
Self-awareness for dynamic knowledge management

in self-adaptive volunteer services

Abdessalam Elhabbash, Rami Bahsoon, Peter Tino

School of Computer Science

University of Birmingham

United Kingdom

{a.elhabbash, r.bahsoon, p.tino}@cs.bham.ac.uk

Abstract— Engineering volunteer services calls for novel self-

adaptive approaches for dynamically managing the process of

composing and/or allocating volunteer services. As these services

tend to be published and withdrawn without restrictions;

uncertainties, dynamisms and ‘dilution of control’ related to the

decisions of selection and composition are complex problems.

These services tend to exhibit periodic performance patterns,

which are often repeated over a certain time period.

Consequently, the awareness of such periodic patterns enables

the prediction of the services performance leading to better

adaptation. In this paper, we contribute to a self-adaptive

approach, namely time-awareness, which combines self-aware

principles with dynamic histograms to dynamically manage and

maintain the periodic trends of services performance and their

evolution trends over time. Such knowledge can inform the

adaptation decisions; leading to increase in the precision of

selecting and composing services. We evaluate the approach

using a volunteer storage composition scenario. The evaluation

results show the advantages of dynamic knowledge management

in self-adaptive volunteer computing in selecting dependable

services and satisfying higher number of requests.

Keywords—dependability; service composition; self-adaptive;

self-aware

I. INTRODUCTION

Volunteer Computing (VC) is an emerging distributed
computing paradigm in which users make their own resources
available to others enabling them to do distributed
computations and/or storage [1]. In the literature, many
approaches have been proposed to enable volunteers to donate
their resources for scientific projects, e.g. SETI@Home [2] and
Storage@Home [3], among the others. The paradigm is
believed to be an enabler for cost-effective large scale
computation and sharing for storage, leveraging on spare
resources that can be available and idle on the users’
computing devices (e.g. PCs, laptops, smart phones, etc.). The
paradigm has been seen as an alternative for purchasing
resources in large scale projects, where utilizing volunteered
resources can bring the benefits of large scale inexpensive and
shared computing [4].

Volunteered resources can be composed together to satisfy
users’ requests in many service-oriented applications such as
the cloud and smart cities [5], a practice, which we term as
volunteer service composition (VSC). Engineering Volunteer
Services (VSs) calls for novel self-adaptive approach for

dynamically and adaptively managing the processes of
selecting, composing, and allocating VSs and underlying
resources. The approach shall address the following
fundamental requirements, which caters for dynamisms and
uncertainties in requests and service provision. More
specifically, these approaches shall fundamentally address:

 Resources-awareness: the contributed resources should
be composed and/or allocated to users, achieving both
maximum utilization and minimum waste with
minimum computation time.

 Availability-awareness: Resources availability tends to
be uncertain and dynamic in VC. This is because, the
publishers often contribute their resources during the
time intervals in which they do not need those
resources, i.e. the volunteered resources are not
available permanently [6].

 Dilution of control: As volunteer services are offered on
a voluntary basis by individuals and organizations
willing to participate in the model, VC tends to exhibit
‘dilution’ of control increasing the level of uncertainty
and the dynamisms of the provision. This is because
volunteered resources can be offered and withdrawn at
any time [7]. The right without the symmetric
obligation to participate in VC makes Service Level
Agreements (SLAs) less stringent as when compared to
commercial services; adding further complexity.

 Dependability-awareness: Because of the dilution of
control requirement, dependability information of the
services, in terms of the level of providing the promised
resources, should be collected and used in VS
composition/allocation approaches.

In [8] the authors have reported the presence of periodic
patterns in the performance of the volunteering hosts based on
a long-term study. The study analyzed a large set of traces
taken from the SETI@Home [2] real system. The patterns are
usually repeated over a certain time period that varies from one
volunteer to another. Such period can be some hours, days, or
weeks. We argue that the awareness of such periodic patterns
enables the prediction of the services performance, which helps
to reason about the selection and adaptation decisions.
However, taking into account that different volunteers
contribute their resources to different systems we can deduce
that traces collected from one project cannot be used in another

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/196586516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

one, as the volunteers are different. These circumstances
motivate the need for an approach that captures and manages
the knowledge at runtime. This also requires data structures
suitable to represent the dynamically acquired and managed
knowledge such as the dynamic histograms [9]. Dynamic
histograms are constructs that dynamically approximate data
distributions at runtime. They have been used in database
management systems’ applications in order to maintain and
represent the data which continuously arrive and vary with
time.

Recently, self-awareness and self-expression concepts have
been receiving more attention in computing systems [10]. Self-
awareness is defined as the combination of (1) the knowledge
on the internal state of the system and the execution
environment, (2) the ability to predict the changes in the
system, and (3) the ability to adapt to the changes [11]. Thus,
self-awareness can provide self-adaptive systems with
primitives for proactive management and behavioral control at
runtime. It can also improve both the accuracy and quality of
adaptation. This may in turn converge the system towards more
desirable stable states.

In our previous work [12], we developed utility models for
VSC, which can inform the problem of dynamically selecting
and composing ‘good enough’ services. In [13], we proposed a
framework to enable self-adaptation in VC inspired by a
general framework leveraging self-awareness in computing
[14]. As part of the framework, two self-adaptive approaches
have been proposed to deal with uncertainty associated with
VC environment. The first is the stimulus-aware VSC, which is
considered as a baseline approach. The second is the ‘classic’
time-aware VSC, which leverages the historical observations
on services’ performance at the selection and composition
phases. The ‘classic’ time-aware approach assumes the
availability of historical records, which is not always the case.
In this paper we take this work further: we start from zero-
history and instead accumulate that history at runtime. For this
purpose, we make novel use of dynamic histograms to capture
the evolving knowledge on the services’ performance.

The novel contribution of this paper is the time-aware
approach that leverages principles of self-awareness and use
dynamic histograms to dynamically acquire and manage
knowledge on VSs’ performance in self-adaptive VC. Our
approach treats knowledge of self-adaptive VC as “moving
target” that can change and evolve over time and uses this
information to better inform the adaptation. This can
consequently improve the quality and precision of adaptation in
dynamic and uncertain environment. Specifically, we make the
following novel contributions:

Firstly, unlike existing works in VC which assume the
presence of historical records on services performance, we
assume that the system starts from zero-history and
accumulates the knowledge at runtime.

Secondly, we use dynamic histograms to capture the
evolving knowledge at runtime. The dynamic histograms
enable capturing the periodic patterns of the VS in case they
exist.

Thirdly, we develop a method to estimate the services
performance that takes into consideration the periodic patterns

and the time interval in which the requester intends to use the
required volunteered resources.

Fourthly, building on a scenario from VSC, we evaluate the
time-aware approach and compare it with the stimulus-aware
approach, which is considered as a baseline adaptive approach
in VC. The results show that the time-aware approach results in
satisfying higher number of requests and better resources
utilization. However, it produces certain overhead in terms of
computation time.

The remainder of this paper is organized as follows: the
next section introduces the motivating scenario. Section III
presents the dynamic histogram and its evolution operations. In
section IV we present the self-aware architectural framework.
In section V we briefly introduce our utility model. Section VI
introduces the self-aware VSC approaches. Section VII shows
the evaluation results. Related works are outlined in section
VIII and we conclude in section IX.

II. MOTIVATING SCENARIO

We motivate the need for integrating the concepts of self-
awareness into VC, using a situation in which volunteered
storage are offered as services. Assume a heterogeneous
environment, which consists of varied computing nodes like
PCs, laptops, smart phones, etc. These nodes are connected via
a network. Individual people owning these nodes, known as
publishers, offer their idle storage resources as services using a
publish/subscribe model. Assume a subscriber needs to do
some computations and store data temporarily but she has
insufficient storage. To overcome this issue, she can explore
the network searching for volunteer storage services to use. If
she finds the required storage, while satisfying her
requirements (e.g. location, security etc.), she will request it for
her use. Otherwise, volunteered storages can be composed
together to form a total storage that meets the subscriber’s
needs. Fig. 1 shows an example in which the subscriber 𝑆1

submits a request to search for storage of 40 GB. To make this
volume available to 𝑆1, the composer service, named
FindSpace4Me, inspects the published services and returns
three possible composition strategies:

1
st
: Using the storage promised by 𝑉𝑆1.

2
nd

: Composing the storages promised by 𝑉𝑆2, 𝑉𝑆3, and 𝑉𝑆4.

3
rd

: Composing the storages promised by 𝑉𝑆2 and 𝑉𝑆5.

Now, which strategy should be selected to satisfy the
request? One possibility is to randomly pick any of them. Then,

Fig. 1. Motivating Scenario - Composition request of S1 for 40GB.

when a service violates the requirements, the system initiates
an adaptation action to repair the corresponding strategy.
However, a question arises here about the feasibility of that
adaptation action, i.e. will the undertaken adaptation result in
better performance? On the other hand, if the system is able to
anticipate the performance of the services, then it can select a
strategy so that violations are less likely to occur, thus avoiding
the violations. Also, the deeper the knowledge the system has
on the services performance, the more intelligent the decision
will be. In this context, self-awareness can be adopted to reason
about the self-adaptation actions; henceforth, enabling
intelligent selection and adaptation decisions. For example,
assume that 𝑆1 submitted a request at time 𝑡1, and assume that
the performance of 𝑉𝑆5 is anticipated to be poor at 𝑡1, then the
system will avoid the selection of the third strategy. But, if we
assume that 𝑆1 submitted a request at time 𝑡2, and assume that
the performance of 𝑉𝑆5 is anticipated to be well at 𝑡2, then the
system may select the third strategy. In our work we implement
this scenario to demonstrate the adoption of the self-awareness
in VC.

III. DYNAMIC HISTOGRAM EVOLUTION

As mentioned we use dynamic histograms to dynamically
manage the knowledge on the services historical performance.
These histograms typically consist of buckets, which are
created/merged at runtime using a method based on
Chebyshev’s inequality [15]. Then, the data stored in each
bucket are used to estimate the service’s performance. In this
section we give a brief background on the histograms and
dynamic histograms and Chebyshev’s inequality. Then, we
present the dynamic histogram evolution operations we have
developed.

A. Background

1) Histograms and dynamic histograms
A histogram is an estimate of the data distribution of a

certain variable. Given a certain dataset, a histogram divides its
data into subsets called buckets based on a partitioning rule.
Dynamic Histograms have been proposed to capture and
estimate the data distribution in evolving datasets. In such
cases, data points arrive continuously and the dataset is built
incrementally over time [9]. Dynamic histograms are
continuously updated to tackle the changes in the evolving
datasets. The main idea in the dynamic histograms is to
reconstruct the buckets, which involves splitting and/or
merging buckets, at runtime based on the partitioning rule of
the histogram in order to keep the properties of the histogram.

The time-aware approach (explained below), dynamically
divides the services usage time into time intervals at runtime.
The time intervals correspond to the dynamic histograms
buckets. The captured knowledge on the services performance
is then stored in the buckets, which results in splitting/merging
buckets based on the number of data points in those buckets.

2) Chebyshev’s inequality
Suppose that we have a set of 𝑁 data points for a random

variable (e.g. observations of a service’s performance) but the
distribution of the random variable is unknown: We estimate
the expected value using the data points and we can use the
Chebyshev’s inequality in order to know how close the

estimated expected value is to the actual one [16]. In other
words, Chebyshev’s inequality bounds the probability that a
random variable deviates from its expected value by a
sufficiently small positive number 𝜀, called confidence
threshold. Mathematically, Chebyshev’s inequality is
expressed as:

𝑃(|𝐸(𝑋) − �̂�(𝑋) ≥ 𝜀|) ≤
𝜎2

𝑁. 𝜀2
 (1)

where 𝐸(𝑋) is the actual expected value, �̂�(𝑋) is the estimated
expected value, 𝜎 is the standard deviation, 𝑁 is the number of
data points, and 𝜀 is the confidence threshold.

In our approach, we use Chebyshev’s inequality in a
different way. Our purpose is to know when the number of data
points in a bucket in the dynamic histogram will be sufficient
to give a close estimate of the expected value, which helps to
decide when to split the bucket and evolve the histogram. The
corresponding method is presented in the next section.

B. Evolution operations

As mentioned, the system starts from ‘zero-history’ and
then the knowledge is captured and managed incrementally at
runtime using the dynamic histograms. We adopt a dynamic
histogram for each service in order to continuously insert the
observed data points taking into account the time interval in
which the data point has been observed. Then the continuous
update of the dynamic histogram, by splitting and/or merging
the buckets, results in refining the histogram structure and
capturing the periodic performance pattern of the services.
Accordingly, a data point is defined as follows:

Definition 1. (Data point) A data point is a tuple of (𝑇 =
 [𝑎, 𝑏], 𝑣𝑎𝑙𝑢𝑒) where 𝑇 is the time interval in which the
observation has been recorded, 𝑎 is the start date of 𝑇 and 𝑏 is
the end date, and 𝑣𝑎𝑙𝑢𝑒 is the value of the performance metric.

The update process of the dynamic histogram involves
inserting a new data point into the appropriate bucket(s),
splitting a bucket when the number of data points is sufficient
to estimate the performance, and merging each empty bucket
with a neighbour one. In the following, we describe each of the
mentioned operations and show the corresponding algorithm.

1) Insert new data point.
Based on definition 1, a data point might fall into one or more
buckets depending on the intersection between the data point
time interval and the bucket(s) boundaries. Algorithm 1 is used
to find the appropriate bucket(s) in which the data point will be
inserted.

Algorithm 1 Find Appropriate Buckets

Input: Dynamic Histogram dhist, Data Point dp
Output: Array appropriateBuckets
1: for all bucket in dhist do
2: // check if the time intervals of dp and bucket intersect
3: if dp.start_date < bucket.end_date && dp.end_date >

bucket.start_date then
4: add bucket to appropriateBuckets
5: end if
6: end for
7: return appropriateBuckets

2) Split a bucket.
When the number of data points in a bucket is sufficient to

estimate the performance in the corresponding time interval,
then dividing the bucket into smaller buckets will provide more
accurate estimation of the performance. For example, consider
a time interval of one year. Dividing the one year into (for
example) twelve time intervals (each represents one month)
will provide more in-depth knowledge on the services
performance instead of treating the one year as a one time
interval. To resume, the sufficient number of data points in a
bucket is determined using the following method which is
based on Chebyshev’s Inequality. Given the confidence

threshold 𝜀 and the probability of confidence 𝑃(|𝐸(𝑋) −

 �̂�(𝑋) ≥ 𝜀|) and solving (1) we will have:

𝑁 ≥
𝜎2

𝑃(|𝐸(𝑋) − �̂�(𝑋) ≥ 𝜀|). 𝜀2
 (2)

We can bound the variance 𝜎2. Assuming the worst case;
the variance is maximum when one half of the values is at
lowest possible and the other half is at the highest possible
value. In this work we express the performance in terms of
dependability, which will be defined in the next section. Based
on that, the lowest value of the performance is 0.0 and the
highest is 1.0. As a result, the maximum variance is 0.25 and
the splitting threshold 𝑠𝑝𝑙𝑖𝑡_𝑡ℎ is given by:

𝑠𝑝𝑙𝑖𝑡_𝑡ℎ =
0.25

𝑃(|𝐸(𝑋) − �̂�(𝑋) ≥ 𝜀|). 𝜀2
 (3)

Consequently, when the number of data points in a bucket
exceeds 𝑠𝑝𝑙𝑖𝑡_𝑡ℎ, the bucket will be split using Algorithm 2.

Algorithm 2 Split Bucket

Input: Bucket bucket
Output: Bucket bucket1, Bucket bucket2
1: for all data point dp in bucket do
2: Add dp.start_date and dp.end_date to temp_array
3: end for
4: Find min(temp_array) and max(temp_array).
5: Calculate spliting_date = (min(temp_array) + max(temp_array))

/ 2.
6: Create Bucket bucket1 such that bucket1.start_date =

bucket.start_date and bucket1.end_date = spliting_date
7: Create Bucket bucket2 such that bucket2.start_date =

spliting_date and bucket2.end_date = bucket.end_date
8: for all data point dp in temp_array do
9: if dp.time_interval intersects with bucket1.time_interval
10: Insert dp into bucket1

11: end if
12: if dp.time_interval intersects with bucket2.time_interval
13: Insert dp into bucket2

14: end if
15: end for
16: Delete bucket
17: return bucket1 and bucket2

3) Merge empty buckets
If the splitting operation resulted in an empty bucket, then

that bucket will be merged with its preceding neighbour. If the
empty bucket does not have a preceding neighbour, it will be
merged into the following one.

Pseudo-code for the update method of the dynamic
histogram is presented in Algorithm 3.

Algorithm 3 Dynamic Histograms Update

Input: Dynamic Histogram dhist, Data Point dp
Output: Updated version of dhist
1: appropiateBuckets = FindApprpoitaeBuckets (dp, dhist)
2: for all Bucket bucketi ∈ appropiateBuckets do
3: insert dp in bucketi

4: if bucketi.size ≥ split_th then
5: Bucket[] temp_array ← SplitBucket(bucketi)
6: bucket1 ← temp_array[0]; bucket2 ← temp_array[1]
7: Replace bucketi by bucket1 and bucket2

 8: Set the successor and predecessor buckets for bucket1 and
bucket2
9: end if
10: end for
11: for all Bucket bucketi in dhist do
12: if bucketi is empty then
13: Merge bucketi with its successor or predecessor
14: end if
15: end for
16: return dhist

IV. SELF-AWARE VSC ARCHITECTURAL FRAMEWORK

In [17] we proposed a general framework for self-aware
service composition which enables knowledge collection and
representation for reasoning about adaptation in service
composition. In this section we provide a quick review of the
self-aware framework. The architectural diagram of the
proposed framework is illustrated in Fig. 2. The framework
consists of the following basic components:

 Internal/external sensors: The sensors are responsible for
collecting data on the services engaged in a composition
(internal) and the services available in the service
repository (external). The data include any changes in the
promised quality of service (internal) and the offering of
new services in the service repository (external). Then the
collected data are passed to the stimulus- and time-aware
levels in the self-awareness component.

 Self-awareness: This component models the knowledge
collected by the sensors and passes the learnt models to
the self-expression component. The stimulus-awareness
level represents the basic level of awareness i.e. this level
enables the system to respond to the events received from
the sensors. The time-awareness level assumes the
presence of the stimulus-awareness and adds more
awareness by considering the historical performance of
the services in terms of dependability, which is defined in
the next section. Thus, the time-awareness level enables
the system to take more intelligent adaptation decisions
by selecting services that exhibited better performance
historically.

 Self-expression: this component performs the actual
adaptation actions based on the learnt models received
from the self-awareness component.

The problem of dynamic knowledge management in self-
adaptive systems is still a pending issue. Dynamic knowledge
management includes capturing the evolving performance
datasets, which usually starts from zero-knowledge, and

Fig. 2. Self-aware VSC framework

dynamically updating the models learnt from these datasets. In
this paper, we provide an approach for dealing with this
pending issue using the dynamic histograms, namely, the time-
aware approach.

V. VSC FORMULATION

In this section we introduce a set of definitions in order to
formulate the VSC problem.

A. Basic Definitions

Definition 2. (Service/Request Attributes). In the presence of
the identical functionality of the VSs, the services’ attributes
are the criteria used to discriminate between services when a
request is submitted. In our model, we use three generic
attributes for this purpose, namely, Storage, Availability Time,
and Reputation. However, other criteria can be defined without
fundamental changes.

1) Storage. Given a volunteer service 𝑉𝑆𝑖 , the storage 𝑆𝑡𝑔𝑖
is the size of the volunteered storage in Megabytes where
𝑆𝑡𝑔𝑖 > 0.

2) Availability Time. Given a volunteer service 𝑉𝑆𝑖, 𝑇𝑖 is
the time interval [𝑎𝑖 , 𝑏𝑖] in which 𝑉𝑆𝑖 is available, where 𝑎𝑖 is
the start date and 𝑏𝑖 is the end date.

3) Reputation. Given a volunteer service 𝑉𝑆𝑖, 𝑅𝑒𝑝𝑖 is the

reputation level of the service which is reported from the

subscribers after their use of 𝑉𝑆𝑖 where 0 ≤ 𝑅𝑒𝑝𝑖 ≤ 𝑅𝑒𝑝𝑚𝑎𝑥

and 𝑅𝑒𝑝𝑖, 𝑅𝑒𝑝𝑚𝑎𝑥 ∈ ℕ. The representative reputation of a

certain service 𝑉𝑆𝑖 is the average of the subscribers’ feedback

on 𝑉𝑆𝑖.

Definition 3. (Volunteer Service). A volunteer service 𝑉𝑆𝑖, is a
3-tuple (𝑆𝑡𝑔𝑖, 𝑇𝑖, 𝑅𝑒𝑝𝑖) where 𝑆𝑡𝑔𝑖 is the volunteered storage
space, 𝑇𝑖 is the time interval [𝑎𝑖 , 𝑏𝑖] in which the 𝑉𝑆𝑖 is
available, and 𝑅𝑒𝑝𝑖 is the reputation level of the service. A
service repository (SR) is a set of disjoint volunteer services.
We denote a SR with 𝑛 services as 𝑆𝑅 = {𝑉𝑆1,𝑉𝑆2, . . . ,𝑉𝑆𝑛}.
In this paper we denote the 𝑆𝑡𝑔𝑖, 𝑇𝑖, and 𝑅𝑒𝑝𝑖 as the attributes of
the service or the quality of the service.

Definition 4. (Subscriber’s Request). A subscriber’s request 𝑅
is a 2-tuple (𝑆𝑡𝑔𝑅, 𝑇𝑅), where 𝑆𝑡𝑔𝑅 denotes the storage space
required in the time interval 𝑇𝑅 = [𝑎𝑅, 𝑏𝑅].

Definition 5. (Composite Service). Given a subscriber’s request
𝑅, a Composite Service 𝐶𝑆 is a set of VSs, {𝑉𝑆1, 𝑉𝑆2, . . . , 𝑉𝑆𝑘},
such that the following global constraints are satisfied (denoted
as 𝐶𝑆 ⊢ 𝑅):

 𝑉𝑆𝑖 ∈ 𝑆𝑅, 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛

 ∑ 𝑆𝑡𝑔𝑖
𝑘
𝑖=1 ≥ 𝑆𝑡𝑔𝑅 , at any time instant in [𝑎𝑅 , 𝑏𝑅].

 𝑎𝑅 ≥ 𝑚𝑖𝑛[𝑎𝑖] and 𝑏𝑅 ≤ 𝑚𝑎𝑥[𝑏𝑖] ∀ 𝑉𝑆𝑖 ∈ 𝐶𝑆.

B. Static VS Selection and Composition

In this section we briefly introduce the utility model and the
composition approach we developed in [12]. This model is the
base for our self-adaptive VSC approaches.

The utility model provides a systematic approach for
selecting the VSs that are composed to satisfy a request. The
idea is to measure the amount of contribution that each service
exhibits to satisfy the request. When a subscriber submits a
composition request, the system creates an empty 𝐶𝑆, retrieves
the available services from the service repository, and
computes the utility for each service attribute using the utility
functions (4) and (5). In this paper, we term these utilities as
the promised utilities.

1) Storage utility:

𝑈𝑠𝑡𝑔(𝑉𝑆𝑖) = {
𝑒−𝛽(𝑆𝑡𝑔𝑖−𝑆𝑡𝑔

𝑅), 𝑆𝑡𝑔𝑖 ≥ 𝑆𝑡𝑔
𝑅

𝑒𝛼(𝑆𝑡𝑔𝑖−𝑆𝑡𝑔
𝑅), 𝑆𝑡𝑔𝑖 < 𝑆𝑡𝑔

𝑅

𝑤ℎ𝑒𝑟𝑒 0 < 𝛽 < 𝛼 < 1

 (4)

2) Time utility

𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) =

{

0, 𝑏𝑖 ≤ 𝑎𝑅 𝑜𝑟 𝑏𝑅 ≤ 𝑎𝑖

𝑒𝛾(𝑏𝑖−𝑏
𝑅), 𝑎𝑖 < 𝑎𝑅 , 𝑎𝑅 < 𝑏𝑖 < 𝑏

𝑅

𝑒𝛾(𝑎
𝑅−𝑎𝑖), 𝑏𝑖 > 𝑏

𝑅 , 𝑎𝑅 < 𝑎𝑖 < 𝑏𝑅

𝑒𝛼(𝑏𝑖−𝑎𝑖)

𝑒𝛼(𝑏
𝑅−𝑎𝑅)

, 𝑎𝑖 ≥ 𝑎𝑅 , 𝑏𝑖 ≤ 𝑏
𝑅

𝑒−𝛽(𝑏𝑖−𝑎𝑖)

𝑒−𝛽(𝑏
𝑅−𝑎𝑅)

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤ℎ𝑒𝑟𝑒 0 < 𝛽 < 𝛾 < 𝛼 < 1.

 (5)

After computing the utilities, the system finds the non-
dominant set of services using (6), and randomly selects one of
them and adds it to CS. Then, if the above global constraints
are satisfied, the system returns CS to the subscriber, otherwise
the process is repeated. If no composite service can be found to
satisfy the request 𝑅, the system notifies the subscriber.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

 {𝑈𝑠𝑡𝑔(𝑉𝑆𝑖), 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) , 𝑅𝑒𝑝(𝑉𝑆𝑖)}

(6)

VI. SELF-AWARE VOLUNTEERED SERVICES COMPOSITION

In this section, we present the self-adaptive VSC
approaches, namely, the stimulus- and the time-aware VSC as
a realization of the corresponding awareness levels of the self-
aware framework.

A. Stimulus-aware VSC

The service selection in this approach is based on the
promised utilities of the volunteers. When a subscriber submits
a request 𝑅, the system searches for a composite service that
satisfies 𝑅 as described in the above section.

With regards to self-adaptability, the stimulus-aware
adaptation is considered as the basic level of adaptation as it is

the adaptation approach supported in the current volunteer
computing systems [13]. The adaptation actions are limited to
replacing the violating service by another one in order to
maintain the corresponding composite service. To clarify,
when a change in the promised storage or availability of a
service 𝑉𝑆𝑖 occurs, the self-expression initiates an adaptation
action in order to replace the violating service 𝑉𝑆𝑖 by re-
executing the above steps. If the adaptation process is
successful, then the violating service is replaced, otherwise the
subscriber is notified that the violation cannot be treated.

B. Time-aware VSC

The aim of the time-aware approach is to use the historical
performance of the services to select the most appropriate
services, i.e. services that provide what they promise. In our
approach, we express the services performance in terms of
dependability. We consider a service 𝑉𝑆𝑖 to be dependable if
𝑉𝑆𝑖 provides the storage and availability it promises. In this
section, we introduce a formal definition of dependability then
the time-aware VSC approach.

1) VS dependabilities
The dependability evaluation provides a useful method for

examining the behaviour of the service provider, i.e. the
volunteer. We consider a service 𝑉𝑆𝑖 to be dependable if 𝑉𝑆𝑖
provides the storage and availability it promises. We use the
dependability measure to express the extent to which a selected
service fulfils the promised resources and quality of service. As
the deviation from the promised quality can be in any attribute,
there will be a dependability measure for each service attribute.
We introduce the definition of dependability as follows. Given
that a volunteer service 𝑉𝑆𝑖 has been selected in a composite
service 𝐶𝑆 to serve the request 𝑅. Assume that 𝑈𝑠𝑡𝑔

𝑃 (𝑉𝑆𝑖) is the

storage utility promised by the volunteer of 𝑉𝑆𝑖. Assume also
that the actual storage utility provided by 𝑉𝑆𝑖, captured by the
self-aware framework sensors, during serving 𝑅 is 𝑈𝑠𝑡𝑔

𝐴 (𝑉𝑆𝑖).

Then the storage dependability of 𝑉𝑆𝑖, 𝐷𝑠𝑡𝑔(𝑉𝑆𝑖), is defined as

in (7). The availability time dependability, 𝐷𝑡𝑖𝑚𝑒(𝑉𝑆𝑖), is
defined similarly as in (8).

𝐷𝑠𝑡𝑔(𝑉𝑆𝑖) = {

𝑈𝑠𝑡𝑔
𝑃 (𝑉𝑆𝑖) − 𝑈𝑠𝑡𝑔

𝐴 (𝑉𝑆𝑖)

𝑈𝑠𝑡𝑔
𝑃 (𝑉𝑆𝑖)

, 𝑈𝑠𝑡𝑔
𝐴 (𝑉𝑆𝑖) < 𝑈𝑠𝑡𝑔

𝑃 (𝑉𝑆𝑖)

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

𝐷𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) = {

𝑈𝑡𝑖𝑚𝑒
𝑃 (𝑉𝑆𝑖) − 𝑈𝑡𝑖𝑚𝑒

𝐴 (𝑉𝑆𝑖)

𝑈𝑡𝑖𝑚𝑒
𝑃 (𝑉𝑆𝑖)

, 𝑈𝑡𝑖𝑚𝑒
𝐴 (𝑉𝑆𝑖) < 𝑈𝑡𝑖𝑚𝑒

𝑃 (𝑉𝑆𝑖)

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8)

2) Knowledge management using dynamic histograms
Our aim is to capture the periodic performance patterns of

the VSs, in terms of dependabilities, so that the system can use
such historical knowledge to determine the time intervals in
which a service is most likely to fulfil the request requirements
and the time intervals in which that service is most likely to
violate the request requirements. To achieve that, a dynamic
histogram is created for each service attribute. Initially each
dynamic histogram contains one bucket, then the dynamic
histogram evolves by dividing/merging buckets as the
dependabilities’ data points arrive. For each service, a new data
point will arrive in two cases, (i) a service violates the
promised utilities or (ii) a request, in which the service is

involved to satisfy, has been satisfied. In both cases, the
dependabilities will be computed using (7) and (8) and inserted
into the appropriate bucket(s) using Algorithm 3. After a
certain period of time, the dynamic histogram converges to a
state in which the buckets represent the service’s pattern
periods. The length of the convergence period depends on how
often the service is used.

3) Time-aware service selection
When a subscriber submits a request, the following key

steps are executed in order to satisfy the request:

Step 1: For each 𝑉𝑆𝑖 ∈ 𝑆𝑅, compute the 𝑈𝑠𝑡𝑔 and 𝑈𝑡𝑖𝑚𝑒 using

the utility functions (4) and (5) respectively. Compute also the
average reputation 𝑅𝑒𝑝(𝑉𝑆𝑖).
Step 2: For each 𝑉𝑆𝑖 ∈ 𝑆𝑅 find the appropriate buckets from
the corresponding dynamic histogram. Each bucket overlaps
with request interval is considered an appropriate bucket.
Step 3: For each bucket, estimate the representative 𝐷𝑠𝑡𝑔 and

𝐷𝑡𝑖𝑚𝑒 for each 𝑉𝑆𝑖 ∈ 𝑆𝑅 by counting the number of data points
which have a value greater than or equal to the dependability
threshold 𝐷𝑡ℎ, which is provided by the subscriber, and dividing
that number by the total number of data points in the bucket.
Step 4: Find the average storage dependability, 𝐴𝑉𝐷𝑠𝑡𝑔, for

each 𝑉𝑆𝑖 by summing the representative storage dependability
of each bucket and dividing over the number of buckets.
Similarly find 𝐴𝑉𝐷𝑡𝑖𝑚𝑒.
Step 5: Find the non-dominant set of services using (9), select
one of them randomly, and add it to 𝐶𝑆.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

{𝑈𝑠𝑡𝑔(𝑉𝑆𝑖), 𝑈𝑡𝑖𝑚𝑒(𝑉𝑆𝑖) , 𝑅𝑒𝑝(𝑉𝑆𝑖)

 𝐴𝑉𝐷𝑠𝑡𝑔, 𝐴𝑉𝐷𝑡𝑖𝑚𝑒}

(9)

After executing the above steps, the subscriber request will
be partially satisfied, then the request requirements will be
recalculated in order to update the remaining requirements, and
the above steps will be repeated to select the next service. After
selecting each service, the global constraints (see Definition 5)
will be checked. If they are satisfied, the composite service 𝐶𝑆
will be returned; otherwise the above steps will be repeated. If
all the services are visited and the global constraints are still
not satisfied, an empty 𝐶𝑆 will be returned and the subscriber
will be notified that the request cannot be satisfied.

4) Time-aware adaptation
The self-adaptability in the time-aware approach is two-

fold, in terms of the question: “When should we adapt?”

a) Reactive adaptation: When a change in the promised
quality of a service is reported to the time-awareness
component (see Fig. 2), the actual utilities will be computed
using (4) and (5) and subsequently the dependabilities using
(7) and (8). Then the dependabilities will be stored in the
corresponding dynamic histogram. After that, an adaptation
action will be carried out by the self-expression component.
This adaptation action involves executing the time-aware
service selection steps (section VI.B.3) in order to replace the
service that violated the requirements.

b) Proactive adaptation: The system performs proactive
adaptation in order to adapt a composite service before a
violation occurs. The proactive adaptation is trigged in two

cases, (1) the dependability of a service involved in a 𝐶𝑆 is
expected to drop, according to the performance pattern
captured in the service dynamic histogram, or (2) a service has
become availabe in the 𝑆𝑅 which is expected to perform better
than an existing one, according to its perfomance patterns. In
both cases, the system will execute the time-aware service
selection steps (section VI.B.3) in order to adapt the 𝐶𝑆.

VII. EXPERIMENTAL EVALUATION

In this section, we conduct experiments in order to evaluate
the performance of the stimulus-aware and time-aware
approaches using simulations. Simulating the selection and
adaptation actions has the advantage of conducting scalable
experiments which are expensive to conduct on real systems.
However, the results can be used to guide the real application.
The experiments were conducted on a desktop PC with an Intel
core i5-3570 3.5 GHZ processor, 4G RAM, Windows 7, Java
Standard Edition V1.7.0.

A. Experimentations Context

We implement the example described in section II as a
publish/subscribe model in which 𝑛 services are published and
m subscribers request their composition goals. The attributes’
values of the n services were generated randomly. TABLE I.
shows the ranges of the services attributes values. In the
experiments we assume that 1000 service are available, which
is a reasonable number to indicate scalability compared with
the literature, e.g. the number of services in [18] is 5. We vary
the number of requests m. The performance of the services is
assumed to have a periodical daily or weekly pattern according
to the long term data traces analysis conducted in [8]. For each
test case, the experiment was conducted 100 times and the
average was computed.

B. Comparison Criteria

The experiments compare the above approaches in the
following criteria:

1) Average dependability: defined as the average
summation of the dependability of each selected VS divided
by the number of selected VSs. This metric is a pointer to the
correctness of the time-aware approach. That is the time-aware
approach should tend to select the more dependable services.

2) %Satisfies requests: defined as the number of requests
that the system can successfully satisfy divided by the total
number of requests. This metric is related to the efficiency of

TABLE I. RANGE OF ATTRIBUTES VALUES

 Service Subscriber

Attribute min max min max

Storage 5 20 20 30

Time 1 Jan. 31 Dec. 1 Jan. 31 Dec.

Reputation 0 4 - -

selecting services, i.e. selecting dependable services will lead
to fewer violations and hence more requests will be satisfied.

3) Time cost: defined as the average summation of the
time needed to generate the composite services and the time
needed to adapt to the constraints violations (whether
reactively or proactively) in milliseconds.

C. Results and Discussion

1) Comparison in average dependability: The first set of
experiments evaluates the tendency of selecting the the highly
dependable services over time. Fig. 3 (a), (b), and (c) shows
the average dependability of the selected services for varying
number of requests 𝑚. The figure shows that the average
dependability in the two approaches is nearly the same in the
initial interval of the simulation time. The reason in that the
knowledge size is zero or small to efficiently predict the
services performance. After a while of accumulating the
knowledge, the average dependability in the time-aware case
gets higher than the stimulus-aware case. Therefore, the time-
aware approah has the advantage of selecting the dependable
services when the required knowledge about the services
dependability becomes available.

2) Comparison in throughput: The second set of
experiments compares the throughput over time. Fig. 4(a),
(b), and (c) shows the average throughput for 𝑚 requests. The
figures show that the average throughput is almost the same in
the initial period of time. After a while of accumulating the
knowledge, the average throughput in the time-aware case gets
higher than the stimulus-aware case. Thereforce, having the
advantage of selecting the dependable services using the time-
aware appoach results in reducing the constraints violations
and so satisfying more requests.

3) Comparison in time cost: The third set of experiments
evaluates the time cost of the two approaches. Suppose that we
have 𝑛 services, 𝑡 buckets for each service in the dynamic
histogram, and 𝑝 data points in each bucket. For the stimulus-
aware approach the time complexity is 𝑂(𝑛). For the time-
aware approach the time complexity is 𝑂(𝑛𝑡𝑝) in the worst
case in theory. These time complexities are for one iteration of
the corresponding algorithms since the presented VSC

 stimulus-aware time-aware

A
v

er
ag

e
d
ep

en
d

ab
il

it
y

 (a) m=20 (b) m=40 (c) m=60

Simulation Time (Days)

Fig. 3. Comparison in average dependability

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200

0.3

0.4

0.5

0.6

0.7

0 100 200

 stimulus-aware time-aware

T
h

ro
u
g

h
p
u

t

 (a) m=20 (b) m=40 (c) m=60

Simulation Time (Days)

Fig. 4. Comparison in throughput

 stimulus-aware time-aware

C
o

m
p
u

ta
ti

o
n

 T
im

e
(m

s)

 (a) m=20 (b) m=40 (c) m=60

Simulation Time (Days)

Fig. 5. Comparison in time cost.

approaches are greedy-approaches, i.e. the number of
iterations needed to satisfy the request is unknown. Turning to
the simulation results, Fig. 5 (a), (b), and (c) show the time
cost for varying 𝑚 requests. The figure shows that the
stimulus-aware approach has the least time cost. It is notable
also that the time cost in the time-aware approach increases
linearly over time, whereas the time cost in the stimulus-aware
approach is not affected.

4) Discussion: The experimentation results show that
using the dynamic histograms for dynamic knowledge
management helps to refine the performance models learnt at
runtime. As the previous figures show, the advantages of
selecting dependable services and satisfying more requests are
noticed after the knowledge in the dynamic histograms is
refined. However, the improvements are accompanied with an
overhead which is mainly the time cost of updating the
dynamic histogram. In our on-going research, a brain-like
component, called meta-self-awareness, will be implemented
in the self-awareness framework in order to assess whether the
level of overhead is acceptable compared to the users’
requirements. Then, it will be the responsibility of the meta-
self-awareness component to switch between the awareness
approaches based on overhead/advantages assessment.

VIII. RELATED WORKS

A. Volunteer Computing Paradigms

In this section, we present an overview of the deemed
volunteer computing frameworks. BOINC is the earliest VC
middleware [19]. It enables for creating public-resource

computing projects. Through this middleware, users can
participate their PCs and specify their contributions to the
projects. SETI@home [2], Storage@home [3], and others are
examples of VC projects that use BOINC. Cloud@Home [20]
is a computing paradigm that has been proposed to enable
resource sharing on either voluntary or commercial basis.
Social Cloud [21] is a paradigm that takes advantage of pre-
existing social networks trust relationships to share resource
among users. None of the existing approaches address the
dynamisms of the volunteering environment and the
knowledge management problem. They do not provide answers
on how to deal with the changes in the environment and how to
adapt to those changes.

B. Self-adaptive Frameworks

The increased complexity of service-oriented applications
stimulated the researchers to investigate for self-adaptive
solutions; resulted in an extensive literature on self-adaptive
systems. The dominant ones have been surveyed in [22] [23].
In the event that knowledge acquisition and management are
pre-requisites for self-adaptation, self-awareness has been
considered as an enabler for self-adaptation. Early works on
self-awareness, e.g. [24], [10], and [25] outlined the vision for
designing systems with built in self-aware systems.
Afterwards, many approaches have been proposed to extend
and realize the self-awareness vision. For example, In [26]
Bicocchi et al. proposed an awareness framework for
knowledge collection and classification in urban environments
to reason about adaptation and to improve the energy
efficiency in pervasive scenarios. In [27], Kounev et al.

0

0.2

0.4

0.6

0.8

0 50 100 150 200
0

0.2

0.4

0.6

0.8

0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

0

15

30

45

60

75

0 50 100 150 200

0

25

50

75

100

125

150

0 50 100 150 200

0

40

80

120

160

200

240

0 50 100 150 200

presented a model-based approach to designing self-aware
systems using an architecture-based modelling language.
Works in [28] and [29] intended to characterize different levels
of awareness. For example, in [29] Lewis et al. proposed a
reference framework for architecting self-aware systems. The
architecture defines different levels of awareness inspired by
Neisser's five human self-awareness levels [30] which enables
fine-grain knowledge representation. Our work extends this
framework by realizing the different levels of awareness [29].

IX. CONCLUSION

We have contributed to a self-adaptive approach, namely
the time-awareness, which makes novel use of the principles of
self-awareness and dynamic histograms to dynamically manage
knowledge in self-adaptive VC. The approach is able to capture
the evolving knowledge and manage it at runtime using
dynamic histograms. The knowledge is used to reason about
the reactive and proactive adaptation decisions. The
experimental results show that the time-aware approach can
bring to a self-adaptive application the advantages of satisfying
more requests since it tends to select services that exhibit high
dependability and low probability of violating the requests
constraints. A scenario of volunteered storage composition is
introduced to illustrate and evaluate the approach. In future
work, we will work on implementing other levels of awareness,
e.g. meta-self-awareness which will act as a brain that enables
switching between different awareness levels at runtime.

REFERENCES

[1] O. Nov, D. Anderson, and O. Arazy, "Volunteer computing: a model of
the factors determining contribution to community-based scientific
research," in Proceedings of the 19th international conference on World
wide web, 2010, pp. 741-750.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
"SETI@ home: an experiment in public-resource computing,"
Communications of the ACM, vol. 45, pp. 56-61, 2002.

[3] A. L. Beberg and V. S. Pande, "Storage@ home: Petascale distributed
storage," in 2007 IEEE International Parallel and Distributed
Processing Symposium, 2007, p. 482.

[4] M. Nouman Durrani and J. A. Shamsi, "Volunteer computing:
requirements, challenges, and solutions," Journal of Network and
Computer Applications, vol. 39, pp. 369-380, 2014.

[5] N. Mitton, S. Papavassiliou, A. Puliafito, and K. Trivedi, "Combining
Cloud and sensors in a smart city environment," EURASIP Journal on
Wireless Communications and Networking, vol. 2012, pp. 1-10,
2012/08/08 2012.

[6] S. Dustdar, C. Dorn, F. Li, L. Baresi, G. Cabri, C. Pautasso, and F.
Zambonelli, "A roadmap towards sustainable self-aware service
systems," in Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, 2010, pp. 10-19.

[7] S. Sebastio, M. Amoretti, and A. L. Lafuente, "AVOCLOUDY: a
simulator of volunteer clouds," Software: Practice and Experience,
2015.

[8] D. Lázaro, D. Kondo, and J. M. Marquès, "Long-term availability
prediction for groups of volunteer resources," Journal of Parallel and
Distributed Computing, vol. 72, pp. 281-296, 2012.

[9] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan, "Dynamic
Histograms: Capturing Evolving Data Sets," in Data Engineering, 2000.
Proceedings. 16th International Conference on, 2000, pp. 86-86.

[10] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani, "On
self-adaptation, self-expression, and self-awareness in autonomic service
component ensembles," in Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), 2011 Fifth IEEE Conference on, 2011, pp. 108-
113.

[11] S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska, "Model-driven
algorithms and architectures for self-aware computing systems
(Dagstuhl Seminar 15041)," Dagstuhl Reports, vol. 5, 2015.

[12] A. Elhabbash, R. Bahsoon, P. Tino, and P. R. Lewis, "A Utility Model
for Volunteered Service Composition," presented at the Proceedings of
the 2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing, 2014.

[13] A. Elhabbash, R. Bahsoon, P. Tino, and P. R. Lewis, "Self-Adaptive
Volunteered Services Composition through Stimulus-and Time-
Awareness," in Web Services (ICWS), 2015 IEEE International
Conference on, 2015, pp. 57-64.

[14] T. Chen, F. Faniyi, R. Bahsoon, P. R. Lewis, X. Yao, L. L. Minku, and
L. Esterle, "The handbook of engineering self-aware and self-expressive
systems," arXiv preprint arXiv:1409.1793, 2014.

[15] C. Siang Yew, P. Tino, and Y. Xin, "Measuring Generalization
Performance in Coevolutionary Learning," Evolutionary Computation,
IEEE Transactions on, vol. 12, pp. 479-505, 2008.

[16] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, "Improved
histograms for selectivity estimation of range predicates," SIGMOD
Rec., vol. 25, pp. 294-305, 1996.

[17] A. Elhabbash, R. Bahsoon, and P. Tino, "Towards Self-Aware Service
Composition," in Proceeding of High Performance Computing and
Communications, 2014, pp. 1275-1279.

[18] Z. u. Rehman, O. K. Hussain, and F. K. Hussain, "Parallel Cloud Service
Selection and Ranking Based on QoS History," International Journal of
Parallel Programming, vol. 42, pp. 820-852, 2013.

[19] D. P. Anderson, "Boinc: A system for public-resource computing and
storage," in Grid Computing, 2004. Proceedings. Fifth IEEE/ACM
International Workshop on, 2004, pp. 4-10.

[20] S. Distefano and A. Puliafito, "Cloud@Home: Toward a Volunteer
Cloud," IT Professional, vol. 14, pp. 27-31, 2012.

[21] K. Chard, K. Bubendorfer, S. Caton, and O. F. Rana, "Social Cloud
Computing: A Vision for Socially Motivated Resource Sharing,"
Services Computing, IEEE Transactions on, vol. 5, pp. 551-563, 2012.

[22] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, "A
survey on engineering approaches for self-adaptive systems," Pervasive
and Mobile Computing, vol. 17, pp. 184-206, 2015.

[23] F. D. Macías-Escrivá, R. Haber, R. del Toro, and V. Hernandez, "Self-
adaptive systems: A survey of current approaches, research challenges
and applications," Expert Systems with Applications, vol. 40, pp. 7267-
7279, 2013.

[24] T. Becker, A. Agne, P. R. Lewis, R. Bahsoon, F. Faniyi, L. Esterle, A.
Keller, A. Chandra, A. R. Jensenius, and S. C. Stilkerich, "EPiCS:
Engineering proprioception in computing systems," in Computational
Science and Engineering (CSE), 2012 IEEE 15th International
Conference on, 2012, pp. 353-360.

[25] S. Kounev, F. Brosig, N. Huber, and R. Reussner, "Towards Self-Aware
Performance and Resource Management in Modern Service-Oriented
Systems," in Services Computing (SCC), 2010 IEEE International
Conference on, 2010, pp. 621-624.

[26] N. Bicocchi, D. Fontana, and F. Zambonelli, "A self-aware,
reconfigurable architecture for context awareness," in Computers and
Communication (ISCC), 2014 IEEE Symposium on, 2014, pp. 1-7.

[27] S. Kounev, N. Huber, F. Brosig, and X. Zhu, "Model-Based Approach to
Designing Self-Aware IT Systems and Infrastructures," IEEE Computer
Magazine, 2016.

[28] J. Schaumeier, J. Pitt, and G. Cabri, "A Tripartite Analytic Framework
for Characterising Awareness and Self-Awareness in Autonomic
Systems Research," in Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), 2012 IEEE Sixth International Conference on,
2012, pp. 157-162.

[29] P. R. Lewis, A. Chandra, F. Faniyi, K. Glette, C. Tao, R. Bahsoon, J.
Torresen, and Y. Xin, "Architectural Aspects of Self-Aware and Self-
Expressive Computing Systems: From Psychology to Engineering,"
Computer, vol. 48, pp. 62-70, 2015.

[30] U. Neisser, "The Roots of Self-Knowledge: Perceiving Self, It, and
Thoua," Annals of the New York Academy of Sciences, vol. 818, pp. 19-
33, 1997.

