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Abstract

A key feature of trajectory based operations (TBO) – a new concept developed to
modernize the air traffic system – is the inclusion of preferences and priorities of the
air traffic management (ATM) stakeholders. In this paper, we present a new math-
ematical model to optimize flights’ 4D-trajectories. This is a multi-objective binary
integer programming (IP) model, which assigns a 4D-trajectory to each flight, while
explicitly modeling priorities and highlighting the trade off involved with the Airspace
Users (AUs) preferences. The scope of the model (to be used at pre-tactical level) is
the computation of optimal 4D pre-departure trajectory for each flight to be shared or
negotiated with other stakeholders and subsequently managed throughout the flight.
These trajectories are obtained by minimising the deviation (delay and re-routing) from
the original preferred 4D-trajectories as well as minimizing the air navigation service
(ANS) charges subject to the constraints of the system. Computational results for the
model are presented, which show that the proposed model has the ability to identify
trade-offs between the objectives of the stakeholders of the ATM system under the
TBO concept. This can therefore provide the ATM stakeholders with useful decision
tools to choose a trajectory for each flight.

Keywords: integer programming (IP); Air Traffic Flow Management (ATFM); Tra-
jectory Based Operations (TBO); multi-objective optimization; 4D-Trajectories; Stake-
holders’ priorities and preferences.

1 Introduction

The challenge growth report [2] of the European Organization for the Safety of Air Naviga-
tion (EUROCONTROL) forecasts that the air traffic system in Europe is to record about
14.4 million flights in 2035, which will represent 1.5 times the level of traffic recorded in
2012. Furthermore, the corresponding number of passengers is expected to double from 0.7
billion in 2012 to 1.4 billion passengers in 2035. Such a dramatic growth brings up many
challenges that need to be tackled to ensure the sustainability and competitiveness of avi-
ation in Europe. For example, it is forecasted in [2] that about 1.9 million flights may not
be accommodated in 2035 with the current concept of operations. This is the equivalent of
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120 million passengers that may not be able to travel. Among many other challenges that
will come along with such a growth are the environmental impact, the cost and operational
efficiency of the system (e.g. reducing flight time, fuel burn, route charges per flight), as
well as safety and security.

As a response to such a dramatic growth, the European Commission has adopted the
Single European Sky framework as a legislative framework for European aviation. While
the Air Traffic Management (ATM) system migrates towards this concept vision, some sig-
nificant changes have been identified as described in the Global ATM Operational Concept
[31]. One such change, Trajectory Based Operations (TBO) , is described as follows [31]:
“Air traffic management (ATM) considers the trajectory of a manned or unmanned vehicle
during all phases of flight and manages the interaction of that trajectory with other tra-
jectories or hazards to achieve the optimum system outcome, with minimal deviation from
the user-requested flight trajectory, whenever possible.” TBO represents a shift from present
operations towards the use of a shared trajectory, collaboratively developed as the basis for
decision-making across the ATM System Participants. It is identified in both the European
ATM Master Plan [1] and the Single European Sky ATM Research (SESAR) Concept of
Operations [3] as one of the cornerstones of the future ATM system. It also provides an op-
portunity to shift operations towards greater predictability with flight-impacting decisions
being coordinated across concept components. The main differences with today’s operation
involve:

1. Sharing of trajectory information eventually leading to a common view of the trajec-
tory.

2. Managing trajectory information using Collaborative Decision Making (CDM).

3. The trajectory that is shared and managed, the Agreed Trajectory, is used as reference
for the flight by providing a common intent to be achieved during the execution of the
flight.

The TBO concept is expected to benefit the ATM system in many aspects. For example, the
ATM community will contribute to the protection of the environment by taking into con-
sideration the consequences of airspace activities. Moreover, the management of trajectory
and the exchange of information between airspace users (AUs) and the ATM system will
improve conflict management and facilitate the use of preferred trajectories for each flight.
More detailed descriptions of the TBO concept and its benefits can also be found in [32].
The development and implementation of the TBO concept require the development of opti-
mization models and algorithms that will allow pertinent decision makers and stakeholders
to examine the trade-offs between user and system optimum trajectories and to facilitate
the definition of commonly accepted trajectories by all stakeholders.

The mathematical model developed and solved in this paper is aimed at supporting the
verification and the viability of the TBO concept. We present a 4D-trajectory based mathe-
matical model which focuses on optimising the efficiency of the ATM system under the TBO
concept by assigning 4D-trajectories to flights based on the AUs’ preferences and priorities,
and the constraints of the ATM system. Particular to our model is that, not only it con-
siders the 4D-trajectories of aircraft, but it also incorporates the preferences and priorities
of the ATM stakeholders. Hence, our trajectory design aligns with the requirements of the
TBO concept. Furthermore, our mathematical model is formulated as a multi-objective op-
timization problem, which will be able to identify the existing trade-offs between the needs
and objectives of the ATM stakeholders. Therefore, it has the potential of facilitating the
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negotiation and acceptability of trajectories between the stakeholders. Indeed, the model
considers the preferred 4D-trajectory of all the flights in the pre-tactical planning phase
and outputs the set of all the non-dominated optimal solutions that can be implemented by
the network manager. Each of these non-dominated solutions consists of pre-departure 4D-
trajectories to be shared or negotiated with other stakeholders and subsequently managed
throughout the flight. We consider the following three objectives for optimization:

i) Minimization of the total time deviation (delay) from the scheduled time of operations.
The delay function is a combination of airborne delay and ground holding delay, which
is less costly than airborne delay.

ii) Minimization of the cost of deviation from the users preferred 3D-routes (lateral and
vertical deviation). This represents the cost of fuel burnt when a flight uses a particular
3D-route.

iii) Minimization of the airspace navigation service (ANS) charges. These costs are in-
curred when flights travel through the charging zones defined by the states in the
ECAC area.

The above objective functions represent some of the key performance indicators (KPIs)
of improvement targeted by the TBO concept [3]. They were identified as results of a
consultation activity with the European ATM stakeholders, who also expressed their views
on how their priorities and preferences could be incorporated in our model [28].

Since our proposed model is formulated as a tri-objective integer program, we imple-
ment the quadrant shrinking method (QSM) of Boland et al [34] in order to compute the
pareto frontier. The iterations of this method require solving two single-objective integer
programs, each of which is solved using the branch-and-cut algorithm. An extensive set of
computational experiments has been carried out with large scale instances and the results
of these experiments are presented in this paper along with some insightful analyses of the
trade-offs between the above mentioned conflicting objective functions.

In the subsequent sections of the paper, we will i) highlight the expectation of the ATM
stakeholders with respect to the TBO concept in Section 2; ii) provide a brief review of
the literature relevant to our research in Section 3; iii) present our mathematical model in
Section 4; iv) present the solution approach for solving the model in Section 5; v) discuss the
computational experiments conducted in Section 6; vi) end with some concluding remarks
in Section 7.

2 Stakeholders expectations and inputs

With the deployment of the TBO concept, AUs expect to be given more flexibility in order
to better manage their own flights and meet their internal business models. Indeed, the
network manager sees every flight as equal, while for the airlines each flight is unique.
Since even a small change to some flights may have a bigger economic impact for airlines.
Therefore, AUs expect their preferences and priorities to be taken into consideration in the
decision making process.

2.1 Modelling methodology

In order to ensure that our mathematical model meets the requirements of the TBO, as well
as the expectations of the ATM stakeholders, we developed an integrated methodological
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Figure 1. Modelling methodology (from [15, 16])

framework as presented in Figure 1 (from [15, 16]) . We organized a workshop with the
European ATM stakeholders. The objectives of this workshop were to elicit the views about
the preferences and priorities of the ATM stakeholders in relation to the optimization of
flights trajectories, and also to identify the key performance areas (KPAs) and key perfor-
mance indicators (KPIs) for assessing how our model could meet their expectations with
respect to the TBO concept. The outcome of this consultation enabled us to develop the
mathematical model presented in this paper. It also set the guideline of how the preferences
and the priorities of the AUs can be integrated in our optimization model. Interested readers
are referred to [28] for the report of this consultation activity.

2.2 Preferences

The notion of preference is yet to have a common consensus among the ATM stakeholders.
However, the consultation with the European ATM stakeholders [28] suggested that prefer-
ences can refer to any mechanism to absorb delays at the tactical level of ATM. This means
that AUs can express their preferences in relation to the deviation from their preferred 4D-
trajectories i.e. in terms of delay, flight altitude and lateral deviation (re-routing). In our
mathematical model, the preferences of the ATM stakeholders are captured in two ways.
First, the preferences of the AUs are expressed in terms of how each of their flights should
deviate (if need be) from its preferred 4D-trajectory i.e. whether they prefer change in flight
level, lateral deviation and time deviation. In order to accommodate these preferences, our
mathematical models will consider the ranking of the above types of trajectory deviation
for each flight and define the cost parameters for the alternative trajectories accordingly.
Secondly, our model considers three objective functions to be optimized. Each of these ob-
jective functions targets a specific KPI of the ATM system. Hence, the preferences of the
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stakeholders are also captured in terms of how well each of the objective functions achieves
their individual interests.

2.3 Priorities

The prioritization scheme can be regarded as a framework which will provide the airspace
users with the flexibility of managing and adapting their internal business model in a con-
strained environment [20]. To this end, SESAR has developed the concept of User-Driven
Prioritization Process (UDPP) [22], which enables the airspace users to optimize their flight
schedules by managing time deviation (delays) during departure, en-route and arrival. In
other words, UDPP provides the airspace users with the capability of prioritizing their flights
in case of capacity-constrained planning. The first step of UDPP is limited to departure
slot swapping at tactical level [21]. UDPP Step 2 is foreseen beyond slot swapping and is
considered at the planning phase. Our model considers prioritization at the planning phase.
A SESAR research activity [22] proposes a prioritization mechanism (called the Fleet Delay
Apportionment or FDA) wherein airspaces users assign priority values to their flights and
the system apportions delays to flights proportionally to their priority values. The allowable
priority values are integers 1 through 9, with a value of 1 indicating the highest priority and
of 9 indicating the lowest priority. We denote these priority values by τf for each flight f .

The overall idea of prioritization is for the AUs to decide how the total delay of their
own fleet should be apportioned among their flights. Therefore, our mathematical model
will capture the priorities through constraints which set the maximum amount of delay to
be absorbed by each flight. More precisely, if we let σf be the baseline delay (i.e. delay
when prioritization is not allowed) of flight f and Φ the set of all the airspace users, with
an AU being φ ∈ Φ, then the maximum amount of delay γf to be assigned to flight f under
the FDA mechanism is calculated as [20]:

γf =

 τf .σf∑
f∈Fφ

τf .σf

 .ζφ, (1)

where ζφ =
∑
f∈Fφ

σf with φ ∈ Φ is the total amount of delay to be absorbed by airspace user φ

in the baseline delay, with Fφ being the fleet of AU φ. In more detail, the FDA mechanism
works as follows. First the AUs submits their preferred flight trajectories request to the
system. The network manager runs simulation with these flight plans to determine how
much delay σf should be assigned to each flight f so that the system can run smoothly.
These delays, called baseline delays, are determined by applying the first-scheduled-first-
serve (FSFS) rule. Then each AU φ can decide how to apportion the total amount of delay
of their own flights ζφ =

∑
f∈Fφ

σf within their fleet by assigning to each flight f a priority

value τf . It should be noted that in (1) the baseline delay is used as a reference in order
to ensure equity between the AUs i.e. to prevent the prioritization action of one AU from
impacting negatively on the flight of others. Moreover, the total amount of delays to be
assigned to the fleet of each AU φ ∈ Φ will never be larger than to the total amount of delay
that its fleet would have received in the baseline situation.
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3 Literature review

Several studies have been carried out in recent years to analyse the feasibility of the TBO
concept. However, these studies focus more on the operational aspects of the problem and on
the design of the single trajectory (see for instance Pleter et al. [4] and Wynnyk et al. [5]).
Beginning with the seminal paper by Odoni [6], a great part of the academic/scientific Air
Traffic Flow Management (ATFM) literature has focused exclusively on airport congestion.
One of the first attempts to include en-route capacity restrictions in the ATFM problem
was by Helme [7], who proposed a multi-commodity minimum-cost flow on a time-space
network to assign airborne and ground delay to aggregate flows of flights. Lindsay et al.
[8] formulated a disaggregate deterministic 0-1 integer programming model for assigning
ground and airborne holding delay to individual flights in the presence of both airport and
airspace capacity constraints. Bertsimas and Stock Patterson [9] presented a deterministic
0-1 integer programming model to solve a similar problem.

The first mathematical model that incorporates the flexibility of choosing the flight route
among a set of possible alternatives, at least at a macroscopic level, is the model by Bertsimas
and Stock Patterson [10]. The computational performance of this model was not adequate
for addressing realistic problems. A mixed 0-1 model is presented by Bertsimas et al. [11]
which overcomes the latter computational limitation and is capable of addressing problems
of a scale comparable to the two largest ATFM systems existing in the world, those that
coordinate air traffic in the continental United States and in Western and Central Europe.
In 2012, Agustin et al. [12] presented a mathematical model that is closely related to the
model of Bertsimas et al. [11]. This model adopts the same formulation of re-routing
decisions and includes the possibility of cancelling flights as well as a cost for flights’ delays
at intermediate waypoints along their flown route. Another research in this direction is by
Churchill et al. [13], who proposed a mathematical model that focuses on air congestion at
hot spots rather than modelling the whole ATM system.

All the above mathematical models only consider the 3D-trajectories of flights, mean-
ing that aircraft trajectories neglect the altitude. One of the rare models, although not
explicitly designed for 4D-trajectories, but which can be modified to capture the complete
4D-trajectories of flights is the one proposed by Sherali et al. [18]. This model prescribes
a set of flight-plans one for each flight to be implemented. It seeks to minimize the delay
and a fuel-cost-based objective function, subject to the constraints that one of the desig-
nated flight plans is assigned to each flight, and that the resulting set of flight-plans satisfies
certain specified workload, safety, and equity criteria. In the scientific literature, no strate-
gic models have been developed for the TBO concept. Kim and Hansen [19] investigated
four alternative schemes of resource allocation within the Combined Trajectory Options
Program.

4 The multi-objective integer programming model

In our mathematical formulation, we represent the airspace as a network, which we define as
a direct graph G = (N ; E) in the 2D-space, where N is the set of nodes consisting of airports
and waypoints. Note that a waypoint here is a geographical point in the airspace where
flights can change the course of their trajectories. E is the set of arcs connecting the nodes.
For instance, in Figure 2 (adapted from [14]) A, B and C are airports, a, b, c, d, e, f and g
are waypoints and I, II, III and IV are airspace sectors. An arc can be traversed by flights
at different flight levels (altitudes) and the set of all the flight levels will be denoted by L.
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Note that in practice the vertical airspace is sliced into specific altitudes (flight levels) that
can be flown by planes. These altitudes are multiples of 1000 feet up to FL290 and 2000 feet
above unless the Reduced Vertical Separation Minimum (RVSM) is applied, in which case
it is 1000 feet. These figures correspond to the vertical separation standards that facilitate
the safe navigation of aircraft in controlled airspaces, as laid down by ICAO [33]. The time
horizon considered will be discretized into time periods. Our model is a 4D-trajectory based
since it considers the arc being flown in the 2D-space, the specific altitude of the flight as
well as the time periods.

Figure 2. Example of the mathematical representation in the 2D-space (adapted from [14])

It is assumed that a flight cannot travel on more than one arc during the same time
period. We also assume that if a flight is scheduled to be at a different altitude during the
next time period, then the ascent or the descent can start during the current time period
to ensure a smooth transition of flight levels. Note that an arc e ∈ E is defined by two
nodes as e = (n,m) with n,m ∈ N , which can be at two different flight levels. Therefore

the flight level l in the definition of the decision variable xfe,l(t), introduced below, refers to
the flight level of m if e = (n,m) with n,m ∈ N \ {df , af}, and when n = df (respectively
m = af ), the flight level -denoted by l0 - will refer to the altitude of the “exiting point” of
the standard instrument departure route i.e. SID (respectively, the “starting point” of the
the standard arrival route i.e. STAR) on the path of the flight f . We assume that once an
aircraft has entered the SID or STAR it follows the standard procedure.

4.1 Data notation

The data for our mathematical model is composed of a set of flights (herein denoted by F),
each having a preferred 4D-trajectory from the airport of origin to the airport of destination.
The notation for the mathematical formulation is presented in the following:

• K is the set of airports.
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• S is the set of en-route sectors.

• T is the set of (discretized) time periods.

• df ∈ K is the flight f airport of departure.

• af ∈ K is the flight f airport of destination.

• δf ∈ Z+ is the maximum (allowed) variation of altitude for flight f , measured in terms
of the number of flight levels.

• tf ∈ T is the scheduled departure time (STD) for flight f .

• t̄f ∈ T is the scheduled arrival time (STA) for flight f .

• Gf = (Nf ; Ef ) is a directed graph describing the possible flight paths (2D) of flight f .
Without loss of generality, this graph can be considered acyclic.

• Lf is the set of feasible flight levels for the flight f .

• ∆+
f,n and ∆−f,n are respectively the sets of out-going and in-coming arcs of node n ∈ Nf .

• Is is the set of arcs entering en-route sector s.

• T fe ≡
[
T fe ; T̄ fe

]
is the set of feasible time periods for flight f to fly on arc e ∈ Ef .

• Γfn ≡
[
Γfn; Γ̄fn

]
is the set of feasible time periods for flight f to arrive at node n ∈ Nf ,

note that Γfn = ∪e∈∆−f,n
T fe

• α+
f,e and α−f,e are respectively the maximum and minimum travel time (i.e. the number

of time periods) for flight f on arc e ∈ Ef .

• Dt
k is the departure capacity of airport k at time period t.

• Atk is the arrival capacity of airport k at time period t.

• Ets,l is the maximum number of flights that can enter the en-route sector s at altitude
l during time period t.

• C̄fe,l is the cost of flight f to use arc e at flight level l.

• Rfs is the ANS route charge if flight f passes through the airspace sector s.

• C∗f is the total cost incurred by flight f when using its preferred 3D-route (arcs and
flight level).

8



4.2 The decision variables

The decision variables for our model are defined similarly to those of the Bertsimas-Stock
Patterson [10] model, which is also similar to the ones used in [11, 12], but in addition
includes the flight altitude index in order to capture the full 4D definition of the trajectories.
These are binary variables which will define, for each flight, the position (arc being flown
and the altitude) at each time period.

xfe,l(t) =

 1 if flight f is planned to enter arc e ∈ Ef
at flight level l ∈ Lf by time period t,

0 otherwise.

4.3 The objective functions

Our model is a tri-objective optimization problem. The three objective functions are re-
spectively the total delay, the cost of the flights deviating from their preferred 3D-routes
and the total ANS route charges. Since AUs are sensitive to disclose their cost structure,
these three objective functions cannot be converted into a single monetary cost function.

4.3.1 Time deviation or delay

In line with most ATFM literature [11, 12], we consider the delay as a combination of the
costs of airborne delay and ground holding delay (which should be less costly than airborne
delay). Hence, the delay objective function to be minimized is defined as:

(2)

∑
f ∈F

 ∑
t∈Γfaf ,e∈∆−f,af

Cftd(t) ·
(
xfe,l0(t)− xfe,l0(t− 1)

)
−

∑
t∈Γfdf

,e∈∆+
f,df

Cfg (t)

·
(
xfe,l0(t)− xfe,l0(t− 1)

) ,
where Cftd(t) = (t− t̄f )

1+ε1 represents the cost incurred if flight f is delayed by t− t̄f unit

of time, t ∈ Γfaf , while Cfg (t) =
(
t− tf

)1+ε1 −
(
t− tf

)1+ε2
, t ∈ Γfdf is the cost reduction if

part of the delay in incurred on the ground. ε1 and ε2 are two parameters chosen such that
0 < ε2 < ε1 < 1 in order to disfavour airborne delays over ground holding delays.

4.3.2 Deviation from the users preferred routes

With the deployment of TBO, AUs expect to be able to fly their requested/preferred routes
or at least routes that are the closest possible to their preferred ones. Therefore, our model
minimizes the total cost incurred when flights use arcs and flight levels that are not part of
their preferred trajectories. This consists of minimizing the following objective function.

∑
f∈F

 ∑
e∈Ef ,l∈Lf

C̄fe,l · x
f
e,l

(
T̄ fe
)
− C∗f

 . (3)
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It can be seen that if a flight travel through its preferred route (i.e. without incurring
lateral or vertical deviation), then its cost of deviation (the term in the brackets) will be zero.

Moreover, the costs coefficients C̄fe,l are weighted to place emphasis on the the preferences
of the AUs.

4.3.3 Air navigation service route charges

The objective here is to minimize the total cost of air navigation service (ANS) route charges
for flights when assigning trajectories to flights. These charges are calculated as the sum
of charges generated in the charging zones defined by States in the ECAC area [30]. The
corresponding objective function to be minimized is then defined as follows:∑

f∈F,s∈S,e∈Is,l∈Lf

Rfs · x
f
e,l(T̄

f
e ). (4)

4.4 The constraints

The constraints of the model are defined in order to ensure that each flight is assigned a
single 4D-trajectory and that the number of flights entering the airspace sectors, leaving
and arriving to the airports, are kept under a controllable load for the air traffic controllers.

i) The first set of constraints is concerned with the time connectivity of flights. These
constraints are a direct implication of the variables definition. Indeed, if a flight has
arrived at arc e by time t∗, then xfe,l(t) must have a value of 1 for all later time periods
(t ≥ t∗). They are stated as:

xfe,l(t− 1)− xfe,l(t) ≤ 0 ∀f ∈ F , e ∈ Ef , t ∈ T fe , l ∈ Lf . (5)
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ii) The second group of constraints ensure that each aircraft f flies a single route.∑
l∈Lf

xfe,l(T̄
f
e ) ≤ 1 ∀f ∈ F , e ∈ Ef . (6a)

∑
e∈∆−f,n

xfe,l

(
t− α+

f,e

)
≤

∑
l′=l±δf ,e∈∆+

f,n

xfe,l′ (t) ∀f ∈ F , n ∈ Nf \ {df , af},

t ∈ Γfn, l ∈ Lf .
(6b)

∑
e∈∆−f,n,l∈Lf

xfe,l

(
t− α−f,e

)
≥

∑
l∈Lf ,e∈∆+

f,n

xfe,l (t) ∀f ∈ F , n ∈ Nf \ {df , af},

t ∈ Γfn.

(6c)

∑
e∈∆−f,af

xfe,l0(t) ≤ 1 ∀f ∈ F , t ∈ Γaf \ {Γ̄faf }.

(6d)∑
e∈∆−f,af

xfe,l0
(

Γ̄faf

)
= 1 ∀f ∈ F . (6e)

∑
e∈∆+

f,df

xfe,l0(t) ≤ 1 ∀f ∈ F , t ∈ Γdf \ {Γ̄
f
df
}.(6f)

∑
e∈∆+

f,df

xfe,l0
(

Γ̄fdf

)
= 1 ∀f ∈ F . (6g)

∑
l∈Lf

xfe,l(t) ≤
∑
l∈Lf

xfe,l
(
Γ̄fn
)

∀f ∈ F , n ∈ Nf \ {df},

t ∈
]
Γ̄fn, T̄

f
e

]
, e ∈ ∆+

f,n.

(6h)

More specifically, constraints (6a) ensure that flight level is constant (no changes) while
aircraft is flying a specific arc. Constraints (6b) and (6c) represent the connectivity
between arcs (sectors). Constraints (6b) state that a flight must arrive at one of the
subsequent arcs (sectors) by at most α+

f,e time units (the maximum possible) after
travelling through the preceding arc (sector). Constraints (6c) stipulate that a flight
cannot arrive at an arc e (outgoing arc of node n) by time t if it has not arrived at
one of the preceding arcs by time t − α−f,e. In other words, a flight cannot enter the

next arc (sector) on its path until it has spent at least α−f,e time units (the minimum
possible) travelling through one of the preceding arcs (sectors) on its current path.
Note that, constraints (6b) also ensure a smooth change of flight levels avoiding steep
descent or ascent. Constraints (6d) ensure that flight f can only approach its airport
of arrival from a single arc, while constraints (6e) ensure that it arrives at airport
af . Constraints (6f) and (6g) are respectively the analogous of (6d) and (6e) for the
departure from airport df . Finally, constraints (6h) ensure that a flight cannot appear
on an arc e = (n,m) ∈ ∆+

f,n if it was not at node n by time period Γ̄fn.

iii) The third group of constraints are the capacity constraints. These constraints respec-
tively ensure that the departure capacity, the arrival capacity and the en-route sectors
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capacity cannot be exceeded.

∑
f∈F :k≡df ,e∈∆+

f,k

(
xfe,l0(t)− xfe,l0(t− 1)

)
≤ Dt

k ∀t ∈ T , k ∈ K. (7a)

∑
f∈F :k≡af ,e∈∆−f,k

(
xfe,l0(t)− xfe,l0(t− 1)

)
≤ Atk ∀t ∈ T , k ∈ K. (7b)

∑
f∈F,e∈Is

(
xfe,l(t)− x

f
e,l(t− 1)

)
≤ Ets,l ∀t ∈ T , s ∈ S, l ∈ Lf . (7c)

iv) Prioritization constraints. These constraints will ensure that the priorities of the
airspace users, as defined in Subsection 2.3, are taken into account. More specifically,
they will ensure that the total delay assigned to each flight does not exceed the max-
imum amount of delay γf to be absorbed by that flight as per the airspace user’s
priority point.

xfe′,l0(t)− xfe,l0
(
t+ t̄f − tf + γf

)
≤ 0 ∀f ∈ F , e′ ∈ ∆+

f,df
, e ∈ ∆−f,af , t ∈ Γfdf , (8)

where γf is calculated using equation (1). Because the model considers discretized
time periods, the value of γf , which is computed according to equation (1) and may
not be integer, is rounded to the nearest integer value.

5 Solution approach

In this subsection, we discuss the solution method used to solve our proposed multi-objective
IP model. The first step of this approach is to pre-process the data in order to reduce as much
as possible the number variables. Then, we implement a tri-objective integer programming
algorithm. Both of these steps are described below.

5.1 Pre-processing

The aim of this pre-processing step is to reduce the total number of variables before feeding
our model to an IP solver. Note that the decision variable for our model has four indexes
i.e. the flight index, the arc index, the altitude index and the time period index. However,
there is no need to define a binary variable for all the combinations of these four indexes.
Therefore, this pre-processing step allows us to keep as much as possible the number of
variables to a minimum. In the generation of the instances, the set of arcs and flight levels
for each flight are already restricted to only the feasible ones. In terms of the time periods,
one needs to determine the minimum and maximum time period for which each flight can
travel on specific arcs (T fe ) and nodes (Γfn). To compute these periods of time, we run
the Dijkstra’s algorithm from both the departure airport to compute the minimum time
period; and from the destination airport to compute the maximum time period (in this case
reversing the orientation of the arcs). Observe, that we are (implicitly) assuming that the
maximum delay for each flight at the destination airport is bounded.
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5.2 Solving the tri-objective IP model

Several approaches exist for formulating and solving multi-objective optimization problems
depending on the type of information flow between the decision maker and the model i.e.
top-to-bottom or bottom-to-top information flow [39, 40]. In the case of top-to-bottom in-
formation flow, the decision makers explicitly express their preferences (in terms of weights
or lexicographically) with respect to all objective functions and the model will then be trans-
formed into a single objective optimization problem. However, the decision making process
in the ATM system involves various stakeholders with conflicting interests. For example,
the network manager may be more interested in reducing delay and congestion, while AUs
may be more concerned by the operating costs and the airport managers are interested in
increasing the airport throughput. On the other hand, AUs are very sensitive to disclose
their cost structure. This means that the decision making process in the ATM system
corresponds to a bottom-to-top information flow situation, and it is therefore appropriate
to employ a solution approach that computes all the non-dominated solutions so that the
decision maker can choose from.

Several solution techniques have been developed in the literature for computing the
efficient frontier of tri-objective IPs, see [34, 35, 36, 37, 38]. These techniques vary with the
number of single-obejctive IPs needed to be solved to compute the efficient frontier, also
with the complexity of solving any such IP. We have chosen to implement the quadrant
shrinking method (QSM) of Boland et al [34], because it only requires solving a moderate
number of IPs in order to compute the complete non-dominated frontier. Moreover, it has
proved to outperform other existing methods and is very simple to implement [34].

The QSM works in a projected 2-dimensional objective function space. In our case, this
2-dimensional objective function space is chosen to be the delay (2) and the deviation from
the users’ preferred routes (3). A quadrant in this 2-dimensional space is defined by setting
an upper bound on both the delay and the deviation. More precisely, if the bound is given
by u = (u1, u2), then a quadrant is defined by “delay ≤ u1” and “deviation ≤ u2”. The
basic idea of the QSM is therefore to explore a quadrant that contain all as-yet-unknown
non-dominated solutions by searching for all those non-dominated points. The search of a
non-dominated solution itself consists of solving two integer programs. First we minimize
the third objective function (4), the ANS route charges, subject to constraints (5)–(8), with
the addition of two constraints that the objective functions (2) and (3) do not not exceed
the bounds of the quadrant being considered. In the second integer program, the sum of
the three objective functions (2), (3) and (4) is minimized subject to constraints (5)–(8),
with the addition of three constraints that each of the objective functions (2), (3) and (4)
should not exceed their value from the optimization problem in the first step.

The pseudo code of the QSM method is provided in Algorithm 1. The algorithm main-
tains two lists throughout, one is the list of non-dominated solutions L, initially set to be
empty, and the other one is the list D of points that define the bounds (u1, u2) of the quad-
rants yet to be explored. In fact, if D contains a point u = (u1, u2) then the quadrant defined
by “delay ≤ u1” and “deviation ≤ u2” may still contain an as-yet-unknown non-dominated
solution. D is initially set to contain (+∞,+∞). The main iterations of the QSM algorithm
consist of exploring the right and top boundaries of the quadrants defined by points in D.
To explore the right boundary, the first element in the list D, say (u1, u2) is extracted and
a non-dominated solution is searched in the corresponding quadrant, as explained above.
If a non-dominated solution xn is found, then it is added to the list L and two new points
(delay(xn)− ε, u2) and (u1, deviation(xn) − ε) are added to the front of the list D. These
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points are added to the front of the list in order to maintain the order in which the quadrants
should be explored. If is no non-dominated solution is found, then the algorithm moves to
the exploration of the top boundary. The exploration of the top boundary is the same as
that of the right boundary with the only difference being that point in the list D are ex-
tracted from the back of the list and new points are also added to the back of the list. The
QSM algorithm stops when the list D becomes empty. Note that extracting a point in this
algorithm means that it is taken and deleted from the list. It is shown in [34] that the QSM
algorithm needs to solve at most 3 × (the number of non-dominated solutions) + 1 IPs in
order compute the complete efficient frontier.

Algorithm 1 : The Basic Quadrant Shrinking Method.

Initialize the list of non-dominated solutions L to be empty
Initialize the double-ended linked list D with (+∞,+∞)
while D is not empty do

Right boundary not treated ← True
while Right boundary not treated = True do

Pop the front element of D and denote it by u = (u1, u2)
Find the non-dominated solution in the quadrant bounded by u, set it to be xn.
if xn = Null then

Right boundary not treated ← false
else

Add xn to the list L
if u1 < delay(xn)− ε or D is empty then

Add (delay(xn)− ε, u2) to the front of D
end if
Add (u1, deviation(xn)− ε) to the front of D

end if
end while
Top boundary not treated ← True
while Top boundary not treated = True do

Pop the back element of D and denote it by u = (u1, u2)
Find the non-dominated solution in the quadrant bounded by u, set it to be xn.
if xn = Null then

Top boundary not treated ← false
else

Add xn to the list L
if u2 < deviation(xn)− ε or D is empty then

Add (u1, deviation(xn)− ε) to the back of D
end if
Add (delay(xn)− ε, u2) to the back of D

end if
end while

end while
return L
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6 Computational experiments and results

In this section we conduct an extensive set of numerical experiments to test the efficiency and
the effectiveness of our optimization model. We carried out these experiments on synthetic
ATFM instances generated in a similar way as instances used in [11, 12]. “Synthetic”
instances were used in order to test the performance of the model under different values of
the parameters characterizing the problem. The sizes of these instances (ranging from 2000
up to 10 000 flights) are comparable with the size of realistic instances that can encountered
in real life, such as the ATFM problem of Central Europe or even the ATFM problem
of the continental Europe or that of the United States. In the following subsections, we
describe how the instances are generated and discuss the results of our experiments. The
computation experiments were carried out in two different platforms. First, we used Matlab
R2016a [26] to generate the test instances. Then the routines for creating and solving the
mathematical model are coded in the C programming language and were compiled with gcc
version 4.8.1 [27]. Moreover, each IP problem is solved using the MIP solver of CPLEX
version 12.5.1 [25]. We used a single computer node on a cluster with a 2.26 GHz processor.
The memory requested to solve the problems were 8 GB for the medium size instances
(these are instances with up to 3000 flights), and 40 GB for the larger instances (with up
to 10000 flights). Furthermore, we set the internal parameters of CPLEX to only use one
thread (i.e. no paralleling) and to generate cutting planes when necessary. All the other
CPLEX parameters were left unchanged.

6.1 Description of the test instances

The test instances were generated resembling the main characteristics of the European ATM
system and reflect realistic traffic flow data to a significant extend. The main parameters
that define the size of each of our instances are the number of flights, the number of flight
levels, the number of airspace sectors, the number of waypoints, the number of airports and
the discretization of the time horizon. We assume that each flight goes through a sequence of
waypoints from the departure to arrival, and each of these waypoints belongs to an airspace
sector. Therefore, the set of nodes in our instances is represented by the waypoints and the
airports. Note that throughout this section, any use of “random” refers to a random uniform
distribution being used. We randomly generate the origin-destination pairs by creating a
sparse bi-directional network over the set of airports with a density of 40%. This means that
each airport is randomly connected to 40% of the other airports. All the origin-destination
pairs are bi-directional links i.e. if flights can go from airport A to airport B, then there
should also be flights going from B to A.

Next, we assign flights to origin-destination pairs. This is done by randomly selecting
a number between 1 and the total number of origin-destination pairs for each flight, and
the flight is then assigned to the corresponding origin-destination pair i.e. if a flight f is
assigned to the origin-destination pair (A, B) then, A becomes the airport of departure of
flight f and B its airport of arrival. In order to generate the feasible network (the feasible
nodes and arcs) of each origin-destination pair, we proceed as follows. First, we choose
the number of nodes feasible for flights on each OD pair. In practice there are about 150
waypoints feasible for some origin-destination pair in Europe [29]. But only about 15 of
these waypoints are part of the flights’ trajectories (this number may vary depending on the
type of discretization of the time horizon) while the other waypoints are available to provide
re-routing options where needed. we select a number of waypoints between 10 and 15 to
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form a direct path for each origin-destination pair to reflect real life network. We then add
alternative paths by creating a sparse directed network (with densities given in Table 2) and
ensure that all the arcs of this sparse network can be used to connect the departure airport
to the arrival airport. The networks thus created for each origin-destination pair provides us
with the set of all the arc as well as the ones feasible for each flight. The travel time for each
flight on each arc is randomly chosen between 1 and 2 time periods, Real traffic flow data
suggest that in the European airspace arcs can be flown between 2 and 10 minutes. Thus,
the proposed 5 minutes discretization is expected to provide a realistic representation of
the resulting traffic pattern. The scheduled times of departure (STD) for all the flights are
randomly generated and we ensure that all the flights arrive at their destinations by the end
of the time horizon. The minimum feasible time of each flight at the airport of departure
is set to be its scheduled time of departure. This represents the “No early departure”
policy operated in many airports across Europe. While the maximum feasible time at the
airport of departure is set to be its scheduled time of departure plus 5 time periods. On
the other hand, we assume that the preferred route of each flight is the shortest path on
the network of its origin-destination pair. This implies that the scheduled time of arrival
(STA) of each flight corresponds to its STD plus the travel time on the shortest path of its
network. Finally, we consider 40 possible flight altitude overall and assume that 4 of them
(randomly chosen) are feasible for each flight. This is to reflect the fact that most flights
prefer to stick to their optimal flight level and usually may deviate up (respectively down)
by one (respectively two) flights level(s).

Our computational experiments is conducted on a total of 10 test beds of various sizes
and characteristics. The main differences between these test beds are the number of flights
(ranging from 2000 to 10 000 flights), the connectivity densities of the networks and the
capacities of both the airports and en-route sectors. For each of the instances, there are
20 airports, 48 time periods, which is equivalent to time horizon of 8 hours discretized into
time periods of 10 minutes each. There is also a total of 800 waypoints and 300 sectors.
The specific characteristics of each of the 10 instances such as the number of flights, the
connectivity densities of the networks and the capacities of both the airports and en-route
sectors are summarized in Table 1.

Table 1. Characteristics of the instances

Instances N. Flights Dep. Capa Arr. Capa. Sect. Capa Density (%)
instance 1 2000 15 15 40 20
instance 2 2000 15 15 40 30
instance 3 2000 15 15 40 40
instance 4 2000 10 10 30 40
instance 5 2000 10 10 20 40
instance 6 2000 8 8 30 40
instance 7 3000 19 19 60 30
instance 8 5000 30 30 60 30
instance 9 7000 35 35 70 30
instance 10 10000 50 50 100 30

The first six instances all have 2000 flights, but with varied capacities and densities (level
of connectivity), which will allow a much better analysis of the impact that these charac-
teristics may have on the different objectives being considered. More in detail, Instance 1,
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Instance 2 and Instance 3 have the same airports and en-route sectors capacities. But the
connectivity of the network is 20% for Instance 1, 30% for Instance 2 and 40% for Instance
3. On the other hand, the connectivity of the network for each of Instance 4, Instance 5 and
Instance 6 is fixed to 40%, while the capacities of airports and en-route sectors for these
instances are being varied. Finally, the other four instances (Instance 7, Instance 8, Instance
9 and Instance 10) have much larger number of flights with the connectivity of each of their
networks being fixed to 30%. These are larger instances that allow to test the scalability of
our model and solution algorithm.

6.2 Results and analysis

The main focus of our computational experiment was on computing the efficient frontier
(set of the non-dominated solutions) for each of our test instances. Some of the important
computational characteristics of the instances are reported in Table 2. More precisely, we
report in this table, the number of binary variables and constraints before and after the
pre-processing procedure embedded in the CPLEX solver, as well as the number of non-
dominated solutions found for each of the instances. It is important to point out here that
the CPLEX pre-processing is different from the one we presented in Subsection 5.1. This
pre-processing uses the constraints of the model to set some variables to their optimum
values and discard some constraints when possible. This procedure targets the optimality
values of variables and constraints, whereas our pre-processing routine focuses on eliminating
variables that do not need to be defined. The results in Table 2 show that before starting
the branch-and-cut algorithm for each of the instances, CPLEX is able to reduced about
30% of variables and constraints. It can also be seen that between Instance 1, Instance 2 and
Instance 3, higher connectivity of the network yields lager number non-dominated solutions.
This may be logic in the sense that higher connectivity implies more options for re-routing
the flights and use of different sectors, which in turn may results into a much spread of the
delay. On the other hand, the number of non-dominated solutions for Instance 4, Instance
5 and Instance 6 show that the available capacity for either airports or en-route sectors may
also impact the number of non-dominated solutions i.e. the scarcer the resources are, the
fewer non-dominated solutions there are. This would be a direct result of the fact that the
scarcity of resources provides the ATM system with less flexibility for re-routing flights and
spread delays across flights in the network.

Table 2. Some output parameters of the instances

Before Cplex Pre-proc. After Cplex Pre-proc. #Non Dominated
Instances #Vars #Const #Vars #Const Solutions
Instance 1 284775 632792 191754 345610 293
Instance 2 329825 686675 230163 402072 422
Instance 3 354970 697515 269655 446495 513
Instance 4 354970 697515 248479 488260 149
Instance 5 354970 697515 248479 488260 91
Instance 6 354970 697515 248479 488260 498
Instance 7 453685 922645 316730 574790 342
Instance 8 748805 1434530 546627 1047206 250
Instance 9 965577 1711703 680912 1214217 193
Instance 10 1907658 3205743 1377638 2398929 73
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The second analysis of our computational experiments is concerned with the trade-offs
existing between the three objective functions (2), (3) and (4). The results depicting these
trade-offs are shown in Figure 3 and Figure 4. We have chosen heatmap graphics to represent
these trade-offs. Other applicable visualization techniques can be found in [41, 42]. Each
heatmap has three columns which correspond to the three objective functions. The intensity
of the colors vary from 0 to 100 and represents the relative percentage gap of each of the
non-dominated solutions. For example, the relative gap of delay in a given non-dominated
solution is computed as:(

delay value of this solution− smallest delay from all the solutions

largest delay from all the solutions− smallest delay from all the solutions

)
× 100.

Similar calculations are done for the other two objective functions. Therefore, each row
of each heatmap corresponds to a non-dominated solution and its color in each column
reveals how the corresponding objective function value of this solution compares with the
smallest and the largest objective function value among all the non-dominated solutions.
As illustration, the bottom row of Figure 3a shows that the corresponding solution has the
smallest value for delay, the largest value for total deviation from the users’ preferred routes
and the smallest value for total ANS route charges.

All the heatmaps in Figure 3 and Figure 4 show that there is not a single row that
has the same color for all the three columns simultaneously. This suggests that for all the
test instances there is no solution that is able to optimize all the three objective functions
simultaneously. One can firstly note that in all the instances, the solutions with good delay
values (intensive blue colors in the column of delay) are the ones with the worst costs of
deviation (intensive red colors in the column of deviation) and vice-versa. This implies that
the total delay of the system cannot be reduced without the preferred trajectories of AUs
being distorted and vice-versa. Secondly, it can also be noted that in all the instances, the
rows with the intensive blue colors in the column of delay (optimal delay value) also have
the intensive blue colors in the ANS route charges column. However, the reverse is not
always the case. This means that the solutions that minimize the delay may also minimize
the total ANS route charges, while the solutions that minimize the total ANS route charges
may result in larger delays for the system. Thirdly, there is also a clear trade-off between the
total deviation from the users’ preferred routes and the total ANS route charges. Overall,
the heatmaps in Figure 3 and Figure 4 show that: i) smaller delays always yield larger values
for the deviations from the users’ preferred routes, while the corresponding total ANS route
charges; ii) smaller deviations from the users’ preferred routes also yield larger delays and
a mix of large and small values for the ANS route charges.

On a different note, looking at the heatmaps plotted in Figure 3 for the test instances
which all have 2000 flights, one can observe that the color pattern for each objective function
varies from one instance to another. We will first consider Instance 1, Instance 2 and
Instance 3, which are all equivalent in terms of airports and en-route sectors capacities with
the only difference being the increasing connectivity of the network. The heatmaps for these
three instances, given in Figure 3a, Figure 3b and Figure 3c respectively, show that as the
percentage of connectivity increases the shade of the red color becomes predominant for the
delay objective function, while it is the shade of the blue color that becomes increasing and
more intense for the flights efficiency objective function. The shade of the red color for total
ANS route charges objective function seems to be intensifying slightly. These patterns can
be explained by the fact that when the network offers more options for re-routing flights,
it makes it possible to find alternative routes for flights that are similar or closer to their
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(a) Instance 1 (b) Instance 2

(c) Instance 3 (d) Instance 4

(e) Instance 5 (f) Instance 6

Figure 3. Heat map showing the trade-off between the three objective functions for the
instances with 2000 flights
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(a) Instance 7 (b) Instance 8

(c) Instance 9 (d) Instance 10

Figure 4. Heat map showing the trade-off between the three objective functions for the
larger instances

preferred ones, but this may come at the expense of having routes with longer travel times
and slightly larger route charges.

We now describe the efficient solutions for the heatmaps of Instance 4 (Figure 3d),
Instance 5 (Figure 3e) and Instance 6 (Figure 3f). These three instances have similar network
connectivity and they only differ with capacities of airports and en-route sectors. It can be
seen in Figure 3d that a large number of solutions have delay function values that are fairly
far from the optimal value, while nearly half of the solution are within 50% of optimality
for the deviation from the users’ preferred routes. However, the total ANS route charges
for most of these solutions are very close to optimality. In Figure 3e, the shade of the red
color increases for the delay and the deviation from the users’ preferred routes, while it
decreases for the total ANS route charges. This shows the kind of impact that reducing
the capacity of en-route sectors can have on the network. More precisely, with a reduced
capacity of en-route sectors, one should expect higher delays and higher deviations from
the users’ preferred routes. However, it does not necessarily imply significant impact on the
total ANS route charges, since the trajectories of the flights may end up using the same
sectors. Finally, we have in Figure 4 the heatmaps for larger instances (Instance 7, Instance
8, Instance 9 and Instance 10). These instances have mainly been used to challenge the
efficiency of our model and solution approach. Nonetheless, these heatmaps also depict
the clear evidence of the existing trade-off between the three objective function of these
instances.

Another aspect of concern in our computational experiments is the effectiveness of solving
our model. Namely, we examine the computational efforts needed to solve each of the test
instances. We recall that the solution approach presented in Section 5 computes the efficient
frontier by sequentially finding the non-dominated solutions, each of which requires the
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Figure 5. Computational times for instances with 2000 flights

solution of two integer programs. The graphs in Figure 5 show for each instance with 2000
flights (Instance 1, Instance 2, Instance 3, Instance 4, Instance 5 and Instance 6) the time
needed to compute each of the individual non-dominated solutions. It can be seen in this
graph that although these instance all have the same number of flights, airports, sectors and
nodes, the computational time for each non-dominated solution varies with the structure
of the network. This variation can be located between 400 and 20 000 seconds. However,
a vast majority of these solutions are found within 5000 seconds (1.3 hours). A general
trend that can be observed from all the instances is that the solution approach requires only
about 500 seconds to find the first few non-dominated solutions. The computational time
then increases gradually for the other non-dominated solutions. This is clearly because the
bounds on the quadrants in the QSM approach get smaller as the non-dominated solutions
are found, which renders the feasible sets of the integer programs being solved more or and
more restrictive.

The graphs in Figure 6 present the similar results for the larger instances (Instance 7,
Instance 8, Instance 9 and Instance 10). These graphs show that most of the times, it takes
less than 2 hours to find each of the non-dominated solutions for these larger instances,
with the exception of the instance with 10 000 flights, which may require about 3 hours
for each non-dominated solution. Considering that the model is built for decision-making
at the pre-tactical planning phase of the ATM system, these computational times can be
considered reasonable for the decision making process. On the other hand, although we
have decided to compute the full set of the non-dominated solutions in this paper, there is
usually no need to do so in practice, since only one ATFM solution is implemented in the
end. The results presented here therefore prove that our model is capable of computing one
such solution within only few minutes, even for large ATFM instances.
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Figure 6. Computational times for larger instances

7 Conclusions

In this paper, we have presented a trajectory based mathematical model which aims at
optimizing the efficiency of the ATM system under the TBO concept by assigning 4D-
trajectories to flights based on the AUs preferences and priorities, and the constraints of
the ATM system. The particular aspect of our model is that, not only it considers the
complete 4D-trajectories of aircraft, but it also incorporates the preferences and priorities
of the ATM stakeholders. The model is formulated as a multi-objective binary optimization
problem which considers the preferred 4D-trajectory of all the flights in the pre-tactical
planning phase and outputs the entire set of optimal pre-departure 4D-trajectories to be
shared or negotiated with other stakeholders and subsequently managed throughout the
flight. This set of solution also reflect the trade-offs that exist between the preferences of
the ATM stakeholders.

The results of the computational exercise show that our model is capable of handling
large scale problems in reasonable amount of time. Furthermore, our model depicts that
the efficiency of the ATM system in terms of delay, deviation from the AUs preferred routes
and ANS route charges cannot be achieved without compromising some of these KPIs. This
shows that our model can provide the basis for a further maturation of the TBO concept
and pave the way to a fully integrated performance based air traffic management system.
It can also provide a preliminary step towards a full implementation and realization of the
collaborative decision making philosophy of the air traffic system.

Although we are able to solve large instances with up to 10000 flights, the computational
time for finding the full non-dominated set of the proposed tri-objective optimization may
be too long for practical use. To overcome this limitation, the next step of our research is
to develop a fast and effective heuristic algorithm that can provide a good approximation
of the efficient frontier shorter computational times.
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The proposed approach can support ATFM decisions and can facilitate collaborative
decision making at the planning phase. It may be used by the (European) Network Manger
in cooperation with all Airspace Users (AUs) to find mutually acceptable solutions that will
reflect as close as possible the preferred trajectories of the AUs while ensuring the efficient
operation of the entire ATFM system. It is through this process that the TBO objective
of providing flexibility to airspace users and ensuring punctuality of the flights is achieved.
A multi-criteria, multi-stakeholder framework should be developed in order to analyze the
impact of each Pareto optimal solution on individual airlines and flights, and to facilitate
the collaborative decision making process. The development of this framework is critical
for the deployment of the proposed approach. The development of such a mechanism goes
beyond the scope of the current paper and is not free of complexities, among others, how
competition between AUs is manifested and in how they strategize in submitting trajectory
preferences.
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