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ABSTRACT
Background: Ensemble techniques have gained attention
in various scientific fields. Defect prediction researchers have
investigated many state-of-the-art ensemble models and con-
cluded that in many cases these outperform standard single
classifier techniques. Almost all previous work using en-
semble techniques in defect prediction rely on the major-
ity voting scheme for combining prediction outputs, and on
the implicit diversity among single classifiers. Aim: Investi-
gate whether defect prediction can be improved using an ex-
plicit diversity technique with stacking ensemble, given the
fact that different classifiers identify different sets of defects.
Method: We used classifiers from four different families and
the weighted accuracy diversity (WAD) technique to exploit
diversity amongst classifiers. To combine individual predic-
tions, we used the stacking ensemble technique. We used
state-of-the-art knowledge in software defect prediction to
build our ensemble models, and tested their prediction abil-
ities against 8 publicly available data sets. Conclusion:
The results show performance improvement using stacking
ensembles compared to other defect prediction models. Di-
versity amongst classifiers used for building ensembles is es-
sential to achieving these performance improvements.

Keywords
Software defect prediction, software faults, ensembles of learn-
ing machines, stacking, diversity
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1. INTRODUCTION
A software defect can cause programs to misbehave, lead-

ing to negative effects for the software industry. Defects that
are fixed pre-release can potentially save companies from
high repair costs and a bad reputation. The software in-
dustry spends billions of pounds annually finding and fixing
defects. Defect prediction assists practitioners to promptly
identify parts of software likely to contain defects, and act
accordingly before the system is delivered to users. Predic-
tion modelling has been used in several hundred studies con-
ducted in software defect prediction in the last few decades.
Some of the most recent work in software defect prediction
literature has been covered in several meta-analysis and sys-
tematic literature reviews [2, 7, 12, 30].

As a matter of usual practice, researchers have used dozens
of publicly available defect data sets, and tested different
modelling techniques on those data sets. The standard ap-
proach to defect prediction is to use historical data con-
taining quantitative measures about software modules. The
historical data is fed into machine learners that produce pre-
diction models. These prediction models can then be used to
determine which software instances contain defects, by pro-
viding them new instances for which the defectiveness status
is unknown to a model. Menzies et al. hypothesized that the
current standard approaches used in defect prediction have
reached their limits, and that new approaches are needed to
make better predictions [14]. In this work, we focus on using
ensemble techniques to make improved predictions.

Existing defect prediction studies generally do not con-
sider whether different models find different sets of defects.
Lessmann et al. did a study using 22 different machine learn-
ers, and concluded that the top 18 classifiers perform simi-
larly [11]. The result that the majority of classifiers perform
similarly suggests that it does not matter which classifiers
are chosen to build prediction models. Similar average re-
sults that various classifiers produce could potentially hide
different sets of defects that they identify. However, not
all defects are the same. Diverse mathematical properties
underlying different classifiers may have an effect on which
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defects are found by one classifier, and not by others. Re-
cently, Panichella et al. have confirmed that in cross-project
defect prediction different techniques could be combined to
find a wider range of defects than by just using single classi-
fiers [17]. In within-project defect prediction, we previously
confirmed that different machine learners detect very differ-
ent subsets of defects [1]. Therefore, we now aim to identify
whether different machine learners, when combined, can en-
hance the performance of prediction models.

To achieve our aim, we performed an experiment to es-
tablish whether ensemble techniques based on diversity and
stacking can improve defect prediction. Ensembles of ma-
chine learners combine multiple classifiers and join their pre-
diction outputs into a final solution. It is widely accepted
by the machine learning community that ensemble mod-
els should contain diverse classifiers and that their outputs
should be combined in a way that will amplify the correct
decisions of single classifiers. Some ensemble techniques (e.g.
Bagging) implicitly achieve diversity amongst classifiers by
randomising a data set in each iteration of the algorithm.
Since base classifiers are trained on different training sets,
each classifier should make different predictions. In this case,
the diversity amongst different classifier families is not ac-
counted for. However, it is likely that ensemble modelling
can be improved in the context of defect prediction. We use
an explicit diversity scheme, which targets only the most di-
verse predictors from several different families to build our
ensembles, since different classifiers discover different sub-
sets of defects [1, 17]. Schemes like majority voting may not
be suitable for defect prediction as unique subsets of defects
are identified by some classifiers and not by others, making
majority voting a non-optimal approach for combining en-
semble outputs. Therefore, we use the stacking technique.
Stacking performs a classification task with the prediction
results previously made by individual classifiers. The output
produced by this classification task gives the final prediction.
Particularly, we want to address the following research ques-
tions:

RQ1 Can stacking ensembles based on explicit diversity im-
prove prediction performance compared to other defect
prediction models?

RQ2 How many classifiers combined into stacking ensem-
bles provide good defect prediction models?

RQ3 How much diversity and which base classifiers are usu-
ally combined in stacking ensemble models?

In this work we make several contributions. First, we show
that ensemble models based on classifiers from different fam-
ilies can improve defect prediction. We further explore how
much diversity affects defect prediction models and what are
the most popular classifiers chosen for building the stacking
ensembles. We also show that only a few, but diverse classi-
fiers, are sufficient to build effective ensemble models. This
knowledge could help other researchers and practitioners to
build improved defect prediction models.

Our paper is structured as follows. In the next section, we
give an overview of software defect prediction and ensemble
techniques. In the third section we detail our methodology
followed by the results and discussion in the fourth section.
We present the threats to validity of our experiment in the
fifth section, give conclusiouns in the sixth section, and in-
troduce ideas for future work in the seventh section.

2. BACKGROUND
Software defect prediction uses independent and depen-

dent variables, and mathematical models to predict error-
prone locations in software. Independent variables are quan-
titative measures of software, generally depicting the size
and complexity of its components. Size, complexity, and
CK object-oriented are the most common metrics used in
studies of defect prediction [12]. Fenton and Neil showed
that size is in a complex relationship with defects, resulting
in studies that range from size giving good prediction to very
poor prediction results [3]. Shepperd criticised complexity
measures as being a proxy for several other metrics used
in defect prediction [23]. Much effort has been put to engi-
neering new metrics for defect prediction. Recently, Shippey
presented a new metric based on the Java abstract syntax
tree and showed usefulness in predicting a specific subsets of
defects [26]. Zimmermann and Nagappan used graph theory,
showing that software modules with a greater degree of cen-
trality tend to be more defective [37]. Similarly, Petrić and
Galinac used graph theory to show that some graph struc-
tures are more related to defects than others [19]. However,
there is no definite agreement about which metric is superior
for defect prediction. Most defect prediction studies tend to
use a combination of available metrics.

Independent variables are usually combined with depen-
dent variables in the form of a data set. Each data set
contains a set of software units (modules), where each mod-
ule is described with its metrics (independent variables) and
the corresponding defectiveness (dependent variable). The
dependent variable can be a number depicting the density
of defects contained in a module, or a flag stating whether
a module is defective or not. The systematic collection
of such data is a complex and time consuming task. To
tackle this problem, the PROMISE repository has been es-
tablished containing a collection of publicly available defect
data. Although very popular, some PROMISE data sets
have been shown to be of low quality [5, 18]. However,
for the sake of comparability with other studies, many re-
searchers have used the original versions of the data sets
available at PROMISE [7].

Researchers mostly use machine learning classifiers in the
context of defect prediction [30]. Classifiers are first trained
by using historical defect data, and then exploited to make
predictions on the new data, previously not seen by a model
[28, 33]. Lessmann et al.’s comprehensive study, which was
performed using 22 different classifiers, showed no signifi-
cant difference among the top 18 classifiers [11]. Lessmann
et al. have presented average figures for the prediction per-
formances of their classifiers. We showed that these perfor-
mance figures hide the sets of defects identified by using dif-
ferent prediction models [1]. Specifically, we demonstrated
that different classifiers are capable of finding different de-
fects, where some subsets of defects are unique to a specific
classifier. Panichella et al.’s study reported similar conclu-
sions in the context of cross-project defect prediction [17].

Following our findings, and those of Panichella et al., we
explore the use of ensembles of machine learners. The idea
of ensemble models is to combine multiple single classifiers
with the aim of improving the predictive performance of
single classifiers [15, 21]. In the last few years, ensembles
of machine learners have been occasionally used in software
defect prediction. One of the fundamental motivations for
using ensembles is the performance bottleneck [14] when us-



ing single classifiers. Wang et al. conducted a comparison
study between popular ensemble classifiers and some single
classifiers [31]. They showed that in many cases ensemble
classifiers outperform other classifiers, including the single
Näıve Bayes algorithm. Kultur et al. presented an ensemble
of neural networks with associative memory that achieve
more accurate and stable results compared to neural net-
works themselves [8]. More recent work also demonstrates
the efficacy of ensemble learners against more conventional
methods such as Support Vector Machines [10]. Particularly,
Laradji et al. demonstrated that ensemble classifiers made
up of carefully devised learners and using a few useful fea-
tures can achieve improved results over other conventional
models. The reasons for using ensembles in predictive mod-
elling are covered in detail by Polikar [20].

Two things should be carefully considered when building
ensemble models. First, ensembles should be built from di-
verse classifiers. Ensembles should include classifiers that
make different incorrect predictions (because classifiers that
make the same prediction errors do not add any informa-
tion). Second, combining the outputs from all classifiers
should be done in a way that encourages the correct decisions
are amplified and ignores incorrect decisions. Since different
classifiers find different defects, techniques commonly used
in defect prediction for combining classifier outputs, such
as majority voting, should be reconsidered. Current ensem-
ble models in software defect prediction are not specifically
designed to combine prediction outputs in such a way that
will amplify correct predictions. If several prediction models
have uniquely identified different sets of defects, then ma-
jority voting will not be a suitable technique to increase pre-
diction performance. On the contrary, some of the defects
uniquely identified by single classifiers will now be misclas-
sified, downgrading the overall performance of the ensemble
models. Combining the decisions of individual classifiers can
be achieved using other techniques rather than majority vot-
ing. In this study, we use the stacking approach first intro-
duced by Wolpert [34]. Stacking uses a two layer approach,
where the first layer is constituted of individual classifiers,
all trained on the same training data. The second layer, also
called the meta layer, uses the output predictions of individ-
ual classifiers from the first layer as an input. This input is
fed into the second layer classifier which then makes the final
predictions. Therefore, the stacking approach seeks patterns
in predictions made by the first layer, rather then ignoring
classifiers that have minority “votes”. Consequently, if a
specific subset of defects is detectable only by one classifier,
stacking will still have an opportunity to correctly classify
such instances. The majority-voting approach would cer-
tainty misclassify such instances, since all but one of the
classifiers would predict non-defective.

Many techniques for measuring and achieving higher di-
versity have been proposed by Kuncheva and Whitaker [9].
Some of these measures are Correlation diversity, Q-statistics,
Disagreement and Double Fault Measures, Entropy Mea-
sures, Kohavi-Wolpert Variance, Weighted Accuracy and
Diversity (WAD), etc. Kuncheva and Whitaker argue that
there is no diversity measure that consistently correlates
with higher accuracy. They recommend the use ofQ-statistics
because of its simplicity and intuitive meaning. WAD is an-
other relatively simple diversity measure proposed by Zeng
et al. [35], who showed that using WAD in combination
with a bagging approach can boost prediction performance.

We use WAD in this work as a diversity measure in defect
prediction.

3. METHODOLOGY

3.1 Data sets
We used several public data sets from PROMISE1, the

repository commonly used by researchers in software defect
prediction. We selected 8 data sets shown in Table 1, which
come from different domains, to ensure diversity among pos-
sible defects that can appear in each project. We performed
data cleaning to remove software modules that comply with
the following rules:

• LOC = 0

• AnyNumericalMetric < 0

• CCavg > CCmax

• NOC > LOC

• NPM > WMC

We remove instances where lines of code (LOC) is 0, or any
numerical metric is negative as suggested by Shepperd et al.
[25]. We additionally remove instances where the average
cyclomatic complexity (CCavg) exceeds the maximal cyclo-
matic complexity (CCmax), number of comments (NOC) is
greater than number of lines of code and number of public
methods for a class (NPM) is greater than weighted methods
per class (WMC).

3.2 Base classifiers
We experimented with four different classifiers, namely

Näıve Bayes , C4.5 decision tree, K-nearest neighbour, and
sequential minimal optimisation. These four were chosen
since classifiers from different “families” were previously suc-
cessful in finding different defects [1, 17]. Näıve Bayes be-
longs to a family of linear classification techniques, where
the prediction of a model is made according to conditional
probabilities. It requires all variables to be categorical and
assumes full independence among them. C4.5 is a tree-based
learning algorithm that produces a structured classification
model on which all predictions are based. The C4.5 algo-
rithm uses information theory to make an optimal decision
about node splitting on the attribute which best separates
the data. K -nearest neighbour makes predictions based on
the class values of closest neighbours. It uses a distance
algorithm to find K nearest neighbours of the instance be-
ing predicted, and then assigns to that instance the highest
occurring class of its neighbours. Sequential minimal opti-
misation is used for training Support Vector Machines in a
more nearly optimal way than its predecessor algorithms.
Support Vector Machine algorithms are designed for solving
non-linear problems by mapping data points into a higher-
dimensional space and separating the classes with a linear
hyper-plane. The hyper-plane is usually chosen to maximise
the distance between classes.

From each base classifier we have built several different
models, changing the classifier parameters to address two
important ideas. First, parameter tuning has been shown

1http://openscience.us/repo/



Table 1: PROMISE data sets used in our experiment

Id Data set Language
# of modules

before cleaning
# of modules
after cleaning

% loss due to
cleaning

% defective methods
after cleaning

Description

1 ant-1.5 Java 293 292 0.3 11.0
A Java library and a command tool
commonly known for building Java

programs.
2 ant-1.6 Java 351 350 0.3 26.3 Same as ant-1.5
3 ant-1.7 Java 745 742 0.4 22.4 Same as ant-1.5

4 jedit-4.1 Java 312 312 0.0 25.3
JEdit is a text editor mostly
used as a programming tool.

5 jedit-4.2 Java 367 367 0.0 13.1 Same as jedit-4.1

6 tomcat Java 858 852 0.7 9.0
Apache tomcat is a web-server

for running Java programs.

7 xalan-2.5 Java 803 797 0.7 48.6
Xalan is a library for transforming
XML documents into HTML, text

or other XML document types.
8 xalan-2.6 Java 885 880 0.6 46.7 Same as xalan-2.5

to have an important role when building prediction mod-
els [6, 27]. Support Vector Machine classifiers are known to
perform badly if not tuned. Decision trees might produce
over-optimistic models if the number of possible branches is
unlimited. K -nearest neighbour has problems with unbal-
anced data since the probability of predicting the majority
class is higher. Näıve Bayes can use different kernel estima-
tors to convert continuous into nominal data. Second, dif-
ferent parameters enrich diversity among classifiers, possibly
making mistakes in different instances, which is a valuable
characteristic when building ensembles [20]. When more
classifiers make mistakes on different instances, a strategic
combination of these classifiers may reduce the total error.
In total, 15 base classifiers were used, each coming from one
of the four families and using different model parameters.

We used two different parameters for a Näıve Bayes (NB)
learner. One parameter uses a kernel density estimator
rather than normal distribution for continuous attributes.
The second parameter uses supervised discretisation for pro-
cessing continuous attributes. The purpose of both parame-
ters is to best split continuous attributes into nominal ones,
since the Näıve Bayes classifier works only with categorical
values. Two different parameters are usually tuned in K -
nearest neighbour (kNN) learners, the k value and the near-
est neighbour searching algorithm. The first parameter, k,
denotes how many nearest neighbours the algorithm should
take into consideration. The k parameter should be an odd
number higher than 0. We chose three different values: 3,
5 and 7. Further increase of the parameter k may have a
negative impact on our learners since defect prediction data
is generally imbalanced. We left the default value for the
nearest neighbour searching algorithm, which is the Euclid-
ian distance. For the Support Vector Machines algorithm
we have used sequential minimal optimisation (SMO). SMO
uses less complex methods than its predecessors for train-
ing support vector machines, providing for the creation of
faster models. For SMO we varied the complexity param-
eter C, assigning four different values: 1, 10, 25 and 50.
The complexity parameter C controls the margin that sep-
arates the defective instances from the non-defective ones.
If the C parameter is very small, the SMO algorithm will
try to maximise the margin between two classes. On the
other hand, higher C values will force the SMO algorithm
to find margins that make the least amount of mistakes on
the training data. Consequently, increasing the C values

can lead to over-fitting, since the margin is tightly adjusted
to the training data. Other parameters for SMO were left at
their default values. The last family of classifiers is decision
tree. The Weka implementation of decision tree is called
J48. We varied the confidence factor of the J48 classifier
using five different values: 0.25, 0.20, 0.15, 0.10, 0.05. Low-
ering the confidence factor, the J48 classifier will result in
more pruning.

3.3 Diversity
Diversity is one of the key components when building en-

semble models. Having multiple classifiers that make mis-
takes on the same instances does not add any additional in-
formation that we did not have with only a single classifier.
Therefore, when building ensemble models, diversity should
ensure that we include only classifiers that make mistakes
on different instances. The common and simplest way of
calculating diversity measures is between each pair of clas-
sifiers. An overall diversity is then calculated by averaging
these pair-wise values. Several measures are frequently used
to measure the diversity between pairs of classifiers. Corre-
lation diversity measures the diversity between each pair of
classifiers by obtaining the correlation between two classi-
fier outputs. The Q-Statistic gives positive values when two
classifiers make correct predictions, negative values for in-
correct predictions and 0 for the maximal diversity between
classifiers. Weighted accuracy and diversity (WAD), intro-
duced by Zeng et al. [35], belongs to the family of diversity
measures that compare two classifiers at a time. The WAD
measure works on a similar principle to the F -measure by
finding a weighted harmonic mean between accuracy and
diversity:

WADα,β(Acc,Div) =
Acc ·Div

β ·Acc+ α ·Div (1)

when α+ β = 1. The α and β parameters represent weights
that control the importance of accuracy and diversity, where
α > β gives more focus on accuracy, and α < β focuses more
on diversity. When α > β, the WAD measure combines mul-
tiple classifiers that are more accurate rather than diverse,
and vice versa. In our experiment the accuracy in the WAD
equation was replaced with precision, since accuracy is not a
suitable measure for imbalanced data sets commonly found
in SDP [4].



Diversity was computed among all pairs of classifiers as:

Div =
2

m(m− 1)

m−1∑
i=1

m∑
j=i+1

divi,j (2)

where m denotes the number of base classifiers in an en-
semble, and i, j indexes of each base classifier. Diversity
between each pair of classifiers divi,j was calculated using
the following equation:

divi,j =
N10 +N01

N00 +N11 +N10 +N01
(3)

where N11 represents the correct prediction of both clas-
sifiers, and N10 the situation where classifier i makes the
correct prediction whilst classifier j incorrect. N00 denotes
incorrect prediction of both classifiers, and finally N01 de-
picts correct prediction of the classifier j, but incorrect pre-
diction of the classifier i.

3.4 Experimental setup
We used Song et al.’s and Gray’s software defect predic-

tion frameworks to build our predictors [6, 28]. The frame-
work is divided into two parts, a scheme evaluation stage and
a defect prediction stage. The scheme evaluation stage eval-
uates the performance of different classifiers to find the best
prediction models among all classifiers. At this stage only
training data is used, which is further split into the training'
and validation sets. The test set is left out from the eval-
uation stage and used in the next, defect prediction stage.
The defect prediction stage consists of the final prediction
model that uses the test set for evaluating the model perfor-
mance. Each experiment is run using 10 times 10 fold strat-
ified cross-validation. Repeating an experiment 10 times, as
well as using cross-validation, reduces the amount of vari-
ance in the evaluation of prediction models. The stratified
technique guarantees the same distribution of the minority
and the majority class as in the original data for each fold,
preventing folds constituted only from the majority class. To
ensure that we use only relevant attributes, we performed
correlation-based feature selection on all training sets. A
subset of attributes for each fold was recorded, and applied
on the test set at the defect prediction stage.

Base learners can be combined in many different ways, as
well as made up of a lot of different classifiers, however for
an optimal model this step should be carried out with care.
Although ensembles have still not been extensively used in
software defect prediction, until now researchers have usu-
ally used some sort of majority voting as a decision making
rule for ensembles [16, 22]. However, we showed in our previ-
ous work that using majority-like voting mechanisms results
in some defects being ignored by such ensembles [1]. Simi-
larly to Panichella et al. [17], we proposed the stacking ap-
proach when building ensemble based prediction models for
software defect prediction. Still, combing all base learners
into stacking may not be computationally and performance-
wise optimal. More classifiers in an ensemble will inevitably
prolong experiments, but it will not simultaneously guar-
antee better performance results. To address this issue, we
selected only a subset of classifiers in a way that is explanied
below.

Our stacking ensembles were built using 5 different mea-
sures depicted in Table 2. Each stacking ensemble was pro-
duced by combining multiple base classifiers according to

Table 2: Measures used for building ensemble mod-
els

Measure Full name Type of measure
1 BASE No measure Basic
2 PRECISION Precision Base
3 MCC Matthews correlation coeficient Base
4 DIV Diversity Advanced
5 WAD WAD Advanced

their measure stated in Table 2. Precision and MCC be-
long to the basic group of measures, directly provided by
the Weka API. For instance, when stacking is built using
precision, only the most precise classifiers are put into the
ensemble. Similarly for the other Basic measures. WAD
and Div measures are part of the Advanced group of mea-
sures. These measures are not provided by the Weka API,
rather are derived from Equations 1 and 2, respectively. The
last measure is Base. Base indicates one base classifier that
performs best among all the other base classifiers.

Figure 1: Stacking building

Figure 1 depicts the design used for building our stack-
ing models. All base classifiers were first trained on the
training’ data sets, and evaluated using the validation set.
Performances on the validation set were further sorted from
the highest to the lowest value for each performance mea-
sure stated in Table 2. Starting from Precision, each mea-
sure was then taken to form a stacking ensemble. The two
most precise base classifiers were taken to form the stack-
ing ensemble. The model was trained on the whole training
set, and finally evaluated on the test set. The experiment
continued combining the three most precise base classifiers,
forming the stacking ensemble, training on the whole train-
ing set and evaluating on the test set. After combining all



base classifiers, the experiment carried on the next measure
from Table 2, MCC. The special Base group was evaluated
slightly differently. Each base classifier was directly trained
on the whole training set, and evaluated on the test set.

3.5 Performance measure
There has been a great debate on measuring the perfor-

mance of prediction models [4, 13, 36]. When quantifying
the performance of classifiers based on a categorical depen-
dent variable, usually some performance measure, derived
from confusion matrix, is reported. The confusion matrix is
depicted in Table 3. However, some performance measures

Table 3: Confusion matrix
Predicted defective Predicted defect free

Observed
defective

True Positive
(TP)

False Negative
(FN)

Observed
defect free

False Positive
(FP)

True Negative
(TN)

are not suitable for use in the defect prediction context. De-
fect prediction data is commonly imbalanced, which makes
some performance measures unusable (e.g. probability of
detection [36]). On the other hand, frequently used mea-
sures such as precision and recall do not take all four quad-
rants into consideration, leaving space for making incorrect
conclusions. Matthews correlation coefficient (MCC) is an
appropriate measure when it comes to imbalanced data sets,
and it captures all four quadrants of the confusion matrix
[24]. MCC ranges from -1 to 1, where -1 indicates perfect
disagreement, whilst 1 indicates perfect agreement between
prediction and observation. The MCC value of 0 represents
prediction no better than random. Given that MCC cap-
tures all quadrants of the confusion matrix, we believe that
this measure is a trustworthy indicator of the prediction per-
formance.

4. RESULTS AND DISCUSSION
We conducted a series of experiments to build the final

ensemble models. Since we used the WAD measure, proper
tuning of α and β parameters depicted in Equation 1 was
required. Therefore, we ran a set of prediction models on all
data sets changing both parameters. The parameters were
changed in the range from 0 to 1 in steps of 0.05. The y-
axis on Figure 2 depicts the change in MCC performance for
all data sets we used. The x-axis represents the value of α
parameter, where β parameter was changed automatically
to satisfy α+ β = 1.

Figure 2 shows no compelling difference in MCC amongst
all the data sets we used by changing the WAD param-
eters. The greatest differences were achieved on margins
where α = 0 and α = 1. However, marginal values have al-
ready been covered using Precision and Diversity measures.
Use of Precision can be compared to α = 1 since in this
case diversity is ignored. Similarly, when α = 0 Precision
is completely ignored and focus is on the diversity among
base classifiers. Considering both Precision and Diversity
as important factors when building ensembles, we set both
parameters to 0.5. Setting α = β = 0.5 ensures that both
concepts are equally represented.

Table 4 shows the average performance values of single
and ensemble classifiers. The columns contain different pre-
diction techniques, whilst rows depict average MCC and
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Figure 2: WAD sensitivity for all eight data sets

Table 4: Average MCC performance across all data
sets

Data set SC BA BO PR MCC DIV WAD
ant-1.5 Avg. 0.255 0.338 0.303 0.461 0.485 0.507 0.503

Dev. 0.276 0.285 0.287 0.254 0.246 0.24 0.242
ant-1.6 Avg. 0.408 0.479 0.412 0.475 0.49 0.488 0.488

Dev. 0.174 0.145 0.168 0.154 0.148 0.145 0.145
ant-1.7 Avg. 0.395 0.456 0.389 0.448 0.474 0.465 0.465

Dev. 0.134 0.124 0.128 0.131 0.131 0.123 0.123
jedit-4.1 Avg. 0.427 0.433 0.403 0.459 0.466 0.471 0.471

Dev. 0.191 0.187 0.181 0.185 0.178 0.182 0.182
jedit-4.2 Avg. 0.334 0.338 0.342 0.346 0.426 0.421 0.421

Dev. 0.243 0.219 0.217 0.232 0.191 0.193 0.193
tomcat Avg. 0.171 0.247 0.23 0.3 0.349 0.351 0.348

Dev. 0.192 0.203 0.175 0.177 0.156 0.153 0.158
xalan-2.5 Avg. 0.257 0.355 0.35 0.274 0.293 0.29 0.29

Dev. 0.115 0.108 0.1 0.109 0.107 0.107 0.106
xalan-2.6 Avg. 0.474 0.535 0.495 0.471 0.471 0.471 0.471

Dev. 0.089 0.08 0.093 0.092 0.092 0.092 0.092
Avg. 0.34 0.398 0.366 0.404 0.432 0.433 0.432
Dev. 0.177 0.169 0.169 0.167 0.156 0.154 0.155

standard deviation values for each data set. To make our
approach more readily comparable to other approaches, we
trained two additional ensemble models commonly used in
SDP, namely Bagging and Boosting. Both additional models
were trained using the same parameters for the base classi-
fiers as described in Section 3.2. SC represents the average
values of all 15 single classifiers used, whilst BA and BO
are the bagging and boosting approaches added for compar-
ison, respectively. The rest of the table represents the other
basic and advanced measures used, Precision, MCC, Diver-
sity, and WAD, respectively. Average performance measures
show that across all data sets our techniques achieve better
results than the other approaches. Particularly, the aver-
age figures from Table 4 show that the DIV technique is
better by 27.2%, Bagging by 8.9%, and Boosting by 18.5%
compared to the Single classifier technique. For formal con-
firmation in favour of the DIV technique, we used Wilcoxon
signed-rank test to statistically compare the differences [32].
The same form of test was previously used by Sun et al. in
the context of defect prediction [29]. The alternative hy-
pothesis tests whether for a given technique (single clas-
sifier OR bagging OR boosting), DIV technique performs



better than the other three techniques at significance level
α = 0.05. The p-values of the Single Classifier and Boost-
ing techniques were less than 0.05, whilst the p-value for
the Bagging technique was greater than 0.05. From these
results we can conclude that the DIV technique is signifi-
cantly better than the other techniques except Bagging. The
same conclusions were derived for the WAD and MCC tech-
niques using the same statistical approach.

Table 5: Relative increase in true positives of all
techniques compared to Bagging

BA SC BO PR MCC DIV WAD
ant-1.5 1.06 -0.20 -0.07 0.68 0.83 0.94 0.93
ant-1.6 4.95 -0.10 -0.02 0.09 0.20 0.22 0.21
ant-1.7 8.02 -0.11 -0.02 -0.00 0.21 0.24 0.24

jedit-4.1 3.65 -0.03 0.08 0.08 0.18 0.24 0.24
jedit-4.2 1.53 -0.03 0.14 0.24 0.78 0.78 0.78
tomcat 1.40 -0.08 0.31 1.28 2.01 2.02 2.03

xalan-2.5 25.21 -0.15 0.02 -0.20 -0.05 -0.08 -0.08
xalan-2.6 28.99 -0.11 0.02 -0.25 -0.19 -0.18 -0.18

Avg 9.35 -0.10 0.06 0.24 0.50 0.52 0.52

Table 6: Relative increase in false positives of all
techniques compared to Bagging

BA SC BO PR MCC DIV WAD
ant-1.5 1.01 0.19 0.14 0.87 1.07 1.15 1.17
ant-1.6 2.50 0.16 0.38 0.31 0.55 0.62 0.62
ant-1.7 4.41 0.16 0.41 0.09 0.54 0.73 0.72

jedit-4.1 1.95 -0.03 0.44 0.06 0.32 0.46 0.46
jedit-4.2 1.46 -0.06 0.41 0.49 1.35 1.45 1.45
tomcat 1.50 0.54 1.26 3.35 4.82 4.86 4.95

xalan-2.5 12.26 0.00 0.05 -0.13 0.09 0.05 0.05
xalan-2.6 8.35 -0.04 0.27 -0.45 -0.28 -0.25 -0.25

Avg 4.18 0.11 0.42 0.57 1.06 1.14 1.15

Having established the average performances of our mod-
els, we further investigated the effect size of all approaches.
The effect size serves as a measure of how many defects can
each model detect (true positives) for the price of misclas-
sifying certain instances (false positives). To demonstrate
effect sizes, we derived the confusion matrix for all runs and
across all data sets. To make our comparison fair, we com-
pared Single Classifier, Boosting, Precision, MCC, DIV, and
WAD against the Bagging technique. The reason for this is
that the Bagging technique achieved better results than Sin-
gle Classifier and Boosting. Also, we want to compare our
techniques against others that achieve best results in defect
prediction. The first column in Table 5 shows the average
number of true positives achieved by Bagging. The follow-
ing columns show the relative increase in the number of true
positives for the techniques used in our study. Clearly, DIV
and WAD techniques achieve better performances relative to
Single Classifiers, Bagging and Boosting techniques. More
precisely, DIV and WAD techniques can on average achieve
a relative increase of 0.52 compared to the Bagging tech-
nique. For instance, in the case of the tomcat data set, the
WAD technique correctly identifies about two times more
defects relative to Bagging. Table 6 on the other hand de-
picts an increase of false positives. Taken together, the ta-
bles of relative increase in true and false positives show that
there is a trade-off between true positives and false posi-
tives. However, increasing the number of true positives in
defect prediction is particularly challenging since data sets
are known to be imbalanced. Although a higher false posi-
tive rate detection is discouraged, finding more real defects

for the price of more false positives could be of benefit for
some companies. This is especially true for companies where
the cost of defects is extremely high.

We additionally compared single classifiers against our
best two techniques, DIV and WAD. The reason is a fre-
quent use of single classifiers in SDP. To make a fair com-
parison, we extracted only one classifier from each family
that on average achieved the best MCC performance. From

Table 7: Average best single classifiers against DIV
and WAD

NB KNN SMO J48 DIV WAD
ant-1.5 0.316 0.169 0.385 0.279 0.507 0.503
ant-1.6 0.482 0.327 0.445 0.397 0.488 0.488
ant-1.7 0.432 0.355 0.407 0.411 0.465 0.465

jedit-4.1 0.432 0.408 0.499 0.400 0.471 0.471
jedit-4.2 0.370 0.398 0.321 0.334 0.421 0.421
tomcat 0.256 0.190 0.029 0.264 0.351 0.348

xalan-2.5 0.169 0.289 0.264 0.314 0.290 0.290
xalan-2.6 0.473 0.498 0.481 0.484 0.471 0.471

Avg 0.366 0.329 0.354 0.360 0.433 0.432

the Näıve Bayes family, the classifier with a kernel density
estimator achieved the best MCC result in average across
all data sets. K nearest neighbour with k = 3, SMO with
C = 50, and J48 with C = 0.10 achieved the best aver-
age performances according to MCC. Single classifiers with
the best average MCC performances, along with DIV and
WAD techniques are shown in Table 7. Since DIV and WAD
both achieved the same average MCC performances, they
improved over Näıve Bayes by 18.2%, over K NN by 31.4%,
over SMO by 22.3%, and finally over J48 by 20.1%. The
Wilcoxon significance test, where the alternative hypothesis
tests superior performance values of DIV and WAD over
Single Classifiers was performed. With the p = 0.05 level of
confidence we confirmed that the both techniques, DIV and
WAD, are superior to all the other Single Classifier tech-
niques.

RQ1. Can stacking ensembles based on ex-
plicit diversity improve prediction perfor-
mance compared to other defect prediction
models?
From the analysis of MCC performance and rela-
tive improvements in effect sizes we can conclude
that stacking ensembles can indeed improve predic-
tion performance.

In our final experiment we test how many classifiers, and
of which family, used for building stacking ensembles are
needed for these ensembles to perform well. It may be the
case that combining only a few classifiers, that are most
precise and diverse, is sufficient for achieving good perfor-
mance results. This would have practical benefits reducing
the training time of such ensemble classifiers. Since we built
stacking ensembles of all possible sizes (combining from 2 to
15 single classifiers used in this study), it is now possible to
compare their prediction performances. Furthermore, it is
possible to analyse which single classifiers are often picked
by the ensemble. In the context of this analysis, we inves-
tigate only the WAD technique, since it is based on both
aspects that are in the focus of our analysis: diversity and
precision. Additionally, the WAD technique performed as
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Figure 3: Prediction performance of WAD groups of
classifiers. The x-axis represents the size of a group.

well as our other ensemble techniques. Figure 3 presents
prediction performance box-plots for all 8 data sets used in
our analysis. The x-axis depicts the size of each group us-
ing the WAD technique, whilst the y-axis shows the MCC
performance. From the figure it is clear that small groups,
of just two or three classifiers, combined into the stacking
ensemble perform well. Combining only three classifiers into
a stacking ensemble gives prediction performance not signif-
icantly worse than combining more classifiers, as Figure 3
demonstrates. This statement is valid for all data sets used
in our experiment. Achieving such results is important since
training only three classifiers, and using an additional classi-
fier in the stacking meta-layer, reduces the time for building

a prediction model.

RQ2. How many classifiers combined into
stacking ensembles provide good defect pre-
diction models?
Our experiment showed that adding more than three
classifiers into the stacking ensembles does not sig-
nificantly increase the prediction performance.

Table 8: Frequency of the individual classifiers ap-
pearing in the stacking ensembles of size 3

# Data set Classifier Frequency (%)
1 ant-1.5 NB default parameters 100
2 ant-1.5 SMO -C 1, else default parameters 90
3 ant-1.5 kNN k=3, else default parameters 34
1 ant-1.6 SMO -C 1, else default parameters 100
2 ant-1.6 kNN k=3, else default parameters 85
3 ant-1.6 NB -D 77
1 ant-1.7 NB -D 100
2 ant-1.7 SMO -C 1, else default parameters 100
3 ant-1.7 kNN k=3, else default parameters 99
1 jedit-4.1 NB -D 100
2 jedit-4.1 SMO -C 1, else default parameters 95
3 jedit-4.1 kNN k=3, else default parameters 90
1 jedit-4.2 NB -D 100
2 jedit-4.2 SMO -C 1, else default parameters 89
3 jedit-4.2 NB default parameters 59
1 tomcat NB -D 100
2 tomcat kNN k=3, else default parameters 45
3 tomcat NB default parameters 44
1 xalan-2.5 kNN k=3, else default parameters 83
2 xalan-2.5 SMO -C 1, else default parameters 56
3 xalan-2.5 J48 -C 0.25, else default parameters 41
1 xalan-2.6 kNN k=3, else default parameters 97
2 xalan-2.6 NB -D 95
3 xalan-2.6 NB default parameters 86

Finally, we investigated the base classifiers that form our
stacking ensemble in order to find the ones that are fre-
quently chosen by ensembles. For the purpose of this analy-
sis we again used the WAD technique with stacking ensem-
bles of size 3. Table 8 shows the first three classifiers com-
monly used for building stacking ensembles for all 8 data
sets used. The Näıve Bayes classifier has constantly been
chosen by the stacking ensemble, with an average frequency
of 86% across all data sets. This suggests that Näıve Bayes
classifiers perform well across all data sets, and increase di-
versity in ensembles. Some variants of SMO have also been
repeatedly chosen by stacking ensembles, often with differ-
ent parameter settings. Interestingly, the frequently used
decision tree classifier J48 was not dominant for any of the
data sets.

RQ3. How much diversity and which base
classifiers are usually combined in stacking
ensemble models?
Although only a small proportion of classifiers are
needed to build a stacking ensemble that performs
well, diversity among classifiers seems to have an
important role in this. The frequency table (shown
in Table 8) suggests that the ensembles of size 3
are usually combined with classifiers from different
families (e.g. in 90% of the runs Näıve Bayes , SMO
and kNN combine together in ensembles for Jedit-
4.1).



5. THREATS TO VALIDITY
We consider several internal and external threats to valid-

ity. In our study, we replaced accuracy with precision in the
WAD equation. Although, the authors of the WAD tech-
nique have used accuracy as the measure of how correct a
classifier is, they used data sets with a relatively balanced
level of class instances. However, software defect prediction
often deals with highly imbalanced data sets, and therefore
the accuracy measure can be misleading. For that reason
we decided to use precision as the measure of how correct a
classifier is.

We did not perform a full parameter search to find opti-
mal values for each learner. Parameter tuning is an impor-
tant step when building prediction models, however it is also
performance demanding. To minimise the threat of model
optimisation, we changed the most important parameters of
the classifiers for each family. By changing the basic param-
eters we minimised the threat of building models with poor
generalisation abilities.

We evaluated our models using the Matthews correlation
coefficient measure. There are many ways to measure pre-
diction models, and all come with certain strengths and
weaknesses. Although some researchers would argue that
one measure is better than another, we decided to use MCC
since it covers all aspects of the confusion matrix. Taking
into consideration true positives, true negatives, false posi-
tives and false negatives at the same time, we believe that
our reported values do not hide aspects of the predictions.

Our study is also limited to several data sets from the
PROMISE repository. It is possible that by using different
data sets we would come to different conclusions. However,
most of these data sets have been extensively used in many
other SDP studies, giving us and other researchers possibili-
ties to compare results. We want to stress that we performed
cleaning of the data sets to remove erroneous data points.
By using these data sets, and our cleaning steps given in Sec-
tion 3.1, others are able to replicate our work and confirm
or extend our results.

6. CONCLUSION
Ensembles of machine learners composed of classifiers from

different families can outperform some traditional ensemble
techniques in defect prediction. Using the stacking approach
and diverse classifiers, we showed relative increase in number
of identified defects compared to the commonly used bagging
technique. Such a stacking ensemble does not require many
base classifiers, however our results suggest those classifiers
have to be diverse and from different classifier families. Par-
ticularly, Näıve Bayes and SMO seem to work well in com-
bination. Although the predictive limitation of using single
classifiers has been reached, ensembles of machine learners
leave space for improvements. This is due to the fact that
different classifiers identify different subsets of defects.

Our findings have important implications in the way fu-
ture prediction models should be built. We suggest use of en-
sembles of machine learners composed of different classifiers.
Majority-voting should not be used to combine predictions
of individual classifiers since this approach may miss some
subsets of defects found only by some classifiers and not
others. The use of the stacking approach could reduce the
number of misclassifications compared to majority-voting.
Researchers and practitioners can use our findings to build

better defect prediction models. They can also use the fact
that different classifiers find different defects and develop
even better ways of combining individual classifiers.

7. FUTURE WORK
We plan to extend this work with several enhancements.

First, we want to extend the experiment by using more clas-
sifiers and apply full parameter search to them. Adding new
classifiers may help detect new families of defects, or even
help the stacking approach to finding “better” patterns from
the first layer. Second, we plan to use different diversity
measures, such as Q-statistics, and investigate how much
use of those measures affects defect prediction. We do not
yet know what effect different diversity measures have on
the correct classification of defective instances. Last but not
least, we should establish why some defects are identified
by some classifiers and missed by others. This should help
in building better ensemble techniques that can find a vari-
ety of defects, and at the same time reduce the number of
false positives, hence achieve higher precision and recall at
the same time. Such understanding is necessary if we are to
build models with superior performances over simple single
models. We should further investigate whether some spe-
cific defects are found only by our approaches, and missed
by other ensemble techniques. Models with that power may
break the performance ceiling identified in 2008 [14].
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