Manuscript Details

Manuscript number	JAG_2018_417_R1
Title	Full year crop monitoring and separability assessment with fully-polarimetric L- band UAVSAR: a case study in the Sacramento Valley, California
Article type	Research Paper

Abstract

Spatial and temporal information on plant and soil conditions is needed urgently for monitoring of crop productivity. Remote sensing has been considered as an effective means for crop growth monitoring due to its timely updating and complete coverage. In this paper, we explored the potential of L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data for crop monitoring and classification. The study site was located in the Sacramento Valley, in California where the cropping system is relatively diverse. Full season polarimetric signatures, as well as scattering mechanisms, for several crops, including almond, walnut, alfalfa, winter wheat, corn, sunflower, and tomato, were analyzed with linear polarizations (HH, HV, and VV) and polarimetric decomposition (Cloude-Pottier and Freeman–Durden) parameters, respectively. The separability amongst crop types was assessed across a full calendar year based on both linear polarizations and decomposition parameters. The unique structure-related polarimetric signature of each crop was provided by multitemporal UAVSAR data with a fine temporal resolution. Permanent tree crops (almond and walnut) and alfalfa demonstrated stable radar backscattering values across the growing season, whereas winter wheat and summer crops (corn, sunflower, and tomato) presented drastically different patterns, with rapid increase from the emergence stage to the peak biomass stage, followed by a significant decrease during the senescence stage. In general, the polarimetric signature was heterogeneous during June and October, while homogeneous during March-to-May and July-to-August. The scattering mechanisms depend heavily upon crop type and phenological stage. The primary scattering mechanism for tree crops was volume scattering (>40%), while surface scattering (>40%) dominated for alfalfa and winter wheat, although double-bounce scattering (>30%) was notable for alfalfa during March-to-September. Surface scattering was also dominant (>40%) for summer crops across the growing season except for sunflower and tomato during June and corn during July-to-October when volume scattering (>40%) was the primary scattering mechanism. Crops were better discriminated with decomposition parameters than with linear polarizations, and the greatest separability occurred during the peak biomass stage (July-August). All crop types were completely separable from the others when simultaneously using UAVSAR data spanning the whole growing season. The results demonstrate the feasibility of L-band SAR for crop monitoring and classification, without the need for optical data, and should serve as a guideline for future research.

Keywords	Multi-temporal image; full-polarimetric SAR; crop growth monitoring; polarimetric decomposition; scattering mechanisms; classification.
Taxonomy	Classification, Mapping, Multi-Temporal Image
Corresponding Author	Huapeng Li
Order of Authors	Huapeng Li, Ce Zhang, Shuqing Zhang, Pete Atkinson
Suggested reviewers	Steven de Jong, Qunming Wang, Victor Rodriguez-Galiano, Tiejun Wang, Jadu Dash

Submission Files Included in this PDF

File Name [File Type]

- JAG Cover letter.pdf [Cover Letter]
- JAG revision Response letter.pdf [Response to Reviewers]
- JAG Highlights.pdf [Highlights]
- JAG revision Manuscript.pdf [Manuscript File]
- JAG revision Figures.pdf [Figure]
- JAG revision Tables.pdf [Table]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Dear Dr. Abel Ramoelo, Associate Editor, Prof. van der Meer, Editor-in-Chief, International Journal of Applied Earth Observations and Geoinformation

On behalf of my co-authors, we thank you very much for giving us the opportunity to revise the manuscript, and we are grateful to two reviewers for their constructive comments and suggestions on our manuscript titled "Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: a case study in the San Joaquin Valley, California" (Former Ref: JAG_2018_417).

We have revised the manuscript carefully according to the comments, and highlighted the revisions in the revised manuscript using the blue text. In our point-by-point response letter attached below, the comments of each reviewer are provided in plain text followed by our responses in blue text. The major revisions we have made include:

- 1. Unnecessary detail about the previous works were removed to make the structure of the introduction section clear.
- 2. The bullet point summary of the research was rephrased to match the contents of the results and discussion sections.
- 3. The results section was carefully revised according to the comments to make the analysis clear.
- 4. Some important literature recommended by the reviewers were included in the paper.
- 5. Crop classification results using two machine learning algorithms with different UAVSAR features (linear polarizations and polarimetric parameters) were included in the results section.

We trust that you will find the revised manuscript acceptable for publication in *International Journal of Applied Earth Observations and Geoinformation*.

Looking forward to hearing from you. Best wishes

Professor Peter M. Atkinson Dean, Faculty of Science and Technology, Lancaster University, Tel: 01524 595203 Email: pma@lancaster.ac.uk

Response to Reviewers

We are grateful to the anonymous reviewers for their constructive comments and suggestions, and have carefully revised the manuscript in response to their advice. The comments of each reviewer in plain text followed by our responses in blue text are provided below.

Referee: 1

Comments to the Author Main comments

(1) This paper uses fully polarimetric L-band UAVSAR data to analyze the polarimetric signature and scattering mechanisms of a mixture of perennial and annual crops in California over the course of a full calendar year. While the paper is plainly inspired by Whelen and Siqueira (2017), it is clear that the authors have taken this subject further, extending the analysis to cover a more complexly cropped region, and using the polarimetric signatures to characterize scattering behavior and crop separability. The authors also made logical connections between the scattering behavior and crop phenology during specific times of the year, showing how this explained some of the separability results.

Response (R): Thank you very much for reviewing our manuscript and making a brief summary for our work.

(2) While the research appears to be adequate, the text could use improvements. As this is not a review article, the introduction goes into unnecessary detail about some of the citations. The bullet point summary of research at the end of the introduction is confusing, and needs rephrasing to match what is covered in the results and discussion sections. The results section could also be revised to improve the clarity of the analysis. While overall the authors do a good job of connecting their work with previous research, numerous improvements could be made to the cited literature.

Response (R): Many thanks for providing us with these very careful and constructive comments. We have revised the manuscript carefully according to the comments and responded to them point by point as below. (1) The study site is located in the Sacramento Valley, not the San Joaquin Valley. Please adjust title and text accordingly.

R: Thank you for this comment. We have revised the title and text as suggested.

"Full year crop monitoring and separability assessment with fully-polarimetric Lband UAVSAR: a case study in the Sacramento Valley, California" (page 1, line 2-3).

(2) Almonds and walnuts are not normally referred to as fruits in English – please refer to them as nut trees, nut crops, tree crops, or orchards, but not as fruit trees.

R: Thank you for this comment. We have replaced 'fruit trees' with 'tree crops' throughout the text as suggested.

(3) Generally it is not desired to cite unpublished papers, especially if they are by other authors. Canisius et al., now has an issue number and date assigned to it – please update.

R: Thank you for this suggestion. We updated the reference by Canisius et al. (2018).

(4) Introduction paragraph 2 – second sentence unnecessary.

R: Agreed. We deleted the sentence as suggested.

(5) Introduction paragraph 3 – Suri et al., 2010 is about urban areas, not agricultural land.

R: Thank you for this careful comment. We removed the reference.

(6) Introduction paragraph 3 – unnecessary to list all the previous satellites – the second half of this paragraph could be more concise.

R: Thank you for this suggestion. We have shortened the second half of the paragraph as follows:

"The main SAR data sources employed by previous crop research involve satellite RADARSAT-1/2 (Choudhury et al., 2006), ENVISAT ASAR (Bouvet et al., 2009), and ALOS PALSAR (McNairn et al., 2009b). However, the majority of these data were restricted to single polarization (e.g. RADARSAT-1) or dual-polarization modes (e.g. ASAR), which greatly limits the practical utility of SAR for crop classification." (page 4, line 81-86).

(7) Introduction paragraphs 5 and 6 - unnecessary detail given about specific past works; this isn't a review article.

R: Agreed. We have deleted the details about previous works as suggested.

"The seasonal patterns of these scattering mechanisms rely heavily on crop type and phenological stages, in which unique information for crop monitoring and identification is potentially provided (e.g. McNairn et al., 2009b; Adams et al., 2013; Jiao et al., 2014; Canisius et al., 2018). " (page 5, line 98-101).

"However, there have been very few studies of crop characterization using fullpolarimetric L-band SAR (McNairn et al., 2009b; Skriver, 2012; Whelen and Siqueira, 2017) " (page 5, line 113-115).

(8) Introduction paragraph 6 – additional fully polarimetric L-band agricultural studies include AgriSAR campaigns in Germany, and AIRSAR projects.

R: Thank you for this comment. We have added the related contents in the paragraph and rewritten the sentence as follows:

"However, there have been very few studies of crop characterization using fullpolarimetric L-band SAR (McNairn et al., 2009b; Skriver, 2012; Whelen and Siqueira, 2017), even though some research projects were conducted to collect such data, such as the AgriSAR campaign in Germany (Skriver, 2011) and the Multisensor Airborne Campaign in Italy and Sweden (Macelloni et al., 2001)." (page 5, line 113-118). (9) Introduction paragraph 7 – the three bullet points overlap with each, contain multiple items in one bullet point, and do not match how the analysis is organized in the results and discussion.

R: Yes, we fully agree with this valuable comment. We have rephrased the bullet points to match the analysis in the results and discussion sections:

" (1) L-band fully-polarimetric UAVSAR was used for the first time to characterize the seasonal patterns in radar response for tree crops (almond, walnut) as well as other crop types (alfalfa, winter wheat, corn, sunflower, and tomato).

(2) The contributions of scattering mechanisms to radar response were quantified for different crop types, and the seasonal variation in three different scattering mechanisms was analysed.

(3) The separability amongst crop types was assessed and analyzed through the growing season using full calendar year time-series UAVSAR, and this serves as an important guide for future UAVSAR-based crop classification." (page 6, line 127-135).

(10) Section 3.1 paragraph 1 – UAVSAR is flown off a Gulfstream platform.

R: Thank you for this comment. We have rewritten this sentence as follows:

"The radar is mounted onboard a Gulfstream-3 aircraft flown at an altitude of 12.5 km (Chapman et al., 2011)" (page 7-8, line 167-168).

(11) Section 3.1 paragraph 2 – Chapman et al., 2011 would be a more appropriate paper to cite for UAVSAR technical specifications.

R: Agreed. We have included this literature into the paper.

"No further speckle filters were applied since the multiplicative noise (speckle) contained in the SAR images was reduced significantly by the multilook processing (Chapman et al., 2011) " (page 8, line 182-184).

(12) Section 3.3 paragraph 2 - Was the technique of inwardly buffering fields by one pixel gotten from Whelen and Siqueira (2017)? If so, please cite.

R: Thank you for this question. We have cited the reference in the text.

"Second, each identified crop field was outlined manually and buffered inwardly from the field boundary by one pixel (Whelen and Siqueira, 2017) " (page 11, line 244-245).

(13) Section 4.1 paragraph 2 – cite specific, original documents – i.e. which California Ag Statistics document on that website, the CDL doesn't include a crop calendar, and Whelen and Siqueira's (2017) crop calendar is cited directly from a USDA source.

R: Thank you for this valuable suggestion. We have shortened the sentence and added the website that directly provides the original data source of the crop calendar used in our paper.

"Drawing on official statistics (California Agricultural Statistics, 2011; USDA-NASA, 2011 (a)), calendars of the studied crops are summarized in Fig. 4." (page 13, line 296-297).

"USDA NASS, 2011 (a). Crop Progress. Retrieved January 13, 2018, from. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do;jsessionid=A8 F0A37CA76B0F6E77E0FDE1E10BA5F9?documentID=1048/." (page 28, line 711-713).

(14) Section 4.1 paragraph 3 – confusing organization of this paragraph.

R: Many thanks for this comment. We have reorganized this paragraph to make the presentation clear and logical:

" It should be noted that the calendar for the same crop may vary between different areas due to natural conditions (e.g. weather conditions, soil water content, and field slope) and farmer decisions (Saich and Borgeaud, 2000). To demonstrate such variation clearly, the standard deviation (STD) profile of the HV polarization signatures for each crop are shown in Fig. 3(d). Seasonal patterns of STD for the permanent crops (i.e. almond, walnut, and alfalfa) are comparable and relatively

stable (about 2~4 dB), with a general downward trend over the growing season. Winter wheat had small STD values (below 3 dB) during January-to-May, but relatively large values (over 3.5 dB) during June-to-October, which might be attributable to the second planting of some harvested fields. As for the summer crops, two STD peaks (generally > 5 dB) were conspicuous in the profiles. The first occurred during June, caused by the difference in growth time amongst crops, while the second occurred during October, caused by the difference in harvesting time (Figs. 3(d) and 4). To highlight such field-to-field spatial variation, the HV polarization during the growing season (March to October) is shown in Fig. 5, in which typical fields for each crop are marked by black patches. In general, the results were consistent with the analysis of the STD in the HV polarization. That is, the radar signature of crops was heterogeneous in the June and October images, but homogeneous in the images dated March, May, July and August." (page 14-15, line 321-338).

(15) Section 4.3 paragraph 1 – the JM patterns and greater separability of polarimetric decompositions over linear polarizations are not clear in Figure 8.

R: Agreed. We redrew the figure in which grid lines were added to present the comparison of crop separability between polarimetric parameters and linear polarizations clearly. Please refer to the revision.

(16) Section 4.3 paragraph 2 – which images (or months) are defined as the growing season?

R: Thank you for this question. We defined the growing season in the paragraph:

"The separability was found to vary over the growing season (March to October) due to the specific calendars and structures of crops." (page 18, line 414-415).

(17) Section 5 paragraph 4 – why do describe sunflower and tomatoes as having a dense structure as compared to corn?

R: Thank you for this question. We explained the reason in the text and added a new figure (Fig. 9) to illustrate this. Please refer to the revision.

"In comparison with the dense structure (crowded and horizontally oriented leaves) of sunflower and tomato, corn has sparse and randomly oriented leaves (Fig. 9), which exert less impact on the penetration of the radar signal, even during the peak biomass stage. " (page 21-22, line 508-511).

"Fig. 9. Summer crop examples for corn, sunflower, and tomato. Note that all the photos were taken in the United States by volunteers, and are freely shared by the Earth Observation and Modeling Facility (EOMF) at the University of Oklahoma (http://eomf.ou.edu/visualization/gmap/).".

(18) Section 6 paragraph 4 – McNairn et al., 2009a used C-band, and took HH and VV/VH from two different SAR systems. This comparison is like comparing apples and oranges, and does not support your point well.

R: Many thanks for this comment. We have removed this sentence.

(19) References - Silva et al., 2009 is listed in references but not in the text.

R: Many thanks for this careful comment. We have included the reference in the text.

"Synthetic aperture radar (SAR) is receiving increasing attention since SAR instruments can acquire data regardless of the weather conditions and cloud cover by operating at wavelengths that can penetrate clouds (Silva et al., 2009; Skriver, 2012)" (page 4, line 73-75).

(20) Figure 1 caption – "agricultural region" instead of "agricultural district"

R: Agreed. We have revised the caption as suggested.

"Fig. 1. The study site in the agricultural region of the Sacramento Valley California.".

(21) Figure 2 – If you manually traced fields, then why are multiple visually distinct fields in Fig 2a merged into one polygon in Figure 2b?

R: Many thanks for this comment. This is because these fields were identified as one polygon in the CDL map. By further checking these fields in the UAVSAR image, we found that the boundaries amongst them were not very clear. We, therefore, merged them into one polygon in the manual interpretation procedure.

(22) Figure 2a – Please specify which bands are R, G, and B.

R: Thank you for this comment. We revised the caption as follows:

"Fig. 2. (a) The UAVSAR image dated 20 July, 2011 (R-G-B, bands VV, HV, and HH), (b) the outlined crop fields.".

(23) Figure 5 – needs a legend and a scale

R: Thank you for this comment. We rectified the figure as suggested. Please refer to the revision.

(24) Table 1 – remove the two columns with identical values for all entries, and instead put in the caption or text that all images were in PolSAR mode and there was no snow.

R: Thank you for this valuable suggestion. We revised the Table as suggested. Please refer to the revision.

"Table 1. Detailed description of UAVSAR data acquisitions in 2011 and the corresponding weather conditions; meteorological data were acquired from a station (in the city of Sacramento) located next to the study area. All images were in PolSAR (polarimetric SAR) mode and there was no snow.".

Referee: 2

Comments to the Author

1. This paper proposed to use L-band UAVSAR for better separation of crops for reliable crop monitoring. Generally, the paper is well-organized and well-written, with a plenty of nice figures (results) for illustration. I only have some minor comments.

R: Many thanks for reviewing our paper and providing us with valuable suggestions.

2. The main motivation of the study is for more separable recognition of crops in classification. The authors only analyzed the rational of the method, but not conducted any experimental validation for the point of "better classification performance". I have only found the calculation of JM distance. This is not sufficient for quantitative assessment. In my opinion, any standard classification method should be performed and the performance of "not using L-band" and "using L-band" needs to be compared. This is a critical part for validation of your idea proposed in the paper.

R: Many thanks for this constructive comment. We fully agree that only JM distance result was not sufficient to support our claim that polarimetric parameters perform better than linear polarizations in crop discrimination. To further validate this, we compared the classification accuracies achieved by the MLP and SVM classifiers, respectively, using different features of UAVSAR (linear polarizations, polarimetric parameters, and all features). The classification accuracy was generally in accordance with the analysis of JM-distance, which demonstrates the unique value of polarimetric parameters in crop classification. We have thoroughly included the classification results in the text as follows:

"To further validate the potential of UAVSAR in crop discrimination, two machine learning algorithms, the Multi-layer Perceptron (MLP) and Support Vector Machine (SVM), were employed using different features (linear polarizations and polarimetric parameters). The control parameters of the MLP were set by following the recommendations of Zhang et al. (2018). The most suitable radial basis function (RBF) kernel SVM was used in this research, with the parameters being optimized through a grid search method with five-fold cross validation (Barrett et al., 2014). Table 3 summarizes the classification accuracy assessment, including the overall accuracy (OA) and Kappa coefficient (k). The OA and k produced by different features using both algorithms were in accordance with the

analysis of JM distance. As shown in Table 3, the CP and FD decomposition parameters produced consistently greater accuracy in comparison to the linear polarizations, with OA = 93.01% and 93.71% by MLP, and OA = 92.03% and 93.01% by SVM, respectively; the combined use of all features (linear polarizations and polarimetric parameters) achieved the largest classification OA, with up to 95.80% using MLP and 97.48% using SVM, respectively. Such coherency of classification accuracy further supports the analysis of JM distance, and demonstrates the unique value of polarimetric parameters in SAR-based crop classification. " (page 18-19, line 437-453).

"Table 3. Classification accuracy achieved by the MLP and SVM algorithms with linear polarizations (LP), CP decomposition parameters (CP), FD decomposition parameters (FD), and all features (All). Note that OA denotes overall accuracy, and k is the Kappa coefficient.".

Highlight

- 1. L-band fully-polarimetric UAVSAR was used for the first time to characterize the seasonal patterns in radar response for tree crops (almond, walnut) as well as other crop types (alfalfa, winter wheat, corn, sunflower, and tomato).
- The contributions of scattering mechanisms to radar response were quantified for different crop types, and the seasonal variation in three different scattering mechanisms was analysed.
- 3. The separability amongst crop types was assessed and analyzed through the growing season using full calendar year time-series UAVSAR.

1	
2	Full year crop monitoring and separability assessment with fully-polarimetric L-
3	band UAVSAR: a case study in the Sacramento Valley, California
4	
5	Huapeng Li ^{a, b*} , Ce Zhang ^b , Shuqing Zhang ^a , Peter M. Atkinson ^{b,*}
6	
7	^a Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences,
8	Changchun 130012, China
9	^b Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
10	
11	Abstract
12	Spatial and temporal information on plant and soil conditions is needed urgently for
13	monitoring of crop productivity. Remote sensing has been considered as an effective
14	means for crop growth monitoring due to its timely updating and complete coverage. In
15	this paper, we explored the potential of L-band fully-polarimetric Uninhabited Aerial
16	Vehicle Synthetic Aperture Radar (UAVSAR) data for crop monitoring and classification.
17	The study site was located in the Sacramento Valley, in California where the cropping
18	system is relatively diverse. Full season polarimetric signatures, as well as scattering
19	mechanisms, for several crops, including almond, walnut, alfalfa, winter wheat, corn,
20	sunflower, and tomato, were analyzed with linear polarizations (HH, HV, and VV) and
21	polarimetric decomposition (Cloude-Pottier and Freeman-Durden) parameters,
22	respectively. The separability amongst crop types was assessed across a full calendar year
23	based on both linear polarizations and decomposition parameters. The unique structure-

^{*} Corresponding author. E-mail addresses: lihuapeng@neigae.ac.cn (H.P. Li), pma@lancaster.ac.uk (P.M. Atkinson).

24 related polarimetric signature of each crop was provided by multitemporal UAVSAR data 25 with a fine temporal resolution. Permanent tree crops (almond and walnut) and alfalfa 26 demonstrated stable radar backscattering values across the growing season, whereas 27 winter wheat and summer crops (corn, sunflower, and tomato) presented drastically 28 different patterns, with rapid increase from the emergence stage to the peak biomass stage, 29 followed by a significant decrease during the senescence stage. In general, the 30 polarimetric signature was heterogeneous during June and October, while homogeneous 31 during March-to-May and July-to-August. The scattering mechanisms depend heavily 32 upon crop type and phenological stage. The primary scattering mechanism for tree crops 33 was volume scattering (>40%), while surface scattering (>40%) dominated for alfalfa and 34 winter wheat, although double-bounce scattering (>30%) was notable for alfalfa during 35 March-to-September. Surface scattering was also dominant (>40%) for summer crops 36 across the growing season except for sunflower and tomato during June and corn during 37 July-to-October when volume scattering (>40%) was the primary scattering mechanism. 38 Crops were better discriminated with decomposition parameters than with linear 39 polarizations, and the greatest separability occurred during the peak biomass stage (July-40 August). All crop types were completely separable from the others when simultaneously 41 using UAVSAR data spanning the whole growing season. The results demonstrate the 42 feasibility of L-band SAR for crop monitoring and classification, without the need for 43 optical data, and should serve as a guideline for future research.

44

Keywords: Multi-temporal image; full-polarimetric SAR; crop growth monitoring;
polarimetric decomposition; scattering mechanisms; classification.

47

2

48

49 **1. Introduction**

50

51 Global demand for food is expected to increase in the next 40 years due to continuing 52 growth of the human population and human consumption (Godfray et al., 2010). This 53 increased demand will increase pressure on food production systems, driving the need for 54 agricultural intensification, and in certain areas may increase food insecurity. Monitoring 55 of crop productivity is critical in food security assessment as well as in decision-making 56 in relations to both national and international crop markets (Lal, 2004; Liu et al., 2013). 57 However, it has long been recognized that crop productivity can vary greatly through 58 time, and between agricultural fields, even in small regions (Pinter et al., 2003). As a 59 result, temporally and spatially varying information on plant and soil condition is required 60 to monitor crop productivity. For full season monitoring, this information should 61 be consistent such as to create a time-series across the entire year. Additionally, spatially 62 detailed crop type mapping is also indispensable since most crop yield models are 63 conditional upon specific crops (e.g. Mkhabela et al., 2011).

Remote sensing has been considered as a viable tool for crop mapping and monitoring because of its capability to provide timely and complete coverage over large areas (Jiao et al., 2014). Optical remote sensing is underpinned by two basic physiological processes of vegetation (photosynthesis and evapotranspiration) which can be identified by optical reflectance and temperature parameters. A large body of studies have demonstrated that crops can be characterized only when optical images are available at critical crop growth stages (Blaes et al., 2005; Dong et al., 2015; Skakun et al., 2016). However, these images are often unavailable or incomplete due to rainy weather and frequent cloud cover,particularly over tropical and subtropical regions.

73 Synthetic aperture radar (SAR) is receiving increasing attention since SAR instruments 74 can acquire data regardless of the weather conditions and cloud cover by operating at 75 wavelengths that can penetrate clouds (Silva et al., 2009; Skriver, 2012). Besides, SAR 76 possesses the capability of capturing crop structural and dielectric properties that differ 77 from the reflectance acquired by optical sensors (McNairn et al., 2009b). The structural 78 characteristics and water content of crops may vary dramatically at different phenological 79 stages, such as the emergence, mature, and senescence stages (Liu et al., 2013). As a 80 consequence, multi-temporal SAR images are commonly used in crop monitoring and 81 classification studies (McNairn et al., 2009b). The main SAR data sources employed by 82 previous crop research involve satellite RADARSAT-1/2 (Choudhury et al., 2006), 83 ENVISAT ASAR (Bouvet et al., 2009), and ALOS PALSAR (McNairn et al., 2009b). 84 However, the majority of these data were restricted to single polarization (e.g. 85 RADARSAT-1) or dual-polarization modes (e.g. ASAR), which greatly limits the 86 practical utility of SAR for crop classification.

87 When the full-polarimetric SAR data are available, the structure-related scattering 88 mechanisms of crops can be characterized by using polarimetric decomposition 89 parameters (Lee and Pottier, 2009). In fact, there are generally three types of scattering 90 mechanism over agricultural areas; surface scattering, double-bounce scattering, and 91 volume scattering (McNairn et al., 2009b). When the illuminating radar signal arrives at 92 the soil or the upper layer of vegetation canopies, a fraction of the signal is scattered 93 directly by surface scattering. The remaining microwave energy penetrates the crop 94 canopy, and intereacts with the randomly oriented canopy elements, which results in volume scattering. A fraction of the penetrative radar wave interacts with crop stems and
surface soil (corner-reflector effects) leading to double-bounce scattering (see illustration
in Kwoun and Lu, 2009).

98 The seasonal patterns of these scattering mechanisms rely heavily on crop type and 99 phenological stages, in which unique information for crop monitoring and identification 100 is potentially provided (e.g. McNairn et al., 2009b; Adams et al., 2013; Jiao et al., 2014; 101 Canisius et al., 2018). Most of these studies were based on C-band SAR thanks to the 102 availability of full-polarimetric RADARSAT-2 data (McNairn and Brisco, 2004). 103 However, the C-band microwave interacts mainly with the upper part of the canopy layer 104 because of its relatively short wavelength (~6 cm) which can hardly penetrate the crop 105 canopy. This results in an early saturation effect, especially for broad leaf crops 106 (Ferrazzoli et al., 1997). Further studies reported low estimation accuracy for crop 107 biophysical parameters (e.g. biomass, leaf area index, and height) with short wavelength 108 (X- or C-band) SAR data (e.g. Paloscia, 2002; Baghdadi et al., 2009).

109 In contrast, L-band (~20 cm) and P-band (~100 cm) with relatively long wavelength 110 can penetrate into the crop canopy and even reach the surface soil, although the 111 penetration depth depends on the biophysical parameters of the crop canopy (Baghdadi 112 et al., 2009). In theory, crop structure should be better characterized by long wavelengths 113 (L- and P-band) than short wavelengths (X- and C-band). However, there have been very 114 few studies of crop characterization using full-polarimetric L-band SAR (McNairn et al., 115 2009b; Skriver, 2012; Whelen and Siqueira, 2017), even though some research projects 116 were conducted to collect such data, such as the AgriSAR campaign in Germany (Skriver, 117 2011) and the Multisensor Airborne Campaign in Italy and Sweden (Macelloni et al., 118 2001). Research paying special attention to crop monitoring and classification for a wide range of crop types with full year L-band SAR is rare in the literature. It is still not yet fully clear how long wavelength scattering mechanisms for different crop types (especially tree crops), as well as seperability between crops, vary across the growing season. The motivation of this research was, therefore, to fill this knowledge gap by evaluating the potential of time-series L-band full-polarimetric SAR for crop monitoring and classification. The airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data was used in this research.

126 The major scientific innovations of this research can be summarized as follows:

127 (1) L-band fully-polarimetric UAVSAR was used for the first time to characterize the

128 seasonal patterns in radar response for tree crops (almond, walnut) as well as other crop

129 types (alfalfa, winter wheat, corn, sunflower, and tomato).

(2) The contributions of scattering mechanisms to radar response were quantified for
different crop types, and the seasonal variation in three different scattering mechanisms
was analysed.

(3) The separability amongst crop types was assessed and analyzed through the
growing season using full calendar year time-series UAVSAR, and this serves as an
important guide for future UAVSAR-based crop classification.

The remainder of this paper is organized as follows. In Section 2, the study area is introduced briefly; the methods are described in detail in Section 3; in Section 4, the experimental results are provided; the results are discussed in Section 5; and conclusions are drawn in Section 6.

140

141 2. Study area

142

143	The study area was focused on an agricultural district stretching over Solano and Yolo
144	counties of California, covering a region about 11 km \times 17 km (Fig. 1). The area is located
145	in the middle of the Sacramento Valley, one of the most productive agricultural areas in
146	the United States (Schoups et al., 2005). This region has a typical Mediterranean climate
147	characterized by dry hot summers and wet cool winters (Zhong et al., 2012). Annual
148	precipitation is about 750 mm, mainly concentrated in winter and early spring (Dyer and
149	Rice, 1999). The terrain of the study area is predominantly flat, with relatively deep soil
150	layers. Similar to other areas of the valley, the agricultural systems are complex and
151	heterogeneous. Seven major crop types covering most of the study area were targeted in
152	this research, including almond, walnut, alfalfa, winter wheat, corn, sunflower, and
153	tomato. Each crop has a unique crop calendar with specific seasonal patterns (Pena-
154	Barragan et al., 2011), which provides opportunities to investigate the UAVSAR's
155	potential for monitoring and classification of complex agricultural systems.
156	
156 157	potential for monitoring and classification of complex agricultural systems. Fig. 1 is here
156 157 158	Fig. 1 is here
156 157 158 159	
156 157 158	Fig. 1 is here 3. Methods
156 157 158 159 160	Fig. 1 is here 3.1 UAVSAR data and processing
156 157 158 159 160 161 162	Fig. 1 is here 3. Methods 3.1 UAVSAR data and processing This research employed imagery acquired by the UAVSAR system developed by the
156 157 158 159 160 161 162 163	Fig. 1 is here 3. Methods 3.1 UAVSAR data and processing This research employed imagery acquired by the UAVSAR system developed by the NASA Jet Propulsion Laboratory (JPL). UAVSAR is a fully polarimetric L-band SAR
156 157 158 159 160 161 162 163 164	Fig. 1 is here 3. Methods 3.1 UAVSAR data and processing This research employed imagery acquired by the UAVSAR system developed by the NASA Jet Propulsion Laboratory (JPL). UAVSAR is a fully polarimetric L-band SAR designed for monitoring deforming surfaces caused by natural and human activities by
156 157 158 159 160 161 162 163 164 165	Fig. 1 is here 3. Methods 3.1 UAVSAR data and processing This research employed imagery acquired by the UAVSAR system developed by the NASA Jet Propulsion Laboratory (JPL). UAVSAR is a fully polarimetric L-band SAR designed for monitoring deforming surfaces caused by natural and human activities by using repeat-pass interferometric measurements (Hensley et al., 2009). The frequency of
156 157 158 159 160 161 162 163 164	Fig. 1 is here 3. Methods 3.1 UAVSAR data and processing This research employed imagery acquired by the UAVSAR system developed by the NASA Jet Propulsion Laboratory (JPL). UAVSAR is a fully polarimetric L-band SAR designed for monitoring deforming surfaces caused by natural and human activities by

168 an altitude of 12.5 km (Chapman et al., 2011), with a 20-km swath and 25°-65° incidence 169 angles. The range and azimuth pixel spacings of the radar are 1.66 and 1 m, respectively. 170 The UAVSAR system provides valuable fine spatial resolution and high-fidelity data with 171 absolute radiometric calibration bias smaller than 1 dB (Fore, 2015), and has been 172 operated over many areas of interest such as North America, Central America, Japan, 173 Greenland and Iceland. The potential of UAVSAR in oil spill detection (Liu et al., 2011), 174 forest characterization (Dickinson et al., 2013), and urban durable changes monitoring 175 (Kim et al., 2016) has been explored extensively.

176 The UAVSAR data employed in this research were the calibrated and the ground range projected UAVSAR GRD (georeferenced) product, where the covariance matrices are 177 178 multilook with 3 pixels and 12 pixels in the range and azimuth directions, respectively, 179 producing a spatial resolution of 5 m (Dickinson et al., 2013). The GRD images were 180 extracted with the PolSARpro software developed by the European Space Agency (ESA) 181 (Pottier et al., 2009), and then projected to UTM coordinates with the MapReady software 182 developed by Alaska Satellite Facility (ASF). No further speckle filters were applied 183 since the multiplicative noise (speckle) contained in the SAR images was reduced 184 significantly by the multilook processing (Chapman et al., 2011). A total of nine dates of 185 UAVSAR data through the year 2011 was utilized in this research (Table 1). All flights 186 had nearly identical flight headings and altitude because of the requirement of repeat-pass 187 interferometry (Hensley et al., 2009) which enables direct detection of spatial and 188 temporal variation in radar backscattering coefficients over agricultural fields.

189

190

191

192

Table 1 is here

193 3.2 Polarimetric Decomposition Parameters

Polarimetric decomposition is a powerful means of interpreting SAR data in relation to the scattering mechanisms of ground targets. In general, there are two categories of incoherent decomposition methods (Eigenvalue-eigenvector-based and model-based) which are considered suitable for characterizing the scattering behaviour of natural targets (Lee and Pottier, 2009). In this research, the Cloude–Pottier (CP) and Freeman-Durden (FD) decompositions were performed on each UAVSAR dataset with the PolSARpro software (Pottier et al., 2009).

201 The CP decomposition describes the strength of scattering mechanism with 202 eigenvectors and eigenvalues (Cloude and Pottier, 1997). Three parameters are usually 203 derived from CP decomposition; entropy (H), anisotropy (A) and alpha angle (α). For 204 each pixel of an image, entropy ranging between 0 and 1 quantifies the randomness of 205 scattering. Low entropy signifies the domination of a single scattering mechanism, and 206 high entropy suggests the occurrence of more than one scattering mechanism; in the 207 extreme case when H = 1, the target scattering becomes a random noise process without 208 any polarization information. Alpha angle (0-90°) can be used to determine the primary 209 scattering. With medium entropy (0.5-0.9), alpha angle values smaller than 40° , around 210 45° and larger than 50° indicate the dominance of surface scattering (e.g. smooth land 211 surfaces), dipole or volume scattering (e.g. vegetation canopies), and double-bounce 212 scattering (e.g. forests), respectively (Cloude and Pottier, 1997). Anisotropy measures the 213 relative strength between the secondary and third scattering mechanisms; a large value 214 suggests the occurrence of only one powerful secondary scattering mechanism, while a 215 small value shows the contribution of a third scattering process. The FD decomposition 216 is a model-based technique, based on which the respective strength of single-bounce

217	(Odd), double-bounce (Dbl), and volume (Vol) scatters for each target (pixel) can be
218	determined (Freeman and Durden, 1998). The three fractions are respectively modeled
219	by scattering from a first order Bragg surface, a dihedral corner reflector (e.g. ground-tree
220	trunk backscatter), and randomly oriented thin cylindrical dipoles (e.g. forest canopy).
221	
222	3.3 Ground reference data
223	Timely field survey over the study area was not possible since the UAVSAR data were
224	collected in 2011. The United States Department of Agriculture (USDA) Cropland Data
225	Layer (CDL) was, thus, employed to identify crop types and acquire ground reference
226	data (USDA-NASS, 2011 (b)). The CDL has already been used in a variety of remotely
227	sensed crop applications (e.g. Zheng et al., 2015; Whelen and Siqueira, 2017) due to its
228	very high quality (Boryan et al., 2011). It is produced annually with several types of
229	moderate spatial resolution optical imagery and a large amount of ground reference data
230	by using a supervised decision tree classification approach (Boryan et al., 2011). The
231	overall classification accuracy of CDL is reported at the state level; 83% for the major
232	crops in California in 2011. The accuracies for the seven crops analyzed in this study
233	were reasonable, ranging from 75.7% (walnut) to 93.5% (alfalfa and tomato). By visual
234	inspection we found that misclassified pixels of CDL were mainly concentrated at the
235	edge of crop fields such that it was possible to identify reliably a crop class if a field was
236	dominated by a single class according to the CDL.
237	

Fig. 2 is here

240 The process of field reference data labeling consisted of three steps. First, the 241 UAVSAR image in July (with clear crop field boundaries) was overlaid on the projected 242 CDL image (with UTM coordinate); to acquire representative samples, crop fields shown 243 in the UAVSAR image with area larger than 5 ha were identified according to the CDL. 244 Second, each identified crop field was outlined manually and buffered inwardly from the 245 field boundary by one pixel (Whelen and Siqueira, 2017), so that the centre of the field 246 could be targeted for sampling; the average size of fields varied among crop types due to 247 their different surface characteristics (Fig. 2). Third, the outlined field patches belonging 248 to the same crop were merged to comprise a stratum, and several samples (pixels) were 249 generated randomly within each stratum; the number of samples in each category was 250 made proportional to its area. A total of 1438 samples were acquired finally, including 70 251 for almond, 110 for walnut, 319 for alfalfa, 340 for winter wheat, 99 for corn, 170 for 252 sunflower, and 330 for tomato.

253

254 3.4 Separability between crop types

The Jeffries–Matusita (JM) distance, an indicator of the average distance between two class density functions, was employed to assess quantitatively the between-class separability (Richards and Jia, 1999). The JM distance, taking both first order (mean) and second order (variance) of samples into consideration, has been demonstrated to be an ideal distance measure for multi-dimensional remotely sensed data (e.g. Schmidt and Skidmore, 2003; Laurin et al., 2013). Under normality assumptions, the JM distance between a pair of classes (l and k) can be calculated with the following equation:

262 $JM = 2(1 - e^{-B})$ (1)

263 in which the Bhattacharyya (*B*) distance is defined as:

$$B = \frac{1}{8} (\mu_l - \mu_k)^T \left(\frac{\Sigma_l + \Sigma_k}{2}\right)^{-1} (\mu_l - \mu_k) + \frac{1}{2} \ln(\frac{|(\Sigma_l + \Sigma_k)/2|}{\sqrt{|\Sigma_l||\Sigma_k|}})$$
(2)

where μ_l and μ_k are the mean vectors of classes *l* and *k*, respectively, and \sum_l and \sum_k are the corresponding covariance matrices.

The JM distance ranges between 0 and 2, with a larger value suggesting a greater average distance between a pair of classes. Laurin et al. (2013) suggested that a value of 1.9 indicates good separability. The JM distance is asymptotic to 2.0, which indicates the between-class difference being larger than the within-class difference. That is, the image classification accuracy is nearly perfect if only two classes are considered (Richards and Jia, 1999).

In this research, the JM distance was investigated for all pairs of crops with each UAVSAR image to explore how that separability varied throughout the year. In addition, the growing season JM distances for each pair of crop types were also examined to determine the extent to which crop separability can be increased using multitemporal images. The growing season in this analysis denotes the period from March to October, which covers the phenological growth stages of crops.

279

```
280 4. Results
```

281

4.1 Spatial and temporal variation in radar backscattering value

The average backscattering values in the three linear polarizations (HH, HV, and VV) for each crop during the growing season were calculated and are shown in Fig. 3. In general, the seasonal patterns of each crop were similar across the polarizations. Specifically, the patterns were more explicit in the cross-polarized HV polarization than in the co-polarized HH and VV polarizations. Taking sunflower as an example, the

12

288	amplitude of variation was about 18 dB in HV, while only approximately 13 dB in HH
289	and VV. These results are in accordance with previous studies, which have reported that
290	cross-polarized (HV or VH) data are sensitive to crop phenological stages (e.g. Liu et al.,
291	2013; Whelen and Siqueira, 2017; Canisius et al., 2018). As a result, we focused on the
292	HV polarization as a proxy in the following analysis of variation in radar backscattering.
293 294 295	Figs. 3 and 4 are here
296	Drawing on official statistics (California Agricultural Statistics, 2011; USDA-NASA,
297	2011 (a)), calendars of the studied crops are summarized in Fig. 4. Almond and walnut
298	are perennial tree crops which usually bloom and leaf out in spring and senesce in autumn,
299	with woody structures during the dormancy period (Pena-Barragan et al., 2011). The HV
300	backscattering values for the two tree crops were both very large and stable (around -15
301	dB) during the whole year. Alfalfa is also a perennial crop that starts growth in early
302	spring and senescence in late autumn (Fig. 4). The backscattering values for alfalfa were
303	also relatively constant but small (about -30 dB), with fluctuations across the growing
304	season that can be attributed to yearly cutting activities (Zhong et al., 2012). In contrast,
305	phenological stages for winter wheat and summer crops are shown clearly in the HV
306	profile. Winter wheat is usually germinated from late September through to the next
307	January, during which small HV values were sustained (Fig. 3); it resumes growth in
308	spring when the weather is warmer, as indicated by the increase from January to March;
309	it then senesces and is harvested from early May to late July, exhibited by the continuing
310	decrease in HV (-15 dB to -22 dB) during this period. For the summer crops, they are
311	planted and emerge in spring (early March to late May) and reach peak biomass in July.
312	This was captured by the rapid increase in HV values (-33 dB to about -20 dB) during the

313 period. The senescence stage lasts from late July to late November with large difference 314 between corn and the other crops (sunflower and tomato) (Fig. 3). The earlier senescence 315 and harvest for sunflower and tomato was depicted by the earlier HV decline from late 316 July to early October, while corn maintained a large HV value (-20 dB) during July-317 August and then began to decrease until late November. 318 319 Fig. 5 is here 320 321 It should be noted that the calendar for the same crop may vary between different areas 322 due to natural conditions (e.g. weather conditions, soil water content, and field slope) and 323 farmer decisions (Saich and Borgeaud, 2000). To demonstrate such variation clearly, the 324 standard deviation (STD) profile of the HV polarization signatures for each crop are 325 shown in Fig. 3(d). Seasonal patterns of STD for the permanent crops (i.e. almond, walnut, 326 and alfalfa) are comparable and relatively stable (about 2~4 dB), with a general 327 downward trend over the growing season. Winter wheat had small STD values (below 3 328 dB) during January-to-May, but relatively large values (over 3.5 dB) during June-to-329 October, which might be attributable to the second planting of some harvested fields. As 330 for the summer crops, two STD peaks (generally > 5 dB) were conspicuous in the profiles. 331 The first occurred during June, caused by the difference in growth time amongst crops, 332 while the second occurred during October, caused by the difference in harvesting time 333 (Figs. 3(d) and 4). To highlight such field-to-field spatial variation, the HV polarization 334 during the growing season (March to October) is shown in Fig. 5, in which typical fields 335 for each crop are marked by black patches. In general, the results were consistent with 336 the analysis of the STD in the HV polarization. That is, the radar signature of crops was

heterogeneous in the June and October images, but homogeneous in the images datedMarch, May, July and August.

339

340 4.2 Characterization of scattering mechanisms for crops

341 The CP decomposition can determine the dominant scattering of land surface targets 342 via the entropy-alpha angle feature plane (Cloude and Pottier, 1997). Progressions of 343 entropy (H), anisotropy (A), and alpha angle (α) for the crops are depicted in Fig. 6. The 344 entropy, denoting the randomness of scattering, was rather large and stable for the two 345 tree crops (> 0.8) and alfalfa (around 0.7) during the growing season. This implies the 346 occurance of multiple scattering mechanisms. The entropy for the non-permanent crops 347 (winter wheat and summer crops) increased rapidly from emergence (about 0.45) to 348 ripening stage (around 0.7), and then decreased sharply during the harvest stage (Fig. 6). 349 Alpha angle, discerning the primary scattering mechanisms, was distributed in the range 350 of 35° - 50° for the three perennial crops throughout the observation period. This indicates 351 the large contribution of dipole scattering to radar response. However, the value for the 352 two tree crops during the leaf-on season (March to October) was smaller than that during 353 the leaf-off season (October to the next March). This suggests that dipole scattering was 354 attenuated with the presence of leaves. For winter wheat and summer crops, the seasonal 355 patterns of alpha angle resemble those of entropy. That is, alpha angle increased with the 356 growth of crops and then decreased during the senescence stage. The relatively small 357 value $(16^{\circ}-32^{\circ})$ during the non-growing season (July to December for winter wheat, and 358 November to the next May for the summer crops) indicates that surface scattering from 359 soil was the dominant scattering mechanism. The anisotropy can be most useful when H >360 0.7, when heavily affected by noise with low entropy (Lee and Pottier, 2009). A 361 consistently small anisotropy (<0.6) was found for the two tree crops and summer crops

362 through the growing season, suggesting comparable strength of the secondary and third 363 scattering processes. In contrast, alfalfa had a relatively large value (>0.6) compared the 364 other crops across the observation period, implying the presence of a strong secondary 365 scattering mechanism. However, it is not possible to provide a definitive interpretation of 366 the scattering mechanism. 367 368 Figs. 6 and 7 are here 369 370 In comparison, the relative strength of scattering mechanisms can be interpreted 371 straightforwardly with the proportional (%) report of scattering contributions provided by 372 the FD decomposition (Fig. 7). All three scattering processes contributed to the radar 373 response of the crops. However, their proportional contributions vary considerably for 374 each crop during the growing season. For the two tree crops, volume scattering was 375 identified as the greatest contribution (>40%) throughout the year. It is noticable that the 376 contribution of surface scattering during May-to-October (with dense leaves) was larger 377 by about 10 % than that during October to the next May, while the contribution of double-378 bounce scattering behaved in the opposite manner. In contrast, surface scattering 379 dominated for alfalfa, with a contribution larger than 40% across the year. However, in 380 comparison with the other crops, a large contribution (>30%) of double-bounce scattering 381 was observed during March-to-September, about 10% larger than that of volume 382 scattering (Fig. 7). This explains why the anisotropy for alfalfa was large during this 383 period (Fig. 6(b)). Surface scattering was clearly dominant (>50%) for winter wheat 384 through the year although the contributions of volume and double-bounce scattering were 385 also high during March (30%). Similarly, surface scattering (>60%) also dominated for 386 summer crops over most of the year although volume scattering was identified as the

primary scattering mechanism (>40%) for sunflower and tomato during June and for corn
during July-to-October.

389

390 4.3 Separability assessment between crops

391 The mean JM distances for each crop to the other crops across the year with linear 392 polarizations and decomposition (CP and FD) parameters were calculated and are shown 393 in Fig. 8. In general, the CP and FD parameters provided greater spearability (with larger 394 JM values) than the linear polarizations. Taking the mean distance from tomato to the 395 other crops during August as an example, the JM value increased from 1.1 with linear 396 polarizations to over 1.4 with both the CP and FD decomposition parameters (Fig. 8). 397 Similar JM variation patterns were observed for each crop over the three datasets. Two 398 tree crops were clearly discernible from October to the next May when summer crops 399 were not yet emerged. Winter wheat was most separable during spring (March through 400 May) and summer (July and August) due to its exclusive calendar. Alfalfa and summer 401 crops had the greatest separability during the period from July to August. In general, the 402 greatest separability between crops occurred during July-to-August and March, although 403 the mean JM for most of crops was less than 1.6. In contrast, the separability was low 404 during the period from October to the next January as well as June. The combined use of 405 linear polarizations and decomposition parameters (CP and FD) considerably increased 406 the separability between crops over the year, with most of JM values greater than 1.5. As 407 expected, the greatest separability occured during the summer (July-to-August) when 408 most JM distances were larger than 1.8. It must be noted that the largest increase in 409 separability was observed during June, when all of the JM values increased to relatively 410 large values (>1.5).

411

412	Fig. 8 is here
413 414	The separability was found to vary over the growing season (March to October) due to
415	the specific calendars and structures of crops. To evaluate the benefit of using multi-
416	temporal imagery for crop monitoring and classification, JM distances for all crop type
417	pairs with growing seasonal linear polarizations, CP parameters, FD parameters, and all
418	available bands (combination of linear polarizations and CP and FD parameters) were
419	calculated and listed in Table 2. It is clear that the two tree crops could be easily
420	discriminated ($JM = 2$) from the other crops with linear polarizations due to their unique
421	physical characteristics. However, the two crops themselves were hard to separate
422	(JM=1.747). Similarly, alfalfa and winter wheat were also highly separable from the other
423	crops (JM > 1.99), with low discrimination between the two crops (JM =1.845). The
424	separability between summer crops was also low because of their similar calendars (Fig.
425	4). Amongst the three crops, the separability between corn and sunflower was the greatest
426	(JM = 1.959) while that between sunflower and tomato was the least $(JM < 1.711)$. As
427	expected, the discrimination between crops was clearly increased (i.e. larger JM values)
428	with the CP and FD parameters, especially for those indiscernible crop pairs (e.g. almond-
429	walnut, alfalfa-winter wheat, sunflower-tomato). For example, the JM distance between
430	almond and walnut was larger than 1.96 with the CP and FD parameters. It should be
431	noted that each crop was completely separable from the others $(JM = 2$ for each pair of
432	crops) if all avaiblable bands were considered (Table 2).
433	
434	Tables 2 and 3 are here
435	
436	To further validate the potential of UAVSAR in crop discrimination, two machine

437 learning algorithms, the Multi-layer Perceptron (MLP) and Support Vector Machine

438 (SVM), were employed using different features (linear polarizations and polarimetric parameters). The control parameters of the MLP were set by following the 439 440 recommendations of Zhang et al. (2018). The most suitable radial basis function (RBF) 441 kernel SVM was used in this research, with the parameters being optimized through a 442 grid search method with five-fold cross validation (Barrett et al., 2014). Table 3 443 summarizes the classification accuracy assessment, including the overall accuracy (OA) 444 and Kappa coefficient (k). The OA and k produced by different features using both 445 algorithms were in accordance with the analysis of JM distance. As shown in Table 3, the 446 CP and FD decomposition parameters produced consistently greater accuracy in comparison to the linear polarizations, with OA = 93.01% and 93.71% by MLP, and OA 447 448 = 92.03% and 93.01% by SVM, respectively; the combined use of all features (linear 449 polarizations and polarimetric parameters) achieved the largest classification OA, with 450 up to 95.80% using MLP and 97.48% using SVM, respectively. Such coherency of 451 classification accuracy further supports the analysis of JM distance, and demonstrates the 452 unique value of polarimetric parameters in SAR-based crop classification.

453

454 **5. Discussion**

455

456 Over vegetated crop fields, emitted radar energy is attenuated by crop vegetation as 457 well as land surface soil. The amount of radar energy that is scattered back to the antenna 458 is related directly to the structural characteristics (e.g. size, shape, density, orientation) as 459 well as SAR system parameters, such as polarization, incidence angle, and wavelength 460 (Saich and Borgeaud, 2000; Kwoun and Lu, 2009). In the full-polarimetric polarization 461 mode, three linear polarizations (HH, HV, and VV) are simultaneously collected. In 462 general, horizontally polarized waves (H) can penetrate vegetation canopies better than

463 vertically polarized waves (V), and the HH polarization, thus, tends to characterize surface soil condition (Lin and Sarabandi, 1999). In contrast, vertically polarized waves 464 465 are sensitive to vertical vegetation structure, and the VV polarization, thus, provides more 466 information about vertical structural characteristics. The cross polarization (HV or VH) 467 measures multiple-scattering from the soil surface and vegetation volume and is, thus, 468 sensitive to crop structure within the total canopy volume. This explains why the HV 469 polarization was more sensitive to crop growth than the HH and VV polarizations in this 470 research (Fig. 3). The results are in line with previous reports (e.g. Jiao et al., 2014; 471 Canisius et al., 2018).

472 It was found that the radar responses of perennial crops (almond, walnut, and alfalfa) 473 were relatively stable across the growing season. This suggests that the woody structure 474 or herbaceous stems rather than leaves are responsible for their radar responses. In 475 contrast, the responses increased rapidly for winter wheat and summer crops from the 476 emergence stage to the peak biomass stage since their structural characteristics varied 477 markedly with crop growth. However, it is visible that seasonal backscattering values of 478 the summer crops were generally greater than those of winter wheat (Fig. 3), which is 479 consistent with the reports by Liu et al. (2013) and Whelen and Siqueira (2017). This can 480 be attributed to the difference in biomass between winter wheat (thin stems with narrow 481 leaves) and summer crops (thick stems with broad leaves) (Macelloni et al., 2001).

Previous studies pointed out that radar signatures of surface targets depend on incidence angle (Skriver et al., 1999). However, it has been demonstrated that this dependence becomes relatively weak with crop growth (Saich and Borgeaud, 2000; Liu et al., 2013). In addition, the study area covered in this research is relatively small, and variation in incidence angle should be limited. It is, therefore, likely that the effect of

20

487 incidence angle on crop signatures was minimal in this research. Weather conditions (e.g. 488 precipitation and freezing) may also affect radar signatures. The soil reflectance is a large 489 component of the radar response, especially when soil has not yet been fully covered by 490 the crop canopy. The presence of precipitation will raise the soil conductivity and, hence, 491 increase considerably the intensity of radar response. Fortunately, nearly all the employed 492 UAVSAR images were acquired under dry conditions (Table 1). Freezing in the soil 493 might decrease the dielectric constant of soil/vegetation (reduction in liquid water), and 494 hence decrease the radar response (Saich and Borgeaud, 2000). We note that the minimum 495 air temperatures for the January and December images were around freezing point. 496 However, given the very small amounts of rainfall on the image acquisition dates and in 497 the few days preceding them (data not shown) we believe that the effect of freezing on 498 the observed crop radar signatures was negligible.

499 The scattering mechanisms of crops characterized by the CP and FD decompositions 500 were generally comparable, and some interesting results were observed. The dominant 501 volume scattering, as well as double-bounce scattering for the two tree crops, was 502 attenuated during May-to-October, when the surface scattering was enhanced. This is 503 because as the tree crops grow and become denser, less microwave energy can penetrate 504 their canopies and more radar signal was, thus, scattered on the smooth uppermost 505 canopies (Huang et al., 2017). This can also explain why the greatest contributions of 506 volume scattering, and double-bounce scattering for sunflower and tomato, occurred 507 during June (Figs. 6 and 7), rather than during the peak biomass stage with denser leaves 508 (July and August). In comparison with the dense structure (crowded and horizontally 509 oriented leaves) of sunflower and tomato, corn has sparse and randomly oriented leaves 510 (Fig. 9) which exert less impact on the penetration of the radar signal, even during the

511 peak biomass stage. As a result, as the corn grew taller and denser (July-to-October), 512 volume scattering became dominant, as depicted in Fig. 7. This difference in dominant 513 scattering should be very useful for separation of corn from other summer crops. It is also 514 notable that the double-bounce scattering for alfalfa remained consistently large (over 515 30%) during the growing season, indicating that the L-band microwave could easily 516 penetrate the alfalfa's narrow-leafed canopies. This unique signature might be further 517 explored to identify alfalfa by using SAR data without training samples. In contrast, the 518 contribution of volume scattering for alfalfa was generally smaller than for the other crops, 519 which might be attributable to the small amount of biomass.

520 The JM distance-based assessment presented here further indicates that polarimetric 521 decomposition parameters provided greater separability for crop discrimination than 522 linear polarizations, which agrees with the reports by McNairn et al. (2009b) for ALOS 523 PALSAR and by Li et al. (2012) for RADARSAT-2 data. This may be attributed to the 524 fact that polarimetric decomposition parameters can characterize the unique biophysical 525 properties of crops (e.g. plant height) more closely than linear polarizations (Canisius et 526 al., 2018), which is valuable for crop discrimination (McNairn et al., 2009b). It is 527 interesting to note that the least separability across the growing season (March-October) 528 occured during June and October. This is in line with a previous study by Skriver (2012) 529 who also reported a small classification accuracy with airborne SAR data in June. In fact, 530 for a certain crop the green-up onset date, as well as senescence date, may vary greatly 531 over crop fields due to soil and topographic conditions, and farm decisions (Fig. 5), 532 leading to great regional intra-class variation in polarimetric signatures (Fig. 3(d)). This 533 might explain why crop discrimination was low for the June and October images.

534

535 6. Summary and conclusions

536

537 This paper evaluated the applicability of L-band full-polarimetric UAVSAR SAR data 538 for crop monitoring and classification over an agricultural area in the California's 539 Sacramento Valley. The structure-related and phenology-driven polarimetric signature of 540 each crop was provided by multi-temporal UAVSAR data, with a fine temporal resolution. 541 The cross-polarized band (HV) was found to be more sensitive to crop growth than the 542 co-polarized bands (HH and VV). Tree crops (almond and walnut) had the largest radar 543 response because of their large volume of canopies, followed by broad-leafed summer 544 crops (corn, sunflower, and tomato), while narrow-leafed winter wheat and alfalfa had 545 the smallest response. Prominent regional intra-class variation occurred during June and 546 October, because of the differences in green-up onset date as well as senescence date 547 between crop fields. In contrast, the signature over intra-class fields was homogeneous 548 during the peak biomass stage (July and August).

549 The structural characteristics of crops were well characterized by their unique 550 scattering patterns with the parameters derived from the Cloude-Pottier (CP) and 551 Freeman-Durden (FD) decompositions. The predominant mechanism for the tree crops 552 was volume scattering, which accounts for over 40% of the radar response through the 553 year. In contrast, surface scattering was dominant (>40%) for the narrow-leafed alfalfa 554 and winter wheat crops, although double-bounce scattering (~30%) for alfalfa was also 555 notable. Surface scattering was also dominant (>40%) for summer crops over most of the 556 year except for sunflower and tomato during June and corn during July-to-October when 557 volume scattering was identified as the primary scattering mechanism. The difference in 558 seasonal patterns of scattering mechanisms among crops provides valuable information 559 for crop classification.

560 The separability assessment indicated that crops were much more separable with the 561 CP or FD decomposition parameters than with the linear polarizations. The separability 562 between crops varied greatly over the growing season, and the largest separability 563 generally occurred during the peak biomass stage (July and August) with the least during 564 June and October. The combined use of linear polarizations and CP and FD 565 decomposition parameters significantly increased crop discrimination through the year, 566 suggesting complementary information had been provided. It is notable that all crop types 567 were completely separable from the other crops by simultaneously using UAVSAR data 568 spanning the growing season.

569 This paper illustrated the potential of time-series UAVSAR data for crop growth 570 monitoring and classification. Our results indicated that very high accuracy crop mapping 571 can be expected based solely on time-series UAVSAR, which will be a priority for future 572 research. This research emphasized the unique value of polarimetric decomposition 573 parameters for crop discrimination and classification. Future research will also focus on 574 employing these physically meaningful parameters to retrieve crop biophysical 575 parameters (e.g. height, biomass, and leaf area index), which are critical for crop yield 576 estimation as well as crop management.

577

578 Acknowledgements

579

This research was co-funded by the Jilin Province Science and Technology Development Program (20170520087JH, 20170204025SF), the National Key Research and Development Program of China (2017YFB0503602), and the National Natural Science Foundation of China (41301465, 41671397). We would like to thank the support

24

- 584 from China Scholarship Council (CSC) (File No. 201704910192) during a visit of
- 585 Huapeng Li to Lancaster University. We also thank Alaska Satellite Facility for the
- 586 supply of UAVSAR data employed in this research.
- 587

588 References

- 589
- Adams, J.R., Rowlandson, T.L., McKeown, S.J., Berg, A.A., McNairn, H., Sweeney, S.J., 2013. Evaluating
 the Cloude-Pottier and Freeman-Durden scattering decompositions for distinguishing between
 unharvested and post-harvest agricultural fields. Can. J. Remote Sens. 39 (4), 318-327.
- 593 Baghdadi, N., Boyer, N., Todoroff, P., El Hajj, M., Begue, A., 2009. Potential of SAR sensors TerraSAR-
- 594 X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island. Remote

595 Sens. Environ. 113 (8), 1724-1738.

- Barrett, B., Nitze, I., Green, S., Cawkwell, F., 2014. Assessment of multi-temporal, multi-sensor radar and
 ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote
 Sens. Environ. 152 (6), 109-124.
- Blaes, X., Vanhalle, L., Defourny, P., 2005. Efficiency of crop identification based on optical and SAR
 image time series. Remote Sens. Environ. 96 (3-4), 352-365.
- Boryan, C., Yang, Z.W., Mueller, R., Craig, M., 2011. Monitoring US agriculture: the US Department of
- Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 26 (5),
 341-358.
- Bouvet, A., Le Toan, T., Lam-Dao, N., 2009. Monitoring of the Rice Cropping System in the Mekong Delta
 Using ENVISAT/ASAR Dual Polarization Data. IEEE Trans. Geosci. Remote Sens. 47 (2), 517-526.
- 606 California Agricultural Statistic, 2011. USDA's National Agricultural Statistics Service, California Field
 607 Office. Retrieved February 3, 2018, from. www.nass.usda.gov/ca.
- 608 Canisius, F., Shang, J., Liu, J., Huang, X., Ma, B., Jiao, X., Geng, X., Kovacs, J.M., Walters, D., 2018.
- Tracking Crop Phenological Development Using Multi-temporal Polarimetric Radarsat-2 Data. Remote
 Sens. Environ. 210 (6), 508-518.
- 611 Chapman, B., Hensley, S., Lou, Y., 2011. The JPL UAVSAR. ASF News & Notes. 7(1) Retrieved from.
 612 https://www.asf.alaska.edu/news-notes/7-1/jpl-uavsar/.
- 613 Choudhury, I., Chakraborty, M., 2006. SAR signature investigation of rice crop using RADARSAT data.
 614 Int. J. Remote Sens. 27 (3), 519-534.
- 615 Cloude, S.R., Pottier, E., 1997. An entropy based classification scheme for land applications of polarimetric
 616 SAR. IEEE Trans. Geosci. Remote Sens. 35 (1), 68-78.
- OTO SAR. ILEE Mais. Geosel. Remote Sens. 55(1), 08-78.
- Dickinson, C., Siqueira, P., Clewley, D., Lucas, R., 2013. Classification of forest composition using
 polarimetric decomposition in multiple landscapes. Remote Sens. Environ. 131 (6), 206-214.
- 619 Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., Biradar, C., Liu, J.,

- 620 Moore Iii, B., 2015. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series
- Landsat images and phenology-based algorithms. Remote Sens. Environ. 160 (4), 99-113.

622 Dyer, A.R., Rice, K.J., 1999. Effects of competition on resource availability and growth of a California
623 bunchgrass. Ecology. 80 (8), 2697-2710.

- 624 Ferrazzoli, P., Paloscia, S., Pampaloni, P., Schiavon, G., Sigismondi, S., Solimini, D., 1997. The potential
- 625 of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass. IEEE Trans. Geosci.

626 Remote Sens. 35 (1), 5-17.

- Fore, A.G., Chapman, B.D., Hawkins, B.P., Hensley, S., Jones, C.E., Michel, T.R., Muellerschoen, R.J.,
 2015. UAVSAR Polarimetric Calibration. IEEE Trans. Geosci. Remote Sens. 53 (6), 3481-3491.
- Freeman, A., Durden, S.L., 1998. A three-component scattering model for polarimetric SAR data. IEEE
 Trans. Geosci. Remote Sens. 36 (3), 963-973.
- 631 Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson,
 632 S., Thomas, S.M., Toulmin, C., 2010. Food Security: The Challenge of Feeding 9 Billion People. Science.
- 633 327 (5967), 812-818.
- Hensley, S., Zebker, H., Jones, C., Michel, T., Muellerschoen, R., Chapman, B., 2009. First deformation
 results using the NASA/JPL UAVSAR instrument. 2nd Asian-Pacific Conference on Synthetic Aperture
- 636 Radar (pp. 1051-1055). Xi'an Shanxi, China: IEEE.
- Huang, X.D., Wang, J.F., Shang, J.A., Liao, C.H., Liu, J.G., 2017. Application of polarization signature to
 land cover scattering mechanism analysis and classification using multi-temporal C-band polarimetric
 RADARSAT-2 imagery. Remote Sens. Environ. 193 (5), 11-28.
- Jiao, X.F., Kovacs, J.M., Shang, J.L., McNairn, H., Walters, D., Ma, B.L., Geng, X.Y., 2014. Objectoriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS J.
 Photogramm. Remote Sens. 96 (10), 38-46.
- Kim, D.J., Hensley, S., Yun, S.H., Neumann, M., 2016. Detection of Durable and Permanent Changes in
 Urban Areas Using Multitemporal Polarimetric UAVSAR Data. IEEE Trans. Geosci. Remote Sens. 13
 (2), 267-271.
- Kwoun, O.I., Lu, Z., 2009. Multi-temporal RADARSAT-1 and ERS Backscattering Signatures of Coastal
 Wetlands in Southeastern Louisiana. Photogrammetric Engineering and Remote Sensing 75 (5), 607-617.
- Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science. 304(5677), 1623-1627.
- Laurin, G.V., Del Frate, F., Pasolli, L., Notarnicola, C., Guerriero, L., Valentini, R., 2013. Discrimination
 of vegetation types in alpine sites with ALOS PALSAR-, RADARSAT-2-, and lidar-derived information.
 Int. J. Remote Sens. 34 (19), 6898-6913.
- Lee, J. S., Pottier, E., 2009. Polarimetric radar imaging from basics to applications. New York: CRC Press.
- Li, K., Brisco, B., Shao, Y., Touzi, R., 2012. Polarimetric decomposition with RADARSAT-2 for rice mapping and monitoring. Can. J. Remote Sens. 38 (2), 169-179.
- Lin, Y.C., Sarabandi, K., 1999. A Monte Carlo coherent scattering model for forest canopies using fractalgenerated trees. IEEE Trans. Geosci. Remote Sens. 37 (1), 440-451.
- Liu, C., Shang, J.L., Vachon, P.W., McNairn, H., 2013. Multiyear Crop Monitoring Using Polarimetric

- 659 RADARSAT-2 Data. IEEE Trans. Geosci. Remote Sens. 51 (4), 2227-2240.
- Liu, P., Li, X.F., Qu, J.J., Wang, W.G., Zhao, C.F., Pichel, W., 2011. Oil spill detection with fully
 polarimetric UAVSAR data. Marine Pollution Bull. 62 (12), 2611-2618.
- Macelloni, G., Paloscia, S., Pampaloni, P., Marliani, F., Gai, M., 2001. The relationship between the
 backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote
 Sens. 39 (4), 873-884.
- McNairn, H., Brisco, B., 2004. The application of C-band polarimetric SAR for agriculture: a review. Can.
 J. Remote. Sens. 30 (3), 525-542.
- McNairn, H., Champagne, C., Shang, J., Holmstrom, D., Reichert, G., 2009a. Integration of optical and
 Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J.
 Photogram. Rem. Sens. 64 (5), 434-449.
- McNairn, H., Shang, J.L., Jiao, X.F., Champagne, C., 2009b. The Contribution of ALOS PALSAR
 Multipolarization and Polarimetric Data to Crop Classification. IEEE Trans. Geosci. Remote Sens. 47
 (12), 3981-3992.
- Mkhabela, M.S., Bullock, P., Raj, S., Wang, S., Yang, Y., 2011. Crop yield forecasting on the Canadian
 Prairies using MODIS NDVI data. Agric. Forest Meteorol. 151 (3), 385-393.
- National Oceanic and Atmospheric Administration, National Centers for Environmental Information
 (NOAA-NCEI), 2011. Local Climatological Data (LCD), Sacramento Executive Airport, Sacramento
 County, CA. National Environmental Satellite, Data, and Information Service. Retrieved February 3,
- 678 2018, from. https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:23232/detail.
- Paloscia, S., 2002. A summary of experimental results to assess the contribution of SAR for mapping
 vegetation biomass and soil moisture. Can. J. Remote Sens. 28 (2), 246-261.
- Pena-Barragan, J.M., Ngugi, M.K., Plant, R.E., Six, J., 2011. Object-based crop identification using
 multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 115 (6), 13011316.
- Pinter, P.J., Hatfield, J.L., Schepers, J.S., Barnes, E.M., Moran, M.S., Daughtry, C.S.T., Upchurch, D.R.,
 2003. Remote sensing for crop management. Photogram. Eng. Remote Sens. 69 (6), 647-664.
- 686 Pottier, E., Ferro-Famil, L., Allain, S., Cloude, S., Hajnsek, I., Papathanassiou, K., Moreira, A., Williams,
- 687 M., Minchella, A., Lavalle, M., Desnos, Y.L., 2009. Overview of the PolSARpro V4.0 software: the open
- 688 source toolbox for polarimetric and interferometric polarimetric SAR data processing. In: Proceedings
- of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, July
- 690 12-17, vol. 4, pp. 936-939.
- Richards, J. A., Jia, X., 1999. Remote sensing digital image analysis, an introduction. 3rd, revised and
 enlarged ed. Berlin: Springer-Verlag.
- Saich, P., Borgeaud, M., 2000. Interpreting ERS SAR signatures of agricultural crops in Flevoland, 19931996. IEEE Trans. Geosci. Remote Sens. 38 (2), 651-657.
- 695 Schmidt, K.S., Skidmore, A.K., 2003. Spectral discrimination of vegetation types in a coastal wetland.
 696 Remote Sens. Environ. 85 (1), 92-108.
- 697 Schoups, G., Hopmans, J.W., Young, C.A., Vrugt, J.A., Wallender, W.W., Tanji, K.K., Panday, S., 2005.

- 698 Sustainability of irrigated agriculture in the San Joaquin Valley, California. Proc. Natl. Acad. Sci. U.S.A.
 699 102 (43), 15352-15356.
- Silva, W.F., Rudorff, B.F.T., Formaggio, A.R., Paradella, W.R., Mura, J.C., 2009. Discrimination of
 agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR
 data. ISPRS J. Photogram. Rem. Sens. 64 (5), 458-463.
- Skakun, S., Kussul, N., Shelestov, A.Y., Lavreniuk, M., Kussul, O., 2016. Efficiency Assessment of
 Multitemporal C-Band Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery for
 Crop Classification in Ukraine. IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 9 (8), 3712-
- 706 3719.
- Skriver, H., 2012. Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and
 Fully Polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 50 (6), 2138-2149.
- Skriver, H., Svendsen, M.T., Thomsen, A.G., 1999. Multitemporal C- and L-band polarimetric signatures
 of crops. IEEE Trans. Geosci. Remote Sens. 37 (5), 2413-2429.
- 711 USDA NASS, 2011 (a). Crop Progress. Retrieved January 13, 2018, from. http://usda.mannlib.cornell.edu/
- MannUsda/viewDocumentInfo.do;jsessionid=A8F0A37CA76B0F6E77E0FDE1E10BA5F9?documentI
 D=1048/.
- USDA NASS, 2011 (b). National Agricultural Statistics Service Cropland Data Layer. Retrieved January
 13, 2018, from. http://nassgeodata.gmu.edu/CropScape/.
- Whelen, T., Siqueira, P., 2017. Use of time-series L-band UAVSAR data for the classification of agricultural
 fields in the San Joaquin Valley. Remote Sens. Environ. 193 (5), 216-224.
- Zhang, C., Pan, X., Li, H.P., Gardiner, A., Sargent, I., Hare, J., Atkinson, P.M., 2018. A hybrid MLP-CNN
 classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogram. Rem. Sens.
 140 (6), 133-144.
- Zheng, B.J., Myint, S.W., Thenkabail, P.S., Aggarwal, R.M., 2015. A support vector machine to identify
 irrigated crop types using time-series Landsat NDVI data. Int. J. Appl. Earth Obs. Geoinf. 34 (1), 103112.
- 724 Zhong, L.H., Gong, P., Biging, G.S., 2012. Phenology-based Crop Classification Algorithm and its
- 725 Implications on Agricultural Water Use Assessments in California's Central Valley. Photogram. Eng.
- 726 Remote Sens. 78 (8), 799-813.

Figure Captions

Fig. 1. The study site in the agricultural region of the Sacramento Valley, California.

Fig. 2. (a) The UAVSAR image dated 20 July, 2011 (R-G-B, bands VV, HV, and HH), (b) the outlined crop fields.

Fig. 3. Temporal variation in average backscattering values for crops over linear polarizations (a) HH,(b) HV, (c) VV; Note error bars denote standard deviation. (d) standard deviation profile with HV polarization was depicted separately for analysis.

Fig. 4. Crop calendar for the seven major crops in the study area. Note there is no planting time for the perennial almond, walnut, and alfalfa crops.

Fig. 5. Radar backscattering values (HV polarization) shown in the UAVSAR images dated (a) 30 March (b) 12 May, (c) 16 June, (d) 20 July, (e) 29 August, and (f) 03 October. Note typical fields for the studied crops were marked by black patches.

Fig. 6. Time-series variation in average (a) entropy, (b) anisotropy, and (c) alpha angle derived from the Cloude-Pottier decomposition. Note error bars denote standard deviation.

Fig. 7. Time-series variation in relative contributions (%) of (a) surface scatter, (b) double-bounce scatter, and (c) volume scatter derived from the Freeman-Durden decomposition.

Fig. 8. Mean JM distance for each crop to the others through the year derived with (a) linear polarization bands (HH, HV, VV), (b) Cloude-Pottier parameters, (c) Freeman-Durden parameters, and (d) all available parameters.

Fig. 9. Summer crop examples for corn, sunflower, and tomato. Note that all the photos were taken in the United States by volunteers, and are freely shared by the Earth Observation and Modeling Facility (EOMF) at the University of Oklahoma (http://eomf.ou.edu/visualization/gmap/).

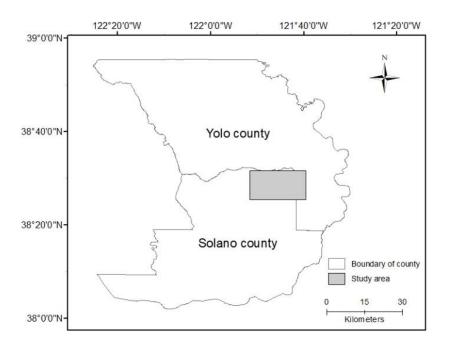


Fig. 1. The study site in the agricultural region of the Sacramento Valley, California.

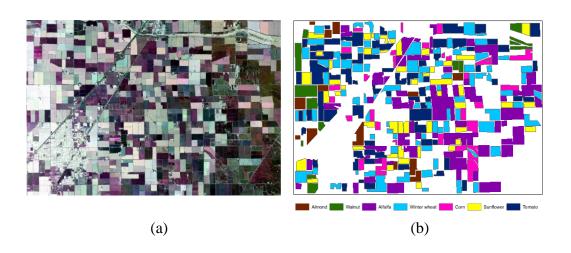


Fig. 2. (a) The UAVSAR image dated 20 July, 2011 (R-G-B, bands VV, HV, and HH), (b) the outlined crop fields.

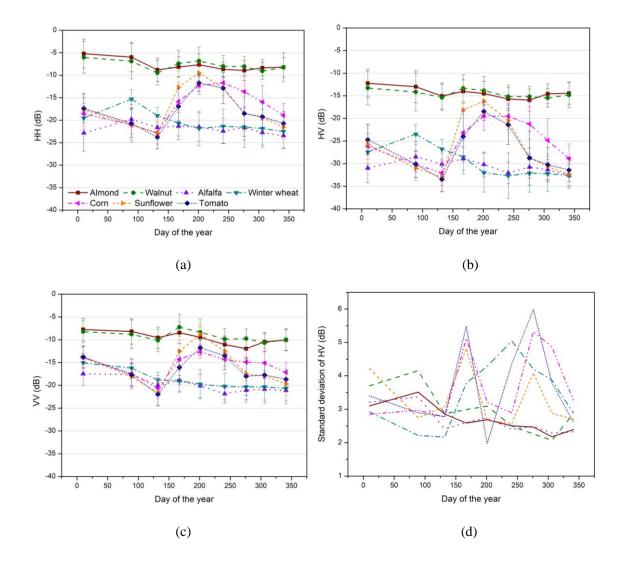


Fig. 3. Temporal variation in average backscattering values for crops over linear polarizations (a) HH, (b) HV, (c) VV; Note error bars denote standard deviation. (d) standard deviation profile with HV polarization was depicted separately for analysis.

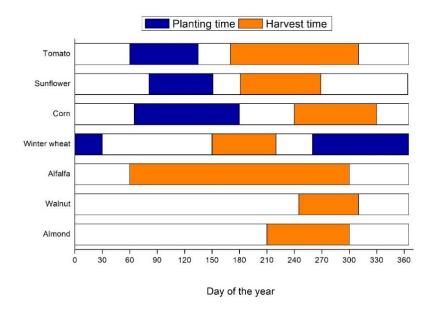


Fig. 4. Crop calendar for the seven major crops in the study area. Note there is no planting time for the perennial almond, walnut, and alfalfa crops.

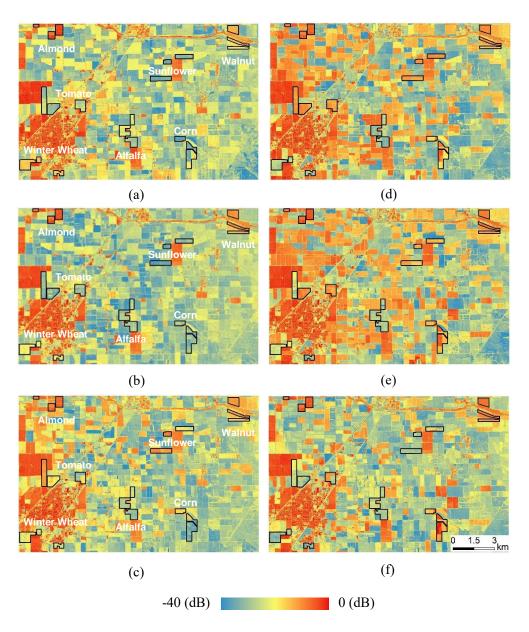


Fig. 5. Radar backscattering values (HV polarization) shown in the UAVSAR images dated (a) 30 March (b) 12 May, (c) 16 June, (d) 20 July, (e) 29 August, and (f) 03 October. Note typical fields for the studied crops were marked by black patches.

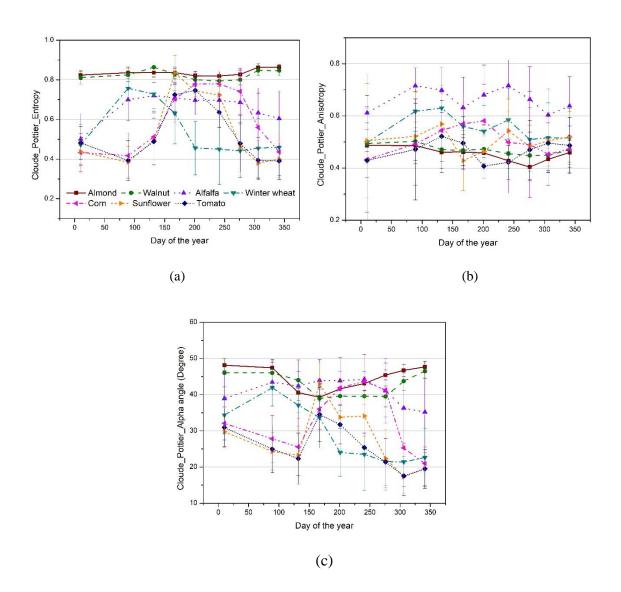


Fig. 6. Time-series variation in average (a) entropy, (b) anisotropy, and (c) alpha angle derived from the Cloude-Pottier decomposition. Note error bars denote standard deviation.

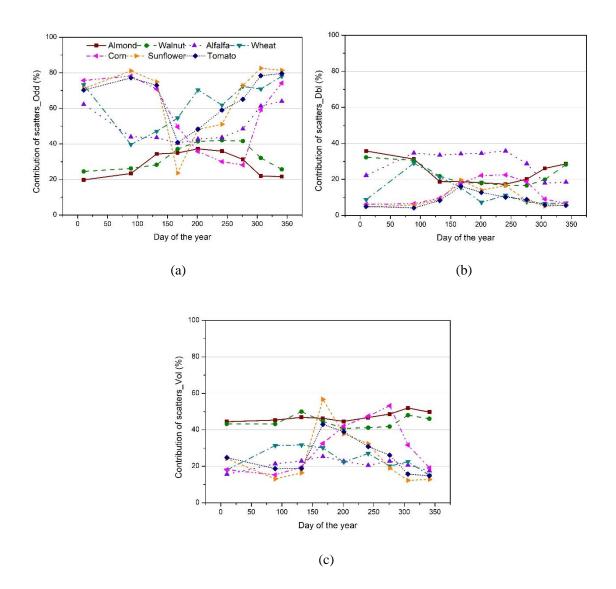


Fig. 7. Time-series variation in relative contributions (%) of (a) surface scatter, (b) doublebounce scatter, and (c) volume scatter derived from the Freeman-Durden decomposition.

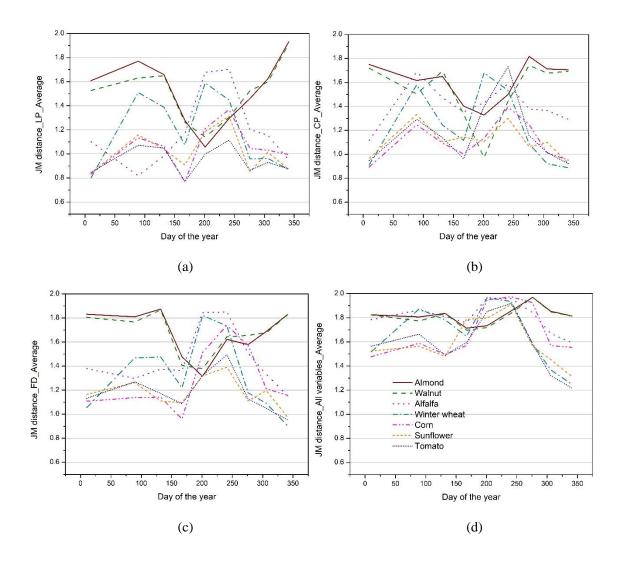


Fig. 8. Mean JM distance for each crop to the others through the year derived with (a) linear polarization bands (HH, HV, VV), (b) Cloude-Pottier parameters, (c) Freeman-Durden parameters, and (d) all available parameters.

Corn

Sunflower

Tomato

Fig. 9. Summer crop examples for corn, sunflower, and tomato. Note that all the photos were taken in the United States by volunteers, and are freely shared by the Earth Observation and Modeling Facility (EOMF) at the University of Oklahoma (http://eomf.ou.edu/visualization/gmap/).

Table Captions

Table 1. Detailed description of UAVSAR data acquisitions in 2011 and the corresponding weather conditions; meteorological data were acquired from a station (in the city of Sacramento) located next to the study area (NOAA-NCEI, 2011). All images were in PolSAR (polarimetric SAR) mode and there was no snow.

 Table 2. Growing season JM distance values for all crop type pairs calculated with linear polarizations

 (LP), Cloude–Pottier (CP), Freeman–Durden (FD), and all parameters, respectively.

Table 3. Classification accuracy achieved by the MLP and SVM algorithms with linear polarizations (LP), CP decomposition parameters (CP), FD decomposition parameters (FD), and all features (All). Note that OA denotes overall accuracy, and k is the Kappa coefficient.

Table 1

Detailed description of UAVSAR data acquisitions in 2011 and the corresponding weather conditions; meteorological data were acquired from a station (in the city of Sacramento) located next to the study area (NOAA-NCEI, 2011). All images were in PolSAR (polarimetric SAR) mode and there was no snow.

Date	Local time	T_{\max} (°C)	T_{\min} (°C)	$P_{\text{daily}}(\text{mm})$
10 January	20h59	8.3	-2.8	0
30 March	20h00	26.7	11.7	0
12 May	22h22	26.1	9.4	0
16 June	13h04	31.1	14.4	0
20 July	18h54	35.6	15.0	0
29 August	20h21	34.4	14.4	0
03 October	22h02	20.6	10.0	0.5
02 November	22h45	22.8	5.6	0
07 December	20h20	14.4	-0.6	0

Note that T_{max} and T_{min} are daily maximum and minimum air temperatures, respectively, and P_{daily} signifies daily

precipitation.

Table 2

Growing season JM distance values for all crop type pairs calculated with linear polarizations (LP), Cloude–Pottier (CP), Freeman–Durden (FD), and all parameters (LP+CP+FD), respectively.

JM distance					JM distance				
Class pairs	LP	СР	FD	All	Class pairs	LP	СР	FD	All
AlmWal	1.747	1.962	1.974	2	AlfWhe	1.845	1.967	1.961	2
AlmAlf	2	2	2	2	AlfCor	2	1.986	2	2
AlmWhe	2	2	2	2	AlfSun	2	1.998	2	2
AlmCor	2	2	2	2	AlfTom	1.998	1.999	2	2
AlmSun	2	2	2	2	WheCor	2	1.999	2	2
AlmTom	2	2	2	2	WheSun	2	2	2	2
WalAlf	2	2	2	2	WheTom	1.999	1.999	2	2
WalWhe	2	2	2	2	CorSun	1.959	1.991	1.996	2
WalCor	2	2	2	2	CorTom	1.897	2	1.997	2
WalSun	2	2	2	2	SunTom	1.711	1.891	1.962	2
WalTom	2	2	2	2	-	-	-	-	-

Note that Alm, Wal, Alf, Whe, Cor, Sun, and Tom denote abbreviation of almond, walnut, alfalfa, winter wheat, corn, sunflower, and tomato, respectively. The expression 'Alm--Wal' denotes a class pair between almond and walnut, and so forth.

Table 3

Classification accuracy achieved by the MLP and SVM algorithms with linear polarizations (LP), CP decomposition parameters (CP), FD decomposition parameters (FD), and all features (All). Note that OA denotes overall accuracy, and k is the Kappa coefficient.

Method	Accuracy	Features				
		LP	СР	FD	All	
MLP	OA	89.23%	93.01%	93.71%	95.80%	
	k	0.8680	0.9146	0.9229	0.9486	
SVM	OA	84.48%	92.03%	93.01%	97.48%	
	k	0.8085	0.9022	0.9141	0.9691	