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Abstract—Background: Test quality is a prerequisite for
achieving production system quality. While the concept of quality
is multidimensional, most of the effort in testing context has been
channeled towards measuring test effectiveness.

Objective: While effectiveness of tests is certainly important,
we aim to identify a core list of testing principles that also address
other quality facets of testing, and to discuss how they can be
quantified as indicators of test quality.

Method: We have conducted a two-day workshop with our
industry partners to come up with a list of relevant principles
and best practices expected to result in high quality tests. We then
utilised our academic and industrial training materials together
with recommendations in practitioner oriented testing books
to refine the list. We surveyed existing literature for potential
metrics to quantify identified principles.

Results: We have identified a list of 15 testing principles to
capture the essence of testing goals and best practices from
quality perspective. Eight principles do not map to existing test
smells and we propose metrics for six of those. Further, we have
identified additional potential metrics for the seven principles
that partially map to test smells.

Conclusion: We provide a core list of testing principles along
with a discussion of possible ways to quantify them for assessing
goodness of tests. We believe that our work would be useful
for practitioners in assessing the quality of their tests from
multiple perspectives including but not limited to maintainability,
comprehension and simplicity.
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I. INTRODUCTION

Testing is a paramount activity in ensuring software quality.
Automated tests are safety nets when modifying production
code [1], however their quality is usually taken for granted or
overlooked. Even with the lack of experience and skills, it is
possible to fulfil certain criteria, e.g. coverage metrics, without
having high quality tests that have the ability to verify and/ or
break the system under test (SUT).

There has been serious attempts over the years at identi-
fying the best practices and test smells for writing good unit
tests, e.g. [1], [2]. We acknowledge that such an objective
is subjective by its nature and mostly shaped by experience.
For example, a Google search on “unit testing best practices”
return many additional “top-X best practices” lists (where
X ∈ N) that are likely to vary to a great extent. The critical
issue is that applying these best practices is a matter of

disciplined choice and manifestation of testing skills. As a
result, existing materials serve as a list of recommendations
without a (self-)monitoring mechanism.

Assessing whether resulting test artefacts fulfil the goals
and follow the principles of testing is quite difficult to assess,
because there are different facets of how to define quality
within the context of testing. For example, most effort focuses
on the “effectiveness” of tests, e.g. coverage, mutation score
or the capability to detect errors in general [3], [4], [5], [6],
[7], [8], [9]. In their review, Garousi et al. state that among
the identified studies only “(21%) have focused on assessing
different quality characteristics of test codes, such as test-
code maintainability, understandability, and efficiency.” [10].
However, testing has evolved to a point, particularly in agile
development settings, where one should also consider that,
e.g. i) tests also act as documentation ii) tests need to be
maintained as the system evolves, iii) tests should be simple
and expressive to improve readability and comprehension [2],
[11], [12]. In other words, looking at test code, one should
also be able to identify what the purpose of the test is and
how it is implemented, take corrective actions based on the
test result, and make modifications when needed.

With respect to the goal of this short paper, we are not seek-
ing to compile an exhaustive and authoritative list of principles
or best practices. Rather our goal is the early communication
of our efforts towards developing a measurement framework to
capture the otherwise tacit knowledge about testing principles
and supporting practices in the form of expressive metrics that
can be used as indicators for “test quality” in an automated
manner. This goal is driven by the needs of our industrial
collaborator(s) who seek to answer the question:

“How good are our tests?”

In order to practically achieve the above stated goal, we
need to limit ourselves to select certain principles among many
choices. As stated earlier this is a subjective process. We then
investigate whether there is a way to measure them when they
manifest in test code, as indicators of test quality. As a result,
we have come up with the list of principles that we elaborate in
Section II. The list of principles that we discuss in this paper
is based on multiple sources selected through the following
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process:
• As a starting point, we conducted a two-day long semi-

structured workshop where we discussed and brain-
stormed with our industry partners on how to address
their need to evaluate the quality of their tests.

• We merged the outcome of the workshop with our teach-
ing experience in delivering introductory and advanced
level software testing courses in academia [13] and the
industrial tutorial content we have used earlier as part of
testing related research in industry [14].

• We checked relevant content from practitioner books
whose authors have diverse experience in consulting in
software testing [2], [11].

• Finally, we surveyed existing literature (though in a non-
systematic way) for proposed metrics to quantify the
identified principles and supporting practices, if and when
available.

We limit the scope of our work to unit testing. Though
the context of our work is limited by the needs of our
industry partner, we see no serious impediments in applying
our findings to other industrial contexts. In the rest of the
paper, we provide the list of selected principles and then
discuss related work before we conclude.

II. UNIT TESTING PRINCIPLES

In this section, we describe the identified testing principles
by providing brief descriptions for each, discussing their
practical effects on test code and/or supporting best practices
and consider potential ways to infer (in an automated manner)
whether a test complies with the given principle.

Principle #1: Simplicity
This is the starting and fundamental principle that provides
a foundation for all the others. While we have test code in
place to check for the correctness of production code, we have
few techniques for checking the correctness of test code. As
we depend on tests as a safety net, we must rely on their
validity and ensure their maintainability through simplicity and
consider each test case as small baby-steps taken forward. The
assumption here is that there is less chance of making mistakes
and it is easier to maintain test base when we avoid complexity.
In other terms: “Keep it simple, keep it safe”.

Compliance with or violation of this principle may be
observed in test code in terms of the size of the test code,
number of assertions per test case and conditional test logic,
all of which can be measured in similar ways to production
code [15].

Principle #2: Readability and Comprehension
Tests are self-documenting instruments. Hence, the expectation
is to have a clear understanding of the intentions of the test
code, as with any other document. Besides being simple,
expressiveness of tests (including the test case names) is
crucial. Using magic numbers, branching, inexpressive naming
conventions in test code would disrupt this principle [11]. In
addition to checking for constants and branch count in test
code, adopting instruments for measuring readability of natural

language text, e.g. the Gunning fog index [16], might give
indications related to this principle.

Principle #3: Single Responsibility
A test should have a single reason to fail, in other words when
a test fails one should be able to locate the root cause of the
problem. This can be achieved by strictly enforcing verification
of one condition per test. Though such a rule comes at the
cost of relying on a single data point for the test scenario,
triangulation with multiple data points is possible by creating
a test case for each. In which case, we must be careful not to
duplicate test code and refactor accordingly (e.g. see principle
#6). If multiple assertions are allowed or preferred in a single
test case, then one should strictly focus on testing one and
only one behaviour, which is ideally observable with a single
call/entry point to the class under test.

In order to quantify this principle, number of assert state-
ments and number of unique method calls [15] within the
assert statements can be used. Calls to multiple methods in
class under test might indicate that we are testing more than
we should in a single test case.

Principle #4: Avoid Over-protectiveness
One common pitfall that violates all preceding principles is
the tendency towards over-protectiveness in test code, which
is usually visible in terms of redundant assertions in test code
[11], for example, checking whether a variable is successfully
initialised through assertNotNull() as part of tests with other
goals. A large number of asserts or multiple types of assert
statements appearing together could be related with over-
protectiveness.

Principle #5: Test Behaviour (not implementation)
Focusing on implementation details would make tests depen-
dent on a particular implementation of specifications. If the
preference for implementation details (e.g. choice of under-
lying sorting algorithm for a given problem) changes through
refactoring, implementation focused tests become obsolete and
need to be updated towards the new implementation. On the
other hand keeping the focus on the expected behaviour and
utilising the public interface of the class under test would
avoid such problems. Therefore, we recommend focusing on
behaviour rather then the implementation details.

Unfortunately, we cannot advise on a straightforward way
of capturing this principle, since it is more of a philosophical
(or convenience) choice of approach to testing. At this point,
however we should make a note on coverage metrics. If
one aims at having a certain level of coverage, as many
professional environments enforce, it is relatively easy to reach
high coverage without testing expected behaviour. On the other
hand, addressing expected behaviour would indirectly yield a
high level of coverage. Therefore, interpretation of coverage
metrics, as a sign of test quality, should be avoided, as existing
research also questions its relation with test effectiveness, e.g.
[17], [18], [19]. The bottom line is that coverage should not
be the explicit goal, yet it will be achieved with a focus on
testing behaviour.

Principle #6: Maintainability: Refactoring test code



Tests are helpful for easy maintenance of code, yet tests
should be easily maintainable as well. As the production code
evolves, it is inevitable that the test code will evolve with it.
Whether this will cause an additional burden depends on how
maintainable the test code is. Maintainability for test code is
a goal as well as it is a principle to keep in mind. Simplicity
and refactoring of test code are key supporting principles in
this aspect.

Test code duplication should be avoided. Based on our
experience, duplication of test code is a common practice
to have a fast start when writing a new test case. It would
make maintainability harder in the long run, unless test code
is refactored [20]. We should also keep in mind that test code is
also code. Checking for the amount of test code duplications
[15] and number of refactorings applied (e.g. checking the
evolution of test code in terms of complexity over time [18]
or recording the number of IDE supported refactoring actions
when possible) would be possible ways of capturing this
principle.

Principle #7: A test should fail
While this seems pretty straightforward, it is one of the
common mistakes we observe at least among students who
are future professionals. A never failing test is not helpful at
all, and a test can simply achieve such a god-mode if one does
not insert any assertions in the test case. Testing frameworks
do not (but should) recognise such simple mistakes. As a
principle one should see a test’s ability to fail, which is one
of the driving arguments of test-driven development [21]. In
addition, it is a good practice to fail() incomplete tests for the
same reason. Ensuring that there is at least one assert statement
[15], other than assertTrue(true), in a test case would partially
capture this principle. Having a history of test runs can also
give an idea whether a test has ever failed or not.

Principle #8: Reliability
In order to rely on tests as a safety net for development, they
should behave as expected, that is they should consistently
pass or fail under fixed conditions. The result of a test
cannot involve randomness and if there is any source of non-
determinism, these should be isolated and removed. This is
one of the principles that is usually hard to capture and taken
for granted.

Principle #9: Happy vs. Sad tests
This principle is associated with the goals of testing: to verify
the system (also known as happy tests) vs. to break the system
(also known as sad tests). Due to the phenomenon known as
confirmation bias, it does not come as a surprise to see testers’
tendency to confirm behaviour rather than to break it [22].
While it might be useful to explicitly state that the goal of
testing is to discover faults [23], we believe that both views
on the goals of testing have merits and should be considered
simultaneously during the testing process. Considering testing
strategies such as partitioning strategy and boundary case
analysis, we would expect at least as many sad test cases
as happy test cases. In this respect, Causevic et al. propose
making sad test case construction an additional step in test-

driven development [24], [25]. Unfortunately, it is not possible
to automate the measurement of this principle without content-
based analysis. A good practice would be to indicate the type
of the test as a part of the test case name as a standard naming
convention, which would allow for an automated analysis.

Principle #10: Tests should not dictate the code
This principle, to which Meszaros refers to as Keep Test
Logic Out of Production Code principle [2], suggests that
we should not make any modifications in production code
for the purpose of testing. In essence, testing logic should
not propagate into production code. A common example is to
include a production code method that is only called from
within the test code to access internal states of the class
under test. Another example is to update access modifiers of
production code methods, e.g. from private to public, to be
able to reach them from the test code. Both examples are also
related to principle #5, testing behaviour vs. implementation,
and both cases can be avoided with a behaviour focused testing
approach. One way to detect such cases is to investigate the
fan-in (or static call graph) for production code methods and
to check whether the incoming calls are from test code only.
Tests should also avoid the use of reflection to access private
methods and fields as this also relies on a knowledge of
implementation which may not be matched by a change in
behaviour.

Principle #11: Fast feedback
One of the goals of test automation is to provide timely
feedback regarding the results of the tests. No developer
would prefer to wait for the completion of unit test runs
before making progress. Delays in test runs can be due to
logical flaws in the implementation of the test or production
code that introduce unwanted complexity or memory leaks.
Alternatively, the class under test might be relying on external
resources that take a long time to respond. In either case,
long test run times are indicators of problems and should
be investigated further. Clearly, the metric to monitor this
principle is the run-time for test cases.

Principle #12: 4-phase test design
This principle is yet another simple but commonly overlooked
one especially by novice developers. The 4-phase test design
suggest the setup, execution, validation and tear-down stages,
in the given order, in constructing test cases. Our experience
with students shows that it is surprisingly common to skip
(forget) the setup or the execution stages. This can be checked
by investigating the number of non-assert lines before the first
assertion in a test case, i.e. we would expect at least one
line to be executed even if all setup is handled by a shared
fixture. However, we should also note that there might be cases
where the execution is embedded in the fixture. In terms of
expressiveness of tests, it is good practice to refactor the fixture
and include the execution stage within the test in such cases.

Principle #13: Simplicity of fixtures
As the number of test cases grow in a test class, a certain
pattern emerges where the code needed for the setup phase
(of the 4-phases discussed above) is duplicated. In order to



avoid code duplication, we refactor this shared code fragment
into a special test method called the fixture. However, as we
keep adding more test cases, the fixture is updated and it
tends to include code fragments used only by a subset of test
cases that are not needed by the other test cases which share
the same fixture. As a result, the fixture gets longer, more
complex and harder to maintain. That’s why we should keep
this specific principle in mind to ensure the other principles we
have discussed are in place for the simplicity of the fixture;
that is, fixtures should be minimal. Size and complexity of
the code in fixtures can be used as proxies to control for this
dedicated principle [26].

Principle #14: Test (in)dependency
We should be able to run our tests in any order and in
isolation and tests should not rely on each other in anyway.
This would enable taking baby-steps and allows us to add new
test cases without considering any dependencies or any effects
they might have on existing test cases. Indeed, popular testing
frameworks do not guarantee the order the tests are run and
provide us with the capability to run a selection of existing
tests. This principle would be clearly violated if a test invokes
another test or if there are static fields in class under test that
would preserve their latest state even when testing framework
creates a new instance of the class. Checking for fan-in to test
case methods (one would expect zero for all cases) and for
static fields in production code would be helpful for assessing
this principle.

Principle #15: Use of test doubles
When we are testing for classes that rely on external resources
that do not yet exist or might introduce delays in the run
time for the completion of tests, we should make use of test
doubles in order to stub/mock out external dependencies for
the testability of target class. Since the use of test doubles are
case specific and context dependent, it is not possible to make a
generic recommendation. Nevertheless, having the information
whether test doubles are used, e.g. isMocked(), would be an
indicator to check for this principle.

III. RELATED WORK

In this section, we briefly discuss existing work related to
our study.

Garousi et al. report in their systematic literature review
on test-code engineering that one of the two main categories
of test quality assessment research focus on detection of test
smells covering 61% of the identified studies.

Test smells are defined by van Deursen et al. in their
seminal paper “Refactoring Test Code” [1]. They introduced
the concept of test smells and identified 11 of them: mystery
guest, resource optimisation, test run war, general fixture,
eager test, lazy test, assertion roulette, indirect testing, for
testers only, sensitive equality and test code duplication.

Empirical evaluation of the validity of test smells have been
demonstrated by various studies. For example, van Rompaey
et al. quantify test smells and evaluate them with open source
case studies [26], [27], and Bavota et al. provide evidence

on the existence of test smells in open source and industrial
systems and their negative impact on comprehension and
maintenance [28], [29].

Breugelmans and van Rompaey developed a tool (TestQ) in
order to quantify the test smells and guide testers through
measurement and visualisation [15]. Greiler et al. also de-
veloped and evaluated a tool (TestHound) in three industrial
case studies focusing on fixture related smells that makes
recommendations for refactoring [30].

A summary of the 15 principles identified in this work and
their comparison with the test smells are provided in Table I.
The last column of Table I maps the principles to relevant test
smells when applicable, whereas the third column (Metric(s))
list the proposed metrics for quantification of the principle. In
the third column, we also indicate whether TestQ tool provides
support for automated analysis, e.g. with (TQ) label next to the
metric’s name. We have identified eight principles that do not
map to existing test smells (this is expected as our intentions
are different than of van Deursen et al.) and propose metrics
for six of them. We have identified additional potential metrics
for the seven principles that partially map to test smells.

To the best of our knowledge, Nagappan’s STREW Metric
Suite is one of the first attempts to explicitly capture the quality
of a test suite [31], [32], [33]. Their metric suite is based on
metrics derived from number of assertions and CK metrics in
relation to the size of test suites. As for using assertions as a
proxy for test quality, Aniche et al. reports that higher number
of asserts are indicators of problems in production code, based
on their analysis of open source and industrial projects [34].
Similarly, Vahabzadeh et al. analyse the bug content of test
code in open source projects and indicate that “...incorrect
and missing assertions are the dominant root cause of silent
horror bugs... the majority of false alarm bugs happen in the
exercise portion of the tests” [35].

Herzig utilises test execution metrics successfully, though
with a different objective, which is to predict post-release
production defects [36].

Lanubile and Mallardo observe improvements on the quality
of test code after code inspections [37]. Daka et al. emphasise
the importance of the readability of tests and propose a
domain specific model for test readability [38]. Though neither
approach is feasible for automation, these studies address the
notion of test quality.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we aimed to identify a core list of testing
principles that address multiple facets of quality and discussed
how they can be quantified as indicators of test quality.
We have conducted a two-day workshop with our industry
partners to come up with a list and then utilised our academic
and industrial training background and the recommendations
in practitioner oriented testing books to refine the list. We
surveyed existing literature for potential metrics to quantify
identified principles.

We have identified 15 principles in total where eight prin-
ciples do not map to existing test smells. While we cannot



TABLE I
SUMMARY OF PRINCIPLES AND THEIR POSSIBLE QUANTIFICATION IN RELATION WITH TEST SMELLS DEFINED IN [1].

Principle # Principle Name Metric(s) Relevant Test Smell

1 Simplicity

Size (TQ)
Complexity IndentedTest

Branch Count (TQ) VerboseTest
#assertions

2 Readability and Comprehension
#constants

Branch Count (TQ) IndentedTest
Gunning fog index

3 Single Responsibility #assertions EagerTest
#uniqueMethodCallsInAssertions (TQ)

4 Avoid Over-protectiveness #assertions
#assertionType

5 Test behaviour (not implementation) n/a

6
duplicate detection (TQ)

Maintainability: Refactoring test code #refactoring DuplicatedCode
Complexity over a period

7
A test should fail #assertions > 0 (TQ) Assertionless

#assertTrue(true) EmptyTest
test run history

8 Reliability n/a
9 Happy vs. Sad tests n/a (unless indicated with naming convention)

10 Test should not dictate code fan-in production code (from test code) (TQ) ForTestersOnly
11 Fast feedback runtime for tests
12 4-phase test design non assert statements before first assertion

13 Simplicity of fixtures

Size (TQ)
Complexity GeneralFixture

Branch Count
#assertions= 0

14 Test (in)dependency fan-in test code (= 0)
#staticFields

15 Use of test doubles isMocked()

quantify two of these additional eight principles, we were
able to propose metrics for the remaining six. Further, we
have identified additional potential metrics for seven of the
principles that partially map to test smells.

Our contribution with this work is to provide a core list of
testing principles focusing on different quality aspects other
than effectiveness or coverage, along with a discussion of
possible ways to quantify them for assessing goodness of tests.

It should be noted that we report work-in-progress in this
short paper and our future intent is to extend our work by
refining the list as necessary, conducting a systematic review
of existing literature and providing tool support to enable
automated monitoring of test quality.
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