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ABSTRACT
Large modern surveys require efficient review of data in order to find transient sources
such as supernovae, and to distinguish such sources from artefacts and noise. Much
effort has been put into the development of automatic algorithms, but surveys still rely
on human review of targets. This paper presents an integrated system for the iden-
tification of supernovae in data from Pan-STARRS1, combining classifications from
volunteers participating in a citizen science project with those from a convolutional
neural network. The unique aspect of this work is the deployment, in combination, of
both human and machine classifications for near real-time discovery in an astronomi-
cal project. We show that the combination of the two methods outperforms either one
used individually. This result has important implications for the future development of
transient searches, especially in the era of LSST and other large-throughput surveys.

Key words: methods: data analysis, methods: statistical, techniques: image process-
ing, surveys, supernovae: general

1 INTRODUCTION

The detection and identification of transient sources has long
been an important part of astronomical observation. New
surveys such as LSST (Large Synoptic Survey Telescope,
Ivezić et al. (2008)) will increase the number of transient
candidates detected by many orders of magnitude, leading
to renewed attention being paid to the methods used by
transient searches. To extract the most scientific value from

? E-mail: darryl@zooniverse.org

surveys, we want to follow the entire evolution of transients
from the time of outburst to the point at which they fade
below the detection limit. This requires a rapid processing
of data to enable a fast decision on whether or not to ex-
pend valuable follow up resources for each potential can-
didate extracted by a transient survey’s image processing
pipeline. The first problem is deciding if a source, flagged
by the pipeline, is a detection with real astrophysical signifi-
cance or an artefact of the detector or image processing. We
want to promote the former for a decision on whether to fol-
lowup and to reject the latter without further consideration.

c© 2016 The Authors
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In preparation for LSST and to deal with the data volumes
of present surveys, much effort has been invested in develop-
ing systems which automatically reject false positives with
supervised learning. Using large volumes of past observa-
tions that have been identified as real or “bogus”, the aim
is to train a machine to make predictions about future ob-
servations (Bloom et al. 2012; Brink et al. 2013; Goldstein
et al. 2015; du Buisson et al. 2015; Donalek et al. 2008;
Romano et al. 2006; Bailey et al. 2007; Masci et al. 2017).
Providing this data typically requires manual inspection of
individual detections by human experts to mitigate label
contamination that would confound the learning algorithm.
This quickly becomes unwieldy given that performance of a
machine learning solution has been shown to depend on the
quantity of labelled training data (Banko & Brill 2001).

The requirement for sufficiently large and representa-
tive training sets is prohibitive for the largest surveys or
for small research teams, and is particularly problematic for
rarer classes of transients. An alternative to relying on ex-
pert labelled training sets for machine learning is therefore
to expand the population providing labels. For example Mel-
chior et al. (2016) describes a crowd sourcing platform for
vetting image quality from the Dark Energy Survey (DES)
(Dark Energy Survey Collaboration 2005) relying on the
consensus of ∼ 100 volunteers from a team of professional
astronomers. For surveys of the future a few hundred volun-
teers will not be enough. Instead we must cast our net wider
increasing the population of the crowd beyond those directly
involved in the survey. The obvious path is to engage citizen
scientists. Galaxy Zoo Supernovae (Smith et al. 2011) and
Snapshot Supernova (Campbell et al. 2015) are two projects
to have taken this approach for transient surveys, using data
from the Palomar Transient Factory (PTF) (Rau et al. 2009;
Law et al. 2009) and SkyMapper (Keller et al. 2007) respec-
tively. Both projects were facilitated through the Zooniverse
Citizen Science platform (see description in Marshall et al.
(2015)), and asked volunteers to assess the target, reference
and difference images for each detection and answer a series
of questions that led to a classification of real or bogus.

For classification tasks, humans and machines have
complementary strengths. Human classifiers are good at
rapidly making abstract judgments about data, allowing
them to see only a small number of examples before mak-
ing decisions about novel images. Machines can consume
large quantities of data and make more systematic judge-
ments based on complex relationships between the features
provided. In the Space Warps citizen science project (Mar-
shall et al. 2016) all example gravitational lenses provided to
volunteers appeared blue, yet despite this, volunteers were
able to identify a gravitationally lensed hyperluminous in-
frared radio galaxy that appeared red (Geach et al. 2015).
In contrast a machine would need to be provided examples
of these in the training data. On the other hand, computer
vision techniques allow images to be examined systemati-
cally, with relationships between different features used for
classification. Combining machine classifications with those
of experts will trivially be expected to improve performance,
but the situation in which classifications from volunteer cit-
izen scientists are used is less clear. If the noisier data sets
provided by citizen science are combined with machines, is
performance of the system improved? If machines are in-
cluded in classification, does it relieve some of the burden

on citizen scientists? Answering these questions is critically
important for surveys where even a substantial number of
experts will not be able to review all the data promoted by
a machine classifier.

In this paper we report some initial findings from the
Supernova Hunters project1, a new citizen science project
similar in spirit to those mentioned above but applied to the
Pan-STARRS Survey for Transients (PSST). In Section 2
we describe the Pan-STARRS1 telescope, PSST survey and
the Supernova Hunters project and citizen science platform.
Section 3 shows the relative performance of humans and ma-
chines on data uploaded to Supernova Hunters during the
first two months of the project. We also describe and mea-
sure the performance of a simple method for combining the
classifications of citizen scientists and the current PSST ma-
chine classifier. We further discuss a mechanism to take ad-
vantage of metadata associated with each detection to boost
classification performance. In Section 4 we conclude and dis-
cuss potential avenues for future improvements. This paper
therefore represents the first study of combined citizen sci-
ence and machine classifications within a live astronomical
survey.

2 METHOD

2.1 Pan-STARRS1

Pan-STARRS1 comprises a 1.8m primary mirror (Kaiser
et al. 2010) and 60 detectors with 4800 pixels, constructed
from 10µm pixels subtending 0.258 arcsec (Magnier et al.
2013) and a field-of-view of 3.3 deg. The filter set consists of
gP1, rP1, iP1, zP1 (similar to SDSS griz (York et al. 2000)),
yP1 extending redward of zP1 and the “wide” wP1-band fil-
ter extending over gP1 to iP1 (Tonry et al. 2012). Between
2010 and 2014 Pan-STARRS1 was operated by the PS1 Sci-
ence Consortium (PS1SC) performing 2 major surveys. The
Medium Deep Survey (MDS) was allocated 25% of observ-
ing time for high cadence observations of the 10 Medium
Deep fields and the 3π survey allocated 56% observing time
to observe the entire sky north of -30 degrees declination
with 4 exposures per year in each of gP1, rP1, iP1, zP1 and
yP1 for each pointing.

The 3π survey was completed in mid-2014 and since
then the telescope has been carrying out a NASA funded
wide-field survey for near earth objects through the NEO
Observation Program operated by the Pan-STARRS Near
Earth Object Science Consortium (PSNSC). The NASA
PSNSC survey is similar to the 3π survey but optimised for
NEO discoveries. Observations are in wP1 in dark time and
combinations of iP1, zP1 and yP1 during bright time. The
PanSTARRS Survey for Transients (PSST) (Huber et al.
2015; Inserra et al. 2013) searches the data for static tran-
sients, releasing these publicly within 12 to 24 hours.

Typically a single field is imaged 4 times in a night with
exposures separated by 10-20 mins called Transient Time In-
terval (TTI) exposures to allow for the discovery of moving
objects. The quads of exposures are not dithered or stacked,

1 https://www.zooniverse.org/projects/dwright04/

supernova-hunters
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meaning that cross-talk ghosts, readout artefacts and prob-
lems of fill-factor are inherent in the data (see Denneau et al.
(2013) for some examples). Individual exposures are differ-
enced (Alard & Lupton 1998; Bramich 2008) with the 3π
all-sky reference stack and sources in the resulting differ-
ence images are catalogued.

A series of pre-ingest cuts are performed before the cat-
alogues are ingested into a MySQL database at Queen’s
University Belfast (QUB). These cuts are based on the de-
tection of saturated, masked or suspected defective pixels
within the PSF area in addition to flag checks for ghost
detections and rejecting detections within ±5 degrees galac-
tic latitude. Detections passing these cuts are grouped into
transient candidates if they are spatially coincident within
0.5 arcsec and the rms scatter is < 0.25 arcsec. Post-ingest
cuts are applied on detection quality, convolution checks and
a check for proximity to bright objects. Additional cross-talk
rules have been identified and implemented at QUB to re-
ject ghosts not flagged at the pre-ingest stage. Remaining
detections are cross-matched with the Minor Planets Cen-
ter ephemeris database to identify any asteroids not removed
by the rms cut. Remaining transient candidates are passed
to our machine classifier described in the next section.

2.2 Convolutional Neural Network

In Wright et al. (2015) we developed a machine classifier for
real-bogus classification in the PS1 Medium Deep Survey.
However, we found that this approach performs poorly for
PSST because of the greater variety of artefacts in PSST
data (a consequence of differencing individual exposures)
and the difficulty obtaining a representative labelled training
set at the beginning of a new survey. Instead we turned to
Convolutional Neural Networks (CNNs) that maintain the
advantages of operating solely on the pixel data but at a
higher computational cost in deployment.

The training set for this classifier was drawn from 3π
survey data between 1st June 2013 and 20th June 2014.
The sample of real detections are taken from spectroscopi-
cally confirmed transients or detections of objects that have
been labelled by experts as high probability real transients.
Bogus detections are taken from a random subsample of de-
tections discarded by post-ingest cuts or human inspection.
The training set consists of 6916 examples with an addi-
tional 2303 detections held out for testing with both data
sets containing twice as many bogus detections to real. Each
example was manually inspected in order to limit label con-
tamination; not all detections associated with a spectroscop-
ically confirmed transient are necessarily real for example.

Given the small data set, to avoid overfitting we limit
the CNN to a single convolution layer with 400 kernels and
a pooling layer followed by a binary softmax classifier. We
also perform unsupervised pre-training with sparse filtering
(Ngiam et al. 2011) using unlabelled images from the STL-
10 (Coates et al. 2011) data set. The classifier is applied to
nightly PSST data producing a score for each TTI exposure
for every candidate passing the cuts in the previous section.
The score, or hypothesis, is a function h(x) of the input fea-
ture representation, x (the output of the convolution and
pooling layers). For each candidate we simply combine the
TTI exposure hypotheses by taking the median, resulting
in a single “real-bogus factor” for each transient candidate

which we take as the machine equivalent of P (real) below.
To automatically reject candidates we must choose a de-
cision boundary on h(x) such that any candidate with a
hypothesis lying below the decision boundary is considered
a bogus detection and discarded. This inevitably leads to
a trade-off between false positives and false negatives (or
missed detections). If the decision boundary is set too high
we will discard many real detections of supernovae; too low
and we will be inundated with artefacts (see for example
Figure 2). We chose the decision boundary based on the
expected performance measured on the test set. For exam-
ple, using our CNN to generate hypotheses for each detec-
tion in the test set, we can choose the decision boundary
that corresponds to a False Positive Rate (FPR) of 1% at
h(x) = 0.842, where the FPR is the number of false positives
divided by the total number of bogus candidates in the sam-
ple. However, although the number of artefacts promoted
would be low, based on the test set this decision bound-
ary would be expected to result in a Missed Detection Rate
(MDR) of ∼ 21% for future data and is therefore not a
sensible choice. We instead opted for a decision boundary
at h(x) = 0.436 with expected FPR and MDR of 5% and
∼5.2% respectively. As detailed in Section 3.1 clearly the
decision boundary can be scaled to take advantage of avail-
able human effort; lowering the decision boundary beyond
0.436 would increase the FPR requiring more human screen-
ing but at the same time reduce the MDR such that humans
could recover real supernova detections with low h(x) that
would otherwise be automatically rejected.

2.3 Citizen Science Platform

Supernova Hunters was launched on 12th July 2016 (MJD
57581). As of 6th December 2016 the project has accumu-
lated 1082170 classifications from 5845 citizen scientists with
a few tens of volunteers submitting thousands of classifi-
cations. Citizen scientists are presented with the interface
shown in Figure 1 and asked to classify individual TTI ob-
servations (see Section 2.1). So far volunteers have classified
117693 individual images of 46277 individual PS1 objects.
As guidance we provide a “Field Guide” that provides a de-
scription and examples of the different artefact types we ex-
pect. Once a week ∼ 5800 new subjects are uploaded to the
project consisting of the previous week’s detections that pass
our machine cuts. The arrival of the data is announced to ex-
isting volunteers via email2. We require at least seven citizen
scientist classifications before a subject is considered classi-
fied and subsequently retired from the project. The choice
of seven classifications is simply motivated by a trade-off
between speed of data processing and accuracy and we did
not see significant gains by requiring ten classifications dur-
ing the beta test. Since launch the project averages ∼ 21000
classifications in the first 24 hours after the data is released
and ∼ 8200 classifications in the following 24 hours by which
time all subjects are normally retired.

We calculate a “human score” simply by taking the frac-
tion of all the volunteers who saw a detection and classified
it was real. High confidence (typically P (real) > 0.8, see

2 Though enthusiasm for the project is such that traffic to the

site now increases significantly ahead of this email alert!
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Figure 1. The classification interface presented to citizen scientists. The left most image is the target image

taken during the previous week. In the centre is the equivalent 3π reference image and on the right is

the difference image. Volunteers are asked to decide whether or not they think the detection in the green
crosshairs in the difference image is a detection of a real transient.

Section 3) supernova candidates are screened by experts to
remove a small number of false positives (∼ 10%) before the
targets are submitted to the Transient Name Server (TNS).
To date citizen scientists have discovered over 450 supernova
candidates that have been submitted to the TNS and two
confirmed Supernovae including SN 2016els (Mattila et al.
2016); a superluminous supernova Type I. The classification
spectra were obtained by PESSTO (Smartt et al. 2015).

3 PERFORMANCE

We present the results of our machine classifier (Section 2.2)
in Figure 2 on PS1 data uploaded to Supernova Hunters be-
tween MJD 57570 and MJD 57586. This data set includes
classifications from an initial beta test of the project prior to
launch on MJD 57581. A major contaminant is the presence
of asteroids. These appear in the difference image as identi-
cal to supernovae, and are in that sense “correctly classified”
but are identified here via cross-matching with the Minor
Planet Center.

The results of the machine learning were additionally
reviewed by at least one expert member of the team (nor-
mally DEW or KWS) to identify genuine supernovae. Can-
didates were divided into ‘real’ and ‘bogus’ categories based
on these expert classifications. We note that a future im-
provement to the project would be to inject fake real and
bogus detections into the data as a means to track perfor-
mance. The Andromeda Project (Johnson et al. 2015) and
Space Warps are examples of two citizen science projects
to have taken this approach, while Goldstein et al. (2015)
used faked detections to augement DES training data for
their real-bogus classifier. With this approach we would no
longer be reliant on the assumption that every expert label
is correct, but we must be careful to ensure that injected
fake sources are truly representative of our observations.

Candidates with high scores as assigned by the machine
are more likely to be real. However, although the machine
successfully rejects the majority of bogus candidates, the
sample produced by the simple cut on hypothesis is far from
pure; 1403 real candidates from 3384 in the sample. Higher
cutoffs run the risk of rejecting an increasing number of real
candidates; requiring a 1% false positive rate will result in a
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Figure 2. The distribution of hypotheses, h(x) from the current

3π machine classifier for detected objects between MJD 57570 and
MJD 57586. The light green shows the distribution of objects with

h(x) ≤ 0.436 which are automatically rejected. The remaining

objects promoted for human screening even at high values of h(x)
contains many false positives. The first interval has a frequency

of 12428, but the plot is truncated for clarity. Inset: Zoom-in of

the region with h(x) > 0.8.

missed detection rate of 60.3%. In order to improve this per-
formance, candidates which exceed the h(x) = 0.436 thresh-
old (see Section 2.2) were also classified by volunteers via
the Supernova Hunters project. The results of this analysis
are shown in Figure 3.

Volunteer classifications were combined using the sim-
plest possible metric; the fraction of volunteers who identi-
fied a detection as real is assumed to be an estimate of the
probability of that candidate being real, denoted P (real).
Despite this simple procedure, the results show that vol-
unteers could effectively distinguish between real and bogus
classifications. However, the structure of the resulting distri-
bution is strikingly different from that of the machine clas-
sifier. Whereas for machine classification, a threshold could
be chosen to give a complete but not pure sample, with

MNRAS 000, 1–10 (2016)
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Figure 3. The distribution of P (real) from Supernova Hunters
for objects detected between MJD 57570 and MJD 57586. Com-

pared with the machine h(x) in Figure 2 the objects at the ex-

tremes are pure. There are no real detections with P (real) < 0.04
and few bogus detections above 0.92.

volunteer classifications it is easier to construct a pure sam-
ple of candidates which are highly likely to be supernovae,
but this sample is far from complete. There are candidates
judged ‘real’ by experts even at low probabilities although
there were no real candidates assigned P (real) < 0.04.

There are two routes which might be expected to im-
prove this performance. First, we could improve on the naive
combination of volunteer votes described above. To this end
citizen science projects typically explore methods to weight
volunteer contributions (see, for example Schwamb et al.
(2012), Willett et al. (2013) and Marshall et al. (2016)).
Second, given that we have a human and machine score for
every detection we could seek a combination of the two in
the hope of benefiting from the different capabilities of both.

3.1 Combining human and machines

In a companion paper analysing performance of Galaxy Zoo,
Beck et al. (tted) used a machine classifier running in par-
allel to a simulation of the Galaxy Zoo 2 project (Willett
et al. 2013). They showed that the addition of such a clas-
sifier, which retired subjects classified above a certain level
of confidence at the end of each day, retraining each time,
can greatly accelerate the speed of classification in a data
set. In their work, images are retired by either machine or
human, whereas we set out in this section to use a combina-
tion. While they retrain their machine with volunteer input
as it accumulates, we use a static training set derived from
expert classifications.

Figure 4 shows the combination of human and machine
classifications. It is immediately apparent from the figure
that no single threshold on either machine or human clas-
sification can outperform the combination of the two. This
is an important result; it is the first time that the benefits
of combining classification from both machines and volun-
teers has been clearly demonstrated using data from a live
astronomical survey.

0.0 0.2 0.4 0.6 0.8 1.0
h(x)

0.0

0.2

0.4

0.6

0.8

1.0

P
(r

e
a
l)

bogus

asteroid

real

Figure 4. The P (real) from Supernova Hunters against the ma-
chine h(x) for 3384 detected objects between MJD 57570 and

MJD 57586. P (real) and h(x) are combined by projecting the
data onto the solid black line in the euclidean sense. A Spearman

rank correlation test shows the correlation between P (real) and

h(x) to be 0.237.

How should the two independent classifications be com-
bined? We simply apply a decision boundary of the form
τ = (x + y)/2 on the 2D surface, where 0 ≤ τ ≤ 1. For
a constant value of τ a candidate is classified as bogus if
[h(x) + P (real)]/2 <= τ and classified real otherwise. This
is equivalent to projecting the data onto P (real) = h(x),
producing a new scalar score for each detection and classi-
fying candidates as bogus if the combined score is less than
or equal to τ .

As an independent test we apply this same method to
data between MJD 57587 and MJD 57627 in Figure 5. For
Figure 4 and Figure 5 a Spearman rank correlation test gives
0.237 and 0.122 respectively, showing P (real) and h(x) to
be only weakly correlated. Between MJD 57609 and MJD
57615 we relaxed our cut on h(x) from 0.436 to 0.3 upload-
ing any objects passing this cut to Supernova Hunters. This
allowed us to explore the subjects wrongly classified by the
machine and resulted in the recovery of SN 2016fev, a Type
Ia supernova that would have been automatically rejected
with h(x)=0.39, but which received a P (real) of 1.0 from
Supernova Hunters. The performance of the combination
method on this data set is shown in the Receiver Opera-
tor Characteristic (ROC) Curve and Purity-Completeness
(Precision-Recall) Curves plotted in Figure 6.

For any choice of false positive rate, the combination
of classifications produced a lower missed detection rate.
Equally, for any required purity or completeness the combi-
nation provides a better trade-off.

We have chosen to implement one of the simplest meth-
ods for combining human and machine classifications to
demonstrate how they complement one another, but it is
easy to think of more complex combination methods. For

MNRAS 000, 1–10 (2016)
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Figure 5. The same as Figure 4 but on a new sample of 10908
objects detected between MJD 57587 and MJD 57627. For one

week during this period we relaxed our cut on h(x) to 0.3 which
allowed us to recover a supernova with h(x)=0.39, but which

achieved a P (real)=1.0 from Supernova Hunters. In this case the

Spearman rank correlation is found to be 0.122.

example we trained a linear Support Vector Machine (SVM)
on the data presented in Figure 4 and found, unsurprisingly,
that the performance measured on the data in Figure 5 was
typically within 1% of the values reported in Tables 1 and 2.
Although the gains in this example are negligible, if we wish
to incorporate additional information from an ensemble of
machine classifiers for example, and the input space becomes
higher dimensional, such methods become important. It is
unlikely that the combination method presented here will
work for higher dimensional data, but we can expect that
an SVM may take advantage of the additional information.

3.2 Improving P (real) with SWAP

We also expect to gain from improving P (real). To demon-
strate this we implemented the Space Warps Analysis
Pipeline (SWAP) (Marshall et al. 2016), an algorithm
designed to improve the sample of good gravitational lens
candidates from the Space Warps3 citizen science project
in images from the Canada—France—Hawaii Telescope
Legacy Survey (CFHTLS) (Gwyn 2012). SWAP does not
treat all classifiers equally, but quantifies the value of their
contribution in terms of the information gained. SWAP
assigns a software agent to individual citizen scientists.
Classifications are weighted according to the agent’s esti-
mate of likely performance based on each volunteer’s past
performance measured on gold standard data. The agent
maintains a confusion matrix that monitors the fraction of
gold standard data correctly or incorrectly classified by a

3 https://spacewarps.org

volunteer for each class (“LENS” or “NOT” in the case of
Space Warps). We use the online implementation of SWAP
considering each classification in turn. We make several
small adjustments to the original SWAP implementation.
First, our gold standard labels are “real” and “bogus”
rather than “LENS” or “NOT”. Second, we set the prior
probability that each detection is a real supernova ρ0 to be
0.01, roughly the expected ratio between real and bogus
detections each night determined by expert classifications.
Finally, in our analysis we do not set rejection and detection
thresholds, instead we continue to require that at least
seven volunteers classify each subject. As in Marshall et al.
(2016) we set the initial confusion matrix for the i−th
volunteer to:

M i =

[
0.5 0.5
0.5 0.5

]
.

This initialisation of the confusion matrix corresponds
to that of a random classifier, but will be quickly modified
as we observe classifications of gold standard data by this
volunteer. The results of applying SWAP to the citizen sci-
entist classifications on data between MJD 57587 and MJD
57627 (Figure 5) are shown as the purple line in Figure 7.
Compared with the human performance in Figure 6, SWAP
considerably improves P (real). By combining this improved
score from human classifications with the machine, using
the same method as above, we once again observe an
improvement in the measured performance (pink line from
Figure 6). In fact, apart from a small exception at about
97% purity and 25% completeness (likely an artefact of the
specific data set) the combination outperforms all previous
methods for classifying this data set, demonstrating that an
improvement in either P (real) or h(x) can lead to valuable
performance gains when combined. SWAP combined with
the machine produces a few percent improvement over all
the other methods tested so far for any figure of merit in
Tables 1 and 2.

Considering the scenario where we are reliant on citizen
scientists to label training data for machine learning algo-
rithms, it seems prudent to consider how we might further
improve P (real) in the future. One observation we make
is that citizen scientists perform differently on detections
with varying degrees of signal-to-noise. In general, citizen
scientists are very good at recovering bright supernovae but
find it more and more difficult as detections get closer to the
detection limit. Given the history of classifications of gold
standard data a volunteer has submitted, we can calculate
the probability the volunteer will classify a detection as
real given that the true label is real, P (“real”|real), by
simply taking the fraction of the gold standard detec-
tions labelled “real” the volunteer correctly classified.
We can similarly calculate P (“bogus”|bogus). These are
the probabilities tracked by the SWAP agent confusion
matrix and which we have plotted on the unit plane for
the 3158 volunteers participating in the project at this
time for different magnitude bins in Figure 8 and Figure 9.
A volunteer who correctly classifies every gold standard
example they have seen is a perfect classifier and will lie
at (1,1) in the “Astute” quadrant of the plot. The size
of the point corresponds to the quantity of gold standard
data classified by that volunteer in a given magnitude bin.
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Figure 6. Left: ROC curve showing performance measured on data in Figure 5 for human (red), machine (yellow) and
the combination of human and machine classifications (blue). Right: The equivalent Purity-Completeness curve. Both plots

show that the combination always outperforms humans and the machine individually.
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Figure 7. Left: ROC curve for different approaches to classification. Right: The corresponding Purity-Completeness curves.
The blue lines are the same as in Figure 6 showing the simple combination of the machine with the basic human score

described in Section 3. The green line shows the results of implementing SWAP, which improves on the basic human score

(red line in Figure 6). Combining this improved score with the machine produces the pink line.

Most volunteers have submitted only a few classifications
and cannot be seen on the plot. Clearly volunteers are
more “Astute” at classifying brighter sources, tending to
lie closer to the top right of the plot. This information
is lost in the basic SWAP implementation. A volunteer’s
classification could now be weighted according to the
magnitude bin that a given detection falls in. This results
in a simple modification of the SWAP calculation of P (real).

In this case we are taking advantage of additional
“metadata” that is available for each detection and as-
suming that it has some effect on classifiers’ behaviour.
We also expect that humans and machines are good at
classifying different types of images. In our case the CNN is
good at classifying detections around 20th magnitude, but
often misclassifies detections brighter than 17th magnitude.
This is because the training set is dominated by fainter
detections. The machine has not been able to learn a

MNRAS 000, 1–10 (2016)
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Figure 8. Confusion matrix elements for volunteers classifying

detections from Figure 5 with apparent magnitude 13 ≤ m < 18.
Each point represents an individual volunteer, where the size of

the point corresponds to the quantity of gold standard data in this

magnitude bin classified by the volunteer. Larger points therefore
correspond to more experienced classifiers. Many volunteers tend

to lie high in the top right of the “Astute” region, a perfect clas-

sifier would lie at (1,1). This shows that citizen scientists can
accurately classify high signal-to-noise real and bogus detections.

function that accurately maps between the pixels and
the classification for bright examples because it has not
“seen” many during training. In Tables 1 and 2 we include
the results of running SWAP on the magnitude spilts
and the combination with the machine scores. We find
that, for the most part, this gives a ∼1% improvement in
performance over not using metadata splits depending on
the Figure of Merit. There are other metadata parameters
we could explore, both properties of the survey (seeing) and
properties of the detection (proximity to a galaxy). Tables 1
and 2 also show the effect of using seeing for the metadata
splits and we observe similar performance to magnitude.
Although the gains are small this may indicate that a
more thorough analysis of metadata is worth pursuing. For
instance we could more carefully define where the splits
on metadata should be made and consider the effect of
combining multiple metadata parameters. In future, it
would be interesting to train an ensemble of machines with
each only consuming retired data from a single metadata
split. When adequately trained, the resulting machines
would specialise in specific regions of parameter space and
could eventually be folded back into the project. We could
also incorporate these machines into the SWAP analysis
with their classifications weighted just as for volunteers.

4 CONCLUSIONS

In this paper we introduced a new citizen science project, Su-
pernova Hunters built entirely with the off-the-shelf Zooni-
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Figure 9. Similar to Figure 8 but for detections with apparent

magnitude 19 ≤ m < 20. In this case volunteers are further from
the top right and tend towards “Pessimistic” or “Optimistic” clas-

sifiers.

verse Project Builder4 requiring no custom features or addi-
tional development. The project aims to classify detections
of potential supernova candidates from the Pan-STARRS
Survey for Transients either as real transients or bogus de-
tections of image processing or instrumentation artefacts.
To be uploaded to the Supernova Hunters project a detec-
tion must first pass a series of cuts based on catalogue in-
formation and secondly be promoted by our machine learn-
ing algorithm, a Convolutional Neural Network. With this
approach we expect that only about 5% of the false pos-
itives passing the catalogue cuts make it into the project,
greatly reducing the number of objects we ask volunteers to
screen. Citizen scientists excel at mining this data for a very
pure sample of high P (real) supernova candidates, typically
those of higher signal-to-noise and offset from a galaxy. But
compared with expert labels many less obvious candidates
are missed. Rather than immediately consider methods of
weighting classifications of individual citizen scientists, we
instead applied a simple combination of the scores provided
by humans and machines. We showed the new combined
score achieved better performance than either individually
for any choice of purity or completeness.

We expect that there are many ways to improve. As an
example we generalised the Space Warps Analysis Pipeline
(SWAP) to Supernova Hunters and applied it to the volun-
teer classifications and again combined the resulting scores
with those from the machine. We found that this resulted in
a few percent performance gain compared to the next best
method. To further improve P (real) we could invest more ef-
fort into educating citizen scientists to identify more subtle

4 https://www.zooniverse.org/lab

MNRAS 000, 1–10 (2016)

https://www.zooniverse.org/lab


Human and machine classifications 9

SWAP SWAP combined combined combined
FPR human machine combined SWAP (mag.) (seeing) SWAP SWAP (mag.) SWAP (seeing)

1% 73.9% 90.1% 58.7% 66.6% 64.5% 64.2% 54.5% 54.1% 53.5%
5% 56.3% 69.7% 35.8% 41.0% 39.7% 40.3% 30.2% 29.7% 28.8%

10% 45.6% 46.7% 23.8% 31.2% 30.0% 30.5% 20.5% 18.9% 20.1%

Table 1. Missed detection rate recorded for a choice of false positive rates, based on expert classifications.

SWAP SWAP combined combined combined

MDR human machine combined SWAP (mag.) (seeing) SWAP SWAP (mag.) SWAP (seeing)

1% 92.5% 85.9% 69.3% 100.0% 100.0% 100.0% 66.2% 68.7% 71.2%

5% 75.1% 52.8% 41.8% 100.0% 100.0% 100.0% 29.6% 31.0% 31.7%
10% 53.8% 39.1% 26.5% 49.9% 47.9% 49.1% 20.6% 19.6% 20.2%

Table 2. False positive rate recorded for a selection of missed detection rates, based on expert classifications.

artefact indicators. For example the Gravity Spy5 project
has implemented a training regimen where volunteers are
provided with feedback on classifications of gold standard
data and can progress to more advanced levels performing
more complex tasks (Zevin et al. 2017). This could help ad-
dress the many bogus detections with P (real) > 0.5, but
relatively few real detections below 0.5 in Figure 3. Another
improvement could be with our machine classifier, which
was trained at the beginning of the PSST survey and the
algorithm was specifically chosen to learn from the limited
amount of training data available. Given the large volume
of data accumulated since, we could train more sophisti-
cated algorithms that can learn more complex relationships
between the features, though extracting robust labels for
this additional data is a challenge that still needs to be ad-
dressed.

This effort offers hope for dealing with the large data
volumes from all sky surveys such as LSST, ZTF (Bellm
2014), ATLAS (Tonry et al. 2016) and Pan-STARRS2. We
used machines to reject the vast majority of false positives
and then combined the machine hypotheses with classifica-
tions from a few thousand citizen scientists for the remaining
candidates. With Supernova Hunters we have not actively
sought additional citizen scientists, beyond the ∼ 30000 vol-
unteers on the Zooniverse beta testing e-mail list, who were
asked to review the project before launch. New volunteers
must “discover” the project on the Zooniverse projects page
to participate. Given that we could actively seek the par-
ticipation of ∼ 106 registered Zooniverse volunteers and as-
suming that 10% chose to participate, with the current clas-
sification rate (21000 in the first 24 hours each week from
∼6000 volunteers) we could achieve ∼ 350000 classifications
per night. This provides 0.35 classifications for the ∼ 106

transient alerts expected from LSST at the beginning of the
survey (Ridgway et al. 2014). If the false positive rate is an
order of magnitude more than the transient alert rate (per-
haps overly pessimistic given the expected ∼ 500-2200 false
positives per field per visit (Becker et al. 2013) with a 5σ de-
tection threshold) and assuming we can discard 90% of those
with machine learning we can expect to achieve 0.175 citi-
zen science classifications per promoted detection. Assuming

5 https://www.zooniverse.org/projects/zooniverse/

gravity-spy

we will require roughly 10 classifications per detection be-
fore considering it classified, we are roughly two orders of
magnitude short. Making up this deficit may be achievable
with continued improvements to difference imaging (Zackay
et al. 2016), automated real-bogus classification, encourag-
ing greater participation from a growing community of citi-
zen scientists and more efficient use of their classifications.
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