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Abstract

Maximising the detection of intrusions is a fundamental and often critical aim of perimeter
surveillance. Commonly, this requires a decision-maker to optimally allocate multiple searchers
to segments of the perimeter. We consider a scenario where the decision-maker may sequentially
update the searchers’ allocation, learning from the observed data to improve decisions over time.
In this work we propose a formal model and solution methods for this sequential perimeter
surveillance problem. Our model is a combinatorial multi-armed bandit (CMAB) with Poisson
rewards and a novel filtered feedback mechanism - arising from the failure to detect certain
intrusions. Our solution method is an upper confidence bound approach and we derive upper
and lower bounds on its expected performance. We prove that the gap between these bounds is
of constant order, and demonstrate empirically that our approach is more reliable in simulated
problems than competing algorithms.

1 Introduction

Many common surveillance tasks concern the detection of intrusions along a border or perimeter.
Tracking illegal fishing and smugglers, quantifying traffic flows and detecting adversarial intrusions
are a few among many examples of potential civilian or military aims in this domain. These prob-
lems are often of high importance, and timeliness is critical for mission success. Thus approaches
to the optimal design of surveillance strategies are invaluable not only at the operational level, but
also at the strategic level because they can inform decision makers about expected outcomes for
different budget scenarios.

In these surveillance tasks the notion of optimality can be equated to maximising the rate of
detection of intrusions, or equivalently, detecting as many intrusions as possible over some fixed
time horizon. We will consider a scenario where surveillance is performed by a fleet of searchers,
coordinated by a central agent referred to as the controller who chooses which segments of the
perimeter each searcher will survey. The precise definition of searchers will depend on the context
but may include human patrollers, or sensors mounted on fixed or mobile platforms. The search
may take place in the air (e.g., with unmanned aerial vehicles (UAVs)) or in the water (e.g., with
unmanned underwater vehicles (UUVs) or static sonobuoys). In any case the problem of designing
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an optimal surveillance strategy becomes truly challenging when the size of the fleet is insufficient to
guarantee perfect detection of all intruders, which is typically the case in tight fiscal environments.

In such a setting the controller faces a classic resource allocation problem, where the action set
is the set of possible allocations of searchers to segments of the perimeter and the controller aims
to find an action which maximises the rate of detection. To compute this rate of detection the
controller must know the rate at which intruders appear along the length of the perimeter and the
probabilities with which searchers detect intruders that have appeared at particular points (under
a particular allocation of searchers to perimeter segments). It is, of course, a strong assumption
that such information is available, particularly at the beginning of a new surveillance project.

In this work we consider the more realistic setting where the rate at which intruders appear
is unknown, and two cases in terms of the information available on the probability of successful
detection. When this rate function is unknown the controller has two broad options:

(a) to select an allocation which performs best in expectation according to some prior information
(if it exists) and stick to that,

(b) (if possible) to take an adaptive strategy, which alters the allocation of searchers as observa-
tions are collected.

In this second scenario a sequential resource allocation problem is faced - where the controller wishes
to quickly and confidently converge on an optimal allocation after appropriate experimentation.
This sequential problem is our principal concern in this paper. Such a scenario is all the more
plausible in the advent of technologies such as UAVs or UUVs whose allocations can be much more
easily updated than fixed cameras, or slow moving human searchers.

To permit analysis of this problem we shall assume two discretisations to simplify the controller’s
action set. We will consider that opportunities to update the allocation of searchers occur only
at particular time points t ∈ N. Thus, the problem can be thought of as taking place over a
series of rounds. We will also suppose that the perimeter has been divided into a number of cells
such that each searcher is allocated a connected set of cells in which to patrol, disjoint from those
allocated to other searchers. We argue that this is a reasonable simplification to make as over
large distances, decisions about allocations will typically be made to the nearest hundred metres
or kilometre. Imposing this discrete structure on the problem is useful as it allows us to draw on
a large literature concerning multi-armed bandit problems when designing and analysing solutions
to the problem.

Multi-armed bandit problems are relevant to this sequential resource allocation problem because
they provide a framework for studying exploration-exploitation dilemmas, which is the principal
challenge faced by the controller here. In order to reliably make optimal actions, data must be
collected from all cells to accurately estimate the expected number of detections associated with an
action - i.e. the action space should be explored. However, data is being collected on a live problem
- real intruders are passing undetected when sub-optimal actions are played. As such there is a
pressure to exploit information that has been collected and select actions which are believed to
yield high detection rates over those with more exploratory value. A balance must be struck. One
may suppose that this is a trivial issue which can be resolved by simply searching in all cells in all
rounds. However, searching more cells will not necessarily lead to more accurate information or a
higher detection rate. Searchers become less effective at detecting events the more cells they are
allocated, because an intruder is more likely to escape if it is not detected within some window of
time. An optimal action may well be to assign each searcher to a single cell.
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1.1 Related Literature

Search theory started in WWII with the study of barrier patrols during the Battle of the Atlantic
(Koopman (1946)). The works of Stone (1976) and Washburn (2002) present a much broader and
more contemporary range of applications in search theory and detection, and are by now the classic
references on the subject. More closely related to our work is Szechtman et al. (2008), who study
the perimeter protection problem when the parameters of the arrival process are fully known, for
mobile and fixed searchers. Carlsson et al. (2016) study the problem of optimally partitioning a
space in R2 to maximise a function of an intensity of events over the space. Their problem bears
resemblance to the full information version of our problem though our solution method is quite
different due to our discretisation of the problem.

More recently, Park et al. (2016) use approximate dynamic programming to find good policies
for online detection on a closed perimeter. Their problem has a sequential aspect however their
formulation differs substantially from ours as they focus on a particular scenario where static sensors
flag up intrusions and the decisions to be made are around visiting sensor locations to gather further
information. We focus on detecting as many intrusions as possible with mobile searchers. Papadaki
et al. (2016) analyse a perimeter formed by a discrete linear network, defended by a single agent
who can move one node per period, and a strategic attacker who wins if an attack on a node is not
detected within a time window.

Our work, however, is the first to model the problem of allocating multiple searchers to detect
multiple intruders with the capacity to sequentially adapt searcher allocation and learn the distri-
bution of intrusions. The sequential problem we consider is structurally similar to a combinatorial
multi-armed bandit (CMAB) problem (Chen et al., 2013). To permit discussion of a CMAB we first
describe the simpler multi-armed bandit (MAB) problem (first attributed to Thompson (1933)),
which is a special case.

The (stochastic) MAB problem models a scenario where an agent is faced with a series of
potential actions (or arms), each associated with some underlying probability distribution. In
each of a series of rounds, the agent selects a single action and receives a reward drawn from the
underlying distribution associated with the selected action. The agent’s aim is to maximise her
cumulative expected reward over some number of rounds, or equivalently minimise her cumulative
regret - defined as the difference in expected reward between optimal actions and actions actually
selected. To succeed in this the agent must manage an exploration-exploitation trade-off as she
learns which actions have high expected reward.

The CMAB problem models a richer framework where the agent may select multiple actions
in each round and her reward is a function of the observations from the underlying distributions
associated with the selected actions. Chen et al. consider a setting where this function may be
non-linear. Numerous authors (Anantharam et al. (1987), Gai et al. (2012), Kveton et al. (2015b),
Combes et al. (2015), and Luedtke et al. (2016)) consider a special case (known as a multiple play
bandit) where the reward is simply a sum of the random observations and the number of actions
which may be selected in one round is limited. A number of other works have since extended the
framework of Chen et al. (2013) to model other novel features. Chen et al. (2016a) and Kveton
et al. (2015a) consider a setting where playing a subset of arms may randomly trigger additional
rewards from other arms, and Chen et al. (2016b) considers a broader set of non-linear reward
functions. However the CMAB model and UCB approach of Chen et al. (2013) is the work closest
to ours as the later developments model features that are not present in our setting.

Reward maximisation in a CMAB problem requires addressing a similar exploration-exploitation
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trade-off to that faced in the MAB problem. For MAB-type problems, it has famously been shown
that under certain assumptions optimal policies can be derived by formulating the problem as a
Markov Decision Process and using an index approach (Gittins et al., 2011). In CMAB problems
however, these approaches are inappropriate, not least, since the combinatorial action sets induce
dependencies between rewards generated by distinct actions which invalidates Gittins’ theory. See
also Remark 1 in Section 2. More recently, so called upper confidence bound (UCB) algorithms,
first proposed by Lai and Robbins (1985) and Burnetas and Katehakis (1996), and popularised by
Auer et al. (2002), have attracted much attention as approaches that enjoy efficient implementation
and strong theoretical guarantees. These heuristic methods balance exploration and exploitation
by selecting actions based on optimistic estimates of the associated expected rewards and can be
applied to both MAB and CMAB problems.

Auer et al. originally proposed a UCB approach for MAB problems with underlying distribu-
tions whose support lies entirely within [0, 1]. Chen et al. (2013) extended the principles of this
algorithm to a version suitable for CMAB problems with nonlinear rewards. Broader classes of
unbounded distributions have been considered by other authors. Cowan et al. (2015), Bubeck and
Cesa-Bianchi (2012), Bubeck et al. (2013), and Lattimore (2017) give UCB algorithms suitable
for use with unbounded distributions, studying distributions that are Gaussian, have sub-Gaussian
tails, known variance and known kurtosis respectively. Luedtke et al. (2016) have studied multiple-
play bandits with exponential family distributions. However for CMAB problems with non-linear
reward functions attention has focussed on the [0, 1] case. Accompanying each of these proposals
of UCB algorithms is a corresponding proof which demonstrates the performance of that algorithm
achieves the optimal order, albeit with a sub-optimal coefficient.

Stronger performance guarantees (i.e. those with improved leading-order coefficients) have
been obtained in MAB problems using Thompson Sampling type approaches (Kaufmann et al.,
2012; Agrawal and Goyal, 2012; Russo and Van Roy, 2016) and approaches which utilise the KL
divergence of the reward distributions (Cappé et al., 2013; Kaufmann, 2016). Combes et al. (2015)
have successfully extended the KL divergence based results to multiple play bandits with bounded
rewards. However extending these results to the more general CMAB problem with non-linear
rewards presents a significant analytical challenge, and therefore in this work we focus on the
analysis of a UCB type approach.

1.2 Key Contributions

This work makes a number of contributions to the theory of optimal search, multi-armed bandits
and broader online optimisation. Simultaneously we give a practically useful solution to a real
problem in perimeter surveillance. We summarise the headline contributions below:

• Introduction of a formal model for sequential, multi-searcher perimeter surveillance problems
and an efficient integer programming solution to the full-information version of the problem;

• Introduction of the filtered feedback model for combinatorial multi-armed bandits;

• Development of a bespoke treatment of combinatorial bandits with Poisson rewards, leading
to a new concentration inequality for filtered Poisson data;

• Regret analysis leading to an optimal order analytical bound on finite time regret of the UCB
algorithm and a problem-specific lower bound on asymptotic regret for any uniformly good
algorithm.
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We also present extensive numerical work which displays the robustness of the UCB approach and
the unpredictable performance of Thompson Sampling.

1.3 Paper Outline

The remainder of the paper is structured as follows. Section 2 introduces a model of the sequen-
tial problem. In Section 3 we solve the full information problem (the non-sequential perimeter
surveillance problem where the rate function of the arrival process is known). The proposed inte-
ger programming solution forms the backbone of the proposed solution methods for the sequential
problem. In Section 4 we introduce a solution method for the sequential resource allocation prob-
lem, FP-CUCB, and derive a performance guarantee in the form of an upper bound on expected
regret of the policy. Here, we also derive a lower bound on the expected regret possible for any
policy and thus show that our algorithm has a bound of the correct order. We conclude in Sections
5 and 6 with numerical experiments and a discussion respectively.

2 The Model

Before introducing solution methods we give a mathematical model of the problem. Throughout
the paper, for a positive integer Ω let the notation [Ω] represent the set {1, 2, ...,Ω}.

A domain of search (perimeter) comprises K cells while searches are conducted by U agents.
We write

ak = u, k ∈ [K], u ∈ [U ]

to denote the deployment of agent u to search cell k, while

ak = 0, k ∈ [K]

is used when cell k goes unsearched. An action a := (a1, a2, ..., aK) ∈ {0, 1, ...U}K describes a
deployment of the agents across the perimeter. We impose the requirement that a ∈ A, the action
set, where

A = {a : ai = aj = u⇒ ak = u, i ≤ k ≤ j ∀i < j, u ∈ [U ]}.
These conditions on A ensure that agents are assigned to disjoint connected sub-regions of the
perimeter. This constraint eliminates unnecessary travel times for the agents and the possibility of
multiple agents detecting the same event. The actions are uniquely defined by indicator variables

aiju = 1⇔ agent u is assigned to the cells {i, i+ 1, ..., j} only.

Each action a ∈ A gives rise to a certain detection probability γk(a) ∈ [0, 1] in each cell
k ∈ [K]. The detection probabilities capture the effectiveness of each searcher in finding an intruder
in a specific cell. We write γ(a) for the K-vector whose kth component is γk(a). The detection
probabilities are structured such that for any a,b ∈ A and i ≤ j,

aiju = biju = 1⇒ γk(a) = γk(b), ∀k such that i ≤ k ≤ j.

Hence, the detection probability in a cell depends only on the sub-region assigned to the single
agent searching that cell and is unaffected by the sub-regions assigned to other agents. We assume
that if a cell is searched there will be some non-zero probability of detecting intrusions that occur.
That is to say γk(a) > 0 for any a ∈ A : ak 6= 0 for any k ∈ [K].

We consider two cases with respect to knowledge of the detection probabilities:
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(I) The detection probabilities γ(a) are known for all a ∈ A. This scenario occurs when the
agent knows γ(a) from the past.

(II) The functions γ have a particular known parametric form but unknown parameter values.
This case is realistic when properties of the detection probabilities are dictated by physi-
cal considerations, such as the searchers’ speed or the time it takes intruders to cross the
perimeter.

Our sequential decision problem may now be described as follows:

1. At each time t ∈ N an action at ∈ A is taken, inducing a detection probability γk(at) in each
cell k ∈ [K];

2. Intrusion events are generated by K independent Poisson processes, one for each cell. We use
Xk to denote the number of events in cell k (whether observed or not) occurring during the
period of a single search. We have

Xk ∼ Pois(λk), k ∈ [K]

where the rates λk ∈ R+ are unknown, and write λmax ≥ maxk∈[K] λk for a known upper
bound on the arrival rates. We use Xkt for the number of events generated in cell k during
search t.

3. Should action at be taken at time t, a random vector of events Yt = {Y1t, Y2t, ..., YKt} ∈ NK
is observed. Events in the underlying X-process are observed or not independently of each
other. We write

Ykt|Xkt,at ∼ Bin(Xkt, γk(at)), k ∈ [K].

It follows from standard theory that

Ykt|at ∼ Pois(λkγk(at)), k ∈ [K],

and are independent random variables. It follows that the mean number of events observed
under action a is given by

rλ,γ(a) := γ(a)Tλ,

where T denotes vector transposition and λ is the K-vector whose kth component is λk.

4. We write
Ht = {a1,Y1, ...,at−1,Yt−1}

for the history (of actions taken and events observed) available to the decision-maker at time
t ∈ N. A policy is a rule for decision-making and is determined by some collection of functions{
πt : Ht → A, t ∈ N

}
adapted to the filtration induced by Ht. In practice a policy will be

determined by some algorithm A. We will use the terms policy and algorithm interchangeably
in what follows.

The goal of analysis is the elucidation of policies whose performance (as measured by the mean
number of events observed) is strong uniformly over λ,γ and over partial horizons {1, 2, ..., n} ⊆ N.
We write

EA

( n∑
t=1

rλ,γ(at)

)
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for the mean number of events observed up to time t ∈ N under algorithm A. If we write

optλ,γ := max
a∈A

rλ,γ(a),

then it is plain that, for any choice of A

n · optλ,γ ≥ EA
( n∑
t=1

rλ,γ(at)

)
,

with achievement of the left hand side dependent on knowledge of λ. Assessment of algorithms will
be based on the associated regret function, the expected reward lost through ignorance of λ, given
for algorithm A and horizon n by

RegAλ,γ(n) := n · optλ,γ − EA
( n∑
t=1

rλ,γ(at)

)
, (1)

which is necessarily positive and nondecreasing in n, for any fixed A. In related bandit-type
problems the regret of the best algorithms typically grows at O(log(n)) uniformly across all λ. We
will demonstrate both that this is also the case for the algorithms we propose and that the best
achievable growth for this problem is also O(log(n)).

Remark 1 An alternative, indeed classical, formulation uses Bayes sequential decision theory.
Here the goal of analysis is the determination of an algorithm A to maximise

Eρ

[
EA

( n∑
t=1

rλ,γ(at)

)]
where the outer expectation is taken over some prior distribution ρ for the unknown λ. A standard
approach would formulate this as a Markov Decision Process (MDP) with an informational state
at time t taken to be some sufficient statistic for λ. The objections to this approach in this context
are many. First, any serious attempt to derive such a formulation which is likely tractable will
require strong assumptions on the prior ρ including, for example, independence of the components
of λ. These would each typically have a conjugate gamma prior. Even then the resulting dynamic
program would be computationally intractable for any reasonable choices of K and n. Second, the
realities of our problem (and, indeed, many others) are such that specification of any reasonably
informed prior is impractical. Confidence in the analysis would inevitably require robustness of the
performance of any proposed algorithm to specification of the prior. Indeed, our formulation centred
on regret simply seeks robustness of performance with respect to values of the unknown λ. Third,
the MDP approach would require up front specification of the decision horizon n. This is practically
undesirable for our problem. Moreover, the value of n is not unimportant. It will determine the
nature of good policies in important ways. For example, the “last” decision at time n is guaranteed
to be optimally “greedy” since there is no further need to learn about λ at that point.

3 The Full Information Problem

In order to develop strongly performing policies, it is critical that we are able to solve the full
information optimisation problem

optλ,γ := max
a∈A

rλ,γ(a)

7



for any pre-specified λ ∈ (R+)K . A naive proposal for a policy addressing the problem outlined
in the previous section would choose an action at at time t to solve the full information problem
for some estimate λt of the unknown λ available at time t. While such a proposal would fail to
adequately address the challenge of learning about λ, we will in the succeeding sections develop
effective algorithms which choose allocations determined by solutions of full information problems
for carefully chosen λ-values.

A challenge to the solution of the full information problem is the non-linearity in a of the
objective rλ,γ(a) inherited from the non-linearity of the detection mechanism γ(a). To develop
efficient solution approaches we produce a formulation as a linear integer program (IP) in which
this non-linearity is removed by precomputing key quantities. In particular we write

qλ,γ,iju =

j∑
k=i

γk(aiju)λk

for the mean number of events detected when agent u is allocated to the subregion {i, i+ 1, ..., j}
where aiju is any a ∈ A such that aiju = 1. Efficient solution of the full information problem relies
on precomputing these qλ,γ,iju for all 1 ≤ i ≤ j ≤ K, and u ∈ [U ]. We now have that

optλ,γ = max
{aiju,1≤i≤j≤K,u∈[U ]}

K∑
i=1

K∑
j=i

U∑
u=1

qλ,γ,ijuaiju (2)

such that

K∑
i=1

K∑
j=i

aiju ≤1, u ∈ [U ]

k∑
i=1

K∑
j=k

U∑
u=1

aiju ≤1, k ∈ [K]

aiju ∈{0, 1}, 1 ≤ i ≤ j ≤ K, u ∈ [U ].

The first constraint above guarantees that each agent u is assigned to at most one sub-region
while the second constraint guarantees that each cell k is searched by at most one agent. We view
the solution of (2) as the optimal allocation strategy and the optimal value function as the best
achievable performance for an agent with perfect knowledge of γ and λ.

When we require solutions to the full information problem for the implementation of algorithms
for the problem described in the preceding section, we solve an appropriate version of the above IP
(ie, for suitably chosen λ) by means of branch and bound. While it can be shown that the IP (2)
belongs to a class of problems which is NP-hard (see Appendix A) we find that the solution of this
IP is very efficient in practice. We believe that this is because the solution of the LP-relaxation
of (2) often coincides with the exact solution of the IP. Indeed, in empirical tests this occurred
more than 90% of the time and in the remaining instances the gap between the two solutions was
always less that 1%. For all problem sizes considered in this paper the pre-processing and solution
steps can be completed in less than a second using basic linear program solvers in the statistical
programming language R on a single laptop.
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4 Sequential Problem

In the sequential problem, the controller’s objective is to minimise regret (1) over a sequence of
rounds. To do so the controller must construct a strategy which balances exploring all cells to
accurately estimate the underlying rate parameters λ, while also exploiting the information gained
to detect as many events as possible. In this section we introduce and analyse two upper confidence
bound (UCB) algorithms as policies for the case of fully known detection probabilities (case (I))
and the case where only the nature of the scaling of detection probabilities is known (case (II)).

The model we introduced in Section 2 is closely related to the Combinatorial Multi Armed
Bandit problem (CMAB) model of Chen et al. (2013). The CMAB problem models a scenario
where a decision-maker is faced with a set of K basic actions (or arms) each associated with a
random variable of unknown probability distribution. In each round t ∈ N, the decision-maker
may select a subset of basic actions to take (or arms to pull) and receives a reward which is a
(possibly randomised) function of realisations of the random variables associated with the selected
basic actions. The decision-maker’s aim is to maximise her cumulative reward over a given horizon.
Chen et al. study a CMAB problem where the decision-maker receives semibandit feedback on her
actions, meaning she observes the overall reward but also all realisations of the random variables
associated with the selected arms. Realisations of the random variables are identically distributed
for a given arm and independent both across time and arms.

In our surveillance problem, electing to search a cell k in a round t, i.e. setting akt 6= 0, is
the analogue of pulling an arm k. The total number of events detected in a round is the analogue
of reward. The fundamental, and non-trivial difference between our model and that of Chen et
al. lies in the feedback mechanism. Our framework is more complex in two important of regards.
Firstly, we do not by default observe independent identically distributed (i.i.d.) realisations of the
underlying random variable of interest Xkt each time we elect to search a cell. We observe a filtered
observation Ykt whose distribution depends on the action at selected in that round. A second
related point is that because of the U possibly heterogeneous searchers, we can have multiple ways
of searching the same collection of cells. While this is implicitly permitted within the framework of
Chen et al., it is not explicitly acknowledged nor to the best of our knowledge are any real problems
with such a structure explored in related work .

Our analytical challenge is to extend earlier work in order to meet these novel features. Specif-
ically we will propose a UCB algorithm for both cases of our problem and derive upper bounds on
the expected regret of these policies. UCB algorithms apply the principle of optimism in the face of
uncertainty to sequential decision problems. Such an algorithm calculates an index for each action
in each round which is the upper limit of a high probability confidence interval on the expected
reward of that action and then selects the action with the highest index. In this way the algorithm
will select actions which either have high indices due to a large mean estimate - leading it to exploit
what has been profitable so far - or due to a large uncertainty in the empirical mean - leading it
to explore actions which are currently poorly understood. As the rounds proceed, the confidence
intervals will concentrate on the true means and less exploratory actions will be selected in favour
of exploitative ones.

4.1 Case (I): Known detection probabilities

In our first version of the problem, case (I), the only unknowns are the underlying rate parameters
λ. We assume that detection probability vectors γ(a) are known for all a ∈ A. Therefore we do
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not need to explicitly form UCB indices for every action separately. It will suffice to form a UCB
index on each unknown λk for k ∈ [K]. Optimistic estimates of the value of each action will then
arise by calculating the qλ,γ,iju quantities with the optimistic estimate of λ in place of known λ.

Our proposed approach to the sequential search problem in case (I), the FP-CUCB algorithm
(Filtered Poisson - Combinatorial Upper Confidence Bound), is given as Algorithm 1. The algorithm
consists of an initialisation phase of length K where allocations are selected such that every cell
is searched in some capacity at least once. Then in every subsequent round t > K, a UCB
index λ̄k,t is calculated for each cell k as the sum of an empirical mean for filtered data and an
appropriate inflation term. An action which is optimal with respect to the K-vector of inflated rates
λ̄t = (λ̄1,t, ..., λ̄K,t) is then selected by solving the IP (2) with λ̄t in place of λ. The inflation terms
involve a parameter λmax ≥ maxk∈[K] λk. This is necessary to construct UCBs which concentrate
at a rate that matches the concentration of Poisson random variables, which is defined by the mean
parameter.

Algorithm 1 FP-CUCB (case (I))

Inputs: Upper bound λmax ≥ λk, k ∈ [K].
Initialisation Phase: For t ∈ [K]

• Select an arbitrary allocation a ∈ A such that at 6= 0

Iterative Phase: For t = K + 1,K + 2, ...

• Calculate indices

λ̄k,t =

∑t−1
s=1 Yk,s∑t−1
s=1 γk,s

+
2 log(t)∑t−1
s=1 γk,s

+

√
6λmax log(t)∑t−1

s=1 γk,s
, k ∈ [K] (3)

• Select an allocation a∗
λ̄t

such that rλ̄t,γ(a∗
λ̄t

) = maxa∈A rλ̄t,γ(a).

To analyse the regret of this algorithm we must first introduce some additional notation for
optimality gaps, the differences in expected reward between optimal and suboptimal actions. For
k ∈ [K] define,

∆k
max = optλ,γ − min

a∈Ak

rλ,γ(a),

∆k
min = optλ,γ − max

a∈Ak

rλ,γ(a),

where Ak = {a ∈ A : ak 6= 0} for k ∈ [K], and ∆max = maxk∈[K] ∆k
max, and ∆min = mink∈[K] ∆k

min.
The quantity ∆max is then the difference in expected reward between an optimal allocation of
searchers and the worst possible allocation, while ∆min is the difference in expected reward between
an optimal allocation and the closest to optimal suboptimal allocation. The quantities ∆k

max and
∆k
min are the largest and smallest gaps between the expected reward of an optimal allocation and

allocations where cell k is searched in some capacity. All ∆ terms depend on λ,γ but we drop this
dependence in the notation for simplicity.

Now, in Theorem 1 we provide an analytical bound on the expected regret of the FP-CUCB
algorithm in n rounds.
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Theorem 1 The regret of the FP-CUCB algorithm with λmax applied to the sequential surveillance
problem with known γ satisfies

RegFP-CUCB
λ,γ (n) ≤

∑
k:∆k

min>0

12K2

γk,min

[
b(∆k

min)

∆k
min

+

∫ ∆k
max

∆k
min

b(x)

x2
dx

]
log(n) +

(
π2

3
+ 1

)
K∆max, (4)

where b(x) = λmax +
√
λ2
max + x2/9K2, and γk,min = mina:ak 6=0 γk(a).

4.1.1 Proving Theorem 1

To give a proof of this theorem we must introduce a new way of thinking about the action space.
Consider that while we have previously (for ease of exposition) defined actions in terms of allocations
of searchers to cells, a ∈ A, the real impact on the observations comes from the vectors of detection
probabilities, γ(a), which arise from these allocations. As multiple allocations may give rise to
the same vector of detection probabilities (if, for instance, two searchers have identical capabilities,
then switching their assignments would have no impact on the quality of the search) the set G =
{γ(a), ∀a ∈ A} of possible detection probability vectors most parsimoniously describes the set of
possible actions in this problem.

For an element g = (g1, ..., gk) = G we then have expected reward gT · λ and optimality gap
∆g = optλ,γ − gT · λ. Let Gk be the set of vectors g with gk > 0 and Gk,B be the set of vectors
in Gk with sub-optimal expected reward - i.e. Gk,B = {g ∈ Gk : ∆g > 0}. Let Bk = |Gk,B| and

label the vectors in Gk,B as g1
k,B,g

2
k,B, ...,g

Bk
k,B in increasing order of expected reward. We use the

following notation for optimality gaps with respect to these ordered vectors

∆k,j = optλ,γ − (gjk,B)T · λ j ∈ [Bk], k ∈ [K] (5)

and thus the gaps defined previously can be expressed as ∆k
max = ∆k,1 and ∆k

min = ∆k,Bk . We
introduce counters Dk,t =

∑t
s=1 gk,s for k ∈ [K], t ∈ N where gs is the detection probability vector

selected in round s. These allow us to keep track of the total detection probability applied to a cell
up to the end of round t.

The central idea in proving Theorem 1 is that if for a certain sub-optimal action g : ∆g > 0,
all the cells k with gk > 0 have been sampled sufficiently, the mean estimates ought to be accurate
enough that the probability of selecting that sub-optimal action again before horizon n is small.
We show that this sufficient sampling level is O(log(n)) and the “small” probabilities of selecting
the sub-optimal action after sufficient sampling are so small as to converge to a constant. Thus by
re-expressing expected regret as a function of the number of plays of sub-optimal actions, we can
bound it from above as the sum of a O(log(n)) term derived from the sufficient sampling level and
a constant independent of n.

To count the plays of sub-optimal actions we maintain counters Nk,t, which collectively count the
number of suboptimal plays. We update them as follows. Firstly, after the K initialisation rounds
we set Nk,K = 1 for k ∈ [K]. Thereafter, in each round t > K, let k′ = arg minj:gj,t>0Nj,t−1, where
if k′ is non-unique, we choose a single value randomly from the minimising set. If gTt · λ 6= optλ,γ
then we increment Nk′ by one, i.e. set Nk′,t = Nk′,t−1 + 1. The key consequences of these updating

rules are that
∑K

k=1Nk,t provides an upper bound on the number of suboptimal plays in t rounds,
and Dk,t ≥ γk,minNk,t for all k and t.
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Proof of Theorem 1 We prove the theorem by decomposing regret into a function of the number
of plays of suboptimal arms, up to and after some sufficient sampling level. We then introduce
two propositions which give bounds for quantities in the decomposition which are then combined
to give the bound in (4). The proofs of these propositions is reserved for Appendix C.

Let N l,suf
k,t , N l,und

k,t for l ∈ [Bk] be counters associated with elements of Gk,B for k ∈ [K]. These
counters are defined as follows:

N l,suf
k,n =

n∑
t=K+1

I{gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 > hk,n(∆k,l)}, (6)

N l,und
k,n =

n∑
t=K+1

I{gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ≤ hk,n(∆k,l)}, (7)

where hk,n(∆) = 12b(∆) log(n)K2

γk,min∆2 . A cell k is said to be sufficiently sampled with respect to a choice

of detection probabilities glk,B if Nk,t−1 > hk,n(∆k,l), and thus N l,und
k,n , N l,suf

k,n count the suboptimal

plays leading to incrementing N l
k,n up to and after the sufficient level, respectively.

From the definitions (6) and (7) we have Nk,n = 1 +
∑Bk

l=1(N l,suf
k,n +Nund

k,n ). The expected regret
at time horizon n can also be bounded above using this notation as

Regλ,γ(n) ≤ E

[
K∑
k=1

(
∆k,1 +

Bk∑
l=1

(N l,suf
k,n +N l,und

k,n ) ·∆k,l

)]
(8)

where ∆k,1 arises as a worst case view of the initialisation. We can derive an analytical bound on
regret by bounding the expectations of the random variables in (8).

Firstly, for the beyond sufficiency counter we have

Proposition 1 For any time horizon n > K,

E

(
K∑
k=1

Bk∑
l=1

N l,suf
k,n

)
≤ π2

3
·K. (9)

The full proof of Proposition 1 is given in Appendix C, but in particular depends on the following
Lemma describing the concentration of filtered Poisson data.

Lemma 1 For any set of independent Poisson random variables Y1, ..., Ys with means γ1µ, ...γsµ
respectively, and parameters t ≥ s and µmax ≥ µ the following holds:

P

(∣∣∣∣
∑s

j=1 Yj∑s
j=1 γj

− µ
∣∣∣∣ ≥ 2 log(t)∑s

j=1 γj
+

√
6µmax log(t)∑s

j=1 γj

)
≤ 2t−3. (10)

The consequence of this Lemma is that the UCB indices (3) are of the correct form to guarantee
that the probability of making suboptimal plays beyond the sufficient sampling level is small. We
provide a proof of Lemma 1 in Appendix B.

For the under sufficiency counter we have the following proposition, also proved in Appendix
C,

12



Proposition 2 For any time horizon n > K and k : ∆k
min > 0,

Bk∑
l=1

N l,und
k,n ∆k,l ≤ hk,n(∆k,Bk)∆k,Bk +

∫ ∆k,1

∆k,Bk

hk,n(x)dx. (11)

Combining the decomposition (8), with the bounds (9) and (11) we have

Regλ,γ(n) ≤ E
( K∑
k=1

(
∆k,1 +

Bk∑
l=1

(N l,suf
k,n +N l,und

k,n )∆k,l
))

= E

(
K∑
k=1

(
∆k,1 +

Bk∑
l=1

N l,suf
k,n ∆k,l

))
+ E

(
K∑
k=1

Bk∑
l=1

N l,und
k,n ∆k,l

)

≤ K∆max + E

(
K∑
k=1

Bk∑
l=1

N l,suf
k,n ∆k,l

)
+

∑
k:∆k

min>0

(
hk,n(∆k,Bk)∆k,Bk +

∫ ∆k,1

∆k,Bk

hk,n(x)dx

)

≤
(π2

3
+ 1
)
K∆max +

∑
k:∆k

min>0

(
hk,n(∆k

min)∆k
min +

∫ ∆k
max

∆k
min

hk,n(x)dx

)

=
∑

k:∆k
min>0

12K2

γk,min

[
b(∆k

min)

∆k
min

+

∫ ∆k
max

∆k
min

b(x)

x2
dx

]
log(n) +

(
π2

3
+ 1

)
K∆max. �

In the remainder of this section we show that the bound obtained in Theorem 1 is of optimal
order, by deriving a lower bound on the expected regret of the best possible policies.

4.1.2 Lower Bound on Regret

To analyse the performance of the best possible policies, we introduce the notion of a uniformly
good policy. A uniformly good policy (Lai and Robbins, 1985) is one where

E

( n∑
t=1

I{gt = g}
)

= o(nα) ∀ α > 0

for every g : ∆g > 0 and every λ ∈ RK+ . Clearly, then all uniformly good policies must eventually
favour optimal actions over suboptimal ones - with the suboptimal actions being necessary to
accurately estimate λ. For a given rate vector λ we define the set of optimal actions as

J(λ) = {g ∈ G : gT · λ = optλ,γ}.

We write S(λ) = G\J(λ) to be the set of suboptimal actions. The difficulty of a particular problem
depends on the particular configuration of λ and γ. We define

I(λ) = {k : ∃ g ∈ J(λ) s.t. gk > 0}

as the set of arms which are played in at least one optimal action and

B(λ) = {θ ∈ RK+ : gT · θ < optθ,γ ∀g ∈ J(λ) and θk = λk ∀k ∈ I(λ)}
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as the set of mean vectors such that all actions in J(λ) are suboptimal but this cannot be discerned
by playing only actions in J(λ). The larger the set B(λ), the more challenging the problem is. If
I(λ) = [K], then the problem is trivial as one can simultaneously play optimal actions and gather
the information necessary to affirm that these actions are optimal. In such a case the lower bound
on expected regret is simply 0.

We have the following lower bound on regret for any uniformly good policy. A key consequence
of this result is the assertion that policies with O(log(n)) regret are indeed of optimal order and
thus that the regret induced by the FP-CUCB algorithm in case (I) grows at the lowest achievable
rate. This result is analogous to results in other classes of bandit problem as shown by Lai and
Robbins (1985) and Burnetas and Katehakis (1996).

Theorem 2 For any λ ∈ RK+ such that B(λ) 6= ∅, and for any uniformly good policy π for the
sequential surveillance problem with known γ, we have

lim inf
n→∞

Regπλ,γ(n)

log(n)
≥ c(λ) (12)

where c(λ) is the optimal value of the following optimisation problem

inf
d≥0

∑
g∈S(λ)

dg∆g (13)

such that inf
θ∈B(λ)

∑
g∈S(λ)

dg

K∑
k=1

gkkl(λk, θk) ≥ 1. (14)

and kl(λ, θ) = λ log(λθ ) + θ− λ is the Kullback Leibler divergence between two Poisson distributions
with mean parameters λ, θ respectively.

We prove this theorem fully in Appendix D, but here note that a key step of its proof is to
invoke Theorem 1 of Graves and Lai (1997), which is a similar result for a more general class of
controlled Markov Chains. It is possible to derive an analytical expression giving a lower bound on
c(λ) by following steps similar to those in the proof of Theorem 2 in Combes et al. (2015). However
we omit this here because in the interests of succinctness as it is not an especially useful or elegant
expression.

4.2 Case (II): Known scaling of detection probabilities

In the second case we suppose that we do not know exactly what probability of successful detection
each searcher has in each cell, but that we have some idea of how these detection probabilities
change as the searchers are assigned more cells to search. If, for example, the searcher is a UAV
moving back-and-forth over l cells at a constant speed s, then the time between successive visits to
a cell is 2l/s, suggesting that the detection probability decays like s/(2l) with the number of cells
l.

In order to be precise about this case we suppose that detection probabilities have the form

γk(a) =
U∑
u=1

φu(a)ωkuI{ak = u}, k ∈ [K], (15)
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where φu : A → [0, 1] are known scaling functions, and ωku ∈ (0, 1] ∀k ∈ [K], u ∈ [U ] are unknown
baseline detection probabilities - the probability of searcher u detecting intrusions in cell k given
that is the only cell they are assigned to search. Functions φu are assumed to be decreasing in the
number of cells searcher u must search. For instance, and as suggested in the preceding paragraph,
one suitable function may be φu(a) = (

∑K
k=1 I{ak = u})−1, the reciprocal of the number of cells

the searcher u is assigned. Searcher effectiveness may however decay more slowly as the number of
cells assigned grows if for instance it takes a some time for intruders to cross the perimeter.

In case (II) the action set and observed rewards remain entirely the same as for case (I), it
is the information initially available to the controller that differs. Here, both λ, the K-vector of
rate parameters, and ω = (ω1,1, ..., ω1,U , ω2,1..., ωK,U ), the KU -vector of baseline detection prob-
abilities are unknown as opposed to solely λ in case (I). Due to nonidentifiability we cannot
make direct inference on λ or ω. However, simply estimating the products of certain compo-
nents is sufficient for optimal decision making as estimating expected reward does not depend on
having separate estimates of each parameter. Therefore we can simply consider KU unknowns
τ = (ω1,1λ1, ..., ω1,Uλ1, ω2,1λ2, ..., ωK,UλK) when referring to the unknown parameters.

As such this second case of the sequential search problem can also be modelled as a CMAB
problem with filtered feedback. The set of arms is given by searcher-cell pairs ku ∈ [K] × [U ].
Each arm ku is associated with a Poisson distribution with unknown parameter τku = ωk,uλk. A
continues to specify the action set and filtering is governed by scaling function vectors φ(a) =
(φ1(a), ..., φU (a)). Let φku,t denote the filtering probability associated with the searcher-cell pair
ku in round t. It is 0 if ak,t 6= u and φu(at) if ak,t = u.

Let reward in this setting be defined

rλ,γ(a) = r̃τ ,φ(a) =
U∑
u=1

φu(a)
K∑
k=1

τkuI{ak = u}

and define optimality gaps in this setting for ku ∈ [K]× [U ] as

∆ku
max = optλ,γ −min

a∈A
{rλ,γ(a) | rλ,γ(a) 6= optλ,γ , ak = u}

∆ku
min = optλ,γ −max

a∈A
{rλ,γ(a) | rλ,γ(a) 6= optλ,γ , ak = u}.

The appropriate FP-CUCB algorithm for case (II) then calculates upper confidence bounds for
each τku parameter instead of λk and as in the FP-CUCB algorithm for case (I) this induces an
optimistic estimate of the value of every a ∈ A. We describe this second variant in Algorithm 2.

Since our CMAB model in case (II) and second variant of FP-CUCB are of the same form as in
case (I), the analogous results to Theorems 1 and 2 can be derived. Specifically we have a regret
upper bound for FP-CUCB in Corollary 1 and a lower bound for regret of any uniformly good
algorithm in Corollary 2.

Corollary 1 The regret of the FP-CUCB algorithm in case (b) defined by τmax applied to the
sequential search problem as defined previously satisfies

RegFP-CUCB
λ,γ (n) ≤

∑
ku:∆ku

min>0

12(KU)2

φku,min

[
b′(∆ku

min)

∆ku
min

+

∫ ∆ku
max

∆ku
min

b′(x)

x2
dx

]
log(n) +

(
π2

3
+ 1

)
KU∆max,

where b̃(x) = τmax +
√
τ2
max + x2/9(KU)2, and φku,min = mina:ak=u φu(a).
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Algorithm 2 FP-CUCB (case (II))

Inputs: Upper bound τmax ≥ τku, k ∈ [K] and u ∈ [U ].
Initialisation Phase: For t ∈ [KU ]

• Select an arbitrary allocation a ∈ A such that at 6= 0

Iterative Phase: For t = KU + 1,KU + 2, ...

• Calculate indices

τ̄ku,t =

∑t−1
s=1 Yku,s∑t−1
s=1 φku,s

+
2 log(t)∑t−1
s=1 φku,s

+

√
6τmax log(t)∑t−1

s=1 φku,s
, ku ∈ [K]× [U ]

• Select an allocation a∗
λ̄t

such that r̃τ̄ t,φ(a∗
λ̄t

) = maxa∈A r̃τ̄ t,φ(a).

Corollary 2 For any τ ∈ RKU+ such that B̃(τ ) 6= ∅, and for any uniformly good policy π for the
sequential surveillance problem with known φ, we have

lim inf
n→∞

Regπλ,γ(n)

log(n)
≥ c̃(τ )

where c̃(τ ) is the solution of an optimisation problem analogous to (13).

Precise specification of c̃(τ ) requires redefining notation from Section 4.1.2 in the context of case
(II) and produces an entirely unsurprising analogue. In the interests of brevity we omit this. The
techniques used in proving Theorems 1 and 2 can be easily extended to prove Corollaries 1 and 2.

5 Numerical Experiments

We now numerically evaluate the performance of our FP-CUCB algorithm in comparison to a
greedy approach and Thompson Sampling (TS). The greedy approach is one which always selects
the action currently believed to be best (following an initialisation period, where each cell is searched
at least once). As such it is a fully exploitative policy which fails to recognise the benefit of the
information gain inherent in exploration. TS is a randomised, Bayesian approach where an action is
selected with the current posterior probability that it is the best one. This is achieved by sampling
indices from a posterior distribution on each arm and passing these samples to the optimisation
algorithm. We define these algorithms in the setting of known detection probabilities (case (I)) in
Algorithms 3 and 4 respectively.

We compare the FP-CUCB, Greedy and Thompson Sampling algorithms by randomly sampling
λ and ω values which define problem instances. We then test our algorithms’ performance on data
generated from the models of these problem instances. We assume that detection probabilities have
the form given in (15) but we know both the φ functions and ω values.

Specifically, we conduct four tests encompassing a range of different problem sizes and parameter
values to display the efficacy of our proposed approach uniformly across problem instances. In each
test 50 (λ,ω) pairs are sampled and functions φ are selected. For each (λ,ω) pair 5 datasets are
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Algorithm 3 Greedy

Initialisation Phase: For t ∈ [K]

• Select an arbitrary allocation a ∈ A such that at 6= 0

Iterative Phase: For t = K + 1,K + 2, ...

• For each k ∈ [K] calculate λ̂k,t =
∑t−1

s=1 Yk,s∑t−1
s=1 γk,s

• Select an allocation a∗
λ̂t

such that rλ̂t,γ
(a∗

λ̂t
) = maxa∈A rλ̂t,γ

(a).

Algorithm 4 Thompson Sampling (TS)

Inputs: Gamma prior parameters α, β
Iterative Phase: For t = 1, 2, ...

• For each k ∈ [K] sample λ̃k,t from a Gamma(α+
∑t−1

s=1 Yk,s, β +
∑t−1

s=1 γk(as)) distribution

• Select an allocation a∗
λ̃t

such that rλ̃t,γ
(a∗

λ̃t
) = maxa∈A rλ̃t,γ

(a).

sampled giving underlying counts of intrusion events in each cell in each round up to a horizon of
n = 2000. Parameters are simulated as below:

(i) K = 15 cells and U = 5 searchers. Cell means λk are sampled from a Uniform(10, 20)
distribution for k ∈ [K]. Baseline detection probabilities ωku are sampled from Beta(u, 2)
distributions for u ∈ [U ], k ∈ [K]. Scaling functions are φu(a) = (

∑K
k=1 I{ak = u})−1 for

u ∈ [U ], a ∈ A.

(ii) K = 50 cells and U = 3 searchers. Cell means λk are sampled from Uniform distributions on
the intervals [k, k + 10] for k = 1, ..., 10, [20− k, 30− k] for k = 11, ..., 20, [k − 20, k − 10] for
k = 21, ..., 30, [40− k, 50− k] for k = 31, ..., 40, and [k− 40, k− 30] for k = 41, ..., 50. Baseline
detection probabilities ωku are sampled from Beta(u+ 2, 2) distributions for u ∈ [U ], k ∈ [K].
Scaling functions are φu(a) = (0.5 + 0.5

∑K
k=1 I{ak = u})−1 for u ∈ [U ], a ∈ A.

(iii) K = 25 cells and U = 10 searchers. Cell means λk are sampled from a Uniform(90, 100)
distribution for k ∈ [K]. Baseline detection probabilities ωku are sampled from a Beta(30, 5)
distribution for u ∈ [U ], k ∈ [K]. Scaling functions are φu(a) = (

∑K
k=1 I{ak = u})−1 for

u ∈ [U ], a ∈ A.

(iv) K = 25 cells and U = 5 searchers. Cell means λk are sampled from a Uniform(0.4, 1)
distribution for k ∈ [K]. Baseline detection probabilities ωku are sampled from a Beta(1, 1)
distribution for u ∈ [U ], k ∈ [K]. Scaling functions are φu(a) = (0.5 + 0.5

∑K
k=1 I{ak = u})−1

for u ∈ [U ], a ∈ A.

We test a variety of parametrisations of FP-CUCB (in terms of λmax) and TS (in terms of the
prior mean and variance - from which particular α, and β values can be uniquely found) in each
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test. In each case we use λmax values which are both larger and smaller than the true maximal rate.
Similarly we investigate TS with prior mean larger and smaller than the true maximal rate and
with several different levels of variance. It is not always fully realistic to assume our knowledge of
λmax will be perfect and therefore it is of interest to investigate the effects of varying it. Also, the
choice of prior parameters in TS is a potentially subjective one and it is important to understand
its impact.

We measure the performance of our algorithms by calculating the expected regret incurred by
their actions, rescaled by the expected reward of a single optimal action. For an algorithm A and
particular history Hn we write

ScaleRegAλ,γ(Hn) =

∑n
t=1 ∆at

optλ,γ
.

We calculate this value for all algorithms, all 250 datasets and rounds 1 ≤ n ≤ 2000. We choose
to rescale our regret to make a fairer comparison across the 50 different problem instances in each
test (i)-(iv) which will all have different optimal expected rewards.

In Figure 1 we illustrate how regret evolves over time by plotting the median scaled regret
across the 250 runs of each algorithm in all rounds of test (i). The rate of growth shown in these
plots is typical of the results in the other three tests. An immediate observation is that the greedy
algorithm does very poorly on average and its full median regret over the 2000 rounds cannot be
included in the graphs without obscuring differences between the other algorithms. We see also
that the performance of both FP-CUCB and TS is strongly linked to the chosen parameters. For
the FP-CUCB algorithm it seems in Figure 1 that the larger the parameter λmax is the larger the
cumulative regret becomes. For TS it appears that with prior variance equal to 1 the performance
can be almost as poor as in the greedy case but with larger prior variance TS can outperform the
FP-CUCB algorithm.

We analyse these behaviours further in Figures 2 and 3. Here we calculate a scaled regret
at time n = 2000 for all 250 runs of each algorithm and plot the empirical distribution of these
values for each parameterisation of each algorithm. The results for tests (i) and (ii) are given in
Figure 2 and for tests (iii) and (iv) in Figure 3. We omit the greedy algorithm’s performance
from these figures as the values are so large. In Appendix E we provide median values and lower
and upper quantiles of the scaled regret for each algorithm. We see from these values that the
greedy algorithm performs substantially worse than the FP-CUCB and TS algorithms which better
address the exploration-exploitation dilemma.

Examining Figures 2 and 3 it is clear that the FP-CUCB algorithm enjoys greater robustness
to parameter choice than the TS approach. In particular in the results of test (iii) we see that
many parametrisations of TS give rise to a long tailed distribution of round 2000 regret - meaning
the performance of TS is highly variable and often poor. This variability of performance does seem
to coincide with underestimation of the mean, however FP-CUCB manages to maintain strong
performance even when λmax used in the algorithm is only 10% of the true problem value. We do
see the performance of FP-CUCB start to suffer when λmax is chosen to be 1, but it is still much
better than TS.
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Figure 1: Cumulative Regret histories for Test (i). Upper left: FP-CUCB, upper right: TS with a
prior variance of 1, lower left: TS with a prior variance of 5, lower right: TS with prior variance
of 10. In each case the plotted lines are the median values of scaled regret calculated at each time
point from 1 to 2000. Black lines represent λmax = 1 or a prior mean of 1, red represents the same
parameters taking the value 5, green 10, blue 20, grey 40, and pink 60. In all sub-figures the teal
line represents regret of the greedy algorithm.
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Figure 2: Scaled regret distributions in tests (i) and (ii).
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Figure 3: Scaled regret distributions in tests (iii) and (iv).
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6 Discussion

In this paper we have modelled and derived solution methods for a family of sequential decision
problems motivated by multi-searcher perimeter surveillance scenarios with incomplete information.
Namely, we have considered the problem of adaptively assigning multiple searchers to cells along a
perimeter in order to detect the maximum number of intrusion events. The challenge at the heart
of this problem is to correctly balance exploration and exploitation, in the face of initial ignorance
as to the arrival process of events.

We formulated our sequential decision problem as a combinatorial multi-armed bandit with
Poisson rewards and a novel filtered feedback mechanism. To design quality policies for this problem
we first derived an efficient solution method to the full information problem. This IP forms the
backbone of all policies for the sequential problem, as it allows us to quickly identify an optimal
solution given some estimate of the arrival process’ rate parameters.

We considered the sequential problem in two informational scenarios - firstly where the prob-
ability of detecting events is known, and secondly where these probabilities are unknown but one
knows how they scale as the number of cells searched increases. For both of these cases we proposed
an upper confidence bound approach. We derived lower bounds on the regret of all uniformly good
algorithms under this our new feedback mechanism and upper bounds on the regret of our proposed
approach.

In comparing our FP-CUCB algorithm to Thompson Sampling (TS) we see that its principal
benefit lies in its reliability. It is clear from the results of Section 5 that TS outperforms FP-CUCB
for certain parametrisations (commonly larger choices of variance and mean close to the true arrival
rates). However, we see that TS is particularly vulnerable to poor performance when the mean
of the prior underestimates the true rate parameters. Even though our theoretical results for FP-
CUCB depend on λmax ≥ λk, k ∈ [K] we see that it is robust to underestimating this parameter.
The reason our algorithm still performs well even when a key assumption does not hold is likely
due to the fact that Bernstein’s inequality does not give the tightest possible bound on Poisson tail
probabilities (and therefore the rate of concentration of the mean). However, in order to construct
our UCB algorithm we required a symmetric tail bound for which an inflation term giving the type
of concentration in Lemma 1 could be identified. Chernoff bounds (see e.g. Boucheron et al. (2013))
are tighter but lack these properties. We note that both algorithms comfortably outperform the
greedy algorithm in almost all examples, which speaks to the benefit of making some attempt to
balance exploration and exploitation.

In general we note the performance of TS is much more variable than that of FP-CUCB, as
shown through the lower and upper quantiles of scaled regret. This arises due to the potential
for the Gamma conjugate prior to be dominated by a small number of observations and create
a scenario where TS behaves similarly to a greedy policy - sometimes fixing on good actions,
but sometimes on poor ones. This phenomenon of variability of regret is understudied in multi-
armed bandits, not least because it is much more challenging to analyse theoretically. However, in
practical scenarios (where of course the learning and regret minimisation process will only occur
once) this is a concerning disadvantage of TS. The reduced variability and theoretical guarantees
of our FP-CUCB method make it a more reliable option for real surveillance operations.
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A Proof of NP-hardness of the IP (2)

Theorem 3 Integer Linear Programs of the following type are NP-hard in the strong sense:

max
aiju,1≤i≤j≤K,u∈[U ]

K∑
i=1

K∑
j=i

U∑
u=1

qijuaiju

such that
K∑
i=1

K∑
j=i

aiju ≤1, u ∈ [U ]

K∑
i=1

K∑
j=i

U∑
u=1

aiju ≤1, k ∈ [K]

aiju ∈{0, 1}, 1 ≤ i ≤ j ≤ K,u ∈ [U ].

Proof of Theorem 3 :
The following problem is known to be NP-complete in the strong sense (Garey and Johnson,

1979):
3-PARTITION: Given positive integers w1, ..., w3n and a positive integer “target” t, does there exist
a partition of {1, ..., 3n} into subsets S1, ..., Sn such that |Si| = 3 and

∑
j∈Si

wj = t for i = 1, ..., n?
We reduce this to an IP of the given type as follows. First, we assume without loss of generality

that
∑3n

j=1wj = nt, since otherwise the answer to 3-PARTITION is trivially “no”. Let U = nt and
K = 3n. For k = 1, ..., 3n, set qiju = wk if j − i = wk and the open interval (i, j) does not include
a multiple of t. Set all other qiju to zero. Then the answer to 3-PARTITION is “yes” if and only if
there is a solution to the IP with profit equal to nt. �

B Lemma 1 Proof: Concentration of filtered Poisson estimator

First consider the result from Chapter 2 of Boucheron et al. (2013) that Bernstein’s Inequality
Bernstein (1946) holds for Poisson random variables. That is to say that if Z follows a Poisson
distribution with parameter λ then

P

(
Z ≥ λ+ ε

)
≤ exp

(
−ε2

2λ+ 2
3ε

)
for ε > 0, (16)

P

(
Z ≤ λ− ε

)
≤ exp

(
−ε2

2λ+ 2
3ε

)
for 0 < ε < λ.
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We prooced to prove Lemma 1 by first bounding the probability in (10)

P

(∣∣∣∣
∑s

j=1 Yj∑s
j=1 γj

− µ
∣∣∣∣ ≥ 2 log(t)∑s

j=1 γj
+

√
6µmax log(t)∑s

j=1 γj

)

≤ P
(∑s

j=1 Yj∑s
j=1 γj

≥ µ+
2 log(t)∑s
j=1 γj

+

√
6µmax log(t)∑s

j=1 γj

)
+ P

(∑s
j=1 Yj∑s
j=1 γj

≤ µ− 2 log(t)∑s
j=1 γj

+

√
6µmax log(t)∑s

j=1 γj

)

= P

(
s∑
j=1

Yj ≥ µ
s∑
j=1

γj +

(
2 log(t) +

√√√√6µmax log(t)
s∑
j=1

γj

))

+ P

(
s∑
j=1

Yj ≤ µ
s∑
j=1

γj −
(

2 log(t) +

√√√√6µmax log(t)
s∑
j=1

γj

))
. (17)

Since Y1, ..., Ys are all Poisson distributions, their sum
∑s

j=1 Yj follows a Poisson distribution with
parameter µ

∑s
j=1 γj and we can apply (16) to bound the first component of (17),

P

(
s∑
j=1

Yj ≥ µ
s∑
j=1

γj +

(
2 log(t) +

√√√√6µmax log(t)
s∑
j=1

γj

))

≤ exp


−

(
2 log(t) +

√
6µmax log(t)

∑s
j=1 γj

)2

2µ
∑s

j=1 γj + 2
3

(
2 log(t) +

√
6µmax log(t)

∑s
j=1 γj

)


= exp

− 3 log(t)
4 log(t) + 4

√
6µmax log(t)

∑s
j=1 γj + 6µmax

∑s
j=1 γj

4 log(t) + 2
√

6µmax log(t)
∑s

j=1 γj + 6µ
∑s

j=1 γj

 ≤ t−3.

The second probability in (17) can also be bounded by t−3 by applying Bernstein’s Inequality, thus
completing the proof. �

C Theorem 1 Proof: Expected regret of FP-CUCB

To complete the proof of Theorem 1 provided in the main text, we separately prove Propositions
1 and 2.
Proof of Proposition 1:

Here we prove a bound on the expected number of plays of an arm after it has reached its
sufficient sampling level. Define the event

Nt =

{∣∣∣∣
∑t−1

j=1 Yk,j

Dk,t−1
− λk

∣∣∣∣ < 2 log(t)

Dk,t−1
+

√
6λmax log(t)

Dk,t−1
∀k ∈ [K]

}
.

Define random variables Λk,t = 2 log(t)
Dk,t−1

+
√

6λmax log(t)
Dk,t−1

for k ∈ [K] and Λt = maxk:gk,t>0(Λk,t). Define

Λk,l = 2 log(t)
γk,minhk,n(∆k,l)

+
√

6λmax log(t)
γk,minhk,n(∆k,l)

for l ∈ [Bk], k ∈ [K], which are not random variables. By
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these definitions and the definition of UCB indices λ̄k,t we have the following properties.

Nt ⇒ λ̄k,t − λk > 0 ∀k ∈ [K]

Nt ⇒ λ̄k,t − λk < 2Λt ∀k : gk,t > 0

{gt = glk,B, Nk,t > Nk,t−1, Ns,t−1 > hk,n(∆k,l) ∀s : gs,t > 0} ⇒ Λk,l > Λt ∀k ∈ [K],∀l ∈ [Bk]

For any particular k ∈ [K] and l ∈ [Bk] if {Nt,gt = glk,B, Nk,t > Nk,t−1, Ns,t−1 > hk,n(∆k,l) ∀s :
gs,t > 0} holds at time t the following is implied

gTt · λ+ 2KΛk,l > gTt · λ+ 2KΛt ≥ gTt · λ̄t ≥ (g∗λ)T · λ̄t ≥ (g∗λ)T · λ = optλ,γ (18)

where g∗λ is an action that is optimal with respect to rate vector λ. However, by definition 2KΛk,l ≥
∆k,l and therefore (18) is a contradiction of the definition of ∆k,l = optλ,γ − glk,B · λ. Therefore

P(Nt,gt = glk,B, Nk,t > Nk,t−1, ∀s : gs,t > 0, Ns,t−1 > hk,n(∆k,l)) = 0 ∀k ∈ [K], ∀l ∈ [Bk]

and

K∑
k=1

Bk∑
l=1

P(gt = glk,B, Nk,t > Nk,t−1, Ns,t−1 > hk,n(∆k,l) ∀s : gs,t > 0) ≤ P(¬Nt) ≤ 2Kt−2.

The bound on P(¬Nt) comes from applying Lemma 1 and is sufficient to prove Proposition 1 since

E

(
K∑
k=1

Bk∑
l=1

N l,suf
k,n

)
= E

(
n∑

t=K+1

K∑
k=1

Bk∑
l=1

I{gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 > hk,n(∆k,l)}

)

≤
n∑

t=K+1

2Kt−2 ≤ π2

3
·K. �

Proof of Proposition 2
Now consider the number of plays made prior to reaching the sufficient sampling level. Firstly

set hk,n(∆k,0) = 0 to simplify notation and consider the following steps. Then for any cell k in

{j ∈ [K]|∆j
min > 0}

Bk∑
l=1

N l,und
k,n ·∆k,l =

n∑
t=K+1

Bk∑
l=1

I

{
gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ≤ hk,n(∆k,l)

}
∆k,l

=
n∑

t=K+1

Bk∑
l=1

l∑
j=1

I

{
gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,l

≤
n∑

t=K+1

Bk∑
l=1

l∑
j=1

I

{
gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,j
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as ∆k,1 ≥ ∆k,2 ≥ ... ≥ ∆k,Bk ,

≤
n∑

t=K+1

Bk∑
l=1

Bk∑
j=1

I

{
gt = glk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,j

=
n∑

t=K+1

Bk∑
j=1

I

{
gt ∈ Gk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,j

=

Bk∑
j=1

n∑
t=K+1

I

{
gt ∈ Gk,B, Nk,t > Nk,t−1, Nk,t−1 ∈

(
hk,n(∆k,j−1), hk,n(∆k,j)

)}
∆k,j

≤
Bk∑
j=1

(
hk,n(∆k,j)− hk,n(∆k,j−1)

)
∆k,j

since Nk can only be incremented a maximum of hk,n(∆k,j) − hk,n(∆k,j−1) times while remaining
in this range

= hk,n(∆k,Bk)∆k,Bk +

Bk−1∑
j=1

hk,n(∆k,j) · (∆k,j −∆k,j+1)

≤ hk,n(∆k,Bk)∆k,Bk +

∫ ∆k,1

∆k,Bk

hk,n(x)dx.

The last inequality holds since hk,n(x) are decreasing functions. �

D Theorem 2 Proof: Lower bound on regret

To prove Theorem 2, we must define the additional quantities necessary to apply Theorem 1 of
Graves and Lai (1997) and frame the problem accordingly.

We consider the reward history (Yt)
n
t=1 to be a realisation of a controlled Markov Chain moving

on the state space NK where the controls are the detection probability vectors selected in each
round. Each control g ∈ G then has an associated set of λ parameter vectors under which it is an
optimal control Λg = {λ ∈ RK+ : gT · λ = optλ,γ}, which may be the empty set. For any states

y, z ∈ NK transition probabilities are straightforward Poisson probabilities due to independence
across rounds:

p(y, z;λ,g) = p(z;λ,g) =

K∏
k=1

(gkλk)
zke−gkλk

zk!
.

These transition probabilities define the Kullback Leibler Information number for any control g ∈ G:

Ig(λ,θ) =

K∑
k=1

log

(
p(zk;λ,g)

p(zk;θ,g)

)
p(zk;λ,g) =

K∑
k=1

kl(gkλk, γkθk) =

K∑
k=1

gkkl(λk, θk).

With these quantities and those defined in Section 4.1.2 we can apply Theorem 1 of Graves and
Lai (1997) to reach the following result for any uniformly good policy π

lim inf
n→∞

∑
g∈J\J(λ)

Ig(λ,θ)Eλ(
∑n

t=1 I{gt = g})
log(n)

≥ 1 for every θ ∈ B(λ).
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Since Regπλ,γ(n) =
∑

g∈J\J(λ) ∆gEλ(
∑n

t=1 I{gt = g}) the required result follows. �

E Numerical Results

Algorithm Parameters 0.025 Quantile Median 0.975 Quantile

FP-CUCB

λmax = 1 4.10 6.94 14.08
λmax = 5 12.72 18.97 24.46
λmax = 10 22.35 28.67 36.30
λmax = 20 35.72 42.59 54.98
λmax = 40 53.26 62.31 79.86
λmax = 60 64.06 77.63 100.34

Thompson Sampling

Mean=1, Variance=1 38.44 242.39 508.93
Mean=5, Variance=1 1.95 132.79 358.15

Mean=10, Variance=1 1.44 56.30 134.12
Mean=20, Variance=1 11.66 17.76 25.88
Mean=40, Variance=1 75.24 96.87 124.57
Mean=60, Variance=1 122.72 180.67 233.25
Mean=1, Variance=5 5.69 26.49 90.89
Mean=5, Variance=5 2.32 38.51 134.07

Mean=10, Variance=5 2.18 7.19 43.90
Mean=20, Variance=5 7.17 10.95 15.80
Mean=40, Variance=5 30.00 36.11 43.23
Mean=60, Variance=5 57.61 72.42 87.30
Mean=1, Variance=10 6.31 14.21 36.57
Mean=5, Variance=10 3.60 9.35 35.87

Mean=10, Variance=10 3.28 6.65 18.41
Mean=20, Variance=10 6.55 9.67 15.97
Mean=40, Variance=10 20.15 24.65 30.25
Mean=60, Variance=10 40.17 46.12 55.09

Greedy 79.77 679.76 1657.52

Table 1: Quantiles of scaled regret at horizon n = 2000 for algorithms applied to Test (i) data
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Algorithm Parameters 0.025 Quantile Median 0.975 Quantile

FP-CUCB

λmax = 1 18.13 27.63 39.34
λmax = 5 57.39 76.02 104.67
λmax = 10 83.99 113.86 150.29
λmax = 20 116.59 159.85 200.11
λmax = 40 152.79 212.42 248.46
λmax = 60 176.58 245.46 285.71

Thompmson Sampling

Mean=1, Variance=1 248.37 481.61 783.17
Mean=5, Variance=1 6.34 150.56 451.04

Mean=10, Variance=1 6.38 16.93 129.87
Mean=20, Variance=1 84.59 104.91 134.17
Mean=40, Variance=1 234.03 321.99 365.10
Mean=60, Variance=1 297.34 412.77 481.44
Mean=1, Variance=5 22.56 48.46 121.32
Mean=5, Variance=5 7.75 54.94 175.94

Mean=10, Variance=5 5.26 11.12 32.86
Mean=20, Variance=5 29.47 36.23 45.42
Mean=40, Variance=5 106.17 137.60 162.94
Mean=60, Variance=5 183.13 245.48 279.97
Mean=1, Variance=10 20.34 33.24 55.34
Mean=5, Variance=10 9.44 21.12 79.06

Mean=10, Variance=10 8.24 12.40 25.07
Mean=20, Variance=10 19.19 24.56 31.66
Mean=40, Variance=10 69.19 84.84 100.94
Mean=60, Variance=10 126.94 162.99 188.46

Greedy 243.30 576.35 963.96

Table 2: Quantiles of scaled regret at horizon n = 2000 for algorithms applied to Test (ii) data
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Algorithm Parameter 0.025 Quantile Median 0.975 Quantile

FP-CUCB

λmax = 1 2.82 14.72 37.18
λmax = 10 3.97 5.14 6.73
λmax = 25 6.38 7.86 9.44
λmax = 50 9.42 10.94 12.51
λmax = 100 12.60 15.15 17.45
λmax = 200 16.59 20.23 22.85

Thompson Sampling

Mean=1, Variance=5 30.47 66.95 115.65
Mean=10, Variance=5 36.78 64.41 98.24
Mean=25, Variance=5 29.06 58.44 95.57
Mean=50, Variance=5 10.82 39.65 71.71

Mean=100, Variance=5 4.83 6.05 7.71
Mean=200, Variance=5 28.24 34.20 40.37
Mean=1, Variance=10 12.61 52.06 97.08

Mean=10, Variance=10 33.99 68.30 109.44
Mean=25, Variance=10 30.97 64.55 105.03
Mean=50, Variance=10 17.32 46.39 80.35

Mean=100, Variance=10 4.26 5.52 7.09
Mean=200, Variance=10 21.37 25.06 29.00

Mean=1, Variance=25 3.87 37.19 102.98
Mean=10, Variance=25 36.51 66.12 107.72
Mean=25, Variance=25 30.87 64.73 106.71
Mean=50, Variance=25 20.21 51.32 86.70

Mean=100, Variance=25 3.86 5.09 6.79
Mean=200, Variance=25 14.08 15.92 18.09

Greedy 21.57 49.20 95.89

Table 3: Quantiles of scaled regret at horizon n = 2000 for algorithms applied to Test (iii) data
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Algorithm Parameters 0.025 Quantile Median 0.975 Quantile

FP-CUCB

λmax = 0.1 22.71 53.35 101.82
λmax = 1 59.48 106.59 193.57
λmax = 5 84.44 140.40 250.38
λmax = 10 91.32 151.69 263.00
λmax = 20 96.01 162.47 270.39
λmax = 40 98.81 172.28 284.63

Thompson Sampling

Mean=0.1, Variance=1 70.68 136.84 284.14
Mean=1, Variance=1 42.78 61.44 91.98
Mean=5, Variance=1 43.96 75.38 119.21

Mean=10, Variance=1 75.45 118.86 197.36
Mean=20, Variance=1 104.58 174.02 291.32
Mean=40, Variance=1 119.72 207.46 349.74

Mean=0.1, Variance=5 94.23 246.71 467.06
Mean=1, Variance=5 43.48 73.41 119.94
Mean=5, Variance=5 41.71 60.07 88.64

Mean=10, Variance=5 45.15 72.69 119.42
Mean=20, Variance=5 69.43 113.12 191.90
Mean=40, Variance=5 102.60 169.98 281.94

Mean=0.1, Variance=10 134.60 320.63 588.63
Mean=1, Variance=10 48.26 81.35 146.95
Mean=5, Variance=10 41.43 58.66 84.74

Mean=10, Variance=10 40.78 62.10 99.55
Mean=20, Variance=10 55.42 89.68 146.88
Mean=40, Variance=10 86.98 141.99 239.18

Greedy 664.28 1825.61 1999.89

Table 4: Quantiles of scaled regret at horizon n = 2000 for algorithms applied to Test (iv) data

30



References

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit
problem. In Conference on Learning Theory, pages 39–1.

Anantharam, V., Varaiya, P., and Walrand, J. (1987). Asymptotically efficient allocation rules for
the multiarmed bandit problem with multiple plays-part i: Iid rewards. IEEE Transactions on
Automatic Control, 32(11):968–976.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-Time Analysis of the Multiarmed Bandit
Problem. Machine Learning, 47(2-3):235–256.

Bernstein, S. (1946). The theory of probabilities.

Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A nonasymptotic
theory of independence. Oxford University Press.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret Analysis of Stochastic and Nonstochastic Multi-
Armed Bandit Problems. In Foundations and Trends in Machine Learning, 5(1):1–122.

Bubeck, S., Cesa-Bianchi, N., and Lugosi, G. (2013). Bandits with heavy tail. IEEE Transactions
on Information Theory, 59(11):7711–7717.

Burnetas, A. N. and Katehakis, M. N. (1996). Optimal adaptive policies for sequential allocation
problems. Advances in Applied Mathematics, 17(2):122–142.
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