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Dear Dr. Abel Ramoelo, Associate Editor,  

Prof. van der Meer, Editor-in-Chief, 

International Journal of Applied Earth Observations and Geoinformation 

 

On behalf of my co-authors, we thank you very much for giving us the opportunity to revise 

the manuscript, and we are grateful to two reviewers for their constructive comments and 

suggestions on our manuscript titled “Full year crop monitoring and separability assessment 

with fully-polarimetric L-band UAVSAR: a case study in the San Joaquin Valley, California” 

(Former Ref: JAG_2018_417). 

 

We have revised the manuscript carefully according to the comments, and highlighted the 

revisions in the revised manuscript using the blue text. In our point-by-point response letter 

attached below, the comments of each reviewer are provided in plain text followed by our 

responses in blue text. The major revisions we have made include: 

1. Unnecessary detail about the previous works were removed to make the structure of the 

introduction section clear. 

2. The bullet point summary of the research was rephrased to match the contents of the results 

and discussion sections. 

3. The results section was carefully revised according to the comments to make the analysis 

clear. 

4. Some important literature recommended by the reviewers were included in the paper. 

5. Crop classification results using two machine learning algorithms with different UAVSAR 

features (linear polarizations and polarimetric parameters) were included in the results 

section.   

 

We trust that you will find the revised manuscript acceptable for publication in International 

Journal of Applied Earth Observations and Geoinformation. 

 

Looking forward to hearing from you. 

Best wishes 

 

Professor Peter M. Atkinson 

Dean, Faculty of Science and Technology, 

Lancaster University, 

Tel: 01524 595203 

Email: pma@lancaster.ac.uk 



 

Response to Reviewers 

 

We are grateful to the anonymous reviewers for their constructive comments and suggestions, 

and have carefully revised the manuscript in response to their advice. The comments of each 

reviewer in plain text followed by our responses in blue text are provided below.  

 

Referee: 1  

Comments to the Author  

Main comments 

 

(1) This paper uses fully polarimetric L-band UAVSAR data to analyze the polarimetric 

signature and scattering mechanisms of a mixture of perennial and annual crops in California 

over the course of a full calendar year. While the paper is plainly inspired by Whelen and 

Siqueira (2017), it is clear that the authors have taken this subject further, extending the analysis 

to cover a more complexly cropped region, and using the polarimetric signatures to characterize 

scattering behavior and crop separability. The authors also made logical connections between 

the scattering behavior and crop phenology during specific times of the year, showing how this 

explained some of the separability results. 

 

Response (R): Thank you very much for reviewing our manuscript and making a brief summary 

for our work. 

 

(2) While the research appears to be adequate, the text could use improvements. As this is not 

a review article, the introduction goes into unnecessary detail about some of the citations. The 

bullet point summary of research at the end of the introduction is confusing, and needs 

rephrasing to match what is covered in the results and discussion sections. The results section 

could also be revised to improve the clarity of the analysis. While overall the authors do a good 

job of connecting their work with previous research, numerous improvements could be made 

to the cited literature. 

 

Response (R): Many thanks for providing us with these very careful and constructive comments. 

We have revised the manuscript carefully according to the comments and responded to them 

point by point as below. 

 



Specific comments 

 

(1) The study site is located in the Sacramento Valley, not the San Joaquin Valley. Please adjust 

title and text accordingly. 

R: Thank you for this comment. We have revised the title and text as suggested. 

"Full year crop monitoring and separability assessment with fully-polarimetric L-

band UAVSAR: a case study in the Sacramento Valley, California" (page 1, line 

2-3).  

 

(2) Almonds and walnuts are not normally referred to as fruits in English – please refer to them 

as nut trees, nut crops, tree crops, or orchards, but not as fruit trees. 

R: Thank you for this comment. We have replaced ‘fruit trees’ with ‘tree crops’ throughout the 

text as suggested. 

 

(3) Generally it is not desired to cite unpublished papers, especially if they are by other authors. 

Canisius et al., now has an issue number and date assigned to it – please update. 

R: Thank you for this suggestion. We updated the reference by Canisius et al. (2018). 

 

(4) Introduction paragraph 2 – second sentence unnecessary. 

R: Agreed. We deleted the sentence as suggested. 

 

(5) Introduction paragraph 3 – Suri et al., 2010 is about urban areas, not agricultural land. 

R: Thank you for this careful comment. We removed the reference. 

 

(6) Introduction paragraph 3 – unnecessary to list all the previous satellites – the second half of 

this paragraph could be more concise. 

R: Thank you for this suggestion. We have shortened the second half of the paragraph as follows: 



"The main SAR data sources employed by previous crop research involve satellite 

RADARSAT-1/2 (Choudhury et al., 2006), ENVISAT ASAR (Bouvet et al., 2009), 

and ALOS PALSAR (McNairn et al., 2009b). However, the majority of these data 

were restricted to single polarization (e.g. RADARSAT-1) or dual-polarization 

modes (e.g. ASAR), which greatly limits the practical utility of SAR for crop 

classification." (page 4, line 81-86).  

 

(7) Introduction paragraphs 5 and 6 – unnecessary detail given about specific past works; this 

isn’t a review article. 

R: Agreed. We have deleted the details about previous works as suggested. 

"The seasonal patterns of these scattering mechanisms rely heavily on crop type 

and phenological stages, in which unique information for crop monitoring and 

identification is potentially provided (e.g. McNairn et al., 2009b; Adams et al., 

2013; Jiao et al., 2014; Canisius et al., 2018). " (page 5, line 98-101). 

"However, there have been very few studies of crop characterization using full-

polarimetric L-band SAR (McNairn et al., 2009b; Skriver, 2012; Whelen and 

Siqueira, 2017) " (page 5, line 113-115). 

 

(8) Introduction paragraph 6 – additional fully polarimetric L-band agricultural studies include 

AgriSAR campaigns in Germany, and AIRSAR projects. 

R: Thank you for this comment. We have added the related contents in the paragraph and 

rewritten the sentence as follows: 

"However, there have been very few studies of crop characterization using full-

polarimetric L-band SAR (McNairn et al., 2009b; Skriver, 2012; Whelen and 

Siqueira, 2017), even though some research projects were conducted to collect 

such data, such as the AgriSAR campaign in Germany (Skriver, 2011) and the 

Multisensor Airborne Campaign in Italy and Sweden (Macelloni et al., 2001)." 

(page 5, line 113-118). 

 



(9) Introduction paragraph 7 – the three bullet points overlap with each, contain multiple items 

in one bullet point, and do not match how the analysis is organized in the results and discussion. 

R: Yes, we fully agree with this valuable comment. We have rephrased the bullet points to match 

the analysis in the results and discussion sections: 

" (1) L-band fully-polarimetric UAVSAR was used for the first time to characterize 

the seasonal patterns in radar response for tree crops (almond, walnut) as well as 

other crop types (alfalfa, winter wheat, corn, sunflower, and tomato). 

(2) The contributions of scattering mechanisms to radar response were quantified 

for different crop types, and the seasonal variation in three different scattering 

mechanisms was analysed.  

(3)  The separability amongst crop types was assessed and analyzed through the 

growing season using full calendar year time-series UAVSAR, and this serves as 

an important guide for future UAVSAR-based crop classification." (page 6, line 

127-135). 

 

(10) Section 3.1 paragraph 1 – UAVSAR is flown off a Gulfstream platform. 

R: Thank you for this comment. We have rewritten this sentence as follows: 

"The radar is mounted onboard a Gulfstream-3 aircraft flown at an altitude of 12.5 

km (Chapman et al., 2011)" (page 7-8, line 167-168). 

 

(11) Section 3.1 paragraph 2 – Chapman et al., 2011 would be a more appropriate paper to cite 

for UAVSAR technical specifications. 

R: Agreed. We have included this literature into the paper. 

"No further speckle filters were applied since the multiplicative noise (speckle) 

contained in the SAR images was reduced significantly by the multilook 

processing (Chapman et al., 2011) " (page 8, line 182-184). 

 



(12) Section 3.3 paragraph 2 – Was the technique of inwardly buffering fields by one pixel 

gotten from Whelen and Siqueira (2017)? If so, please cite. 

R: Thank you for this question. We have cited the reference in the text. 

"Second, each identified crop field was outlined manually and buffered inwardly 

from the field boundary by one pixel (Whelen and Siqueira, 2017) " (page 11, line 

244-245). 

 

(13) Section 4.1 paragraph 2 – cite specific, original documents – i.e. which California Ag 

Statistics document on that website, the CDL doesn’t include a crop calendar, and Whelen and 

Siqueira’s (2017) crop calendar is cited directly from a USDA source. 

R: Thank you for this valuable suggestion. We have shortened the sentence and added the 

website that directly provides the original data source of the crop calendar used in our paper. 

"Drawing on official statistics (California Agricultural Statistics, 2011; USDA-

NASA, 2011 (a)), calendars of the studied crops are summarized in Fig. 4." (page 

13, line 296-297). 

"USDA NASS, 2011 (a). Crop Progress. Retrieved January 13, 2018, from. 

http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do;jsessionid=A8

F0A37CA76B0F6E77E0FDE1E10BA5F9?documentID=1048/." (page 28, line 

711-713). 

 

(14) Section 4.1 paragraph 3 – confusing organization of this paragraph. 

R: Many thanks for this comment. We have reorganized this paragraph to make the presentation 

clear and logical: 

 

" It should be noted that the calendar for the same crop may vary between different 

areas due to natural conditions (e.g. weather conditions, soil water content, and 

field slope) and farmer decisions (Saich and Borgeaud, 2000). To demonstrate 

such variation clearly, the standard deviation (STD) profile of the HV polarization 

signatures for each crop are shown in Fig. 3(d). Seasonal patterns of STD for the 

permanent crops (i.e. almond, walnut, and alfalfa) are comparable and relatively 



stable (about 2~4 dB), with a general downward trend over the growing season. 

Winter wheat had small STD values (below 3 dB) during January-to-May, but 

relatively large values (over 3.5 dB) during June-to-October, which might be 

attributable to the second planting of some harvested fields. As for the summer 

crops, two STD peaks (generally > 5 dB) were conspicuous in the profiles. The 

first occurred during June, caused by the difference in growth time amongst crops, 

while the second occurred during October, caused by the difference in harvesting 

time (Figs. 3(d) and 4). To highlight such field-to-field spatial variation, the HV 

polarization during the growing season (March to October) is shown in Fig. 5, in 

which typical fields for each crop are marked by black patches. In general, the 

results were consistent with the analysis of the STD in the HV polarization. That 

is, the radar signature of crops was heterogeneous in the June and October images, 

but homogeneous in the images dated March, May, July and August." (page 14-

15, line 321-338). 

 

(15) Section 4.3 paragraph 1 – the JM patterns and greater separability of polarimetric 

decompositions over linear polarizations are not clear in Figure 8. 

R: Agreed. We redrew the figure in which grid lines were added to present the comparison of 

crop separability between polarimetric parameters and linear polarizations clearly. Please refer 

to the revision. 

 

(16) Section 4.3 paragraph 2 – which images (or months) are defined as the growing season? 

R: Thank you for this question. We defined the growing season in the paragraph: 

"The separability was found to vary over the growing season (March to October) 

due to the specific calendars and structures of crops." (page 18, line 414-415). 

 

(17) Section 5 paragraph 4 – why do describe sunflower and tomatoes as having a dense 

structure as compared to corn? 

R: Thank you for this question. We explained the reason in the text and added a new figure (Fig. 

9) to illustrate this. Please refer to the revision. 



"In comparison with the dense structure (crowded and horizontally oriented leaves) 

of sunflower and tomato, corn has sparse and randomly oriented leaves (Fig. 9), 

which exert less impact on the penetration of the radar signal, even during the peak 

biomass stage. " (page 21-22, line 508-511). 

"Fig. 9. Summer crop examples for corn, sunflower, and tomato. Note that all the 

photos were taken in the United States by volunteers, and are freely shared by the 

Earth Observation and Modeling Facility (EOMF) at the University of Oklahoma 

(http://eomf.ou.edu/visualization/gmap/).". 

 

(18) Section 6 paragraph 4 – McNairn et al., 2009a used C-band, and took HH and VV/VH 

from two different SAR systems. This comparison is like comparing apples and oranges, and 

does not support your point well. 

R: Many thanks for this comment. We have removed this sentence. 

 

(19) References - Silva et al., 2009 is listed in references but not in the text.  

R: Many thanks for this careful comment. We have included the reference in the text. 

"Synthetic aperture radar (SAR) is receiving increasing attention since SAR 

instruments can acquire data regardless of the weather conditions and cloud cover 

by operating at wavelengths that can penetrate clouds (Silva et al., 2009; Skriver, 

2012)" (page 4, line 73-75). 

 

(20) Figure 1 caption – “agricultural region” instead of “agricultural district” 

R: Agreed. We have revised the caption as suggested. 

"Fig. 1. The study site in the agricultural region of the Sacramento Valley 

California.". 

 



(21) Figure 2 – If you manually traced fields, then why are multiple visually distinct fields in 

Fig 2a merged into one polygon in Figure 2b? 

R: Many thanks for this comment. This is because these fields were identified as one polygon 

in the CDL map. By further checking these fields in the UAVSAR image, we found that the 

boundaries amongst them were not very clear. We, therefore, merged them into one polygon in 

the manual interpretation procedure. 

 

(22) Figure 2a – Please specify which bands are R, G, and B. 

R: Thank you for this comment. We revised the caption as follows: 

"Fig. 2. (a) The UAVSAR image dated 20 July, 2011 (R-G-B, bands VV, HV, and 

HH), (b) the outlined crop fields.". 

 

(23) Figure 5 – needs a legend and a scale 

R: Thank you for this comment. We rectified the figure as suggested. Please refer to the revision. 

 

(24) Table 1 – remove the two columns with identical values for all entries, and instead put in 

the caption or text that all images were in PolSAR mode and there was no snow. 

R: Thank you for this valuable suggestion. We revised the Table as suggested. Please refer to 

the revision. 

 

"Table 1. Detailed description of UAVSAR data acquisitions in 2011 and the 

corresponding weather conditions; meteorological data were acquired from a 

station (in the city of Sacramento) located next to the study area. All images were 

in PolSAR (polarimetric SAR) mode and there was no snow.". 

 

 

 



 

Referee: 2  

Comments to the Author  

 

1. This paper proposed to use L-band UAVSAR for better separation of crops for reliable crop 

monitoring. Generally, the paper is well-organized and well-written, with a plenty of nice 

figures (results) for illustration. I only have some minor comments. 

 

R: Many thanks for reviewing our paper and providing us with valuable suggestions. 

 

2. The main motivation of the study is for more separable recognition of crops in classification. 

The authors only analyzed the rational of the method, but not conducted any experimental 

validation for the point of “better classification performance”. I have only found the calculation 

of JM distance. This is not sufficient for quantitative assessment. In my opinion, any standard 

classification method should be performed and the performance of “not using L-band” and 

“using L-band” needs to be compared. This is a critical part for validation of your idea proposed 

in the paper. 

 

R: Many thanks for this constructive comment. We fully agree that only JM distance result was 

not sufficient to support our claim that polarimetric parameters perform better than linear 

polarizations in crop discrimination. To further validate this, we compared the classification 

accuracies achieved by the MLP and SVM classifiers, respectively, using different features of 

UAVSAR (linear polarizations, polarimetric parameters, and all features). The classification 

accuracy was generally in accordance with the analysis of JM-distance, which demonstrates the 

unique value of polarimetric parameters in crop classification. We have thoroughly included 

the classification results in the text as follows: 

"To further validate the potential of UAVSAR in crop discrimination, two machine 

learning algorithms, the Multi-layer Perceptron (MLP) and Support Vector 

Machine (SVM), were employed using different features (linear polarizations and 

polarimetric parameters). The control parameters of the MLP were set by 

following the recommendations of Zhang et al. (2018). The most suitable radial 

basis function (RBF) kernel SVM was used in this research, with the parameters 

being optimized through a grid search method with five-fold cross validation 

(Barrett et al., 2014). Table 3 summarizes the classification accuracy assessment, 

including the overall accuracy (OA) and Kappa coefficient (k). The OA and k 

produced by different features using both algorithms were in accordance with the 



analysis of JM distance. As shown in Table 3, the CP and FD decomposition 

parameters produced consistently greater accuracy in comparison to the linear 

polarizations, with OA = 93.01% and 93.71% by MLP, and OA = 92.03% and 

93.01% by SVM, respectively; the combined use of all features (linear 

polarizations and polarimetric parameters) achieved the largest classification OA, 

with up to 95.80% using MLP and 97.48% using SVM, respectively. Such 

coherency of classification accuracy further supports the analysis of JM distance, 

and demonstrates the unique value of polarimetric parameters in SAR-based crop 

classification. " (page 18-19, line 437-453). 

" Table 3. Classification accuracy achieved by the MLP and SVM algorithms with 

linear polarizations (LP), CP decomposition parameters (CP), FD decomposition 

parameters (FD), and all features (All). Note that OA denotes overall accuracy, 

and k is the Kappa coefficient.". 



Highlight 

1. L-band fully-polarimetric UAVSAR was used for the first time to characterize the 

seasonal patterns in radar response for tree crops (almond, walnut) as well as other 

crop types (alfalfa, winter wheat, corn, sunflower, and tomato).  

2. The contributions of scattering mechanisms to radar response were quantified for 

different crop types, and the seasonal variation in three different scattering 

mechanisms was analysed. 

3. The separability amongst crop types was assessed and analyzed through the growing 

season using full calendar year time-series UAVSAR. 
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Full year crop monitoring and separability assessment with fully-polarimetric L-2 

band UAVSAR: a case study in the Sacramento Valley, California 3 

 4 

Huapeng Li a, b*, Ce Zhang b, Shuqing Zhang a, Peter M. Atkinson b,* 5 

 6 

a Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 7 

Changchun 130012, China 8 

b Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 9 

 10 

Abstract 11 

Spatial and temporal information on plant and soil conditions is needed urgently for 12 

monitoring of crop productivity. Remote sensing has been considered as an effective 13 

means for crop growth monitoring due to its timely updating and complete coverage. In 14 

this paper, we explored the potential of L-band fully-polarimetric Uninhabited Aerial 15 

Vehicle Synthetic Aperture Radar (UAVSAR) data for crop monitoring and classification. 16 

The study site was located in the Sacramento Valley, in California where the cropping 17 

system is relatively diverse. Full season polarimetric signatures, as well as scattering 18 

mechanisms, for several crops, including almond, walnut, alfalfa, winter wheat, corn, 19 

sunflower, and tomato, were analyzed with linear polarizations (HH, HV, and VV) and 20 

polarimetric decomposition (Cloude–Pottier and Freeman–Durden) parameters, 21 

respectively. The separability amongst crop types was assessed across a full calendar year 22 

based on both linear polarizations and decomposition parameters. The unique structure-23 
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related polarimetric signature of each crop was provided by multitemporal UAVSAR data 24 

with a fine temporal resolution. Permanent tree crops (almond and walnut) and alfalfa 25 

demonstrated stable radar backscattering values across the growing season, whereas 26 

winter wheat and summer crops (corn, sunflower, and tomato) presented drastically 27 

different patterns, with rapid increase from the emergence stage to the peak biomass stage, 28 

followed by a significant decrease during the senescence stage. In general, the 29 

polarimetric signature was heterogeneous during June and October, while homogeneous 30 

during March-to-May and July-to-August. The scattering mechanisms depend heavily 31 

upon crop type and phenological stage. The primary scattering mechanism for tree crops 32 

was volume scattering (>40%), while surface scattering (>40%) dominated for alfalfa and 33 

winter wheat, although double-bounce scattering (>30%) was notable for alfalfa during 34 

March-to-September. Surface scattering was also dominant (>40%) for summer crops 35 

across the growing season except for sunflower and tomato during June and corn during 36 

July-to-October when volume scattering (>40%) was the primary scattering mechanism. 37 

Crops were better discriminated with decomposition parameters than with linear 38 

polarizations, and the greatest separability occurred during the peak biomass stage (July-39 

August). All crop types were completely separable from the others when simultaneously 40 

using UAVSAR data spanning the whole growing season. The results demonstrate the 41 

feasibility of L-band SAR for crop monitoring and classification, without the need for 42 

optical data, and should serve as a guideline for future research. 43 

 44 

Keywords: Multi-temporal image; full-polarimetric SAR; crop growth monitoring; 45 

polarimetric decomposition; scattering mechanisms; classification. 46 

  47 
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 48 

1. Introduction 49 

 50 

Global demand for food is expected to increase in the next 40 years due to continuing 51 

growth of the human population and human consumption (Godfray et al., 2010). This 52 

increased demand will increase pressure on food production systems, driving the need for 53 

agricultural intensification, and in certain areas may increase food insecurity. Monitoring 54 

of crop productivity is critical in food security assessment as well as in decision-making 55 

in relations to both national and international crop markets (Lal, 2004; Liu et al., 2013). 56 

However, it has long been recognized that crop productivity can vary greatly through 57 

time, and between agricultural fields, even in small regions (Pinter et al., 2003). As a 58 

result, temporally and spatially varying information on plant and soil condition is required 59 

to monitor crop productivity. For full season monitoring, this information should 60 

be consistent such as to create a time-series across the entire year. Additionally, spatially 61 

detailed crop type mapping is also indispensable since most crop yield models are 62 

conditional upon specific crops (e.g. Mkhabela et al., 2011).  63 

Remote sensing has been considered as a viable tool for crop mapping and monitoring 64 

because of its capability to provide timely and complete coverage over large areas (Jiao 65 

et al., 2014). Optical remote sensing is underpinned by two basic physiological processes 66 

of vegetation (photosynthesis and evapotranspiration) which can be identified by optical 67 

reflectance and temperature parameters. A large body of studies have demonstrated that 68 

crops can be characterized only when optical images are available at critical crop growth 69 

stages (Blaes et al., 2005; Dong et al., 2015; Skakun et al., 2016). However, these images 70 
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are often unavailable or incomplete due to rainy weather and frequent cloud cover, 71 

particularly over tropical and subtropical regions. 72 

Synthetic aperture radar (SAR) is receiving increasing attention since SAR instruments 73 

can acquire data regardless of the weather conditions and cloud cover by operating at 74 

wavelengths that can penetrate clouds (Silva et al., 2009; Skriver, 2012). Besides, SAR 75 

possesses the capability of capturing crop structural and dielectric properties that differ 76 

from the reflectance acquired by optical sensors (McNairn et al., 2009b). The structural 77 

characteristics and water content of crops may vary dramatically at different phenological 78 

stages, such as the emergence, mature, and senescence stages (Liu et al., 2013). As a 79 

consequence, multi-temporal SAR images are commonly used in crop monitoring and 80 

classification studies (McNairn et al., 2009b). The main SAR data sources employed by 81 

previous crop research involve satellite RADARSAT-1/2 (Choudhury et al., 2006), 82 

ENVISAT ASAR (Bouvet et al., 2009), and ALOS PALSAR (McNairn et al., 2009b). 83 

However, the majority of these data were restricted to single polarization (e.g. 84 

RADARSAT-1) or dual-polarization modes (e.g. ASAR), which greatly limits the 85 

practical utility of SAR for crop classification. 86 

When the full-polarimetric SAR data are available, the structure-related scattering 87 

mechanisms of crops can be characterized by using polarimetric decomposition 88 

parameters (Lee and Pottier, 2009). In fact, there are generally three types of scattering 89 

mechanism over agricultural areas; surface scattering, double-bounce scattering, and 90 

volume scattering (McNairn et al., 2009b). When the illuminating radar signal arrives at 91 

the soil or the upper layer of vegetation canopies, a fraction of the signal is scattered 92 

directly by surface scattering. The remaining microwave energy penetrates the crop 93 

canopy, and intereacts with the randomly oriented canopy elements, which results in 94 
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volume scattering. A fraction of the penetrative radar wave interacts with crop stems and 95 

surface soil (corner-reflector effects) leading to double-bounce scattering (see illustration 96 

in Kwoun and Lu, 2009). 97 

The seasonal patterns of these scattering mechanisms rely heavily on crop type and 98 

phenological stages, in which unique information for crop monitoring and identification 99 

is potentially provided (e.g. McNairn et al., 2009b; Adams et al., 2013; Jiao et al., 2014; 100 

Canisius et al., 2018). Most of these studies were based on C-band SAR thanks to the 101 

availability of full-polarimetric RADARSAT-2 data (McNairn and Brisco, 2004). 102 

However, the C-band microwave interacts mainly with the upper part of the canopy layer 103 

because of its relatively short wavelength (~6 cm) which can hardly penetrate the crop 104 

canopy. This results in an early saturation effect, especially for broad leaf crops 105 

(Ferrazzoli et al., 1997). Further studies reported low estimation accuracy for crop 106 

biophysical parameters (e.g. biomass, leaf area index, and height) with short wavelength 107 

(X- or C-band) SAR data (e.g. Paloscia, 2002; Baghdadi et al., 2009). 108 

In contrast, L-band (~20 cm) and P-band (~100 cm) with relatively long wavelength 109 

can penetrate into the crop canopy and even reach the surface soil, although the 110 

penetration depth depends on the biophysical parameters of the crop canopy (Baghdadi 111 

et al., 2009). In theory, crop structure should be better characterized by long wavelengths 112 

(L- and P-band) than short wavelengths (X- and C-band). However, there have been very 113 

few studies of crop characterization using full-polarimetric L-band SAR (McNairn et al., 114 

2009b; Skriver, 2012; Whelen and Siqueira, 2017), even though some research projects 115 

were conducted to collect such data, such as the AgriSAR campaign in Germany (Skriver, 116 

2011) and the Multisensor Airborne Campaign in Italy and Sweden (Macelloni et al., 117 

2001). Research paying special attention to crop monitoring and classification for a wide 118 
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range of crop types with full year L-band SAR is rare in the literature. It is still not yet 119 

fully clear how long wavelength scattering mechanisms for different crop types 120 

(especially tree crops), as well as seperability between crops, vary across the growing 121 

season. The motivation of this research was, therefore, to fill this knowledge gap by 122 

evaluating the potential of time-series L-band full-polarimetric SAR for crop monitoring 123 

and classification. The airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar 124 

(UAVSAR) data was used in this research.  125 

The major scientific innovations of this research can be summarized as follows: 126 

(1) L-band fully-polarimetric UAVSAR was used for the first time to characterize the 127 

seasonal patterns in radar response for tree crops (almond, walnut) as well as other crop 128 

types (alfalfa, winter wheat, corn, sunflower, and tomato).  129 

(2) The contributions of scattering mechanisms to radar response were quantified for 130 

different crop types, and the seasonal variation in three different scattering mechanisms 131 

was analysed. 132 

(3) The separability amongst crop types was assessed and analyzed through the 133 

growing season using full calendar year time-series UAVSAR, and this serves as an 134 

important guide for future UAVSAR-based crop classification. 135 

The remainder of this paper is organized as follows. In Section 2, the study area is 136 

introduced briefly; the methods are described in detail in Section 3; in Section 4, the 137 

experimental results are provided; the results are discussed in Section 5; and conclusions 138 

are drawn in Section 6.  139 

 140 

2. Study area 141 

 142 
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The study area was focused on an agricultural district stretching over Solano and Yolo 143 

counties of California, covering a region about 11 km × 17 km (Fig. 1). The area is located 144 

in the middle of the Sacramento Valley, one of the most productive agricultural areas in 145 

the United States (Schoups et al., 2005). This region has a typical Mediterranean climate 146 

characterized by dry hot summers and wet cool winters (Zhong et al., 2012). Annual 147 

precipitation is about 750 mm, mainly concentrated in winter and early spring (Dyer and 148 

Rice, 1999). The terrain of the study area is predominantly flat, with relatively deep soil 149 

layers. Similar to other areas of the valley, the agricultural systems are complex and 150 

heterogeneous. Seven major crop types covering most of the study area were targeted in 151 

this research, including almond, walnut, alfalfa, winter wheat, corn, sunflower, and 152 

tomato. Each crop has a unique crop calendar with specific seasonal patterns (Pena-153 

Barragan et al., 2011), which provides opportunities to investigate the UAVSAR’s 154 

potential for monitoring and classification of complex agricultural systems.  155 

 156 

Fig. 1 is here 157 

 158 

3. Methods 159 

 160 

3.1 UAVSAR data and processing 161 

This research employed imagery acquired by the UAVSAR system developed by the 162 

NASA Jet Propulsion Laboratory (JPL). UAVSAR is a fully polarimetric L-band SAR 163 

designed for monitoring deforming surfaces caused by natural and human activities by 164 

using repeat-pass interferometric measurements (Hensley et al., 2009). The frequency of 165 

UAVSAR radar is 1.26 GHz, with a wavelength of 23.84 cm, which is long enough to 166 

penetrate crop canopies. The radar is mounted onboard a Gulfstream-3 aircraft flown at 167 
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an altitude of 12.5 km (Chapman et al., 2011), with a 20-km swath and 25°-65° incidence 168 

angles. The range and azimuth pixel spacings of the radar are 1.66 and 1 m, respectively. 169 

The UAVSAR system provides valuable fine spatial resolution and high-fidelity data with 170 

absolute radiometric calibration bias smaller than 1 dB (Fore, 2015), and has been 171 

operated over many areas of interest such as North America, Central America, Japan, 172 

Greenland and Iceland. The potential of UAVSAR in oil spill detection (Liu et al., 2011), 173 

forest characterization (Dickinson et al., 2013), and urban durable changes monitoring 174 

(Kim et al., 2016) has been explored extensively.  175 

The UAVSAR data employed in this research were the calibrated and the ground range 176 

projected UAVSAR GRD (georeferenced) product, where the covariance matrices are 177 

multilook with 3 pixels and 12 pixels in the range and azimuth directions, respectively, 178 

producing a spatial resolution of 5 m (Dickinson et al., 2013). The GRD images were 179 

extracted with the PolSARpro software developed by the European Space Agency (ESA) 180 

(Pottier et al., 2009), and then projected to UTM coordinates with the MapReady software 181 

developed by Alaska Satellite Facility (ASF). No further speckle filters were applied 182 

since the multiplicative noise (speckle) contained in the SAR images was reduced 183 

significantly by the multilook processing (Chapman et al., 2011). A total of nine dates of 184 

UAVSAR data through the year 2011 was utilized in this research (Table 1). All flights 185 

had nearly identical flight headings and altitude because of the requirement of repeat-pass 186 

interferometry (Hensley et al., 2009) which enables direct detection of spatial and 187 

temporal variation in radar backscattering coefficients over agricultural fields.  188 

 189 

Table 1 is here 190 

 191 

 192 
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3.2 Polarimetric Decomposition Parameters 193 

Polarimetric decomposition is a powerful means of interpreting SAR data in relation 194 

to the scattering mechanisms of ground targets. In general, there are two categories of 195 

incoherent decomposition methods (Eigenvalue-eigenvector-based and model-based) 196 

which are considered suitable for characterizing the scattering behaviour of natural targets 197 

(Lee and Pottier, 2009). In this research, the Cloude–Pottier (CP) and Freeman-Durden 198 

(FD) decompositions were performed on each UAVSAR dataset with the PolSARpro 199 

software (Pottier et al., 2009). 200 

The CP decomposition describes the strength of scattering mechanism with 201 

eigenvectors and eigenvalues (Cloude and Pottier, 1997). Three parameters are usually 202 

derived from CP decomposition; entropy (H), anisotropy (A) and alpha angle (α). For 203 

each pixel of an image, entropy ranging between 0 and 1 quantifies the randomness of 204 

scattering. Low entropy signifies the domination of a single scattering mechanism, and 205 

high entropy suggests the occurrence of more than one scattering mechanism; in the 206 

extreme case when H =1, the target scattering becomes a random noise process without 207 

any polarization information. Alpha angle (0-90°) can be used to determine the primary 208 

scattering. With medium entropy (0.5-0.9), alpha angle values smaller than 40°, around 209 

45° and larger than 50° indicate the dominance of surface scattering (e.g. smooth land 210 

surfaces), dipole or volume scattering (e.g. vegetation canopies), and double-bounce 211 

scattering (e.g. forests), respectively (Cloude and Pottier, 1997). Anisotropy measures the 212 

relative strength between the secondary and third scattering mechanisms; a large value 213 

suggests the occurrence of only one powerful secondary scattering mechanism, while a 214 

small value shows the contribution of a third scattering process. The FD decomposition 215 

is a model-based technique, based on which the respective strength of single-bounce 216 
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(Odd), double-bounce (Dbl), and volume (Vol) scatters for each target (pixel) can be 217 

determined (Freeman and Durden, 1998). The three fractions are respectively modeled 218 

by scattering from a first order Bragg surface, a dihedral corner reflector (e.g. ground-tree 219 

trunk backscatter), and randomly oriented thin cylindrical dipoles (e.g. forest canopy).  220 

 221 

3.3 Ground reference data 222 

Timely field survey over the study area was not possible since the UAVSAR data were 223 

collected in 2011. The United States Department of Agriculture (USDA) Cropland Data 224 

Layer (CDL) was, thus, employed to identify crop types and acquire ground reference 225 

data (USDA-NASS, 2011 (b)). The CDL has already been used in a variety of remotely 226 

sensed crop applications (e.g. Zheng et al., 2015; Whelen and Siqueira, 2017) due to its 227 

very high quality (Boryan et al., 2011). It is produced annually with several types of 228 

moderate spatial resolution optical imagery and a large amount of ground reference data 229 

by using a supervised decision tree classification approach (Boryan et al., 2011). The 230 

overall classification accuracy of CDL is reported at the state level; 83% for the major 231 

crops in California in 2011. The accuracies for the seven crops analyzed in this study 232 

were reasonable, ranging from 75.7% (walnut) to 93.5% (alfalfa and tomato). By visual 233 

inspection we found that misclassified pixels of CDL were mainly concentrated at the 234 

edge of crop fields such that it was possible to identify reliably a crop class if a field was 235 

dominated by a single class according to the CDL.  236 

 237 

Fig. 2 is here 238 

 239 
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The process of field reference data labeling consisted of three steps. First, the 240 

UAVSAR image in July (with clear crop field boundaries) was overlaid on the projected 241 

CDL image (with UTM coordinate); to acquire representative samples, crop fields shown 242 

in the UAVSAR image with area larger than 5 ha were identified according to the CDL. 243 

Second, each identified crop field was outlined manually and buffered inwardly from the 244 

field boundary by one pixel (Whelen and Siqueira, 2017), so that the centre of the field 245 

could be targeted for sampling; the average size of fields varied among crop types due to 246 

their different surface characteristics (Fig. 2). Third, the outlined field patches belonging 247 

to the same crop were merged to comprise a stratum, and several samples (pixels) were 248 

generated randomly within each stratum; the number of samples in each category was 249 

made proportional to its area. A total of 1438 samples were acquried finally, including 70 250 

for almond, 110 for walnut, 319 for alfalfa, 340 for winter wheat, 99 for corn, 170 for 251 

sunflower, and 330 for tomato. 252 

 253 

3.4 Separability between crop types 254 

The Jeffries–Matusita (JM) distance, an indicator of the average distance between two 255 

class density functions, was employed to assess quantitatively the between-class 256 

separability (Richards and Jia, 1999). The JM distance, taking both first order (mean) and 257 

second order (variance) of samples into consideration, has been demonstrated to be an 258 

ideal distance measure for multi-dimensional remotely sensed data (e.g. Schmidt and 259 

Skidmore, 2003; Laurin et al., 2013). Under normality assumpitions, the JM distance 260 

between a pair of classes (𝑙 and 𝑘) can be calculated with the following equation: 261 

 JM = 2(1 − 𝑒−𝐵)                                                  (1) 262 

in which the Bhattacharyya (B) distance is defined as:  263 
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)                  (2)                          264 

where 𝜇𝑙  and 𝜇𝑘 are the mean vectors of classes 𝑙 and 𝑘, respectively, and ∑𝑙 and ∑𝑘 are 265 

the corresponding covariance matrices.  266 

The JM distance ranges between 0 and 2, with a larger value suggesting a greater 267 

average distance between a pair of classes. Laurin et al. (2013) suggested that a value of 268 

1.9 indicates good separability. The JM distance is asymptotic to 2.0, which indicates the 269 

between-class difference being larger than the within-class difference. That is, the image 270 

classification accuracy is nearly perfect if only two classes are considered (Richards and 271 

Jia, 1999).  272 

In this research, the JM distance was investigated for all pairs of crops with each 273 

UAVSAR image to explore how that separability varied throughout the year. In addition, 274 

the growing season JM distances for each pair of crop types were also examined to 275 

determine the extent to which crop separability can be increased using multitemporal 276 

images. The growing season in this analysis denotes the period from March to October, 277 

which covers the phenological growth stages of crops. 278 

 279 

4. Results 280 

 281 

4.1 Spatial and temporal variation in radar backscattering value 282 

The average backscattering values in the three linear polarizations (HH, HV, and VV) 283 

for each crop during the growing season were calculated and are shown in Fig. 3. In 284 

general, the seasonal patterns of each crop were similar across the polarizations. 285 

Specifically, the patterns were more explicit in the cross-polarized HV polarization than 286 

in the co-polarized HH and VV polarizations. Taking sunflower as an example, the 287 
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amplitude of variation was about 18 dB in HV, while only approximately 13 dB in HH 288 

and VV. These results are in accordance with previous studies, which have reported that 289 

cross-polarized (HV or VH) data are sensitive to crop phenological stages (e.g. Liu et al., 290 

2013; Whelen and Siqueira, 2017; Canisius et al., 2018). As a result, we focused on the 291 

HV polarization as a proxy in the following analysis of variation in radar backscattering. 292 

 293 

Figs. 3 and 4 are here 294 

 295 

Drawing on official statistics (California Agricultural Statistics, 2011; USDA-NASA, 296 

2011 (a)), calendars of the studied crops are summarized in Fig. 4. Almond and walnut 297 

are perennial tree crops which usually bloom and leaf out in spring and senesce in autumn, 298 

with woody structures during the dormancy period (Pena-Barragan et al., 2011). The HV 299 

backscattering values for the two tree crops were both very large and stable (around -15 300 

dB) during the whole year. Alfalfa is also a perennial crop that starts growth in early 301 

spring and senescence in late autumn (Fig. 4). The backscattering values for alfalfa were 302 

also relatively constant but small (about -30 dB), with fluctuations across the growing 303 

season that can be attributed to yearly cutting activities (Zhong et al., 2012). In contrast, 304 

phenological stages for winter wheat and summer crops are shown clearly in the HV 305 

profile. Winter wheat is usually germinated from late September through to the next 306 

January, during which small HV values were sustained (Fig. 3); it resumes growth in 307 

spring when the weather is warmer, as indicated by the increase from January to March; 308 

it then senesces and is harvested from early May to late July, exhibited by the continuing 309 

decrease in HV (-15 dB to -22 dB) during this period. For the summer crops, they are 310 

planted and emerge in spring (early March to late May) and reach peak biomass in July. 311 

This was captured by the rapid increase in HV values (-33 dB to about -20 dB) during the 312 
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period. The senescence stage lasts from late July to late November with large difference 313 

between corn and the other crops (sunflower and tomato) (Fig. 3). The earlier senescence 314 

and harvest for sunflower and tomato was depicted by the earlier HV decline from late 315 

July to early October, while corn maintained a large HV value (-20 dB) during July-316 

August and then began to decrease until late November.  317 

 318 

Fig. 5 is here 319 

 320 

It should be noted that the calendar for the same crop may vary between different areas 321 

due to natural conditions (e.g. weather conditions, soil water content, and field slope) and 322 

farmer decisions (Saich and Borgeaud, 2000). To demonstrate such variation clearly, the 323 

standard deviation (STD) profile of the HV polarization signatures for each crop are 324 

shown in Fig. 3(d). Seasonal patterns of STD for the permanent crops (i.e. almond, walnut, 325 

and alfalfa) are comparable and relatively stable (about 2~4 dB), with a general 326 

downward trend over the growing season. Winter wheat had small STD values (below 3 327 

dB) during January-to-May, but relatively large values (over 3.5 dB) during June-to-328 

October, which might be attributable to the second planting of some harvested fields. As 329 

for the summer crops, two STD peaks (generally > 5 dB) were conspicuous in the profiles. 330 

The first occurred during June, caused by the difference in growth time amongst crops, 331 

while the second occurred during October, caused by the difference in harvesting time 332 

(Figs. 3(d) and 4). To highlight such field-to-field spatial variation, the HV polarization 333 

during the growing season (March to October) is shown in Fig. 5, in which typical fields 334 

for each crop are marked by black patches. In general, the results were consistent with 335 

the analysis of the STD in the HV polarization. That is, the radar signature of crops was 336 
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heterogeneous in the June and October images, but homogeneous in the images dated 337 

March, May, July and August.  338 

 339 

4.2 Characterization of scattering mechanisms for crops 340 

The CP decomposition can determine the dominant scattering of land surface targets 341 

via the entropy-alpha angle feature plane (Cloude and Pottier, 1997). Progressions of 342 

entropy (H), anisotropy (A), and alpha angle (α) for the crops are depicted in Fig. 6. The 343 

entropy, denoting the randomness of scattering, was rather large and stable for the two 344 

tree crops (> 0.8) and alfalfa (around 0.7) during the growing season. This implies the 345 

occurance of multiple scattering mechanisms. The entropy for the non-permanent crops 346 

(winter wheat and summer crops) increased rapidly from emergence (about 0.45) to 347 

ripening stage (around 0.7), and then decreased sharply during the harvest stage (Fig. 6). 348 

Alpha angle, discerning the primary scattering mechanisms, was distributed in the range 349 

of 35°-50° for the three perennial crops throughout the observation period. This indicates 350 

the large contribution of dipole scattering to radar response. However, the value for the 351 

two tree crops during the leaf-on season (March to October) was smaller than that during 352 

the leaf-off season (October to the next March). This suggests that dipole scattering was 353 

attenuated with the presence of leaves. For winter wheat and summer crops, the seasonal 354 

patterns of alpha angle resemble those of entropy. That is, alpha angle increased with the 355 

growth of crops and then decreased during the senescence stage. The relatively small 356 

value (16°-32°) during the non-growing season (July to December for winter wheat, and 357 

November to the next May for the summer crops) indicates that surface scattering from 358 

soil was the dominant scattering mechanism. The anisotropy can be most useful when H > 359 

0.7, when heavily affected by noise with low entropy (Lee and Pottier, 2009). A 360 

consistently small anisotropy (<0.6) was found for the two tree crops and summer crops 361 
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through the growing season, suggesting comparable strength of the secondary and third 362 

scattering processes. In contrast, alfalfa had a relatively large value (>0.6) compared the 363 

other crops across the observation period, implying the presence of a strong secondary 364 

scattering mechanism. However, it is not possible to provide a definitive interpretation of 365 

the scattering mechanism.  366 

 367 

Figs. 6 and 7 are here 368 

 369 

In comparison, the relative strength of scattering mechanisms can be interpreted 370 

straightforwardly with the proportional (%) report of scattering contributions provided by 371 

the FD decomposition (Fig. 7). All three scattering processes contributed to the radar 372 

response of the crops. However, their proportional contributions vary considerably for 373 

each crop during the growing season. For the two tree crops, volume scattering was 374 

identified as the greatest contribution (>40%) throughout the year. It is noticable that the 375 

contribution of surface scattering during May-to-October (with dense leaves) was larger 376 

by about 10 % than that during October to the next May, while the contribution of double-377 

bounce scattering behaved in the opposite manner. In contrast, surface scattering 378 

dominated for alfalfa, with a contribution larger than 40% across the year. However, in 379 

comparison with the other crops, a large contribution (>30%) of double-bounce scattering 380 

was observed during March-to-September, about 10% larger than that of volume 381 

scattering (Fig. 7). This explains why the anisotropy for alfalfa was large during this 382 

period (Fig. 6(b)). Surface scattering was clearly dominant (>50%) for winter wheat 383 

through the year although the contributions of volume and double-bounce scattering were 384 

also high during March (30%). Similarly, surface scattering (>60%) also dominated for 385 

summer crops over most of the year although volume scattering was identified as the 386 
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primary scattering mechanism (>40%) for sunflower and tomato during June and for corn 387 

during July-to-October. 388 

 389 

4.3 Separability assessment between crops 390 

The mean JM distances for each crop to the other crops across the year with linear 391 

polarizations and decomposition (CP and FD) parameters were calculated and are shown 392 

in Fig. 8. In general, the CP and FD parameters provided greater spearability (with larger 393 

JM values) than the linear polarizations. Taking the mean distance from tomato to the 394 

other crops during August as an example, the JM value increased from 1.1 with linear 395 

polarizations to over 1.4 with both the CP and FD decomposition parameters (Fig. 8). 396 

Similar JM variation patterns were observed for each crop over the three datasets. Two 397 

tree crops were clearly discernible from October to the next May when summer crops 398 

were not yet emerged. Winter wheat was most separable during spring (March through 399 

May) and summer (July and August) due to its exclusive calendar. Alfalfa and summer 400 

crops had the greatest separability during the period from July to August. In general, the 401 

greatest separability between crops occurred during July-to-August and March, although 402 

the mean JM for most of crops was less than 1.6. In contrast, the separability was low 403 

during the period from October to the next January as well as June. The combined use of 404 

linear polarizations and decomposition parameters (CP and FD) considerably increased 405 

the separability between crops over the year, with most of JM values greater than 1.5. As 406 

expected, the greatest separability occured during the summer (July-to-August) when 407 

most JM distances were larger than 1.8. It must be noted that the largest increase in 408 

separability was observed during June, when all of the JM values increased to relatively 409 

large values (>1.5). 410 

 411 
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Fig. 8 is here 412 

 413 

The separability was found to vary over the growing season (March to October) due to 414 

the specific calendars and structures of crops. To evaluate the benefit of using multi-415 

temporal imagery for crop monitoring and classification, JM distances for all crop type 416 

pairs with growing seasonal linear polarizations, CP parameters, FD parameters, and all 417 

available bands (combination of linear polarizations and CP and FD parameters) were 418 

calculated and listed in Table 2. It is clear that the two tree crops could be easily 419 

discriminated (JM = 2) from the other crops with linear polarizations due to their unique 420 

physical characteristics. However, the two crops themselves were hard to separate 421 

(JM=1.747). Similarly, alfalfa and winter wheat were also highly separable from the other 422 

crops (JM > 1.99), with low discrimination between the two crops (JM =1.845). The 423 

separability between summer crops was also low because of their similar calendars (Fig. 424 

4). Amongst the three crops, the separability between corn and sunflower was the greatest 425 

(JM = 1.959) while that between sunflower and tomato was the least (JM < 1.711). As 426 

expected, the discrimination between crops was clearly increased (i.e. larger JM values) 427 

with the CP and FD parameters, especially for those indiscernible crop pairs (e.g. almond-428 

walnut, alfalfa-winter wheat, sunflower-tomato). For example, the JM distance between 429 

almond and walnut was larger than 1.96 with the CP and FD parameters. It should be 430 

noted that each crop was completely separable from the others (JM = 2 for each pair of 431 

crops) if all avaiblable bands were considered (Table 2).  432 

 433 

Tables 2 and 3 are here 434 

 435 

To further validate the potential of UAVSAR in crop discrimination, two machine 436 

learning algorithms, the Multi-layer Perceptron (MLP) and Support Vector Machine 437 
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(SVM), were employed using different features (linear polarizations and polarimetric 438 

parameters). The control parameters of the MLP were set by following the 439 

recommendations of Zhang et al. (2018). The most suitable radial basis function (RBF) 440 

kernel SVM was used in this research, with the parameters being optimized through a 441 

grid search method with five-fold cross validation (Barrett et al., 2014). Table 3 442 

summarizes the classification accuracy assessment, including the overall accuracy (OA) 443 

and Kappa coefficient (k). The OA and k produced by different features using both 444 

algorithms were in accordance with the analysis of JM distance. As shown in Table 3, the 445 

CP and FD decomposition parameters produced consistently greater accuracy in 446 

comparison to the linear polarizations, with OA = 93.01% and 93.71% by MLP, and OA 447 

= 92.03% and 93.01% by SVM, respectively; the combined use of all features (linear 448 

polarizations and polarimetric parameters) achieved the largest classification OA, with 449 

up to 95.80% using MLP and 97.48% using SVM, respectively. Such coherency of 450 

classification accuracy further supports the analysis of JM distance, and demonstrates the 451 

unique value of polarimetric parameters in SAR-based crop classification. 452 

 453 

5. Discussion 454 

 455 

Over vegetated crop fields, emitted radar energy is attenuated by crop vegetation as 456 

well as land surface soil. The amount of radar energy that is scattered back to the antenna 457 

is related directly to the structural characteristics (e.g. size, shape, density, orientation) as 458 

well as SAR system parameters, such as polarization, incidence angle, and wavelength 459 

(Saich and Borgeaud, 2000; Kwoun and Lu, 2009). In the full-polarimetric polarization 460 

mode, three linear polarizations (HH, HV, and VV) are simultaneously collected. In 461 

general, horizontally polarized waves (H) can penetrate vegetation canopies better than 462 
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vertically polarized waves (V), and the HH polarization, thus, tends to characterize 463 

surface soil condition (Lin and Sarabandi, 1999). In contrast, vertically polarized waves 464 

are sensitive to vertical vegetation structure, and the VV polarization, thus, provides more 465 

information about vertical structural characteristics. The cross polarization (HV or VH) 466 

measures multiple-scattering from the soil surface and vegetation volume and is, thus, 467 

sensitive to crop structure within the total canopy volume. This explains why the HV 468 

polarization was more sensitive to crop growth than the HH and VV polarizations in this 469 

research (Fig. 3). The results are in line with previous reports (e.g. Jiao et al., 2014; 470 

Canisius et al., 2018).  471 

It was found that the radar responses of perennial crops (almond, walnut, and alfalfa) 472 

were relatively stable across the growing season. This suggests that the woody structure 473 

or herbaceous stems rather than leaves are responsible for their radar responses. In 474 

contrast, the responses increased rapidly for winter wheat and summer crops from the 475 

emergence stage to the peak biomass stage since their structural characteristics varied 476 

markedly with crop growth. However, it is visible that seasonal backscattering values of 477 

the summer crops were generally greater than those of winter wheat (Fig. 3), which is 478 

consistent with the reports by Liu et al. (2013) and Whelen and Siqueira (2017). This can 479 

be attributed to the difference in biomass between winter wheat (thin stems with narrow 480 

leaves) and summer crops (thick stems with broad leaves) (Macelloni et al., 2001).  481 

Previous studies pointed out that radar signatures of surface targets depend on 482 

incidence angle (Skriver et al., 1999). However, it has been demonstrated that this 483 

dependence becomes relatively weak with crop growth (Saich and Borgeaud, 2000; Liu 484 

et al., 2013). In addition, the study area covered in this research is relatively small, and 485 

variation in incidence angle should be limited. It is, therefore, likely that the effect of 486 
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incidence angle on crop signatures was minimal in this research. Weather conditions (e.g. 487 

precipitation and freezing) may also affect radar signatures. The soil reflectance is a large 488 

component of the radar response, especially when soil has not yet been fully covered by 489 

the crop canopy. The presence of precipitation will raise the soil conductivity and, hence, 490 

increase considerably the intensity of radar response. Fortunately, nearly all the employed 491 

UAVSAR images were acquired under dry conditions (Table 1). Freezing in the soil 492 

might decrease the dielectric constant of soil/vegetation (reduction in liquid water), and 493 

hence decrease the radar response (Saich and Borgeaud, 2000). We note that the minimum 494 

air temperatures for the January and December images were around freezing point. 495 

However, given the very small amounts of rainfall on the image acquisition dates and in 496 

the few days preceding them (data not shown) we believe that the effect of freezing on 497 

the observed crop radar signatures was negligible. 498 

The scattering mechanisms of crops characterized by the CP and FD decompositions 499 

were generally comparable, and some interesting results were observed. The dominant 500 

volume scattering, as well as double-bounce scattering for the two tree crops, was 501 

attenuated during May-to-October, when the surface scattering was enhanced. This is 502 

because as the tree crops grow and become denser, less microwave energy can penetrate 503 

their canopies and more radar signal was, thus, scattered on the smooth uppermost 504 

canopies (Huang et al., 2017). This can also explain why the greatest contributions of 505 

volume scattering, and double-bounce scattering for sunflower and tomato, occurred 506 

during June (Figs. 6 and 7), rather than during the peak biomass stage with denser leaves 507 

(July and August). In comparison with the dense structure (crowded and horizontally 508 

oriented leaves) of sunflower and tomato, corn has sparse and randomly oriented leaves 509 

(Fig. 9) which exert less impact on the penetration of the radar signal, even during the 510 
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peak biomass stage. As a result, as the corn grew taller and denser (July-to-October), 511 

volume scattering became dominant, as depicted in Fig. 7. This difference in dominant 512 

scattering should be very useful for separation of corn from other summer crops. It is also 513 

notable that the double-bounce scattering for alfalfa remained consistently large (over 514 

30%) during the growing season, indicating that the L-band microwave could easily 515 

penetrate the alfalfa’s narrow-leafed canopies. This unique signature might be further 516 

explored to identify alfalfa by using SAR data without training samples. In contrast, the 517 

contribution of volume scattering for alfalfa was generally smaller than for the other crops, 518 

which might be attributable to the small amount of biomass.  519 

The JM distance-based assessment presented here further indicates that polarimetric 520 

decomposition parameters provided greater separability for crop discrimination than 521 

linear polarizations, which agrees with the reports by McNairn et al. (2009b) for ALOS 522 

PALSAR and by Li et al. (2012) for RADARSAT-2 data. This may be attributed to the 523 

fact that polarimetric decomposition parameters can characterize the unique biophysical 524 

properties of crops (e.g. plant height) more closely than linear polarizations (Canisius et 525 

al., 2018), which is valuable for crop discrimination (McNairn et al., 2009b). It is 526 

interesting to note that the least separability across the growing season (March-October) 527 

occured during June and October. This is in line with a previous study by Skriver (2012) 528 

who also reported a small classificaiont accuracy with airborne SAR data in June. In fact, 529 

for a certain crop the green-up onset date, as well as senescence date, may vary greatly 530 

over crop fields due to soil and topographic conditions, and farm decisions (Fig. 5), 531 

leading to great regional intra-class variation in polarimetric signatures (Fig. 3(d)). This 532 

might explain why crop discrimination was low for the June and October images. 533 

 534 

6. Summary and conclusions 535 
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 536 

This paper evaluated the applicability of L-band full-polarimetric UAVSAR SAR data 537 

for crop monitoring and classification over an agricultural area in the California's 538 

Sacramento Valley. The structure-related and phenology-driven polarimetric signature of 539 

each crop was provided by multi-temporal UAVSAR data, with a fine temporal resolution. 540 

The cross-polarized band (HV) was found to be more sensitive to crop growth than the 541 

co-polarized bands (HH and VV). Tree crops (almond and walnut) had the largest radar 542 

response because of their large volume of canopies, followed by broad-leafed summer 543 

crops (corn, sunflower, and tomato), while narrow-leafed winter wheat and alfalfa had 544 

the smallest response. Prominent regional intra-class variation occurred during June and 545 

October, because of the differences in green-up onset date as well as senescence date 546 

between crop fields. In contrast, the signature over intra-class fields was homogeneous 547 

during the peak biomass stage (July and August). 548 

The structural characteristics of crops were well characterized by their unique 549 

scattering patterns with the parameters derived from the Cloude-Pottier (CP) and 550 

Freeman-Durden (FD) decompositions. The predominant mechanism for the tree crops 551 

was volume scattering, which accounts for over 40% of the radar response through the 552 

year. In contrast, surface scattering was dominant (>40%) for the narrow-leafed alfalfa 553 

and winter wheat crops, although double-bounce scattering (~30%) for alfalfa was also 554 

notable. Surface scattering was also dominant (>40%) for summer crops over most of the 555 

year except for sunflower and tomato during June and corn during July-to-October when 556 

volume scattering was identified as the primary scattering mechanism. The difference in 557 

seasonal patterns of scattering mechanisms among crops provides valuable information 558 

for crop classification. 559 
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The separability assessment indicated that crops were much more separable with the 560 

CP or FD decomposition parameters than with the linear polarizations. The separability 561 

between crops varied greatly over the growing season, and the largest separability 562 

generally occurred during the peak biomass stage (July and August) with the least during 563 

June and October. The combined use of linear polarizations and CP and FD 564 

decomposition parameters significantly increased crop discrimination through the year, 565 

suggesting complementary information had been provided. It is notable that all crop types 566 

were completely separable from the other crops by simultaneously using UAVSAR data 567 

spanning the growing season.  568 

This paper illustrated the potential of time-series UAVSAR data for crop growth 569 

monitoring and classification. Our results indicated that very high accuracy crop mapping 570 

can be expected based solely on time-series UAVSAR, which will be a priority for future 571 

research. This research emphasized the unique value of polarimetric decomposition 572 

parameters for crop discrimination and classification. Future research will also focus on 573 

employing these physically meaningful parameters to retrieve crop biophysical 574 

parameters (e.g. height, biomass, and leaf area index), which are critical for crop yield 575 

estimation as well as crop management. 576 

 577 

Acknowledgements 578 

 579 

This research was co-funded by the Jilin Province Science and Technology 580 

Development Program (20170520087JH, 20170204025SF), the National Key Research 581 

and Development Program of China (2017YFB0503602), and the National Natural 582 

Science Foundation of China (41301465, 41671397). We would like to thank the support 583 



Full year crop monitoring and separability assessment with UAVSAR data 

 25 

from China Scholarship Council (CSC) (File No. 201704910192) during a visit of 584 

Huapeng Li to Lancaster Univerisity. We also thank Alaska Satellite Facility for the 585 

supply of UAVSAR data employed in this research.  586 

 587 

References 588 

 589 

Adams, J.R., Rowlandson, T.L., McKeown, S.J., Berg, A.A., McNairn, H., Sweeney, S.J., 2013. Evaluating 590 

the Cloude-Pottier and Freeman-Durden scattering decompositions for distinguishing between 591 

unharvested and post-harvest agricultural fields. Can. J. Remote Sens. 39 (4), 318-327. 592 

Baghdadi, N., Boyer, N., Todoroff, P., El Hajj, M., Begue, A., 2009. Potential of SAR sensors TerraSAR-593 

X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island. Remote 594 

Sens. Environ. 113 (8), 1724-1738. 595 

Barrett, B., Nitze, I., Green, S., Cawkwell, F., 2014. Assessment of multi-temporal, multi-sensor radar and 596 

ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote 597 

Sens. Environ. 152 (6), 109-124. 598 

Blaes, X., Vanhalle, L., Defourny, P., 2005. Efficiency of crop identification based on optical and SAR 599 

image time series. Remote Sens. Environ. 96 (3-4), 352-365. 600 

Boryan, C., Yang, Z.W., Mueller, R., Craig, M., 2011. Monitoring US agriculture: the US Department of 601 

Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 26 (5), 602 

341-358. 603 

Bouvet, A., Le Toan, T., Lam-Dao, N., 2009. Monitoring of the Rice Cropping System in the Mekong Delta 604 

Using ENVISAT/ASAR Dual Polarization Data. IEEE Trans. Geosci. Remote Sens. 47 (2), 517-526. 605 

California Agricultural Statistic, 2011. USDA's National Agricultural Statistics Service, California Field 606 

Office. Retrieved February 3, 2018, from. www.nass.usda.gov/ca. 607 

Canisius, F., Shang, J., Liu, J., Huang, X., Ma, B., Jiao, X., Geng, X., Kovacs, J.M., Walters, D., 2018. 608 

Tracking Crop Phenological Development Using Multi-temporal Polarimetric Radarsat-2 Data. Remote 609 

Sens. Environ. 210 (6), 508-518. 610 

Chapman, B., Hensley, S., Lou, Y., 2011. The JPL UAVSAR. ASF News & Notes. 7(1) Retrieved from. 611 

https://www.asf.alaska.edu/news-notes/7-1/jpl-uavsar/. 612 

Choudhury, I., Chakraborty, M., 2006. SAR signature investigation of rice crop using RADARSAT data. 613 

Int. J. Remote Sens. 27 (3), 519-534. 614 

Cloude, S.R., Pottier, E., 1997. An entropy based classification scheme for land applications of polarimetric 615 

SAR. IEEE Trans. Geosci. Remote Sens. 35 (1), 68-78. 616 

Dickinson, C., Siqueira, P., Clewley, D., Lucas, R., 2013. Classification of forest composition using 617 

polarimetric decomposition in multiple landscapes. Remote Sens. Environ. 131 (6), 206-214. 618 

Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., Biradar, C., Liu, J., 619 



Full year crop monitoring and separability assessment with UAVSAR data 

 26 

Moore Iii, B., 2015. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series 620 

Landsat images and phenology-based algorithms. Remote Sens. Environ. 160 (4), 99-113. 621 

Dyer, A.R., Rice, K.J., 1999. Effects of competition on resource availability and growth of a California 622 

bunchgrass. Ecology. 80 (8), 2697-2710. 623 

Ferrazzoli, P., Paloscia, S., Pampaloni, P., Schiavon, G., Sigismondi, S., Solimini, D., 1997. The potential 624 

of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass. IEEE Trans. Geosci. 625 

Remote Sens. 35 (1), 5-17. 626 

Fore, A.G., Chapman, B.D., Hawkins, B.P., Hensley, S., Jones, C.E., Michel, T.R., Muellerschoen, R.J., 627 

2015. UAVSAR Polarimetric Calibration. IEEE Trans. Geosci. Remote Sens. 53 (6), 3481-3491. 628 

Freeman, A., Durden, S.L., 1998. A three-component scattering model for polarimetric SAR data. IEEE 629 

Trans. Geosci. Remote Sens. 36 (3), 963-973. 630 

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, 631 

S., Thomas, S.M., Toulmin, C., 2010. Food Security: The Challenge of Feeding 9 Billion People. Science. 632 

327 (5967), 812-818. 633 

Hensley, S., Zebker, H., Jones, C., Michel, T., Muellerschoen, R., Chapman, B., 2009. First deformation 634 

results using the NASA/JPL UAVSAR instrument. 2nd Asian-Pacific Conference on Synthetic Aperture 635 

Radar (pp. 1051-1055). Xi'an Shanxi, China: IEEE. 636 

Huang, X.D., Wang, J.F., Shang, J.A., Liao, C.H., Liu, J.G., 2017. Application of polarization signature to 637 

land cover scattering mechanism analysis and classification using multi-temporal C-band polarimetric 638 

RADARSAT-2 imagery. Remote Sens. Environ. 193 (5), 11-28. 639 

Jiao, X.F., Kovacs, J.M., Shang, J.L., McNairn, H., Walters, D., Ma, B.L., Geng, X.Y., 2014. Object-640 

oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS J. 641 

Photogramm. Remote Sens. 96 (10), 38-46. 642 

Kim, D.J., Hensley, S., Yun, S.H., Neumann, M., 2016. Detection of Durable and Permanent Changes in 643 

Urban Areas Using Multitemporal Polarimetric UAVSAR Data. IEEE Trans. Geosci. Remote Sens. 13 644 

(2), 267-271. 645 

Kwoun, O.I., Lu, Z., 2009. Multi-temporal RADARSAT-1 and ERS Backscattering Signatures of Coastal 646 

Wetlands in Southeastern Louisiana. Photogrammetric Engineering and Remote Sensing 75 (5), 607-617. 647 

Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science. 304 648 

(5677), 1623-1627. 649 

Laurin, G.V., Del Frate, F., Pasolli, L., Notarnicola, C., Guerriero, L., Valentini, R., 2013. Discrimination 650 

of vegetation types in alpine sites with ALOS PALSAR-, RADARSAT-2-, and lidar-derived information. 651 

Int. J. Remote Sens. 34 (19), 6898-6913. 652 

Lee, J. S., Pottier, E., 2009. Polarimetric radar imaging from basics to applications. New York: CRC Press. 653 

Li, K., Brisco, B., Shao, Y., Touzi, R., 2012. Polarimetric decomposition with RADARSAT-2 for rice 654 

mapping and monitoring. Can. J. Remote Sens. 38 (2), 169-179. 655 

Lin, Y.C., Sarabandi, K., 1999. A Monte Carlo coherent scattering model for forest canopies using fractal-656 

generated trees. IEEE Trans. Geosci. Remote Sens. 37 (1), 440-451. 657 

Liu, C., Shang, J.L., Vachon, P.W., McNairn, H., 2013. Multiyear Crop Monitoring Using Polarimetric 658 



Full year crop monitoring and separability assessment with UAVSAR data 

 27 

RADARSAT-2 Data. IEEE Trans. Geosci. Remote Sens. 51 (4), 2227-2240. 659 

Liu, P., Li, X.F., Qu, J.J., Wang, W.G., Zhao, C.F., Pichel, W., 2011. Oil spill detection with fully 660 

polarimetric UAVSAR data. Marine Pollution Bull. 62 (12), 2611-2618. 661 

Macelloni, G., Paloscia, S., Pampaloni, P., Marliani, F., Gai, M., 2001. The relationship between the 662 

backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote 663 

Sens. 39 (4), 873-884. 664 

McNairn, H., Brisco, B., 2004. The application of C-band polarimetric SAR for agriculture: a review. Can. 665 

J. Remote. Sens. 30 (3), 525-542. 666 

McNairn, H., Champagne, C., Shang, J., Holmstrom, D., Reichert, G., 2009a. Integration of optical and 667 

Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. 668 

Photogram. Rem. Sens. 64 (5), 434-449. 669 

McNairn, H., Shang, J.L., Jiao, X.F., Champagne, C., 2009b. The Contribution of ALOS PALSAR 670 

Multipolarization and Polarimetric Data to Crop Classification. IEEE Trans. Geosci. Remote Sens. 47 671 

(12), 3981-3992. 672 

Mkhabela, M.S., Bullock, P., Raj, S., Wang, S., Yang, Y., 2011. Crop yield forecasting on the Canadian 673 

Prairies using MODIS NDVI data. Agric. Forest Meteorol. 151 (3), 385-393. 674 

National Oceanic and Atmospheric Administration, National Centers for Environmental Information 675 

(NOAA-NCEI), 2011. Local Climatological Data (LCD), Sacramento Executive Airport, Sacramento 676 

County, CA. National Environmental Satellite, Data, and Information Service. Retrieved February 3, 677 

2018, from. https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:23232/detail. 678 

Paloscia, S., 2002. A summary of experimental results to assess the contribution of SAR for mapping 679 

vegetation biomass and soil moisture. Can. J. Remote Sens. 28 (2), 246-261. 680 

Pena-Barragan, J.M., Ngugi, M.K., Plant, R.E., Six, J., 2011. Object-based crop identification using 681 

multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 115 (6), 1301-682 

1316. 683 

Pinter, P.J., Hatfield, J.L., Schepers, J.S., Barnes, E.M., Moran, M.S., Daughtry, C.S.T., Upchurch, D.R., 684 

2003. Remote sensing for crop management. Photogram. Eng. Remote Sens. 69 (6), 647-664. 685 

Pottier, E., Ferro-Famil, L., Allain, S., Cloude, S., Hajnsek, I., Papathanassiou, K., Moreira, A., Williams, 686 

M., Minchella, A., Lavalle, M., Desnos, Y.L., 2009. Overview of the PolSARpro V4.0 software: the open 687 

source toolbox for polarimetric and interferometric polarimetric SAR data processing. In: Proceedings 688 

of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, July 689 

12-17, vol. 4, pp. 936-939. 690 

Richards, J. A., Jia, X., 1999. Remote sensing digital image analysis, an introduction. 3rd, revised and 691 

enlarged ed. Berlin: Springer-Verlag. 692 

Saich, P., Borgeaud, M., 2000. Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-693 

1996. IEEE Trans. Geosci. Remote Sens. 38 (2), 651-657. 694 

Schmidt, K.S., Skidmore, A.K., 2003. Spectral discrimination of vegetation types in a coastal wetland. 695 

Remote Sens. Environ. 85 (1), 92-108. 696 

Schoups, G., Hopmans, J.W., Young, C.A., Vrugt, J.A., Wallender, W.W., Tanji, K.K., Panday, S., 2005. 697 



Full year crop monitoring and separability assessment with UAVSAR data 

 28 

Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proc. Natl. Acad. Sci. U.S.A. 698 

102 (43), 15352-15356. 699 

Silva, W.F., Rudorff, B.F.T., Formaggio, A.R., Paradella, W.R., Mura, J.C., 2009. Discrimination of 700 

agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR 701 

data. ISPRS J. Photogram. Rem. Sens. 64 (5), 458-463. 702 

Skakun, S., Kussul, N., Shelestov, A.Y., Lavreniuk, M., Kussul, O., 2016. Efficiency Assessment of 703 

Multitemporal C-Band Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery for 704 

Crop Classification in Ukraine. IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 9 (8), 3712-705 

3719. 706 

Skriver, H., 2012. Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and 707 

Fully Polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 50 (6), 2138-2149. 708 

Skriver, H., Svendsen, M.T., Thomsen, A.G., 1999. Multitemporal C- and L-band polarimetric signatures 709 

of crops. IEEE Trans. Geosci. Remote Sens. 37 (5), 2413-2429. 710 

USDA NASS, 2011 (a). Crop Progress. Retrieved January 13, 2018, from. http://usda.mannlib.cornell.edu/ 711 

MannUsda/viewDocumentInfo.do;jsessionid=A8F0A37CA76B0F6E77E0FDE1E10BA5F9?documentI712 

D=1048/. 713 

USDA NASS, 2011 (b). National Agricultural Statistics Service Cropland Data Layer. Retrieved January 714 

13, 2018, from. http://nassgeodata.gmu.edu/CropScape/. 715 

Whelen, T., Siqueira, P., 2017. Use of time-series L-band UAVSAR data for the classification of agricultural 716 

fields in the San Joaquin Valley. Remote Sens. Environ. 193 (5), 216-224. 717 

Zhang, C., Pan, X., Li, H.P., Gardiner, A., Sargent, I., Hare, J., Atkinson, P.M., 2018. A hybrid MLP-CNN 718 

classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogram. Rem. Sens. 719 

140 (6), 133-144. 720 

Zheng, B.J., Myint, S.W., Thenkabail, P.S., Aggarwal, R.M., 2015. A support vector machine to identify 721 

irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 34 (1), 103-722 

112. 723 

Zhong, L.H., Gong, P., Biging, G.S., 2012. Phenology-based Crop Classification Algorithm and its 724 

Implications on Agricultural Water Use Assessments in California's Central Valley. Photogram. Eng. 725 

Remote Sens. 78 (8), 799-813. 726 



Full year crop monitoring and separability assessment with UAVSAR data 

 

Figure Captions 

 

Fig. 1. The study site in the agricultural region of the Sacramento Valley, California. 

Fig. 2. (a) The UAVSAR image dated 20 July, 2011 (R-G-B, bands VV, HV, and HH), (b) the outlined 

crop fields. 

Fig. 3. Temporal variation in average backscattering values for crops over linear polarizations (a) HH, 

(b) HV, (c) VV; Note error bars denote standard deviation. (d) standard deviation profile with HV 

polarization was depicted separately for analysis.  

Fig. 4. Crop calendar for the seven major crops in the study area. Note there is no planting time for 

the perennial almond, walnut, and alfalfa crops. 

Fig. 5. Radar backscattering values (HV polarization) shown in the UAVSAR images dated (a) 30 

March (b) 12 May, (c) 16 June, (d) 20 July, (e) 29 August, and (f) 03 October. Note typical fields for 

the studied crops were marked by black patches. 

Fig. 6. Time-series variation in average (a) entropy, (b) anisotropy, and (c) alpha angle derived from 

the Cloude-Pottier decomposition. Note error bars denote standard deviation. 

Fig. 7.  Time-series variation in relative contributions (%) of (a) surface scatter, (b) double-bounce 

scatter, and (c) volume scatter derived from the Freeman-Durden decomposition.  

Fig. 8. Mean JM distance for each crop to the others through the year derived with (a) linear 

polarization bands (HH, HV, VV), (b) Cloude-Pottier parameters, (c) Freeman-Durden parameters, 

and (d) all available parameters. 

Fig. 9. Summer crop examples for corn, sunflower, and tomato. Note that all the photos were taken in 

the United States by volunteers, and are freely shared by the Earth Observation and Modeling Facility 

(EOMF) at the University of Oklahoma (http://eomf.ou.edu/visualization/gmap/). 
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Fig. 1. The study site in the agricultural region of the Sacramento Valley, California. 



Full year crop monitoring and separability assessment with UAVSAR data 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 2. (a) The UAVSAR image dated 20 July, 2011 (R-G-B, bands VV, HV, and HH), (b) the 

outlined crop fields. 
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Fig. 3. Temporal variation in average backscattering values for crops over linear polarizations (a) 

HH, (b) HV, (c) VV; Note error bars denote standard deviation. (d) standard deviation profile with 

HV polarization was depicted separately for analysis. 
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Fig. 4. Crop calendar for the seven major crops in the study area. Note there is no planting 

time for the perennial almond, walnut, and alfalfa crops. 
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Fig. 5. Radar backscattering values (HV polarization) shown in the UAVSAR images dated (a) 

30 March (b) 12 May, (c) 16 June, (d) 20 July, (e) 29 August, and (f) 03 October. Note typical 

fields for the studied crops were marked by black patches. 
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Fig. 6. Time-series variation in average (a) entropy, (b) anisotropy, and (c) alpha angle derived 

from the Cloude-Pottier decomposition. Note error bars denote standard deviation. 
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Fig. 7.  Time-series variation in relative contributions (%) of (a) surface scatter, (b) double-

bounce scatter, and (c) volume scatter derived from the Freeman-Durden decomposition.  
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Fig. 8. Mean JM distance for each crop to the others through the year derived with (a) linear 

polarization bands (HH, HV, VV), (b) Cloude-Pottier parameters, (c) Freeman-Durden 

parameters, and (d) all available parameters. 
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Fig. 9. Summer crop examples for corn, sunflower, and tomato. Note that all the photos were taken 

in the United States by volunteers, and are freely shared by the Earth Observation and Modeling 

Facility (EOMF) at the University of Oklahoma (http://eomf.ou.edu/visualization/gmap/).  
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Table Captions 

 

Table 1. Detailed description of UAVSAR data acquisitions in 2011 and the corresponding weather 

conditions; meteorological data were acquired from a station (in the city of Sacramento) located next 

to the study area (NOAA-NCEI, 2011). All images were in PolSAR (polarimetric SAR) mode and 

there was no snow.  

 

Table 2. Growing season JM distance values for all crop type pairs calculated with linear polarizations 

(LP), Cloude–Pottier (CP), Freeman–Durden (FD), and all parameters, respectively. 

 

Table 3. Classification accuracy achieved by the MLP and SVM algorithms with linear polarizations 

(LP), CP decomposition parameters (CP), FD decomposition parameters (FD), and all features (All). 

Note that OA denotes overall accuracy, and k is the Kappa coefficient. 
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Table 1 

Detailed description of UAVSAR data acquisitions in 2011 and the corresponding weather conditions; 

meteorological data were acquired from a station (in the city of Sacramento) located next to the study 

area (NOAA-NCEI, 2011). All images were in PolSAR (polarimetric SAR) mode and there was no 

snow.  

Date Local time Tmax (℃) Tmin (℃) Pdaily (mm) 

10 January 20h59 8.3  -2.8  0 

30 March 20h00 26.7  11.7  0 

12 May 22h22 26.1  9.4  0 

16 June 13h04 31.1  14.4  0 

20 July 18h54 35.6  15.0  0 

29 August 20h21 34.4  14.4  0 

03 October 22h02 20.6  10.0  0.5 

02 November 22h45 22.8  5.6  0 

07 December 20h20 14.4  -0.6  0 

Note that Tmax and Tmin are daily maximum and minimum air temperatures, respectively, and Pdaily signifies daily 

precipitation. 
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Table 2 

Growing season JM distance values for all crop type pairs calculated with linear polarizations (LP), 

Cloude–Pottier (CP), Freeman–Durden (FD), and all parameters (LP+CP+FD), respectively. 

 JM distance  JM distance  

Class pairs LP CP FD All Class pairs LP CP FD All 

Alm--Wal 1.747 1.962 1.974 2 Alf--Whe 1.845 1.967 1.961 2 

Alm--Alf 2 2 2 2 Alf--Cor 2 1.986 2 2 

Alm--Whe 2 2 2 2 Alf--Sun 2 1.998 2 2 

Alm--Cor 2 2 2 2 Alf--Tom 1.998 1.999 2 2 

Alm--Sun 2 2 2 2 Whe--Cor 2 1.999 2 2 

Alm--Tom 2 2 2 2 Whe--Sun 2 2 2 2 

Wal--Alf 2 2 2 2 Whe--Tom 1.999 1.999 2 2 

Wal--Whe 2 2 2 2 Cor--Sun 1.959 1.991 1.996 2 

Wal--Cor 2 2 2 2 Cor--Tom 1.897 2 1.997 2 

Wal--Sun 2 2 2 2 Sun--Tom 1.711 1.891 1.962 2 

Wal--Tom 2 2 2 2 - - - - - 

Note that Alm, Wal, Alf, Whe, Cor, Sun, and Tom denote abbreviation of almond, walnut, alfalfa, winter wheat, corn, 

sunflower, and tomato, respectively. The expression ‘Alm--Wal’ denotes a class pair between almond and walnut, and 

so forth. 
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Table 3 

Classification accuracy achieved by the MLP and SVM algorithms with linear polarizations (LP), CP 

decomposition parameters (CP), FD decomposition parameters (FD), and all features (All). Note that 

OA denotes overall accuracy, and 𝑘 is the Kappa coefficient. 

Method Accuracy 

Features 

LP CP FD All 

MLP OA 89.23% 93.01% 93.71% 95.80% 

 𝑘 0.8680 0.9146 0.9229 0.9486 

SVM OA 84.48% 92.03% 93.01% 

 
97.48% 

 𝑘 0.8085 0.9022 0.9141 0.9691 

 

 
 

 

 


