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ABSTRACT 24 

Soil organic matter (SOM) content is a key indicator of riparian soil functioning and in the 25 

provision of ecosystem services such as water retention, flood alleviation, pollutant attenuation 26 

and carbon (C) sequestration for climate change mitigation. Here, we studied the importance 27 

of microbial biomass and nutrient availability in regulating SOM turnover rates. C stabilisation 28 

in soil is expected to vary both vertically, down the soil profile and laterally across the riparian 29 

zone. In this study, we evaluated the influence of five factors on C mineralization (Cmin): (i) 30 

substrate quantity, (ii) substrate quality, (iii) nutrient (C, N and P) stoichiometry, (iv) soil 31 

microbial activity with proximity to the river (2 to 75 m), and (v) as a function of soil depth (0 32 

– 3 m). Substrate quality, quantity and nutrient stoichiometry were evaluated using high and 33 

low molecular weight 14C-labelled dissolved organic (DOC) along with different nutrient 34 

additions. Differences in soil microbial activity with proximity to the river and soil depth were 35 

assessed by comparing initial (immediate) Cmin rates and cumulative C mineralized at the end 36 

of the incubation period. Overall, microbial biomass C (MBC), organic matter (OM) and soil 37 

moisture content (MC) proved to be the major factors controlling rates of Cmin at depth. 38 

Differences in the immediate and medium-term response (42 days) of Cmin suggested that 39 

microbial growth increased and carbon use efficiency (CUE) decreased down the soil profile. 40 

Inorganic N and/or P availability had little or no effect on Cmin suggesting that microbial 41 

community growth and activity is predominantly C limited. Similarly, proximity to the 42 

watercourse also had relatively little effect on Cmin. This work challenges current theories 43 

suggesting that areas adjacent to watercourse process C differently from upslope areas. In 44 

contrast, our results suggest that substrate quality and microbial biomass are more important in 45 

regulating C processing rates rather than proximity to a river. 46 

Keywords: recalcitrant carbon, nitrogen, phosphorus, nutrient cycling, subsoil.  47 



Introduction 48 

Agricultural grasslands represent one of the biggest managed stores of carbon (C) in the 49 

terrestrial biosphere (Jones and Donnelly 2004). Further, it is widely accepted that soil organic 50 

C (SOC) underpins a range of regulating, provisioning, cultural and supporting ecosystem 51 

services in these habitats (Adhikari and Hartemink 2016). It is therefore vital that we preserve 52 

SOC levels in grassland landscapes to ensure continual delivery of these services. However, 53 

this requires a good understanding of the factors that regulate C turnover and to identify what 54 

management practices promote greater SOC retention. 55 

While below-ground respiration represents a good general indicator of SOC turnover, 56 

it provides little indication as to whether the C is of plant or microbial origin and from where 57 

within the soil profile the CO2 originates (Robert 2002; van Hees et al. 2005; Rui et al. 2016). 58 

Recent research suggests that C dynamics differ through the soil profile and, albeit 59 

controversial, the processes regulating C storage in topsoils and subsoils may be different 60 

(Salome et al. 2010; Sanaullah et al. 2011). Some authors have suggested that different 61 

microbial patterns at depth are due to a decrease in substrate quality (more recalcitrant and less 62 

biodegradable) and are thus only able to support small, specialist microbial populations (Rovira 63 

and Vallejo 2002; Salome et al. 2010). Other authors support the idea that subsoil microbial 64 

communities are more C efficient due to a permanent limitation of available substrate (Fierer 65 

et al. 2003; Blagodatskaya et al. 2007). Studies comparing C responses within the soil profile, 66 

however, have often found contradictory results. For example, C addition has been shown to 67 

induce both positive and negative priming of native SOC (Kuzyakov 2002; Zhang et al. 2015; 68 

Wordell-Dietrich et al. 2017). This highlights our lack of knowledge about how, and to what 69 

extent, differences in microbial composition, substrate quality and also microbial activity 70 

influence C and nutrient turnover within the soil profile.  71 

The availability of inorganic nutrients (e.g. N, P, S) in soil has also been shown to be a 72 

key factor regulating rates of SOC turnover (Creamer et al. 2016). In this context, fertiliser 73 



addition to grasslands can be expected to significantly alter the ratio of C to other essential 74 

nutrients (nutrient stoichiometry). If the stoichiometry (e.g. C:N:P ratio) approaches the 75 

optimal ratio required for microbial cells, and there are no other limiting factors (e.g. pH, water, 76 

oxygen availability), then microbial growth will occur leading to C storage (Cleveland and 77 

Liptzin 2007; Fierer et al. 2003; Sinsabaugh et al. 2013). As the stoichiometry of microbial 78 

groups in soils is different (e.g. fungi versus bacteria), the microbial response to fertiliser 79 

addition may differ both horizontally and vertically (topsoil vs. subsoil), due to heterogeneous 80 

and localised shifts in microbial community composition.  81 

The transitional area between aquatic and terrestrial ecosystems (e.g. riparian areas) are 82 

thought to play a key role in SOC decomposition due to having potentially greater microbial 83 

specialization which has evolved in response to high-frequency disturbance regimes such as, 84 

fluctuations of aerobic/anaerobic conditions (Gregory et al. 1991; Clinton et al. 2002; Lewis et 85 

al. 2003). Additionally, flood pulses spreading out across the riparian zone have been shown 86 

to be the precursor for intermittent cycles of organic matter (OM) accumulation or abrupt 87 

removal (Acuna et al. 2004; Naiman et al. 2010) therefore, these areas are expected to have 88 

higher respiration rates due to microbial communities responding rapidly to environmental 89 

conditions (Tufekcioglu et al. 1998). 90 

Within the context of a grassland riparian transect, the main objectives of our study were: 91 

(1) to test how nutrient (C, N and P) quantity and stoichiometry affects the rate of C 92 

mineralization (Cmin) down the soil profile; (2) to explore how substrate quality and 93 

stoichiometry affects the turnover of both low and high molecular weight (MW) DOC; (3) to 94 

assess the influence of soil depth (0 - 3 m) on rates of Cmin; and (4) to evaluate the influence of 95 

proximity (2 - 75 m) to the river on C turnover rates. We hypothesized that nutrient limitation 96 

would be a greater constraint to C turnover in subsoils relative to topsoils and that this would 97 

be most apparent for labile forms of C which should drive faster microbial growth. We also 98 



hypothesised that C turnover would be greatest closest to the river due to it being a zone of 99 

higher nutrient enrichment.  100 

 101 

Materials and methods 102 

Study site 103 

The area of study is located within the Conwy Catchment, North Wales (UK) (53°12'5.33"N 104 

3°46'54.66"W) (Fig. S1). A detailed description of the catchment can be found in Emmett et 105 

al. (2016), Sharps et al. (2017) and de Sosa et al. (2017). The experimental site comprised a 3 106 

ha typical improved grassland hillslope (mean slope of 20%) used for intensive livestock (sheep 107 

and cattle) production. The soil is free draining and classified as a Eutric Endoleptic Cambisol 108 

(WRB 2014) and the dominant vegetation consists of Lolium perenne L. and Trifolium repens 109 

L. The mean annual rainfall is 1230 mm (based on 30-year average 1961–1990 data from the 110 

UK Met Office) and the mean annual temperature (at 30 cm depth) is 8°C (based on 30-year 111 

average 1981–2010 data from the UK Met Office).  112 

 113 

Soil core sampling  114 

Three 75 m long transects, 20 m apart, were identified across the hillslope, running 115 

perpendicular to the river (Fig. 1). Along each transect, intact soil cores were extracted at 2, 12 116 

and 75 m (from this point onwards in the manuscript, these are referred to as distance 1, 2 and 117 

3, respectively) using a Cobra percussion hammer corer (Van Walt Ltd, Haslemere, Surrey, 118 

UK) in May 2016. The total length of extractable core was determined according to the 119 

maximum depth of the soil profile (presence of bedrock) or until an impermeable (e.g. clay 120 

layer) boundary as determined by a geophysical survey (Fig. S2-S3) was reached (distance 1 = 121 

1 m total core length, distance 2 = 2 m total core length and distance 3 = 3 m total core length; 122 

n = 18 × individual 1 m core lengths). Intact soil cores were extracted in 1 m lengths (4 cm 123 



diameter; total cores n = 18) and wrapped in thin-walled polyethylene (PE) sleeves to maintain 124 

core integrity and immediately transferred to the laboratory and stored at 4°C prior to analysis. 125 

 126 

Geophysical survey 127 

Electrical geophysical surveys were carried out in order to assess major lithological units at the 128 

site. Six parallel 94 m long transects of 48 electrodes were used with a Syscal Pro (Iris 129 

Instruments, Orleans, France) to perform electrical resistivity tomography (ERT) surveys. A 130 

dipole-dipole electrode configuration (Binley 2015) was used to maximise sensitivity to lateral 131 

variability at the site. ERT data were modelled using the R2 inverse code 132 

(http://www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm) to produce 2D vertical sections 133 

of resistivity to a maximum soil depth of 10 m.  134 

 135 

General soil characterization 136 

Soil cores were divided into depth intervals of 0-15, 15-30, 50-100, 100-150, 150-200 and 250-137 

300 cm (from this point onwards in the manuscript, these are grouped and referred to as topsoil 138 

(0-30 cm), midsoil (50-100 cm), and deepsoil (100-300 cm), respectively), and sieved (< 5 139 

mm) in order to remove stones and any plant material and to ensure sample homogeneity. This 140 

mesh size was chosen as it minimizes changes in microbial activity (Jones and Willet 2006). 141 

Soil moisture content (MC) was determined gravimetrically (24 h, 105 °C) and soil organic 142 

matter content (SOM) was determined by loss-on-ignition (LOI) (16 h, 450 °C). Soil pH and 143 

electrical conductivity (EC) were measured using standard electrodes in a 1:2.5 (w/v) soil-to-144 

deionised water mixture. Exchangeable ammonium (NH4-N) and nitrate (NO3-N) in soil were 145 

determined with 0.5 M K2SO4 extracts (1:5 w/v) via the colorimetric procedure of Mulvaney 146 

(1996) and the vanadate method of Miranda et al. (2001), respectively. Phosphate was 147 

quantified with 0.5 M acetic acid extracts (1:5 w/v; Fisher et al. 1998) following the ascorbic 148 

acid-molybdate blue method of Murphy and Riley (1962) and total C (TC) and N (TN) were 149 



determined with a TruSpec® elemental analyser (Leco Corp., St Joseph, MI). Dissolved organic 150 

C (DOC) and total dissolved N (TDN) were quantified in 1:5 (w/v) soil-to-0.5 M K2SO4 151 

extracts using a Multi N/C 2100 TOC analyzer (AnalytikJena, Jena, Germany). Microbial 152 

biomass-C (MBC) was measured using the fumigation-extraction method (Vance et al. 1987) 153 

after 72 h of fumigation (kec=0.45 and ken =0.54). Samples were analysed for phospholipid fatty 154 

acid (PLFA) concentration according to the 96-well format, high throughput method of Buyer 155 

and Sasser (2012) (Microbial ID Inc., Newark, DE). Sorption of NH4
+ was assessed as 156 

described by Marsden et al. (2016). In brief, six concentrations ranging from 5-200 mg NH4-157 

N l−1 in 0.01 M CaCl2 were added to 0.5 g of field moist soil (1:5 w/v soil-to-extractant ratio) 158 

and shaken for 0.5 h at 150 rev min-1 on a rotary shaker. Subsequently, an aliquot (1.5 ml) was 159 

centrifuged (10,000 g; 5 min) and the supernatant analysed as described above. The total 160 

amount of NH4
+ adsorbed was determined by the difference between the initial amount of NH4-161 

N added and the final remaining in solution. Any NH4
+ not recovered in the solution was 162 

assumed to be adsorbed onto the solid phase or taken up by microbial cells. Phosphorus (P) 163 

sorption was determined following an adapted method of Nair et al. (1984). In brief, 1.0 g field 164 

moist soil was shaken in 0.01 M CaCl2 (1:25 w/v soil-to-extractant ratio) containing known 165 

concentrations of P (0, 0.5, 1, 5, 10, 50 mg P l-1 as Na2HPO4) spiked with 33P (0.06 kBq ml-1; 166 

PerkinElmer Inc., Waltham, MA) to determine the amount of P adsorbed onto the solid phase. 167 

These concentrations were selected due to their likelihood of being encountered in natural 168 

systems. Samples were shaken for 2 h (150 rev min-1, 25°C) on an orbital shaker. This time 169 

was chosen in order to assess intermediate equilibrium conditions (respective equilibrium time 170 

established in Santos et al. 2011). After 2 h, 1.5 ml of supernatant was removed and centrifuged 171 

(10,000 g, 5 min). Subsequently, 1 ml of supernatant was mixed with 4 ml of Optiphase HiSafe 172 

3 liquid scintillation fluid (PerkinElmer Inc.) and the amount of 33P activity remaining in 173 

solution measured using a Wallac 1404 liquid scintillation counter (Wallac EG & G, Milton 174 

Keynes, UK). The total amount of P adsorbed was determined by the difference between the 175 



initial 33P activity added and the final amount of 33P remaining in solution. Any P not recovered 176 

in the solution was assumed to be sorbed onto the soil’s solid phase. To estimate the soil 177 

absorption maxima of P, sorption isotherms were examined according to the linearized form of 178 

the Langmuir equation (Reddy and Kadlec 1999; Mehdi et al. 2007).  179 

 180 

Preparation of nutrient solutions 181 

To investigate how nutrient stoichiometry affected C mineralization (Cmin) rates, soil samples 182 

collected from the hillslope were incubated with N, P and N+P together, in combination with 183 

three different C amendments, namely:  184 

(1) High dose of low MW DOC 185 

(2) Low (natural abundance) dose of low MW DOC 186 

(3) Medium (natural abundance) dose of high MW DOC  187 

We tested four different nutrient additions for each C amendment  188 

(1) C only addition (C)  189 

(2) C and N addition (CN)  190 

(3) C, N and P addition (CNP), and  191 

(4) C and P addition (CP)  192 

C, N and P treatments were added in mass ratios of C:N = 9 (N in the form of NH4NO3) and 193 

C:P = 85 (P in the form of Na2HPO4) to represent the average stoichiometric ratios of the soil 194 

microbial biomass in grassland systems (Cleveland and Liptzin 2007). 195 

The different C amendments were chosen to simulate distinct soil C conditions within 196 

the soil. For the high dose C experiment, 300 mM C (specific C addition of 36 µg C g-1 dry 197 

soil) was chosen to represent soil C released during root cell lysis and would likely stimulate 198 

microbial growth (Jones and Darrah 1994; Tabuchi et al. 2004). For the low (natural 199 

abundance) C experiment, a total of 6 µM C (specific C addition of 0.72 ng C g-1 dry soil) was 200 

added to simulate the background C concentrations found under natural conditions (Boddy et 201 



al. 2007). Glucose was selected as a labile source of low MW DOC for the low and high 202 

(hotspot) conditions as it represents a common root exudate dominating the low MW DOC 203 

pool and is known to be important in soil C cycling (van Hees et al. 2005). It is also capable of 204 

being assimilated by almost all soil microorganisms. For the high MW C experiment, 47.4 mM 205 

of high MW (>1 kDa) recalcitrant DOC (specific addition of 18.2 µg C g-1 dry soil) was 206 

selected to represent the compounds remaining once the labile fractions have been utilised by 207 

microbial populations (Gillis and Price 2016). This concentration is at the high end of the range 208 

reported for soil solutions from grassland soils (Christou et al. 2005). The recalcitrant DOC 209 

was obtained following the incubation and subsequent decomposition of 14C-labelled Calluna 210 

vulgaris (L.) Hull. shoots in a Sapric Histosol for 2 years. Soil pore water was recovered using 211 

Rhizon® samplers (Rhizosphere Research Products B.V., Wageningen, The Netherlands) 212 

(Jones et al. 2015).  213 

 214 

Preparation of isotopically labelled solutions 215 

Nutrient solutions, as described above, were spiked with uniformly 14C-labelled D-glucose 216 

(PerkinElmer Inc.) for the high and low C dosages only. For both C doses, the specific activity 217 

added was 0.2 kBq ml-1. The concentration of 14C added (< 10 nM) did not significantly alter 218 

the C concentration of the unlabelled (12C) nutrient solutions. For the high MW DOC, nutrient 219 

solutions were spiked with 14C-labelled DOC (specific activity 0.07 kBq ml-1). To ensure the 220 

plant-derived DOC solution was only composed of high MW material, the solution was 221 

purified using an Amicon 8050 stirred cell equipped with a 1 kDa ultrafiltration membrane 222 

(Millipore UK Ltd., Hertfordshire, UK). 223 

 224 

Carbon mineralization 225 

To measure the rate of 14C-substrate mineralization, 5 g soil (dry weight equivalent to account 226 

for soil water content variability down the soil profile) were placed into sterile 50 ml 227 



polypropylene tubes. To determine the rate of 14CO2 evolution, 50 µl of 14C-glucose labelled 228 

nutrient solution for the low and high C treatments, and 160 µl of the high MW 14C-DOC 229 

labelled nutrient solution (higher volume used to account for the lower specific activity of this 230 

solution) were added to the soil surface. Immediately after nutrient addition, a 5 cm3 231 

polypropylene vial containing NaOH (1 ml, 1 M) was added into the tubes to capture any 232 

evolved 14CO2. The tubes were hermetically sealed and incubated at 10 °C to represent the 233 

mean annual temperature of the catchment. The NaOH traps were changed after 0.5, 1, 2, 4, 6, 234 

24, 48, 72, 96, 120, 144, 168, 192, 336 h and then weekly up to 6 weeks after initial 14C-235 

labelling for both glucose-C additions. For the high MW DOC experiment, traps were changed 236 

at 1, 6, 24, 48, 72, 168, 336, 504, 672, 840, 1176, 1512, 1680 h due to the slower mineralization 237 

rates. On removal, the NaOH traps were mixed with Optiphase HiSafe 3® liquid scintillation 238 

fluid (PerkinElmer Inc.) and the amount of 14CO2 captured determined using a Wallac 1404 239 

liquid scintillation counter (Wallac EG & G). 240 

 241 

Data and statistical analysis 242 

To assess if C dynamics were regulated by different microbial mechanism with depth and with 243 

distance from the river, initial (immediate) Cmin rates and total C mineralized at the end of the 244 

incubation period were calculated for all treatments and C amendments. The specific initial 245 

Cmin rates was calculated for a 6 h incubation period or when the linear phase was achieved for 246 

the experiments involving the low and high doses of 14C-glucose (low MW DOC) and for 72 247 

h for the high MW recalcitrant DOC. An r2 value of >0.90 was deemed an acceptable cut-off 248 

value for assessing linearity rates (number of observations = 504). Due to large differences in 249 

microbial biomass down the soil profile, Cmin rates results were normalized according to 250 

biomass size (i.e. Cmin rates/MBC). Both the normalized, and the actual respiration rates per 251 

soil unit are reported. For data normalization, MBC was chosen over PLFA biomass due to low 252 

percentages of biomarkers found down at depth in the PLFA analysis. 253 



Total C mineralized was calculated as the C cumulative percentage of evolved 14CO2 254 

recovered at the end of the incubation period respective to the amount of C added at the 255 

beginning of the experiment. 256 

Statistical analysis was performed with SPSS version 22 for Windows (IBM Corp., 257 

Armonk, NY) and R (R Core Team 2012). All data were assessed for normality and 258 

homogeneity of variance with Shapiro Wilk’s tests and Levene’s statistics, respectively. 259 

Transformations to accomplish normality were done when necessary (log10-transformed 260 

variables: nitrate content, available P, DOC, TDN). For all statistical tests, P < 0.05 was 261 

selected as the significance cut-off value. Separate analysis of variance (one-way ANOVA) 262 

tests were performed to explore differences in soil physicochemical properties with respect to: 263 

(1) distance from the river, followed by Tukey’s post-hoc test, and (2) depth, followed by 264 

Games-Howell post-hoc test; this test was selected due to not achieving homoscedasticity of 265 

variables with depth as a factor and Games-Howell is more robust in this respect. A principal 266 

component analysis (PCA) was used to explore the spatial (depth and distance) relationships 267 

of soil physicochemical properties. Effects of depth, distance from the river, and treatment on 268 

mineralization were tested using a mixed-effects model with depth, distance and treatment as 269 

fixed effects and transects as random effects. Interactions between variables were included for 270 

each model when a significant improvement of the model (P < 0.05) was observed. A 271 

significant improvement in the model was tested by performing an analysis of variance 272 

(ANOVA) of the full model both with, and without, inclusion of the effect being tested. Both 273 

F and P-values are reported to assess variability between groups. Differences in soil depth, 274 

nutrient treatment, and distance from the river were tested with Tukey post-hoc tests. Visual 275 

inspection of residual plots did not reveal any obvious deviations from homoscedasticity or 276 

normality. To assess if different soil properties might be useful predictors of soil Cmin, a step-277 

wise multiple regression was conducted analysing relationships between Cmin rates, final 278 

percentage respired and specific soil properties. 279 



 280 

Results 281 

Soil physicochemical properties 282 

Principal Component Analysis (PCA) of all the soil physicochemical variables across the 283 

hillslope (n = 42, irrespective of distance or depth) identified two principal components (PC) 284 

which together, explain 64.2% of the total variance within the dataset (Fig. 2). Organic matter 285 

content, exchangeable NH4
+-N, maximum P adsorption (Pmax) and C:N ratio correlated 286 

significantly (P < 0.05) with PC1, whilst available P, N adsorption (Nads), pH and EC 287 

correlated significantly (P < 0.05) with both PC1 and PC2. The spatial segregation of samples 288 

within the PCA revealed the strong effect of depth on physicochemical properties irrespective 289 

of distance from the river. However, some physicochemical properties differed (P < 0.05) 290 

according to proximity to the watercourse, but only within certain sampling depths. The topsoil 291 

(0-30 cm) for distance 3 showed an increase of almost a third in OM content compared to 292 

distance 1. Similarly, DOC was 2 times greater at distance 3 in comparison with distance 1 for 293 

topsoil. The midsoil depth (50-100 cm), again for distance 3, showed higher, more alkaline, 294 

pH values compared to distances 1 and 2. NH4
+-N tended to increase by almost 4 times with 295 

distance from the river for the topsoil whereas for the mid- and deepsoil zones a 4-fold higher 296 

NH4
+-N content was found in areas closest to the river (Table S1). P adsorption maxima 297 

increased on average by 29% and 37% from distance 1 to distance 2 and 3 respectively for the 298 

top 15 cm whereas it was 25% and 34% greater from distance 1 to distance 2 and 3 at 15-30 299 

cm sampling depth (Table S2). 300 

With respect to depth, a decrease of most physicochemical properties was identified, 301 

except for pH and available P (Table S1). Amongst all physicochemical properties, MC, OM, 302 

DOC, TDN and microbial biomass-C displayed the greatest differences from top soil to 303 

deepsoil for all distances. 304 

 305 



Geophysical survey 306 

Similar geophysical patterns were observed along the six independent transects (Fig. S3). In 307 

the upper part of each transect a low resistivity zone is noted at 2 to 3 m depth. We attribute 308 

this to a dense clay-rich unit. In the lower part of the transect a distinct resistive zone can be 309 

seen at a depth of ~4 m, which is likely to be the soil-bedrock interface. 310 

 311 

High dose of low MW DOC addition to soil 312 

Total C mineralized 313 

On average, the total percentage of C mineralized was 40.7% ± 0.9 irrespective of distance 314 

from the river, depth or nutrient treatment. Overall, the total percentage of C mineralized was 315 

higher in deeper layers than in the topsoil (Table 1) but was not affected by nutrient treatment 316 

(P > 0.05). After 42 days of incubation, the total C mineralized increased by 36.8% and 26.8% 317 

from the top layer to the midsoil and deepsoil (250-300 cm) respectively, and irrespective of 318 

nutrient treatment and distance from the river (Table 1). The total amount of C mineralized was 319 

affected by the proximity to the river and the treatment added but only distance 3 was 320 

significantly different from the other two (P < 0.001). Overall, distance 3 mineralized lower 321 

amounts of C for all treatments and depths (Table 1). Particularly at a sampling depth of 50-322 

100 cm, the amount of C mineralized was on average 35% higher at distance 1 than distance 323 

3. This effect was especially noticeable for the C-only treatment (Table 1) which could be due 324 

to the inherent nutrient variability within distances (Table S1).  325 

 326 

Initial C mineralization rates 327 

Soil depth was the main factor controlling Cmin rates regardless of treatments (Table 2). Overall, 328 

Cmin rates significantly decreased from the topsoil (P < 0.001) down to 100 cm whereas no 329 

significant effects (P > 0.05) were identified below that depth (Fig. 3). Regardless of treatment 330 

or distance, the amount of C evolved (relative to the % of total 14C added) decreased by 82% 331 



and 88% from the topsoil to the midsoil and deepsoil depths, respectively (Fig. 3). A lag phase 332 

of about 4 days corresponding to microbial growth was displayed in some sampling depths 333 

below 50 cm after the addition of C and/or nutrients whereas no such effect was observed above 334 

50 cm (Fig. S4). The effect of distance from the river also affected Cmin rates but only distances 335 

2 and 3 were significantly different from each other (P < 0.001). The addition of N or P both 336 

separately and combined had little or no effect on Cmin rates irrespective to the distance from 337 

the river and depth (P > 0.05). The multiple regression analysis (data not shown) identified 338 

MBC, OM and MC as the best predictors explaining Cmin rates. Significant positive correlations 339 

were found between Cmin rates and the aforementioned physicochemical properties (r2 > 0.69 ± 340 

0.01 for MC, r2 > 0.83 ± 0.01 for OM and r2 > 0.81 ± 0.02 for MBC, P <0.001 in all cases) 341 

irrespective of the treatment.  342 

Due to large differences in total microbial biomass within the soil profile, results were 343 

normalized by the MBC data in order to identify different trends in SOM decomposition (% of 344 

the total added 14C mg-1 biomass C h-1). Neither treatment, distance, or depth had a significant 345 

effect on Cmin rates (Fig. S5). Furthermore, no interactions between the fixed effects were found. 346 

 347 

Low dose of low MW DOC addition to soil 348 

Total C mineralized 349 

After 42 days of incubation, 30.4% ± 0.5 of the added C was mineralized regardless of distance, 350 

depth and nutrient treatment (Table 3). The total amount of C mineralized generally increased 351 

with depth for the N and P treatments (P < 0.001) whereas the control (C only addition) showed 352 

a decrease of 18% from topsoil (0-15 cm) to the deepsoil layer in distance 3 (Table 3). The 353 

overall effect of treatment increased with depth (P < 0.001). From the topsoil to the deepsoil, 354 

total C mineralized increased by 30%, 25% and 24% (relative to the initial % of 14C added) for 355 

N, NP and P treatments, respectively. However, although NP and P-only treatment were 356 

different from the control (P < 0.001) they did not differ from each other. 357 



 358 

Initial C mineralization rates 359 

The initial rates of Cmin were strongly influenced by depth (P < 0.001, Table 2) ranging from 360 

9.43% ± 0.27 in the topsoil to 0.93% ± 0.29 of the total 14C added h-1 for the deepsoil depth, 361 

irrespective of nutrient treatment and distance from the river (Fig. 4). However, significant 362 

differences were only identified within depth intervals between 0-100 cm, while between 100-363 

300 cm, no differences were apparent. Nutrient treatment also showed an effect on Cmin rates 364 

although this effect was influenced by depth as the interaction (P = 0.04). Across the full range 365 

of sampling depths, Cmin was 3 times greater in the top layer than the midsoil for the control 366 

and 5, 4 and 2 times greater for the CN, CNP and CP treatments respectively. Carbon 367 

mineralization rates in the deepsoil were almost 8 times lower than the top layer for the control 368 

and N addition treatments but only 5 times lower for the treatment with P alone. Distance from 369 

the river also influenced Cmin rates but only the distance closest to the river was different 370 

compared to the other two distances (P < 0.001). In particular, the midsoil showed on average, 371 

and irrespective of nutrient treatment, 50% faster Cmin rates compared with the other two 372 

distances (Fig. 4). Rates of Cmin were strongly correlated with MC (r2 = 0.74 ± 0.02), OM (r2 = 373 

0.68 ± 0.05) and MBC (r2 = 0.61 ± 0.04) (P < 0.001 in all cases) irrespective of the treatment.  374 

As with the high rate of low MW DOC addition, nutrient treatment showed no effect 375 

on Cmin rates after adding a low dose of DOC when the data was normalized to MBC (P > 0.05). 376 

However, the effect of distance and depth still had an overall significant effect on Cmin rates (P 377 

< 0.001) (Fig. S6). 378 

 379 

Medium dose of high MW DOC addition to soil 380 

Total C mineralized 381 

Overall, the total amount of C mineralized was 11.7% ± 0.6 regardless of distance, depth and 382 

treatment after 70 days of incubation (Table 4). In general, total Cmin decreased with depth up 383 



to 100 cm, below which the total C remained relatively consistent regardless of nutrient 384 

treatment or distance from the river. However, a significant effect of treatment with respect to 385 

depth was identified (P < 0.001). The addition of P-only decreased Cmin 5-fold in distance 1 and 386 

by 2-fold in distance 2 in the topsoil in comparison with the rest of the treatments (Table 4).  387 

 388 

Initial C mineralization rates 389 

The high MW DOC was mineralized at a maximum rate of 0.28% h-1. This rate of 390 

mineralization was 85% and 97% slower rate than for the high and low labile C additions 391 

respectively after 72 hours across all depth, treatments and distances (Table 2, Fig. 5). Topsoil 392 

displayed, on average, 6.5 times greater Cmin rates than deeper layers (>50 cm) for the control, 393 

N and NP treatments irrespective of distance. However, the P-only treatment resulted in a 394 

decrease of 30% in Cmin rates from topsoil to deepsoil layers, although this effect was 395 

particularly notable at distances 1 and 2 (Fig. 5). Regarding the treatment effect in the topsoil, 396 

the addition of P alone or in combination with N caused a decrease in Cmin rates of 93% and 397 

33% compared to the control and N alone treatments respectively. Distance from the river also 398 

caused different responses in Cmin rates (P < 0.001) but this effect was mainly evident within 399 

the top layer and in response to the addition of P which appeared to have a repressive effect on 400 

Cmin. As for the previous C amendments, MC, OM and MBC (r2 < 0.65 ± 0.02, r2 < 0.76 ± 0.01, 401 

r2 < 0.63 ± 0.04 respectively, P<0.001 in all cases) explained a large part of Cmin variability for 402 

all treatments except for the P-only addition which only correlated with available P (r2 = 0.34, 403 

P < 0.05). Values of Cmin rates normalized by the MBC showed no effect with distance or depth 404 

(Fig. S7; P < 0.05). Additionally, nutrient treatment also influenced C depletion but only the P 405 

addition treatment was different from the other three. 406 

 407 

Discussion 408 

Effect of soil depth and substrate quantity on C mineralization  409 



Soil depth had the most striking effect on Cmin irrespective of the amount, or type, of C added 410 

or the incubation time. The fact that microbial communities are regulated by different 411 

controlling factors and nutrient limitations at depth has been endorsed before by the few studies 412 

that have explored C dynamics at depth (Fierer et al. 2003; Tian et al. 2017). Salome et al. 413 

(2010) identified greater spatial heterogeneity in soil physicochemical properties at depth and 414 

Manzoni et al. (2012) and Rey et al. (2005) have indicated that soil moisture also represents an 415 

important constraint on C turnover. Work presented by van Hees et al. (2005) and references 416 

therein, reported similar decomposition percentages as found in this study while Heitkötter et 417 

al. (2017) indicated major differences in microbial C demand at different soil depths. Our 418 

results support these findings over the full duration of our experiment. Both high and low C 419 

additions showed faster decomposition rates in the topsoil compared to the deepsoil during the 420 

first hours of the experiment which is in good agreement with Rey et al. (2007) and Sanaullah 421 

et al. (2010). Some argue that this effect could be due to a more active microbial community 422 

in response to regular C (rhizodeposition) and nutrient inputs (N2 fixation and fertilizers) in 423 

grassland systems (Fontaine et al. 2003; Treseder 2008). However, it is worth noting that 424 

although the topsoil in our study was initially more responsive to the labile low MW source of 425 

C, the size of the microbial population, which was highly correlated to Cmin rates, was on 426 

average 87-fold greater in the top layer compared to the deepest layers (Table S1). Therefore, 427 

when Cmin rates are expressed on a per unit MBC basis (Fig. S5-S7) a much faster use of C was 428 

seen at depth irrespective of the source of C (relative to the low biomass at depth). Fierer et al. 429 

(2003) described the opposite pattern in respiration rates, however, their results were 430 

normalized by water potential and temperature relative to soil depth. Zhang et al. (2016) found 431 

the same negative correlation between PLFA biomass and moisture content as this study and 432 

also described a major shift in the depth pattern for soil respiration when it was normalized for 433 

microbial biomass.  434 



We also observed that the addition of the high dose of C induced microbial growth 435 

(indicated by an initial lag phase in the mineralization profile, Fig. S4) in the midsoil and 436 

deepsoil, a trend also identified by other authors (Blagodatskaya et al. 2014; Sanaullah et al. 437 

2011). This growth pattern is related to the higher amount of C being added relative to the 438 

amount of microbial biomass-C with increasing depth. 439 

Interestingly, even though the topsoil had an initially faster mineralization rate in 440 

response to labile C addition, we observed higher amounts of C mineralized in deeper layers 441 

than in topsoil at the end of the experiment. This suggests a higher overall usage of the substrate 442 

for catabolic processes by the microbial community from deep soils (i.e. lower C use 443 

efficiency). Heitkötter et al. (2017) found that Cmin also increased with depth and Kemmitt et 444 

al. (2008) indicated that Cmin at depth were independent of microbial biomass (much lower at 445 

depth in our study as shown in Table S1). In addition, it also indicated that the real limiting 446 

step for Cmin was regulation by abiotic processes (e.g. chemical oxidation or hydrolysis, 447 

desorption from the solid phase, diffusion from inaccessible soil pores) that allowed the 448 

conversion of non-bioavailable humified soil OM into bioavailable OM. Therefore, results 449 

from this study indicate that once the substrate reaches microbial communities at depth, and 450 

this is bioavailable, they respond more rapidly and efficiently than in the topsoil.   451 

Our results are opposite to that of Heitkötter et al. (2017) where a higher total amount 452 

of C mineralized, in the form of organic acids, was reported for the topsoil. However, from our 453 

study, and others, there is evidence that supports the hypothesis that microbial communities 454 

have different substrate preferences and nutrient limitations which may control both 455 

degradation rate and microbial C use efficiency (Chen et al. 2012; Don et al. 2017; Fontaine et 456 

al. 2007). 457 

Contrastingly, the addition of the high MW C source caused a noticeable decrease in 458 

Cmin at depth. We hypothesised that the low bioavailability of the substrate would result in 459 

enhanced C storage rather than mineralization at depth, due to the limited microbial populations 460 



not being able to obtain enough C and energy necessary for enzyme production and microbial 461 

growth required to breakdown the more recalcitrant compounds. In addition, there is also the 462 

possibility that some of the high MW C source may become unavailable (through association 463 

with mineral surfaces or, spatial isolation within soil aggregates) for microbial degradation. In 464 

this sense, the presence of a Fe-rich clay layer identified at depth (Table S3) supports this theory 465 

(Allison 1973; Bergaya and Lagaly 2006; Jastrow et al. 2007; Oades 1988). In contrast, we 466 

assume that being uncharged, the biodegradation of the low MW C substrate (glucose) will not 467 

be impeded by interaction with mineral surfaces (i.e. it will have a faster diffusion in soil and 468 

will not become trapped in aggregates). 469 

 470 

 Effect of nutrient addition on C mineralization 471 

Studies on Cmin rates currently show a wide disparity in response to nutrient addition. For 472 

example, in some cases a priming of SOM decomposition may occur after the addition of 473 

nutrients, while in others a negative, or no, effect has been reported (Conde et al. 2005; Janssens 474 

et al. 2010; Liljeroth et al. 1994; van Hees et al. 2005). In our study, the addition of nutrients 475 

(N and P) had no immediate or long-term effect when high amounts of C were supplied (Fig. 476 

3). This lack of an overall effect suggests that soil microbial communities were severely C 477 

limited. Therefore, in our study we conclude that microbial mineralization was driven by the 478 

microbial need for C rather than for N or P (Heuck et al. 2015). 479 

 However, under low inputs of labile C (background C content), greater CO2 fluxes 480 

(both initial and total) were observed after N and NP addition (Fig. 4), particularly for the top 481 

and midsoil, indicating greater nutrient limitation than in deeper layers and also a change in 482 

nutrient stoichiometry (C:N:P) (Fig. 4). This fact could reflect a more active and abundant 483 

microbial community whose maintenance requirements are higher due to their adaptation to a 484 

permanent supply of available substrate and therefore more C is used for respiration (Fontaine 485 

et al. 2003; Paterson et al. 2009; Treseder 2008; van Bodegom 2007).  486 



Regarding the high high MW C treatment, the addition of nutrients had minimal or no 487 

effect on C turnover suggesting that this is not a preferred C substrate and that the community 488 

at depth has not adapted to using this chemically complex form of C. Interestingly, the addition 489 

of P together with the high MW C treatment had a suppressive effect on Cmin rates in the topsoil, 490 

especially for distances 1 and 2 (Fig. 5). Bauhus and Khanna (1994) found a similar response 491 

on C depletion after the addition of P and Amador and Jones (1995) reported a lack of effect, 492 

or a depression, on Cmin rates. Although this effect has been rarely explored, it has been 493 

attributed to differences in P and organic C concentrations, P adsorption capacities, changes in 494 

soil acidity or even toxicity of P for the soil biota (Bauhus and Khanna 1994; Henderson 1978; 495 

Keller et al. 2006; Kelly and Nömmik 1978; Peng and Thomas 2010). In our study, the lack of 496 

any effect with P addition with the labile C source, the high intrinsic soil P concentration, as 497 

well as the reduction of P adsorption capacities (Table S1-S2), suggest that there was no toxic 498 

effect and no P limitation in areas close to the river. Therefore, we hypothesised that the non-499 

preferential nature of the high MW C (judging by the small percentage respired) and the high 500 

P concentration in areas close to river, could have led to a decrease in the microbial C:N:P ratio 501 

up to such a point that this ratio was not optimum to induce microbial substrate decomposition. 502 

However, further work should be conducted to gain further insight on this inhibition. 503 

 504 

Effect of substrate quality on C mineralization 505 

The quality of the C source (meaning susceptibility to microbial enzyme degradation) has also 506 

been identified as an important driver controlling mineralization rates (Bölscher et al. 2016; 507 

Chen et al. 2014; Rui et al. 2016; Shahbaz et al., 2017). The use of complex and low-quality 508 

substrates requires high activation energies (extracellular enzymes) (Bosatta and Ågren 1999) 509 

and because of this, a very low percentage of the high MW C added was used for microbial 510 

respiration (Fig. 5). Mechanistically, this suggests that although decomposers are able to break 511 



down the recalcitrant SOC, the energy gained is lower than the energy needed to catabolise 512 

such substrate and therefore long-term storage is preferred (Fontaine et al. 2007).    513 

 514 

 Effect of distance from the river on C mineralization 515 

Areas adjacent to watercourse are assumed to play a key role in C dynamics mainly due to the 516 

influence of hydrologic regimes and riparian vegetation which: 1) controls import/export OM 517 

fluxes between the watercourse and the floodplain, 2) creates fluctuations of anaerobic/aerobic 518 

conditions regulating C source/sink balance, and 3) encourages more diverse microbial 519 

communities (Camino-Serrano et al. 2016; Gurtz et al. 1988; King et al. 2016; Lewis et al. 520 

2003). However, as far as soil physicochemical properties are concerned, our results disagree 521 

with the general assumption of more potential for C storage within the riparian zone. Stutter et 522 

al. (2012) indicated a greater OM content in areas close to the river whereas we found less. 523 

Nevertheless, these areas corresponded to unmanaged vegetated buffer strips, mostly fenced 524 

and subject to agricultural use. In our case, the first sampling distance from the edge of the 525 

river (2 m) fell outside of this very narrow vegetated buffer strip, preventing us therefore from 526 

seeing if any difference existed. In support of our findings, Giese et al. (2000) also could not 527 

establish a relationship between percent C in the soil and distance from the main channel across 528 

the riparian transect. 529 

However, we did identify some interesting patterns which suggest different microbial 530 

responses with respect to distance from the river. It should be noted that although the statistical 531 

analysis showed a significant effect with respect to distance (i.e. distance from the river) across 532 

the full range of C and nutrients amendments, it cannot be assumed that this effect reflects the 533 

influence of the riparian zone. Thus, the addition of a high dose of labile low MW C exhibited 534 

differences in Cmin rates between the areas more distal to the river (distance 2 and 3) suggesting 535 

it is more related to the inherent physicochemical spatial variability rather the influence of the 536 

riparian zone. Similarly, for the high MW treatment, an effect of distance from the river was 537 



also displayed. However, this effect was more related to the suppressive effect of P on Cmin (see 538 

section above) rather than the influence of the riparian zone. 539 

We consistently detected faster C turnover at the midsoil depth after the addition of low 540 

MW C (i.e. treatments showed little or no effect). Wilson et al. (2011) illustrated the importance 541 

of flooding for C dynamics and microbial community composition. Our results suggest that 542 

this soil layer which was highly connected to fluctuating hydrology and nutrients, may have 543 

developed a more diverse microbial population although the present study only assessed the 544 

composition of main soil microbial groups (Naiman and Decamps 1997). However, this 545 

highlights that further research is needed to explore the role microbial diversity plays in riparian 546 

areas; currently most riparian research targets specific processes rather than microbial 547 

communities of interest (Chen et al. 2012; Gutknecht et al. 2006; Seitzinger 1994). 548 

 549 

Conclusions 550 

Global warming and the increases in CO2 emissions from land use change and fossil fuel 551 

burning could considerably influence SOM residency time (i.e. increase root exudation and 552 

microbial activity). Results from our study revealed higher decomposition potential within the 553 

deepsoil depth after labile low MW substrate addition, even though the top 15 cm exhibited 554 

faster immediate decomposition rates which might indicate different microbial C use 555 

efficiencies down the soil profile. Nutrient addition had little or no effect on Cmin suggesting 556 

that overall the soil microbial community was C limited. Therefore, fast cycling of SOM is 557 

likely to occur in subsoil if any change in land use or agricultural management increases the 558 

input of labile C down the soil profile. Using a more recalcitrant, high MW source of C, we 559 

show that different C processing mechanisms were activated in the topsoil and deepsoil. 560 

Whereas a slow-cycling C decomposition prevailed in the topsoil, microbial mineralization in 561 

the deepsoil was much slower which supports previous studies showing that microbial substrate 562 

preferences and nutrient limitation control the speed of degradation. In our study, the effect of 563 



the proximity to the river was minimal for all treatments within the experiment. While this 564 

study has provided information underpinning C dynamics through the soil profile, which is 565 

important for managerial and modelling future scenarios e.g. land use change, however, further 566 

work is required to investigate the links between soil microbial diversity and functioning (e.g. 567 

by determining gene expression) as a function of depth. 568 
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Figure Legends 815 

Fig. 1. Location of sample points across the riparian hillslope. Horizontal arrows indicate 816 

distance from the river (these are referred in the manuscript to as distance 1, 2 and 3). 817 

Vertical arrows indicate the total length of extractable core, determined according to the 818 

maximum depth of the soil profile (presence of bedrock) or until an impermeable (e.g. clay 819 

layer) boundary as determined by a geophysical survey (Fig. S2) was reached. 820 

 821 

Fig. 2. Correlation bi-plot from the principal component analysis (PCA) on soil 822 

physicochemical variables across the hillslope (n =9 for A, B, C; n = 6 for D, E; n = 3 for 823 

F). Correlation of soil properties with the main axes are given by arrows and sample 824 

points by colour dots. Nitrogen adsorption (Nads). Phosphorus maxima adsorption 825 

(Pmax). Ratio carbon (C)/ nitrogen (N) (C:N). Moisture content (MC). Electrical 826 

conductivity (EC). 827 

Fig. 3. Initial C mineralization rates measured during the initial linear phase (between 0-6 h) 828 

after the addition of a high dose of low molecular weight DOC either alone or in 829 

combination with N, P or N+P. Values are presented for three different distances from 830 

the river (2, 12 and 75 m) and for 6 different soil depths. Soil depths were grouped into 831 

topsoil (0-30 cm), midsoil (50-100 cm) and deepsoil (100-300) in the manuscript for the 832 

description of the factors assessed. Bars represent mean values (n = 3) ± standard errors. 833 

ND equates to no data due to hitting bedrock (Fig. 1). 834 

Fig. 4. Initial C mineralization rates measured during the initial linear phase (between 0-6 h) 835 

after the application of a low dose of low molecular weight DOC either alone or in 836 

combination with N, P or N+P. Values are presented for three different distances from 837 

the river (2, 12 and 75 m) and for 6 different soil depths. Soil depths were grouped into 838 

topsoil (0-30 cm), midsoil (50-100 cm) and deepsoil (100-300) in the manuscript for the 839 



description of the factors assessed. Bars represent mean values (n = 3) ± standard errors. 840 

ND equates to no data due to hitting bedrock (Fig. 1). 841 

Fig. 5. Initial C mineralization rates measured during the initial linear phase (between 0-48 h) 842 

after the application of a medium dose of high MW DOC either alone or in combination 843 

with N, P or N+P. Values are presented for three different distances from the river (2, 12 844 

and 75 m) and for 6 different soil depths. Soil depths were grouped into topsoil (0-30 845 

cm), midsoil (50-100 cm) and deepsoil (100-300) in the manuscript for the description 846 

of the factors assessed. Bars represent mean values (n = 3) ± standard errors. ND equates 847 

to no data due to hitting bedrock (Fig. 1). 848 

 849 

Table Legends 850 

Table 1. Total 14CO2 production following the addition of a high dose of low molecular weight 851 

14C-DOC to soil either in the presence or absence of nutrients (N and/or P) as a function 852 

of soil depth and distance from the river. Soils were incubated with the 14C-labelled 853 

substrate for 42 d. The ANOVA results (F and P-value) are shown for a mixed effects 854 

model with depth, distance from the river and treatment as fixed effects and transect as a 855 

random effect. Interactions were only included when a significant improvement (P < 856 

0.05, bold) of the model fit was observed. Values are means ± standard errors (n = 3). 857 

Missing values indicate no samples due to hitting bedrock. 858 

Table 2. Results of ANOVA (F and P-value) for the mixed effects model with soil depth, 859 

distance from the river and nutrient treatment as fixed effects, transect as a random effect 860 

and initial C mineralization rate as the independent variable. Interactions were only 861 

included when a significant improvement (P > 0.05, bold) of the model fit was observed. 862 

High and low doses of labile dissolved organic C (DOC) refer to the amounts of low MW 863 

C added to the soil in the experiment (see section 2.4). 864 



Table 3. Total 14CO2 production following the addition of a low dose of low molecular weight 865 

14C-DOC to soil either in the presence or absence of nutrients (N and/or P) as a function 866 

of soil depth and distance from the river. Soils were incubated with the 14C-labelled 867 

substrate for 42 d. The ANOVA results (F and P-value) are shown for a mixed effects 868 

model with depth, distance from the river and treatment as fixed effects and transect as a 869 

random effect. Interactions were only included when a significant improvement (P < 870 

0.05, bold) of the model fit was observed. Values are means ± standard errors (n = 3). 871 

Missing values indicate no samples due to hitting bedrock. 872 

Table 4. Total 14CO2 production following the addition of medium dose of high molecular 873 

weight 14C-DOC to soil either in the presence or absence of nutrients (N and/or P) as a 874 

function of soil depth and distance from the river. Soils were incubated with the 14C-875 

labelled substrate for 70 d. The ANOVA results (F and P-value) are shown for a mixed 876 

effects model with depth, distance from the river and treatment as fixed effects and 877 

transect as a random effect. Interactions were only included when a significant 878 

improvement (P > 0.05, bold) of the model fit was observed. Values are means ± standard 879 

errors (n = 3). Missing values indicate no samples due to hitting bedrock. 880 
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Table 1. Total 14CO2 production following the addition of a high dose of low molecular 
weight 14C-DOC to soil either in the presence or absence of nutrients (N and/or P) as a 
function of soil depth and distance from the river. Soils were incubated with the 14C-
labelled substrate for 42 d. The ANOVA results (F and P-value) are shown for a mixed 
effects model with depth, distance from the river and treatment as fixed effects and 
transect as a random effect. Interactions were only included when a significant 
improvement (P > 0.05, bold) of the model fit was observed. Values are means ± standard 
errors (n = 3). Missing values indicate no samples due to hitting bedrock. 

 

 

 

 

 

 

 

 

 

 

 

 

Total 14CO2   

(% of total 14C 

added) 

Distance 

from the 

river 

Soil depth 

0-15 cm 15-30 cm 50-100 cm 100-150 cm 150-200 cm 250-300 cm 

DOC only 

2 m 35.7 ± 3.9 41.0 ± 0.5 59.5 ± 1.4 -  -  -  

12 m 33.2 ± 1.3 38.0 ± 0.5 46.3 ± 7.2 49.8 ± 3.4 46.3 ± 6.8 -  

75 m 30.5 ± 0.8 36.0 ± 0.6 24.3 ± 13 39.9 ± 6.2 28.1 ± 9.4 43.4 ± 2.0 

DOC + N 

2 m 32.7 ± 3.4 36.9 ± 1.4 54.3 ± 3.4 -  -  -  

12 m 34.3 ± 3.4 37.7 ± 1.7 46.6 ± 5.8 47.6 ± 2.6 49.8 ± 5.4 -  

75 m 31.0 ± 0.7 43.2 ± 7.4 45.1 ± 6.6 52.1 ± 2.0 51.5 ± 0.8 51.6 ± 0.7 

DOC + N + P 

2 m 39.3 ± 5.2 38.3 ± 1.7 56.6 ± 4.7 -  -  -  

12 m 29.2 ± 1.6 42.3 ± 4.5 50.2 ± 3.2 49.1 ± 1.5 49.8 ± 6.2 -  

75 m 28.7 ± 0.5 33.0 ± 0.2 45.6 ± 3.9 46.3 ± 2.9 50.4 ± 3.8 51.4 ± 0.4 

DOC + P 

2 m 31.2 ± 4.1 39.2 ± 1.5 56.9 ± 3.7     -  

12 m 30.1 ± 0.6 45.3 ± 4.0 46.7 ± 4.1 51.8 ± 3.1 43.2 ± 6.2 -  

75 m 29.7 ± 0.5 31.2 ± 3.0 31.2 ± 11 31.8 ± 4.8 35.8 ± 7.4 42.2 ± 7.0 

ANOVA results 

 

Soil  

depth 

Distance from  

the river 

Nutrient  

treatment 

Soil depth * 

Nutrient treatment 

Distance * Nutrient 

treatment 

F P-value F P-value F P-value F P-value F P-value 
21.33 <0.001 21.52 <0.001 2.17 0.09 - - 2.98 0.008 



Table 2. Results of ANOVA (F and P-value) for the mixed effects model with soil depth, 
distance from the river and nutrient treatment as fixed effects, transect as a random effect 
and initial C mineralization rate as the independent variable. Interactions were only 
included when a significant improvement (P > 0.05, bold) of the model fit was observed. 
High and low doses of labile dissolved organic carbon (DOC) refer to the amounts of low 
MW C added to the soil in the experiment (see section 2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA results Soil depth 
Distance from the 

river 

 Nutrient 

treatment 

Depth * nutrient 

treatment 

Row * Nutrient 

treatment 

 F P-value F P-value F P-value F P-value F P-value 

High dose of low 

MW labile DOC 
395 <0.001 8.92 <0.001 2.39 0.07 - - - - 

Low dose of low 

MW labile DOC 
178 <0.001 21.0 <0.001 2.82 0.04 1.87 0.03 - - 

High MW 

recalcitrant DOC 
57.3 <0.001 10.5 <0.001 3.69 0.01 11.0 <0.001 4.73 <0.001 



Table 3. Total 14CO2 production following the addition of a low dose of low molecular 
weight 14C-DOC to soil either in the presence or absence of inorganic nutrients (N and/or 
P) as a function of soil depth and distance from the river. Soils were incubated with the 
14C-labelled substrate for 42 d. The ANOVA results (F and P-value) are shown for a 
mixed effects model with depth, distance from the river and treatment as fixed effects and 
transect as a random effect. Interactions were only included when a significant 
improvement (P > 0.05, bold) of the model fit was observed. Values are means ± standard 
errors (n = 3). Missing values indicate no samples due to hitting bedrock. 

 

 

 

 

 

 

 

 

 

 

 

 

Total 14CO2   

(% of total 14C 

added) 

Distance 

from the 

river 

Soil depth 

0-15 cm 15-30 cm 50-100 cm 100-150 cm 150-200 cm 250-300 cm 

DOC only 

2 m 26.5 ± 0.3 25.7 ± 1.2 30.8 ± 3.5 -  -  -  

12 m 26.1 ± 2.2 26.1 ± 0.3 28.9 ± 3.5 23.0 ± 3.9 28.1 ± 2.1 - 

75 m 23.4 ± 3.5 26.8 ± 0.7 29.6 ± 2.4 28.4 ± 0.2 24.9 ± 5.6 19.1 ± 6.0 

DOC + N 

2 m 31.5 ± 1.2 34.4 ± 5.5 37.1 ± 1.8 -  -  -  

12 m 29.2 ± 0.4 29.1 ± 2.2 30.3 ± 3.5 34.4 ± 1.2 41.5 ± 1.6 -  

75 m 29.6 ± 0.6 28.8 ± 0.5 33.5 ± 2.6 35.3 ± 1.2 32.0 ± 5.1 41.2 ± 0.0 

DOC + N + P 

2 m 30.6 ± 0.6 29.5 ± 0.9 32.5 ± 1.8 -  -  -  

12 m 27.9 ± 0.7 27.8 ± 0.9 29.5 ± 1.6 30.2 ± 1.3 37.7 ± 1.1 -  

75 m 27.8 ± 0.5 27.8 ± 2.0 24.5 ± 4.4 32.5 ± 2.0 33.6 ± 0.2 36.3 ± 2.7 

DOC + P 2 m 27.7 ± 1.5 27.7 ± 0.7 29.1 ± 0.7 -  -  -  

 12 m 33.8 ± 4.7 27.2 ± 1.8 27.9 ± 1.4 25.9 ± 0.8 37.2 ± 1.8 -  

 75 m 25.4 ± 0.9 32.3 ± 6.7 27.2 ± 1.7 32.2 ± 2.2 40.6 ± 0.8 37.3 ± 0.3 

ANOVA results 

 
Soil  

depth 

Distance from  

the river 

Nutrient  

treatment 

Soil depth * 

Nutrient treatment 

Distance * Nutrient 

treatment 

 
F P-value F P-value F P-value F P-value F P-value 

12.08 <0.001 2.66 0.07 35.66 <0.001 3.95 <0.001 - - 



Table 4. Total 14CO2 production following the addition of a medium dose of high 
molecular weight 14C-DOC to soil either in the presence or absence of inorganic nutrients 
(N and/or P) as a function of soil depth and distance from the river. Soils were incubated 
with the 14C-labelled substrate for 70 d.  The ANOVA results (F and P-value) are shown 
for a mixed effects model with depth, distance from the river and treatment as fixed 
effects and transect as a random effect. Interactions were only included when a significant 
improvement (P > 0.05, bold) of the model fit was observed. Values are means ± standard 
errors (n = 3). Missing values indicate no samples due to hitting bedrock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total 14CO2   

(% of total 14C 

added) 

Distance 

from the 

river 

Soil depth 

0-15 cm 15-30 cm 50- 100 cm 100-150 cm 150-200 cm 250-300 cm 

DOC only 

2 m 26.1 ± 1.5 18.8 ± 0.4 9.8 ± 2.6 -  -  -  

12 m 25.8 ± 5.0 16.8 ± 0.5 7.1 ± 2.0 6.1 ± 1.5 4.6 ± 0.6 -  

75 m 27.8 ± 5.1 21.4 ± 3.0 4.7 ± 1.0 4.7 ± 1.8 3.9 ± 0.4 3.9 ± 0.2 

DOC + N 

2 m 23.6 ± 1.4 18.5 ± 0.3 8.1 ± 1.2 -  -  -  

12 m 17.3 ± 2.0 16.2 ± 0.2 10.0 ± 2.3 5.4 ± 0.5 4.8 ± 0.5 -  

75 m 23.5 ± 1.8 19.5 ± 0.7 4.8 ± 1.1 5.4 ± 0.5 3.4 ± 0.1 3.2 ± 0.0 

DOC + N + P 

2 m 22.1 ± 0.8 16.6 ± 0.9 8.8 ± 1.9 -  -  -  

12 m 16.5 ± 1.2 14.5 ± 0.5 7.8 ± 0.6 5.8 ± 1.1 4.6 ± 0.5 -  

75 m 20.7 ± 1.5 16.8 ± 1.3 3.9 ± 1.1 4.2 ± 1.2 3.6 ± 0.1 3.4 ± 0.4 

DOC + P 

2 m 4.6 ± 1.1 22.8 ± 4.3 17.6 ± 3.0 -  -  -  

12 m 9.2 ± 3.3 16.5 ± 0.9 22.1 ± 1.1 5.0 ± 0.4 4.3 ± 0.3 -  

75 m 15.2 ± 4.1 21.0 ± 2.3 12.5 ± 6.9 3.9 ± 0.3 3.3 ± 0.1 3.5 ± 0.3 

ANOVA results 

 
Soil  

depth 

Distance from  

the river 

Nutrient  

treatment 

Soil depth * 

Nutrient treatment 

Distance * Nutrient 

treatment 

 
F P-value F P-value F P-value F P-value F P-value 

98.91 <0.001 0.97 0.38 1.81 0.14 11.16 <0.001 - - 



 

Fig. 1. Location of sample points across the riparian hillslope. Horizontal arrows indicate 

distance from the river (these are referred in the manuscript to as distance 1, 2 and 3). Vertical 

arrows indicate the total length of extractable core, determined according to the maximum 

depth of the soil profile (presence of bedrock) or until an impermeable (e.g. clay layer) 

boundary as determined by a geophysical survey (Fig. S2) was reached. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Fig. 2. Correlation bi-plot from the principal component analysis (PCA) on soil 
physicochemical variables across the hillslope (n =9 for A, B, C; n = 6 for D, E; n = 3 for 
F). Correlation of soil properties with the main axes are given by arrows and sample 
points by colour dots. Nitrogen adsorption (Nads). Phosphorus maxima adsorption 
(Pmax). Ratio carbon (C)/ nitrogen (N) (C:N). Moisture content (MC). Electrical 
conductivity (EC). 

 

 

 

 

 

 

 

 

 



 

Fig. 3. Initial C mineralization rates measured during the initial linear phase (between 0-
6 h) after the addition of a high dose of low molecular weight DOC either alone or in 
combination with N, P or N+P. Values are presented for three different distances from 
the river (2, 12 and 75 m) and for 6 different soil depths. Soil depths were grouped into 
topsoil (0-30 cm), midsoil (50-100 cm) and deepsoil (100-300) in the manuscript for the 
description of the factors assessed. Bars represent mean values (n = 3) ± standard errors. 
ND equates to no data due to hitting bedrock (Figure 1). 

 

  

  

 

 

 

 

 

 



 

Fig. 4. Initial C mineralization rates measured during the initial linear phase (between 0-
6 h) after the application of a low dose of low molecular weight DOC either alone or in 
combination with N, P or N+P. Values are presented for three different distances from 
the river (2, 12 and 75 m) and for 6 different soil depths. Soil depths were grouped into 
topsoil (0-30 cm), midsoil (50-100 cm) and deepsoil (100-300) in the manuscript for the 
description of the factors assessed. Bars represent mean values (n = 3) ± standard errors. 
ND equates to no data due to hitting bedrock (Figure 1). 

 

 

 

 

 

 

 

 

 



 

Fig. 5. Initial C mineralization rates measured during the initial linear phase (between 0-
48 h) after the application of a medium dose of high MW DOC either alone or in 
combination with N, P or N+P. Values are presented for three different distances from 
the river (2, 12 and 75 m) and for 6 different soil depths. Soil depths were grouped into 
topsoil (0-30 cm), midsoil (50-100 cm) and deepsoil (100-300) in the manuscript for the 
description of the factors assessed. Bars represent mean values (n = 3) ± standard errors. 
ND equates to no data due to hitting bedrock (Figure 1). 
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Supplementary on-line information  

 

 

Figure S1. The Conwy catchment, North Wales, UK showing the location of the riparian 
sampling area and the major land cover classes according to Phase 1 classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Geophysical survey 

 

Fig. S2. Location of cages (red dots, n = 24) used to delineate the total area (dashed black box) 
for the geophysical survey across the hillslope. 

 

Fig. S3. Ground conductivity data acquired across the area of study. 



 

 

 

Fig. S4. Example of different microbial distance patterns as evidenced from the cumulative 
mineralization of substrate-C after the addition of a high dose of low molecular weight DOC 
either alone or in combination with N, P or N+P during a 42 d incubation at three different soil 
depths. The curves are only presented for distance 1 (2 m from the river) for topsoil and midsoil 
and distance 3 for the deepsoil in the riparian transect. Bars represent mean values (n = 3) ± 
standard errors. 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. S5. Initial C mineralization rates (microbial C biomass normalized) measured during the 
initial linear phase (between 0-6 h) after the addition of a high dose of low molecular weight 
DOC either alone or in combination with N, P or N+P. Values are presented for three different 
distances from the river (2, 12 and 75 m) and for 6 different soil depths. Bars represent mean 
values (n = 3) ± standard errors. ND refers to missing values indicate no samples due to hitting 
bedrock. 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. S6. Initial C mineralization rates (microbial C biomass normalized) measured during the 
initial linear phase (between 0-6 h) after the application of a low dose of low molecular weight 
DOC either alone or in combination with N, P or N+P. Values are presented for three different 
distances from the river (2, 12 and 75 m) and for 6 different soil depths. Bars represent mean 
values (n = 3) ± standard errors. ND refers to missing values indicate no samples due to hitting 
bedrock. 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. S7. Initial C mineralization rates (microbial C biomass normalized) measured during the 
initial linear phase (between 0-48 h) after the application of a medium dose of high molecular 
weight DOC either alone or in combination with N, P or N+P. Values are presented for three 
different distances from the river (2, 12 and 75 m) and for 6 different soil depths. Bars represent 
mean values (n = 3) ± standard errors. ND refers to missing values indicate no samples due to 
hitting bedrock. 

 

 

 

 

 

 

 

 

 



Table S1. Soil physicochemical properties according to soil depth and distance from the river 
(distance 1, 2 m; distance 2, 12 m; distance 3, 75 m). Different upper-case letters indicate 
significant differences (P < 0.05) according to One-way ANOVA with depth as the main factor 
followed by a Games-Howel post-hoc test. Different lower-case letters indicate significant 
differences (P < 0.05) with respect to distance from the river according to One-way ANOVA 
followed by a Tukey post-hoc test. Value are means ± standard errors (n = 3). All the PLFA 
biomass values below a soil depth of 100 cm were combined due to the low abundance of 
organisms present. Only PLFA soil biomass up to 100 cm was included in the statistical 
analysis. Missing values indicate no samples due to hitting bedrock.  

Soil property Distance Soil depth  

 
from the 

river 
0-15 cm 15-30 cm 50-100 cm 100-150 cm 150-200 cm 250-300 cm 

pH 

2 m 5.58 ± 0.18  5.87 ± 0.19  6.16 ± 0.09 
a
b 

           

12 m 5.34 ± 0.20A  5.35 ± 0.23A  6.03 ± 0.05AB b 6.48 ± 0.10AB 7.03 ± 0.28B     

75 m 5.52 ± 0.04A  5.73 ± 0.13AB 6.57 ± 0.14B a 6.36 ± 0.29AB 6.28 ± 0.34AB 6.74 ± 0.32AB 

EC 

(µS cm-1) 

2 m 63.0 ± 13.1  25.2 ± 5.4  34.1 ± 14.5          

12 m 33.6 ± 8.5  58.5 ± 41.9  18.6 ± 1.5  34.5 ± 8.4  47.7 ± 13.4    

75 m 77.3 ± 44.3  28.0 ± 8.4  14.5 ± 1.12  18.7 ± 1.4  20.2 ± 3.9  22.1 ± 1.9 

Moisture 

Content 

(g kg-1 soil) 

2 m 296 ± 17A  240 ± 10AB  179 ± 19B          

12 m 333 ± 9A  257 ± 8B  216 ± 4ABC  133 ± 2C  133 ± 29BC    

75 m 304 ± 9C  236 ± 9A  136 ± 16AB  125 ± 11B  110 ± 2B  107 ± 4B 

Organic matter 

(g kg-1 soil) 

2 m 62.2 ± 6.3A a 3.71 ± 3.1A a 16.5 ± 3.4B          

12 m 76.7 ± 3.6C ab 5.11 ± 1.5A ab 25.4 ± 6.8AB  11.1 ± 1.3B  11.2 ± 2.4B    

75 m 89.4 ± 3.5A b 5.61 ± 5.7AB b 18.8 ± 1.5B  14.3 ± 0.6B  12.8 ± 1.0B  13.9 ± 0.7B 

Ammonium 

(NH4
+-N) 

(mg kg-1 DW 

soil) 

2 m 1.71 ± 0.12 a 1.13 ± 0.23 a 0.95 ± 0.33 a         

12 m 3.45 ± 0.69A b 3.62 ± 1.33ABb 0.85 ± 0.09AB a 0.98 ± 0.21ABa 0.77 ± 0.06B    

75 m 7.39 ± 1.53ABc 4.02 ± 0.46A b 0.23 ± 0.07B b 0.17 ± 0.08B b 0.24 ± 0.13B  0.32 ± 0.07B 

Nitrate (NO3-N) 

(mg kg-1 DW 

soil) 

2 m 4.08 ± 2.40  2.90 ± 1.55  2.61 ± 1.38          

12 m 4.33 ± 2.65  3.87 ± 3.74  0.52 ± 0.38  2.81 ± 1.51  0.45 ± 0.12    

75 m 1.91 ± 1.04  3.57 ± 3.02  0.90 ± 0.42  0.16 ± 0.08  1.74 ± 0.93  0.40 ± 0.22 

P available 

(PO4-P) 

(mg kg-1 DW 

soil) 

2 m 22.5 ± 1.93A a 2.73 ± 0.91B  16.4 ± 6.14AB a         

12 m 5.51 ± 1.74 b 1.02 ± 0.17  1.11 ± 0.31 b 57.1 ± 32.5  41.4 ± 17.8    

75 m 3.08 ± 0.29 b 1.10 ± 0.31  6.61 ± 1.93 a 8.22 ± 2.15  18.9 ± 5.06  80.7 ± 21.3 

C:N ratio 

 

2 m 8.39 ± 3.34  4.46 ± 0.23 a 2.58 ± 0.59          

12 m 11.1 ± 1.67  6.38 ± 1.06 b 1.71 ± 0.34  3.08 ± 1.21  4.02 ± 0.77 a   

75 m 9.68 ± 1.58AB 6.44 ± 0.29A b 1.39 ± 0.26B  1.09 ± 0.17B  1.01 ± 0.18B b 0.94 ± 0.04B 

Dissolved 

organic C 

(mg kg-1 DW 

soil) 

2 m 111 ± 18.5A a 73.9 ± 7.68A a 20.3 ± 8.09B          

12 m 186 ± 3.11A ab 110 ± 5.50B b 43.4 ± 
24.4AB

C  14.7 ± 9.36C  3.56 ± 1.34C a   

75 m 238 ± 23.8A b 148 ± 20.2ABb 38.3 ± 14.2B  24.4 ± 6.08B  11.9 ± 2.13B b 5.30 ± 0.63B 

Total dissolved 

N 

(mg kg-1 DW 

soil) 

2 m 30.7 ± 4.28A  17.4 ± 2.04A  4.71 ± 1.74B          

12 m 48.5 ± 8.08AB 21.7 ± 2.31A  7.15 ± 4.35AB  3.76 ± 2.46B  2.69 ± 1.03B    

75 m 46.2 ± 2.01A  25.0 ± 3.25B  6.26 ± 0.67B  5.32 ± 0.92B  8.34 ± 4.94B  2.77 ± 0.47B 

Microbial 

biomass C 

(mg kg-1 DW 

soil) 

2 m 853 ± 258A  264 ± 44B  102 ± 18B a         

12 m 739 ±  67C  217 ± 31AB  92.2 ± 3.4A a 59.1 ± 4.3B  52.1 ± 9.5AB    

75 m 670 ±  23A  238 ± 47B  36.9 ± 9.8B b 37.4 ± 2.2B  35.8 ± 12.5B  31.3 ± 2.9B 

PLFA biomass 

(µmol kg-1 soil) 

2 m 210 ± 11A a 52.1 ± 7.2B  9.57 ± 1.53C   

12 m 269 ± 29A ab 113 ± 61AB  5.15 ± 1.68B  
3.05 ± 1.29 

75 m 322 ± 8A b 113 ± 7B  4.53 ± 2.07C  

 



 

Table S2. Maximum sorption (Smax) and binding energy constant (k) describing the binding of 
inorganic P to the soil with respect to distance from the river and soil depth. Smax and k were 
estimated using the Langmuir equation fitted to experimental data (r2 > 0.9, p < 0.001 for all 
cases). Different lower-case letters indicate significant differences (P < 0.05) with distance 
from the river according to One-way ANOVA followed by a Tukey post-hoc test. Values are 
means ± standard errors (n = 3). Missing values indicate no samples due to hitting bedrock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distance 

from the 

river 

Soil depth 

0-15 cm 15-30 cm 50-100 cm 100-150 cm 150-200 cm 250-300 cm 

Maximum P 

sorption Smax 

(mg kg-1) 

2 m 730 ± 73a 646 ± 47a 356 ± 55          
12 m 1037 ± 37b 859 ± 25b 500 ± 306 303 ± 99 268 ± 39    

75 m 1157 ± 46b 976 ± 67b 582 ± 65 462 ± 41 403 ± 26 327 ± 25 

Binding 

strength k  

(l kg-1) 

2 m 0.72 ± 0.06a 0.92 ± 0.14a 0.55 ± 0.05       

12 m 1.49 ± 0.16b 2.17 ± 0.75a 2.16 ± 1.19 1.54 ± 0.90 0.80 ± 0.05   

75 m 2.02 ± 0.13b 2.40 ± 0.18b 1.76 ± 0.43 1.90 ± 0.96 1.29 ± 0.58 0.74 ± 0.1 



Table S3. Total iron concentration as a function of soil depth. Iron was measured by total 
reflection X-ray fluorescence (TXRF) analysis. Values represent means ± standard errors (for 
each sampling depth with the range 0-100 cm, n = 9; 100-200, n = 6; 250-300 cm, n = 3). 

Soil depth 

(cm) 
Fe (g kg-1 soil) 

0-15 19.3 ± 0.84 
15-30 23.3 ± 1.41 
50-100 26.2 ± 2.79 
100-150 27.9 ± 2.08 
150-200 29.4 ± 0.98 
250-300 55.0 ± 5.85 
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