.3)

Theorem 5.2 is our main finite-time analysis result, so some remarks are in order. First, the step-size
schedule γn ∝ 1/n is not required to obtain an O(n−1/3) convergence rate: as we show in the
paper’s supplement, more general schedules of the form γn ∝ 1/np and δn ∝ 1/nq with p > 3/4
and q = p/3 > 1/4, still guarantee an O(n−1/3) rate of convergence for (MD-b). To put things
in perspective, we also show in the supplement that if (MD) is run with first-order oracle feedback
satisfying the statistical assumptions (4.1), the rate of convergence becomes O(1/n). Viewed in this
light, the price for not having access to gradient information is no higher than O(n−2/3) in terms of
the players’ equilibration rate.

Finally, it is also worth comparing the bound (5.3) to the attainable rates for stochastic convex
optimization (the single-player case). For problems with objectives that are both strongly convex and
smooth, Agarwal et al. (2010) attained an O(n−1/2) convergence rate with bandit feedback, which
Shamir (2013) showed is unimprovable. Thus, in the single-player case, the bound (5.3) is off by
n1/6 and coincides with the bound of Agarwal et al. (2010) for strongly convex functions that are not
necessarily smooth. One reason for this gap is that the Θ(n−1/2) bound of Shamir (2013) concerns
the smoothed-out time average X̄n = n−1

∑n
k=1Xk, while our analysis concerns the sequence of

realized actions X̂n. This difference is semantically significant: In optimization, the query sequence
is just a means to an end, and only the algorithm’s output matters (i.e., X̄n). In a game-theoretic
setting however, it is the players’ realized actions that determine their rewards at each stage, so the
figure of merit is the actual sequence of play X̂n. This sequence is more difficult to control, so this
disparity is, perhaps, not too surprising; nevertheless, we believe that this gap can be closed by using
a more sophisticated single-shot estimate, e.g., as in Ghadimi and Lan (2013). We defer this analysis
to the future.

6 Concluding remarks

The most sensible choice for agents who are oblivious to the presence of each other (or who are
simply conservative), is to deploy a no-regret learning algorithm. With this in mind, we studied
the long-run behavior of individual regularized no-regret learning policies and we showed that, in
monotone games, play converges to equilibrium with probability 1, and the rate of convergence almost
matches the optimal rates of single-agent, stochastic convex optimization. Nevertheless, several
questions remain open: whether there is an intrinsic information-theoretic obstacle to bridging this
gap; whether our convergence rate estimates hold with high probability (and not just in expectation);
and whether our analysis extends to a fully decentralized setting where the players’ updates need not
be synchronous. We intend to address these questions in future work.
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