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ABSTRACT
Following earlier work on the formalisation of Lerdahl and Jack-
endoff’s Generative Theory of Tonal Music (GTTM), we present
a measure of the salience of events in a reduction tree, based on
calculations relating the duration of time-spans to the structure of
the tree. This allows for the proper graphical rendition of a tree
on the basis of its time-spans and topology alone. It also has the
potential to contribute to the development of sophisticated digital
library systems able to operate on music in a musically intelligent
manner. We present results of an empirical study of branch heights
in the figures in GTTM which shows that salience calculated ac-
cording to our proposals correlates better with branch height than
alternatives. We also discuss the possible musical significance of
this measure of salience. Finally we compare some results using
salience in the calculation of melodic similarity on the basis of
reduction trees to earlier results using time-span. While the correla-
tion between these measures and human ratings of the similarity of
the melodies is poor, using salience shows a definite improvement.
Overall, the results suggest that the proposed definition of salience
gives a potentially useful measure of an event’s importance in a
musical structure.
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1 INTRODUCTION
Several theories of music describe musical structures in a hierar-
chical manner, most notably the Generative Theory of Tonal Music
(GTTM) [9] and the theory of Heinrich Schenker [15]. Some notes
in a piece of music have a greater structural importance than others.
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Different versions of a folk song or hymn tune often have slight
differences among the less important notes. Jazz improvisations can
introduce new decorative chords or simplify a harmonic sequence
by leaving out inessential chords. A variation of a melody in Classi-
cal music similarly preserves the basic structure while presenting a
different sequence of notes. This presents two kinds of challenge for
digital library systems for musicology. Firstly, systems will some-
times contain or use information about the hierarchical structure
of pieces of music, and the system needs to be able to present this
information to the user in a meaningful and effective manner. Sec-
ondly, in order to perform operations such as finding variations of
a theme, a system will need to have or calculate information about
the structural importance of events in pieces of music.

Lerdahl and Jackendoff present heirarchies in trees. The branch-
ing of the tree corresponds to the introduction of less essential,
more decorative, notes in the musical structure. The musical pro-
cess of reduction, progressively removing decorative elements to
reveal the essential musical structure, corresponds to progressively
pruning leaves from the tree. An example is shown in Figure 1
[9, Fig. 5.8, p. 115]. Schenker, by contrast, presents hierarchies in
levels which resemble standard music notation, where the higher
levels contain only the more structurally important notes. Lerdahl
and Jackendoff use a presentation like this also, calling it a ‘sec-
ondary notation’ [9, p. 117]. An extract of a corresponding example
is shown in Figure 2.

The two kinds of notation are clearly related. Derivation of a tree
structure from a Schenkerian analysis presenting levels is discussed
in [11, p. 416]. In the opposite direction, ideally one can derive a
level of reduction from a tree representation simply by cutting off
all the branches below an appropriately positioned horizontal line
and writing down the corresponding pitch events which remain,
as illustrated in Figure 1. However, trees are not always so simple,
and Lerdahl and Jackendoff confess that in their analysis of the
opening of Mozart’s G-minor symphony “the assignment of levels
in the time-span reduction [is] somewhat arbitrary.” [9, p. 258]
In this paper we propose a way to determine the salience of a
branch (corresponding to its structural importance)1 based on the
hierarchical structure of the tree and the durations of the pitch
events in the music.2

1Our use of the term ‘salience’ is different from that of Lerdahl and Jackendoff. They
use the term ‘surface salience’ and contrast it with ‘structural importance’ [9, p. 108–
109]. In his later book, Lerdahl uses the terms ‘salience’ and ‘stability’ to refer to
factors which contribute to, but do not of themselves determine, structural importance
[10, p. 313–321]. We prefer to use ‘salience’ as a synonym for ‘structural importance’
so as to have a single-word term for this important concept. The phrases ‘surface
salience’ and ‘psychoacoustic salience’ could be used for the factor Lerdahl refers to.
In summary, in our usage ‘salient’ means ‘important’ rather than ‘sticking out’.
2We do not take pitch information into account beyond its important influence on
the tree structure. Whether or not salience can be adequately calculated without
specifically taking pitch information into account is a question for future research.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/196587208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3273024.3273037
https://doi.org/10.1145/3273024.3273037
https://doi.org/10.1145/3273024.3273037


DLfM ’18, September 28, 2018, Paris, France Alan Marsden, Satoshi Tojo, and Keiji Hirata

Figure 1: Tree in GTTM with maximum time-spans, ex-
tracted from [9, Fig. 5.8, p. 115]. The horizontal lineswe have
added at the bottom of the figure show the maximum time-
spans. See Section 2 for further explanation.

Figure 2: Partial secondary notation corresponding to Fig-
ure 1, extracted from [9, Fig. 5.8, p. 115]. We have reversed
the order of levels b and c in order to conform to the verti-
cal order of Figure 1 and the normal order in Schenkerian
analyses.

This has potential applications in the field of digital libraries
for musicology by allowing reduction trees to be displayed algo-
rithmically with branch heights corresponding to the salience of
the events in the music. A digital symbolic representation of a re-
duction tree can therefore be given an appropriate graphical form.
An analysis tree could be graphically rendered on the fly from a
representation which gave just the structure of the tree and the
durations of the notes rather than requiring storage of an image of
the tree.

We hope that in the longer term our quantification of salience
can lead to more effective systems to derive structural analyses
from musical surfaces. This will in turn lead to more effective tools
for digital libraries for musicology where, as mentioned above, it is
necessary to deal with musical data in a musically intelligent fash-
ion (e.g., for determining similarity, recognising variations, finding
patterns or making summarisations). It could also contribute to
other applications such as generation of music through morphing
and elaboration.

In this paper we first discuss the concepts of reduction, tree
structure and salience (Section 2) and explain our motivation. Then
we present our essential proposal for quantifying salience in a hi-
erarchical structure represented by a binary tree (Section 3). This
is followed by a discussion of evident and possible principles con-
cerning branching height and the shape of trees (Section 4), and
we present evidence that the branch height used in the printed
illustrations in GTTM correlates well with our measure of salience
(Section 5). In Section 6 we discuss possible music-theoretic bases
for this measure of salience, drawing particularly on the idea of
musical information. Finally, as a first test of whether salience as
defined here has wider application than simply in the drawing of re-
duction trees, we present some evidence that salience can improve
the modelling of judgements of melodic similarity (Section 7) .

2 TREE STRUCTURE AND SALIENCE
GTTM has been widely influential, but it is not universally accepted
as a valid and reliable theory of musical cognition. (For a recent
survey see [5] and the special issue ofMusicae Scientiae dedicated to
a symposium on GTTM (vol. 14, issue 1_suppl, 2010). For discussion
of its cognitive validity see [8].) While the research reported here
is based on this specific theory, it is not completely dependent on it.
The findings apply to any theory which presents musical structure
in terms of binary trees. The fundamental idea of hierarchical music
structure is widely accepted, and supported by empirical evidence
drawn from sources ranging from human’s association of a musical
extract with its reduction [1, 13], to Classical variations [12], to
memory and performance errors [17].

The contrast mentioned above between tree notations and levels
(Lerdahl and Jackendoff’s ‘secondary notation’) can be re-expressed
as a question of whether salience is a total order (as implied by
levels) or only a partial order (as implied by trees). In other words,
given two note events a and b, where neither is a descendent of
the other (i.e., there is no exclusively downward or upward path
in the tree from one to the other), can their relative salience be
determined? A representation of musical structure in levels shows
relative salience in such circumstances, but a representation in a
tree does not, unless, as Lerdahl and Jackendoff’s diagrams imply,
the relative vertical positions of the branching points on the page
carry some meaning.

Our interest in the topic originates in our use of matrices to
represent tree structures [19]. The connections in a tree can be
represented in a matrix in which each row and column corresponds
to a pitch event in the music. A value greater than 0 in cell (i, j)
indicates that the event i is connected and subordinate to event
j. The structure of a tree can therefore be represented in a square
matrix with values 0 or 1 in cells as appropriate, and calculations
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( e1 e2
e1 l1 0
e2 l1 − l2 l2

) ( e1 e2
e1 l1 l2 − l1
e2 0 l2

)
Figure 3: Matrix representation with relation between MTS
and branch height [19, fig.4].

on the tree (such as determining whether or not an event a is on
the reduction path for event b, the ‘reachability’ relation between
two events) can be performed through algebraic operations on the
matrix.

In earlier work, the concept of maximum time-span (MTS)
has been shown to be useful [6, 18]. If a pitch event does not have
branching, i.e., there is no more subordinate pitch event and it is
a leaf of the tree, its MTS is the original pitch length. At the other
extreme, the MTS of the event that reaches the top of the tree is
the whole length of the music piece. We show MTSs in the bottom
of Figure 1 by thick gray lines. The conventions are: (1) the length
of each pitch represents maximum time-span, (2) the black line
represents a cadential retention, i.e., two pitch events are paired
and treated as one event, (3) a lower span is subordinate to its direct
higher span, (4) one of the two ends of each span must coincide
with an end of some upper spans, and (5) the spans on the same
horizontal level imply the same salience.

We speculate that a more useful matrix representation is possible
using not just the values 0 and 1, but values related to the MTS for
each event. In [19] we demonstrated how placing theMTS values on
the diagonal of the matrix allows matrix multiplication to be used
(as in matrices using only 0 and 1) to determine reachability without
destroying the MTS information in the matrix. What value should
be used off the diagonal to indicate connection between events?
This value should give some information about the relationship
between the events, just as the height of branching in a tree diagram
gives information about the relative structural importance of events,
by indicating the ‘level’ of an event. In [19] we proposed to use
the difference between the MTS of the superordinate event and the
MTS of the subordinate event. This allowed a simple relationship
between MTS and branch height (Figure 3).

However, keeping that simple relationship will lead, in some
circumstances, to tree diagrams which violate the basic principle
that structurally more important events branch from the stem at
a higher point than less important events. In Fig. 4 we show how
a structurally more important event (the last note in the second
example) would branch from the tree at a lower point than a less
important event (the second note in that example).

Figure 4: Well formed tree and badly formed tree with cross-
ing branches.

3 QUANTIFYING SALIENCE
Before introducing our solution to this problem, we explain the
terms we will use. A branching point in a time-span tree structure
corresponds to a point in the corresponding process of reduction
when one of two events which make up a time-span is selected
as subordinate to the other event, leaving that event as the ‘head’
of the new combined time-span. Alternatively, we can view the
tree as representing a process of generation rather than reduction,
and the branching point corresponds to a point in this generative
process when a single longer time-span is split into two time-spans,
introducing a new pitch event which ornaments the superordinate
event without replacing its structural role, just as a trill or grace
note in performance ornaments the principal written note.

There are thus three time-spans involved at every branching
point, a long one corresponding to the ‘parent’ and two shorter
ones corresponding to the ‘children’. The relationship of these three
time-spans is illustrated in Figure 5, in which we draw the time-
spans across the corresponding branches instead of below them as
we have in other figures. The time-span of the subordinate child
is the maximum time-span (MTS) of the event corresponding to
the new branch, the longest time-span in which that event is the
head (most salient). The duration of this time-span is the sum of the
durations of all the surface events which make up this time-span.
The duration of the time-span of the superordinate child is similarly
the sum of the durations of all the surface events which make up
that time-span, but this is not that event’s maximum time-span.
(Because this is the superordinate child, the event corresponding
to this child is also the head of the time-span corresponding to this
branching point, the parent time-span (see below), which must be
longer in duration.) We call this instead the intermediate time-
span (ITS), which is the longest time-span of which the event is
head up to that point in the tree. The three time-spans involved in
a branching point are therefore the MTS of the subordinate child,
the ITS of the superordinate child, and the time-span of the parent,
which we will call the parent time-span (PTS), which is the union
of the MTS and ITS of the two children.

At the branching point above this one, the PTS becomes either
the MTS (if this event is the subordinate child, or indeed if there
is no branching point above) or the ITS at that branching point (if
this event is the superordinate child). An event (corresponding to
a branch or stem of the tree) thus has one MTS, and zero or more



DLfM ’18, September 28, 2018, Paris, France Alan Marsden, Satoshi Tojo, and Keiji Hirata

Figure 5: Illustration of the relationship of maximum time-
span (MTS), intermediate time-span (ITS) and parent time-
span (PTS) at a branching point. The salienceof a branch is
the maximum of the ITS and MTS at the point where the
branch joins to the tree.

ITSs. To know the ITS to be used in a calculation, we need to specify
the branching point concerned as well as the event in question.

As discussed above, branch height ideally corresponds to salience
or structural importance. We propose to define the salience of an
event as the duration of the maximum of the time-spans of the two
children at the branching point when the event is generated, or
where it is reduced, i.e., the greater of the MTS of the subordinate
child (the event on the branch) and the ITS of the superordinate
child (the event on the stem) at that branching point. (In the case
of an event which is never reduced, i.e., the root of the tree, the
salience is defined as equal to the event’s MTS.) The salience of
an event is thus always greater than the salience of every event
which occurs below the branching point where that event connects
to the tree structure. We can therefore use salience as a measure of
branching height and be sure that trees malformed in the manner
of Figure 4 will never occur.

We emphasise that the salience of an event, by this definition,
does not depend on the duration of the event alone. The event’s
duration places a lower bound on the salience (it can never be less
than the event’s duration) but the salience can depend also on the
duration of its sibling event. Thus while we do not directly measure
other factors such as pitch, to the extent that these factors influence
the branching structure of the tree, they also influence the salience
of events.

4 BRANCH HEIGHT
In this section we examine salience as defined above in relation to
the height of branches in the display of a tree. By ‘height’ we mean
here the vertical distance on the page between the leaves of the tree
and the point where the new branch branches off the tree. This is
different from the use of the term ‘height’ in classical graph theory,
where height is calculated by counting what we here call branching
points and so depends only on the structure of a tree, not on how
it is displayed. Below we will use the term ‘depth’ in the classical
manner. In summary, according to our usage here, height depends
on how a tree is displayed, depth depends only on the structure of
the tree.

Lerdahl and Jackendoff do not specify any details for how a
tree should be drawn but we can infer certain principles from the
examples in their book.

• All branches are straight lines.
• There are no crossing branches.
• The leaves of the tree (the ends of the lines) are positioned
on an invisible horizontal line at the bottom.

• The leaves are ordered along that line according to their
temporal position in the music represented.

• The root of the tree is at the top, positioned approximately
centrally in relation to the leaves.

Although these principles constrain the height of each branch
relative to the total height of the tree, they are not sufficient to
determine that height. Certainways of calculating branch height are
guaranteed to ensure that there are no crossing branches, provided
the other principles (or, to be precise, all except the last) are also
followed. We have tested three candidate methods which have this
property, listed below. In each of these hmax is the height of the
highest branching point in the tree and MTSmax is the duration
of the MTS of the head of the tree (i.e., the duration of the entire
piece of music analysed). The objective is to determine hbranch,
the height of the point where the branch in question connects to
the tree.

(1) Depth. Let the depth of a branching point be the number
of branching points above it in the tree. The height of a
branching point could be related linearly to its depth. Let
dbranch be the depth of the branching point in question and
dmax be the greatest depth of any branching point in the
tree. By this principle the height of each branch is calculated
as

hbranch =
hmax · (dmax − dbranch + 1)

dmax + 1
Since, by definition, the depth of any branching point is less
than the depth of all the branching points below it, there can
be no crossing branches.

(2) PTS. This principle relates branch height to the duration of
the parent time-span at the branching point (PTSbranch).
By this principle the height of each branch is calculated as

hbranch =
hmax · PTSbranch

MTSmax

By definition, PTSbranch must be greater than the ITS and
MTS at this point (and at all branching points below) and
since the value of PTS at the next branching points be-
low (if any) is equal to these ITS and/or MTS values, all
lower branches will connect at a lower height, and crossing
branches are avoided.

(3) Salience. This principle relates branch height to salience.
Let sbranch be the salience at a branching point and smax
be the salience at the highest branching point in the tree
(i.e., the salience of the highest branch which is not the root
of the tree). The value of smax is constrained by MTSmax
according to the inequality between PTS and salience shown
in Figure 5. By this principle the height of each branch is
calculated as

hbranch =
hmax · sbranch

smax
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Figure 6: Examples of trees drawn according to the three can-
didate height principles. Top: Depth; Middle: PTS; Bottom:
Salience.

Since salience is the maximum of MTS and ITS at each point,
is must be greater than the salience at all branching points
below, and crossing branches are once again avoided.

Examples of trees drawn according to these three principles are
shown in Fig, 6.

Determining branch height by branching depth, the first candi-
date above, results in trees where levels can be separated by equal
vertical distances. The tree from GTTM shown in Figure 1 shows
approximately this property.

One disadvantage of trees shaped like this is that subtrees become
progressively more skewed the closer they are to the beginning and
end of the music. In the tree in Figure 1, for example, the subtrees
around levels b and c representing the first three beats, middle two
beats, and last three beats, respectively, all have a highest point
which is off to one edge of the corresponding time-span or, in the
case of the last of these three subtrees, even beyond the edge of the

time-span. Under this method of calculating branch height, subtrees
are not similar in their basic shape to the full tree.

Determining branch height by PTS, however, causes the height of
each branching point to be related to the duration of the time-span
covered by that point, and so all trees and subtrees are, on average,
formed of similarly shaped triangles. A disadvantage, though, is
that levels are now compressed towards the bottom of the tree and
the top of the tree diagram consists mostly of blank space.

Since salience is constrained by PTS (see Figure 5), trees drawn
according to the third formula above have similar basic properties to
those described above for trees where branch height is determined
by PTS.

5 BRANCH HEIGHTS IN GTTM
To test the three proposals described in Section 4, the branch heights
of the 28 trees in GTTM where the relative duration of events could
be determined were measured. To do this, we placed a ruler along
the bottom of each tree (which revealed that in a few cases the leaves
are not exactly on a horizontal line, but the deviation is never more
than 2mm) and used a second ruler held at right angles to this
one to measure the height of each branching point to the nearest
millimetre. This height, the duration of the surface time-span at
the end of the branch and the direction of the branching (left or
right) were recorded. In cases where a tree did not give a complete
analysis for a piece, because the lower levels were not shown, a
judgement was made about the most musically appropriate time-
span to measure, taking into account other information available
such as any notation showing grouping andmetre. Specially written
software read this record, constructed each tree, and calculated the
lengths of time-spans and saliences at each branching point.3

To facilitate analysis, branch heights were normalised by dividing
each height by themaximumheight in the corresponding tree. Time-
span durations and saliences were normalised by dividing by the
total duration spanned by the corresponding tree (the MTS of the
root of the tree).

Table 1 shows the correlations calculated from the resulting 394
data points. Assuming that the diagrams in GTTM are drawn from
a population of all possible reduction-tree diagrams, the variance
in the correlation of actual branch height with calculated branch
height for each method can be estimated using jackknife resam-
pling [2]. The significance of the differences shown in Table 1 was
calculated using a two-tailed Student T-test. All differences were
found to be significant with p < 0.001. We can therefore conclude
that PTS and salience are correlated more strongly with branch
height in the trees in GTTM than is depth. Of these two, salience has
the slightly stronger correlation suggesting it is the best candidate
to use when calculating the branch height to use when drawing
trees.4

3All the data and software referred to in this paper can be found at
http://www.lancaster.ac.uk/people/marsdena/research/salience.
4An examination of the correlations within each tree diagram rather than across the
dataset as a whole presents a somewhat different picture. PTS and Salience once again
clearly outperform Depth (p < 0.01), but they do not significantly differ from each
other when correlations are compared in this way. Within each tree, there are likely to
be other factors affecting branch height which should be examined in a deeper study
of the graphic display of reduction trees.
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Table 1: Correlation with Branch Height

Measure Coefficient of correlation

Depth 0.826
PTS 0.912
Salience 0.926

Figure 7: Equal and unequal divisions of a time-span.

6 SALIENCE IN MUSICAL INFORMATION
In this section and the following one, we consider whether salience
is not only useful for drawing trees but also has a deeper musical
meaning.

The issue we consider here is the salience of equal and unequal
divisions of a time-span. The salience of an unequal division of a
time-span is, according to our definition, always greater than the
salience of an equal division of the same time-span, because the
maximum of the two child time-spans will always be greater in an
unequal division than in an equal division. For example, in the trees
shown in Figure 7 the salience of the second note in the second tree
is higher than the salience of the second note in the first tree.

It seems counter-intuitive that a short note should bemore salient
than a long note. However, it is reasonable that the salience of an
event should depend not just on the properties of the event itself
but also on the context in which that event is placed. A single dot
on an otherwise blank piece of paper is much more salient than a
similar sized dot on a piece of paper with lots of other marks.

According to Shannon’s information theory, the quantity of
information in an event is inversely related to its likelihood [16]. If
a time-span is divided, the most likely division is into equal parts, so
an unequal division contains more information than an equal one.
To specify an equal division only requires stating that a time-span
is divided. To specify an unequal division also requires specification
of the proportion into which it is divided.

Most music is characterised by a metre such as 4/4 or 6/8. Nor-
mally this is explained as a pattern of beats but in practice not every
beat corresponds to an actual event in the music. A more consistent
definition of metre is that it sets a framework of probabilities for
when events are likely to occur in the music [3]. Following the logic
of the paragraph above, events which do not fall on the main beats
are less likely, and so carry more information, than events which
fall on the main beats. In the case of simple binary metres like 4/4
and 2/4, this means that salience and information content (at least
in terms of timing and metre) are consistent in simple two-note
configurations, provided the first note falls on a strong beat than

the second, as is most common. In the case of ternary metres such
as 3/4, however, salience and information content diverge. In these
cases division of the time-span of a bar (measure) into two equal
halves is unlikely (high information content) but still of minimum
salience. This is a topic we will need to revisit in future research.

7 SALIENCE AND SIMILARITY
In this sectionwe revisit data onmelodic similarity used in an earlier
study of distance measured according to the relations between
reduction trees. The melodies concerned were derived from a set of
variations, so it can be assumed that each melody has some degree
of similarity to others in the set. Human ratings of the similarity
between each pair of melodies were obtained from a panel of 11
listeners. For details, see [6, 7].

We have defined operations of meet (⊓) and join (⊔) on two
reduction trees, finding, respectively, the maximum tree which is
common to the two original trees and the minimum tree which is
an elaboration of both original trees [18]. This operation provides
a basis for the morphing of one melody into another and for mea-
surement of the distance between two melodies on the basis of the
steps required to transform the tree of one melody into that of the
other by first removing branches from the first tree to arrive at the
meet tree and then adding new branches to arrive at the second
tree [7].

The distance between two trees x and y can then be measured as
the quantity of information added or taken away in transforming
tree x into tree y by first removing branches from x to arrive at the
tree which is x ⊓y and then adding branches to that to arrive at the
tree y. If h(a) is the total quantity of information in a, the distance
between two trees d(x,y) can be calculated as

d(x,y) = h(x) − h(x ⊓ y) + h(y) − h(x ⊓ y)

In earlier work, the quantity of information was taken to be mea-
sured by the time-span of branch added or removed (more strictly
the time-span of the head of the branch added or removed). In
other words, h was equivalent to calculating the total maximum
time-span (tmts) of a tree, the sum of the durations of the maximum
time-spans of all the events in the tree [18].

One problem with this simple approach is that when compar-
ing two trees cases arise when the time-spans of corresponding
events are not equal and cases arise when the branching does not
correspond (e.g., one tree branches to the right where the other
branches to the left). In order to allow a distance to be calculated
between any two trees, the calculation of meet is generalised to
effectively ignore branches which do not correspond and to define
the time-span of events in the meet tree to be that time-span which
is common to both trees (i.e., the temporal overlap) [6].

In earlier work, this method of measuring melodic similarity was
tested on the melodies fromMozart’s variations of ‘Ah, vous dirai-je,
maman’, K.265/300e. A panel of listeners (11 university students)
also rated the similarity of the melodies, and the two sets of distance
measures were compared using multidimensional scaling (MDS).
Similar clusters emerged in the MDS results for the two measures,
indicating that the reduction distance had some musical validity
[6, 7].

Herewe examinewhether using salience, as defined above, rather
than time-span might produce a better measure of distance based
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on reduction. Following the logic of the previous section, we hy-
pothesise that salience provides a better measure of the quantity
of information added or removed when transforming tree x into
tree y via x ⊓ y. We tested three ways of measuring this quantity
of information:

(1) Time-span overlap (TSO). This is the original method,
where the time-span of an event in the meet tree is the over-
lap of the corresponding time-spans in the original trees
(possibly null) and h is the total maximum time-span.

(2) Time-span duration (TSD). In this method,h is once again
the total maximum time-span of a tree, but the duration of a
time-span in the meet tree is the lower of the durations of
the corresponding time-spans in the original trees. In other
words, how much the corresponding time-spans overlap is
ignored and the shorter of the two corresponding time-spans
is used in the meet tree.

(3) Salience (SAL). In this method, h is the sum of the salience
of all the events in a tree, and the salience of a branch in the
meet tree is the lower of the saliences of the corresponding
branches in the original trees.

We also took the opportunity to examine the effect of a modifica-
tion to themeet algorithm as defined in [6]. In the original definition,
when the branching in two trees does not correspond (i.e., one tree
has right-branching where the other has left-branching), the two
branches are excluded from the resulting meet tree. In Prolog code,
the recursive part of the original algorithm is:

meet (X , Y , Meet ) :−
X = (Xp > Xs ) ,
Y = ( Yp > Ys ) , ! ,
meet ( Xp , Yp ,Mp) ,
meet ( Xs , Ys , Ms ) ,
Meet = (Mp > Ms ) .

meet (X , Y , Meet ) :−
X = ( Xs < Xp ) ,
Y = ( Ys < Yp ) , ! ,
meet ( Xp , Yp ,Mp) ,
meet ( Xs , Ys , Ms ) ,
Meet = (Ms < Mp ) .

meet (X , Y , Meet ) :−
X = (Xp > _ ) ,
Y = ( _ < Yp ) , ! ,
meet ( Xp , Yp , Meet ) .

meet (X , Y , Meet ) :−
X = ( _ < Xp ) ,
Y = ( Yp > _ ) , ! ,
meet ( Xp , Yp , Meet ) .

The operators < and > are used in the Prolog representation of a tree
structure for left and right branching, respectively. The first two
clauses above therefore handle cases where the branching in the
two trees matches, and the second two clauses handle cases where
the branching does not match. We experimented here with a modifi-
cation of the algorithm in the cases of non-matching branching. The
modified algorithm selects the ‘maximum’ of two possible results,

each of which excludes the branch in just one of the trees. This ef-
fectively allows a realignment in the correspondence of time-spans
in the two input trees, so we call this meet with realignment. The
adapted algorithm replaces the last two clauses with the following:

meet (X , Y , Meet ) :−
X = (Xp > _ ) ,
Y = ( _ < Yp ) , ! ,
meet (X , Yp , Meet1 ) ,
meet ( Xp , Y , Meet2 ) ,
maxh ( Meet1 , Meet2 , Meet ) .

meet (X , Y , Meet ) :−
X = ( _ < Xp ) ,
Y = ( Yp > _ ) , ! ,
meet (X , Yp , Meet1 ) ,
meet ( Xp , Y , Meet2 ) ,
maxh ( Meet1 , Meet2 , Meet ) .

where maxh/3 is a predicate which ensures the third argument is
whichever of the first two arguments maximises the value of h
(however that is defined; see above). When h is measured by the
original method (called TSO above), the result is rarely different
because the maximum overlap in time-spans generally arises from
not realigning their correspondence. The differences in the cases of
the other two methods of calculating h are generally greater.

Finally, a method of normalising distances is required, because
the raw distance between two large and complex trees is potentially
much greater than that between two simple trees. A method of
calculating a normalised similarity proposed in earlier work [4] is
as follows:

sim1(x,y) = 1 −
h(x) − h(x ⊓ y)

2 · h(x)
−
h(y) − h(x ⊓ y)

2 · h(y)
We used this method of normalisation and also experimented with
a second method, which gives equal weight to the ‘lost’ and ‘added’
information but is not strictly a normalisation since it could result
in a value less than 0:

sim2(x,y) = 1 −
h(x) − h(x ⊓ y) + h(y) − h(x ⊓ y)

max(h(x),h(y))
The previous method of comparing computed distances with

human similarity ratings through MDS plots does not afford a sim-
ple way of comparing the efficacy of one method of computing
distances with another. We have therefore measured the correla-
tion between the average human ratings of the similarity of each
pair of melodies and the normalised similarities between those
melodies, computed by the various different methods described
above. The coefficients of correlation are shown in table 2. Using
jackknife resampling to estimate variance, the differences between
the three cataegories TSO, TSD and SAL were found to be highly
significant (p < 0.001), but within categories the only significant
differences are in SAL, where the difference between strict+sim1
and realigned+sim2 is highly significant and other differences ex-
cept that between realigned+sim1 and strict+sim2 are marginally
significant (0.037 < p < 0.073). The correlation coefficients are
all so low as to indicate effectively no correlation at all, showing
that there are many other factors in determining similarity ratings
than reduction distance. (Recall that this method takes no account,
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Table 2: Correlation with Similarity Ratings

h measure Meet sim1 sim2

TSO strict -0.109 -0.116
TSO realigned -0.107 -0.115
TSD strict -0.042 -0.041
TSD realigned -0.040 -0.036
SAL strict 0.052 0.072
SAL realigned 0.071 0.090

when determining the reduction distance, of changes in the pitch
of notes when transforming one melody to the other. On the other
hand, pitch is important in determining the tree structures of the
two melodies, so this is not a measurement of rhythmic similarity
alone.) Nevertheless, the correlations when using salience in the
calculation of distance are greater and in the expected direction,
especially if realignment is allowed in calculating the meet tree.
The evidence is not strong, but it does suggest that salience is of
potential value in calculating the quantity of information lost and
added when computing reduction distance.

8 CONCLUSION
We have proposed a new definition of the salience of a branch in a
tree structure as the maximum of the durations of the time-spans of
the events which combine at the point where a branch connects to
the tree. We have presented some arguments and empirical results
to support our case that this is a potentially useful definition.

Our strongest evidence concerns the use of this measure of
salience in determining the height of branches when drawing tree
diagrams. This has a potential direct application in musical digital
library systems since it gives a way to calculate an appropriate
height for each branch from the essential information in the tree
structure. Given a representation of a piece of music and its tree-
structure analysis, for example in a format such as proposed by
Rizo and Marsden as an extension to MEI [14], it would be possi-
ble for a digital library system using this measure of salience to
render analysis trees on the fly without needing to store an image
representation of the tree.

We propose that this measure of salience is also of potential value
in determing the ‘quantity of information’ carried by a branch in a
tree structure. A comparison of the correlations with human ratings
of melodic similarity in a set of variations by Mozart with similarity
computed using salience and other methods gave support to this
claim, but the evidence is not strong.

The results and discussion here show three areas demanding
further research. Firstly, as observed at the end of Section 6, while
our definition of salience seems to correspond well to musical
salience with respect to rhythm in the case of binary metres, this
is not so for ternary metres. Secondly, as noted in footnote 1 and
shown by the results for melodic similarity, research is required
on how to account for pitch information when calculating salience.
Thirdly, further research is required into reduction distance as a
measure of melodic similarity.

Looking further ahead, we hypothesise that salience as defined
here could be used in the process of analysis, i.e., deriving a tree

structure from the sequence of notes making up the surface of a
piece of music. Salience in music has been related to several other
musical details, including relationships of pitch and harmony [10].
In the process of analysis, correlating salience as indicated by other
details with the salience as calculated from the tree structure might
be a way of selecting between possible alternative analyses.
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