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Abstract

The recent surge in 3D content generation has led to the evolution of difficult to search, organ-
ise and re-use massive online 3D visual content libraries. We explore crowdsourcing and ma-
chine learning techniques to help alleviate these difficulties by focusing on the visual percep-
tual properties of 3D shapes. We study “style similarity” and “aesthetics” as two fundamental
perceptual properties of 3D shapes and build data-driven models. We rely on crowdsourcing
platforms to collect large number of human judgements on style matching and aesthetics of
3D shapes. The judgement data collected directly fromhumans is used to learnmetrics of style
matching and aesthetics.

Our style similarity measure can be used to compute style distance between a pair of input
3D shapes. In contrast to previous work, we incorporate colour and texture in addition to geo-
metric features to build a colour and texture aware style similaritymetric. We also experiment
with learning objective and personalised style metrics 3D shapes. The application prototypes
we build demonstrate the use of style based search and scene composition. Further, our style
distance metric is built iteratively to consume lesser amount of human style judgement data
compared to previous methods.

We study the problem of building a data-driven model of 3D shape aesthetics in two steps.
We first focus on designing a study to crowdsource human aesthetics judgement data. We
then formulate a deep learning based strategy to learn a measure of 3D shape aesthetics from
collected data. The results of the study in first step helped us choose an appropriate shape
representation i.e. voxels as an input to deep neural networks for learning a measure of vi-
sual aesthetics. In the same crowdsourcing study, we experiment with the use of polygonal,
volumetric, and point based shape representations to create shape stimuli to collect and com-
pare human shape aesthetics judgements. On analysis of the collected data we found that that
humans can reliably distinguish more aesthetic shape in a pair even from coarser shape repre-
sentations such as voxels. This observation implies that detailed shape representations are not
needed to compare aesthetics in pairs.

The aesthetic value of a 3D shape has traditionally been explored in terms of specific visual
features (or handcrafted features) such as curvature and symmetry. For example, more sym-
metric and curved shapes are considered aesthetic compared to less curved and symmetric
shapes. We call such properties as pre-existing notion (or rules) of aesthetics. In order to de-
velop ameasure of perceptual aesthetics of 3D shapeswhich is independent of any pre-existing
notion or shape features, we train deep neural networks directly on human aesthetics judge-
ment data. We demonstrate the usefulness of the learned measure by designing applications
to rank a collection of shapes based on their aesthetics scores and interactively build scenes
using shapes with high aesthetics scores.

Theoverarching goal of this thesis is to demonstrate the use ofmachine learning and crowd-
sourcing approaches to build data-drivenmodels of visual perceptual properties of 3D shapes
for applications in search, organisation, scene composition, and visualisation of 3D shape data
present in ever increasing online 3D shape content libraries. We believe that our exploration
of perceptual properties of 3D shapes will motivate further research by looking into other im-
portant perceptual properties related to our vision system and will also fuel development of
techniques to automatically enhance such properties of a given 3D shape.
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It is entirely possible that behind the perception of our senses,
worlds are hidden of which we are unaware.

Albert Einstein

1
Introduction

In this thesis we propose data-driven methods to analyse, learn, and build applications with
style and aesthetics as two perceptual attributes of 3D shapes, which are present in abundance
inmodern day online3D shape repositories. In this chapter, wemotivate our research (Section
1.1), describe the problems we solve (Section 1.2), propose the solution methodology (Sec-
tion 1.3), present our main contributions (Section 1.4) and outline the whole thesis (Section
1.5).

1.1 Background andMotivation

Wearewitnessing an explosion in the growth of 3D shape data freely available in online repos-
itories. This explosion is fuelled by easy availability of cheap geometry acquisition devices and
3D modelling tools in the hands of ordinary users. These shape repositories are also emerg-
ing as popular platforms for 3D content sharing not just by novices and professionals, but also
by product manufacturers to showcase their brand. Furthermore, many augmented reality
[93, 114] based apps allow an ordinary consumer to virtually try products before effective
buying can take place.

The exponential growths in the amount of free 3D data has createdmany fundamental chal-
lenges and opportunities in the analysis, search, organisation, synthesis, and reuse of shapes
present in online repositories. Many of these challenges are arising due to the way these on-
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line repositories are created in the first place. Specifically, online shape repositories do not
possess any organisational structure and use inaccurate and ambiguous tags for object shapes.
For example, a ‘vase’ is wrongly placed with ‘coffee mugs’ and a ‘table’ may be tagged as an
‘umbrella’. Consequently, there is an emerging need to develop tools and techniques that can
help effectively search, organise and reuse these large shape repositories.

Although, there exists a large body of work in3D shape analysis and retrieval, little attention
has been paid to understanding and learning perceptual properties of 3D shapes for meeting
the challenges mentioned above. These perceptual properties can be related to different hu-
man senses such as vision and touch. For example, perceptual aesthetics and softness of 3D
objects are two properties related to visual and touch senses. The recent popularity of crowd-
sourcing platforms in computer graphics make it easier to conduct studies on perceptual at-
tributes of 3D shapes. The large amounts of data collected from such studies can be used for
content analysis and content creation by employing machine learning methods.

Shape perceptual property analysis and prediction is an emerging topic [131] in computer
geometry analysis and processing. Several applications in computer graphics related to search,
organisation, visualisation, reuse, and editing can directly benefit from data-driven modelling
of perceptual properties. Consider someone looking for an aesthetic chairmodel on 3DWare-
house first uses ‘chair’ keyword to search the repository, and then manually goes through
37, 997 search results (at the time of writing this thesis) to look for the most aesthetic model.
Further, if the same person is able to find a model that is the most beautiful, how can he use
that model to search a table or other furniture that matches in style with it. Although, the ex-
isting body of research allows one to use shape analysis to infer consistent tags, it is relatively
very hard to convey stylistic and aesthetics traits using only text. To this end, we investigate
the problems related to “matching styles” and “predicting beauty” of shapes in large 3D shape
repositories. The terms ‘style’ and ‘aesthetics’ are defined as “a distinctive quality, form, or
type of something” [Merriam-Webster, 2018] and “the qualities in a person or thing that gives
pleasure to the senses” [Merriam-Webster, 2018], respectively.

Our thesis is that developing tools that utilise data-driven models of visual perceptual
properties of man-made 3D shapes allows for efficient search, reuse, and visualisation of large
amounts of geometric data. We demonstrate this by developing data-driven models of style
similarity and aesthetics as two visual perceptual properties of 3D shapes. Our data-driven
models consume large amounts of human visual perception data collected from workers reg-
istered at popular Amazon Mechanical Turk (AMT) crowdsourcing platform.

The key idea of our approach is that by taking advantage of the large amounts of crowd-
sourced human visual perceptual judgements along with 3D shape data of man-made objects,
we can learn to predict aesthetic value and match styles of 3D shapes, without relying on
hard-coded rules or any pre-existing notion of these visual properties 1. This suggests that

1By pre-existing notion, we mean that quantifiable properties such as curvature and symmetry are believed
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Figure 1.1.1: Example style matching task. Which coffee table do you think matches
more in style with the sofa on the left? Please note the variation in shape, colour, and
texture.

a knowledge-based system can be build that uses such hard-coded rules tomeasure aesthetics,
for example more curved shapes are evaluated as more aesthetic. However, in our evaluation,
we learn directly from human judgement data rather than considering curvature, symmetry
and any other pre-existing notion of aesthetics. Specifically, we collect human judgement data
as relative comparison tasks, for example, for aesthetics study we show shapes in pairs and ask
which shape is more aesthetic, thus we avoid biasing the data collection to a specific attribute
such as curvature or symmetry.

The input to our data-driven methods is a collection of semantically-related man-made
shapes, mainly taken from ShapeNet [17] large-scale online repository, which provides mul-
titude of semantic categories and organises them under the WordNet [84] taxonomy 2

1.2 Problem Statements

Asmentioned in the section above, new tools and techniques are needed to explore, organise,
and reuse the “big geometric data” [131], we see it as an opportunity to formulate and solve
the following problems.

Problem#1 How to learn objective and personalised 3D shape style matching metrics that
take into account colour and texture along with shape features? The existing approaches to
style similarity metric learning work only on shape geometry features without considering
colour and texture attributes. We argue that incorporating colour and texture in learning can
make style similarity metrics more useful and throw light on the role of colour, texture, and

to contribute to aesthetic appeal of 3D shapes.
2To remove any confusion, by man-made, we mean 3D shapes representing real life objects constructed and

built by humans. Specifically, objects of varying sizes and topology, such asmugs, chairs, tables, air planes, build-
ings, and vases are examples of the shape categories used in our study.
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Figure 1.2.1: Examples of shape representations and their aesthetics preference scores
(numbers below each shape). First, we show a pair of tables rendered in polygonal repre-
sentation, followed by the same pair rendered in voxel representations. The number below
each shape shows, the participants, out of 25 total, who prefer it to be more aesthetic
than the other. For example, for the first pair of tables, 19 prefer first and 6 prefer sec-
ond for aesthetics. Similarly, next two pairs are for two chairs in polygonal and point rep-
resentations. Please note that for chairs, we get different proportions of user preferences
for polygonal and points representations.

shape properties in style matching. Further, we call the metrics learned on crowdsourcing
judgements as objective metrics. We let users explore and adapt these objective metrics to
create personalised style metrics.

Problem#2Howdoes human perception of shape aesthetics vary between different 3D shape
representations and how can this help design data-driven model of 3D shape aesthetics? The
recent data-driven approaches in computer graphics employ a variety of 3D shape representa-
tions as input, namely voxels, images, or point clouds. We use these shape representation to
study perception of aesthetics of 3D shapes in pairs to help us decide the appropriate shape
representation for data-driven modelling of 3D shape aesthetics (Problem #3). Further, this
study on perception of shape aesthetics helps evaluate if humans can discriminate more aes-
thetic shapes from coarse shape representations. The study is designed to collect and compare
human aesthetics judgements on stimuli created using shape representations with varying lev-
els of shape details. The used shape representations include polygons, voxels, point-clouds,
and wire-meshes.

Problem#3How to build a data-driven model of visual aesthetics of 3D shapes from crowd-
sourced human aesthetics judgements, and without relying on pre-existing shape aesthetics
rules? We use deep ranking approach to build a data-driven model of shape aesthetics. The
previous study helped us choose voxels as the shape representation to input to deep ranking
technique. Compared to the previous approaches, which focus their evaluation of aesthetics
on specific properties such as curvature or symmetry, our approach learns directly from hu-
man perception judgement data collected by showing shapes in pairs and asking which shape
they think is more aesthetic.
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Figure 1.2.2: Example shapes used for the study of aesthetics. These show variation in
curvature, structure, and perceived ergonomics.

1.3 Methodology

One basic approach to solve the above problems is to design a knowledge-based system [35].
The hard-coded knowledge is embedded into such systems and then a computer is able to
reason using logical inference rules. However, such systems have their drawbacks in terms of
generalisation and thus do not lead to any major success.

Another approach involves building a machine learning model that can acquire knowledge
by extracting patterns from raw data. However the usefulness of such models depend largely
upon the representation of the data used to input to the algorithms. For example, in case of
image data, if a right set of features are not extracted, the learning mechanism can fail to learn
anyusefulmappings. Inmany cases, wedonot evenknowbeforehandwhat right set of features
are suitable for learning, so researchers end up using an over-complete set of features. We use
this approach in our style similarity problem by learning on an over complete set of features,
which works well in our problem.

Finally, to overcome the input representational problem, a new set of machine learning al-
gorithms have recently been used and are called representational learning [11]. In these tech-
niques, we not only learn the mapping from representations to output, but also the represen-
tations themselves. Recently, the advances in deep learning help us achieve both goals. We
use deep learning to predict and learn shape aesthetics.

We can summarise the overall method as follows. Since we are interested in building com-
putational models of perceptual attributes, we aim to learn from human perception data. We
don’t base our evaluation on manually constructed rules using any pre-existing notion of aes-
thetics, such asmore curved shape are perceivemore aesthetic. Thus, to solve above problems,
we follow data-driven approach to allow aggregation of key information from a collection of
shapes to support analysis and reasoning relating to various attributes. We demonstrate that a
data-drivenmodel is able to reason about shape characteristics without relying on hard-coded
set of rules. Since a large amount of perceptual preference data is needed for such problems,
we useAmazonMechanical Turk for conducting perceptual studies. We post perceptual study
tasks, calledHuman IntelligenceTasks (HITs) in crowdsourcing terminology, analyse the col-
lected responses on the predefined set of rules and use the data for learning the shape charac-
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teristics.

Shape Style Matching We aim to learn a metric for matching styles of 3D shapes based on
their shape, colour and texture by learning directly fromhuman style preference data. We pro-
pose to extend and evaluate the effectiveness of existing feature-based style metric learning
approaches by using a shape descriptor for metric learning that combines geometric, colour
and textural information. We demonstrate using empirical results that this approach works
very well for developing texture and colour aware shape style similarity metrics. To this end,
our method involves the following steps: first, crowdsourcing a large amount of style prefer-
ence data as it helps define styles by example rather than using any manually defined rules;
second, using a pairwise metric learning method to compute a style distance function based
on the crowdsourced style preference data. The pairwise metric learning method is inspired
from the existing techniques in learning distance metrics. Our crowdsourcing approach in-
volves showing three shapes to participants, consisting of a source shape (A) and two target
shapes (B and C), and asking “Is shape A more similar in style to shape B or C?” This method
of presenting stimuli is termed as ‘relative comparison triplets’ and helps participants actively
provide their responses. Themetric learning algorithm takes as input twoparameters: first, the
features computed on 3D meshes and their texture and colour attributes; second, the triplet
responses received from crowdsourcing platform. To learn a personalised style metric, we let
users interact with the application user interface to provide their style preferences, which can
be used to personalise the objective style metric.

Stimuli Selection for Aesthetic PreferencesWe compare the use of polygonal, wire-mesh,
voxel, and point cloud as four different shape representations (or stimuli) to crowdsource
shape aesthetic judgements. We pair a set of shapes (A and B) for each stimuli type (e.g.
polygonal with polygonal, and voxel with voxel) to ask humans whether they perceive A or
B to be more aesthetic. We then compare the received preferences using Fisher’s test.

PredictingPerceptualAesthetics In this problem, ourmainmotive is to learn to predict per-
ceptual aesthetics scores of 3D shapes and use the learned scores to demonstrate a variety of
graphics applications. Unlike the previouswork, which explored shape aesthetics using prede-
fined features, such as curvature and symmetry, our method employs deep neural networks.
We build a deep neural network based data-drivenmodel of shape aesthetics, which takes two
inputs. The first input is human aesthetics judgements and the second input is 3D shape’s
voxel grid. In our method, we treat visual aesthetics as a visual perceptual concept, and thus
crowdsource a large number of shape aesthetics judgements. The relevant features or shape
descriptors to learn the aesthetic function are discovered automatically. In addition to the
above, we investigate the link between the learnt shape aesthetic scores and their computable
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statistical features. We do this by first computing several shape descriptors such as Gaussian
discrete curvature [83], shape diameter function [109], and D2 shape descriptor [115] etc.,
and then training a perception to see the prediction accuracy.

We formulate amethod to learn ameasure of visual aesthetics of 3D shapes by first focusing
specifically on geometric aesthetics. Although colour, texture, and any other kind of informa-
tion could also be included along with shape information, we don’t choose to do so. Instead,
we first investigate into learning and predicting using “form” of an object alone, which in its
own a challenging problem. Our deep neural network based method is easy to extend to use
any other properties of object 3D shapes. We are inspired to use deep learning for this prob-
lem as it is the state of the art for modelling and learning perceptual concepts, and has the
ability to automatically discover features relevant to learning a function of shape aesthetics di-
rectly from input 3D shape. Further, our formulation of these two problems is fundamentally
different. We learn a function of 3D shape aesthetics that outputs a real value as a measure
of aesthetics of input object 3D shape, while for style similarity we learn a distance function
that gives a real value as a measure of style distance between two given input object 3D shape
descriptors.

Finally, it must be observed that ourmethodology is general and can be applied to any class
of objects. Theprimary requirement is the need to have human perception data for newobject
category under consideration. With this data, data-drivenmodels can be built in a way similar
to we do and describe in the thesis for other categories of objects.

1.4 Contributions

This thesis makes the followingmain contributions to advance the state of computer graphics
research.

We conduct large scale shape style and beauty perception studies to collect human prefer-
ence data, which we use to learn computational models of human perception of such charac-
teristics, in order to demonstrate novel applications for content creation and reuse, and to sug-
gest important implications for conducting perception studies and design ofmachine learning
mechanisms.

The above central idea is carried out in three parts as follows:

• We use metric learning for building both objective and subjective models of style
matching of 3D models based on their shape, colour and texture. We demonstrate
this by building user interfaces to perform style based search, scene composition, and
personalised style matching.

• We conduct a crowdsourcing study by showing shapes in pairs and asking which shape
ismore aesthetic. The shape stimuli shown toparticipants is created using four different
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shape representations prevalent in data-driven analysis of 3D shapes. Our results show
that humans’ aesthetics judgements on coarser a shape representation such as voxels
are comparable to their judgements on polygonal shape representations.

• We exploit deep learning to learn to predict aesthetics scores of 3D shapes and demon-
strate aesthetics based applications by building user interfaces to rank shapes in large
data-sets and creating visualisations.

1.5 Structure

This thesis is organised as follows. InChapter 2, we discuss the relatedwork. Chapter 3 details
style similarity metrics for 3D shapes. We report the results of our experiments with different
shape representations for collecting aesthetics preferences in Chapter 4. In Chapter 5 we pro-
pose a data-driven system to learn and predict shape aesthetics and applications built around
it. Chapter 6 concludes the thesis.
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What you see when you see a thing depends on what the thing
you see is. But what you see the thing as depends upon what
you know about what you are seeing.

Fodor and Pylshyn

2
RelatedWork

In this thesis, we visualise ourwork as having fourmajor components: perception of 3D shape
attributes, crowdsourcing perceptual preference data, learning and prediction techniques for
3D shape attributes, and penalisation of perceptual attribute learning. Therefore, we give an
overview of the related work partitioned along these areas.

2.1 3D Shape Attribute Perception

In this section we discuss the studies and experiments that look into the problems related to
study and analysis of perception of ‘style’ and ‘aesthetics’.

2.1.1 Shape Style

Although the main focus of our work is on learning a measure of perceptual style similarity,
for completeness, we also discuss related work in analysis of style. While style analysis allows
us to probe defining characteristics of an object, style matching involves more than one ob-
ject, to say how they relate in terms of their visual styles. In domains other than computer
graphics, a significant effort has been made to analyse the styles of a variety of media such as
images, videos, and audios [5, 117]. However, in computer graphics there is very limitedwork
on perceptual matching and learning a measure of style similarity of visual content (learning
approaches to style matching are discussed in next section).
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The focus of style analysis techniques has remained on identification of a set of features
or characteristics unique to that style [50]. The work of [1] considers the problem of pot-
tery style. They use statistical analysis and a questionnaire to explore the actual process by
which people determine that one object is similar to, or different from another. On using
statistical technique of Exploratory Data Analysis (E.D.A.), they identify objective stylistic
grouping. Their objective analysis is based on measures of physical characteristics, including
width, height, weight, thickness etc. Instead of using object-specific features [50], Dorothy K.
Washburn [125] presents a discussion on the concept of style. He emphasises on the basic
properties of form or shape, including lines, colour, texture, symmetry, and orientation. His
arguments are based on perceptual data analysis using mathematical concepts derived from
Euclid and other researchers.

In [16], author examines design studies to establish important concepts related to evolu-
tion of architectural styles. He observes that repeated forms can be used to identify an archi-
tectural style. This observation is based on looking at design sessions of artists who repeat
forms in ‘plans’ and ‘elevations’ of architectural drawings. T. Chiu-Shui Chan [15] argue that
cultural circumstances and social aspects can be used to identify a style. Thus, a set common
features appearing in an object are used as a fundamental unit of style measurement. Further,
the proposed algorithmicmeasure to identification of style uses the concept of features related
to physical characteristics such as colour, texture, shape, materials, and patterns.

Martin Stacey [111] suggests that in order to have ‘style similarity’ between objects, it is im-
portant to have shared features. He differentiates between different ways of defining ‘style’, by
considering ‘perceptual style’, ‘creative style’, ‘preferential style’, ‘analytical style’, and ‘genera-
tive style’. Further, he presents a review of the literature on how expert designers and novices
apply perceptual similarity betweenobjects to create artefacts. Humanperception systemuses
two different ways to access style similarity in [81]. First, based on object features, which al-
lows fast judgements of similarity. This way does not take structure of the representation into
account. The second way uses structure into account and provides slower but more thought-
ful judgements. Chensheng Wang et al. [121] explore shape style using form features and
also investigate into the influence of form features on a style by the topology structure and
geometric variations. They found out that the design style can be varied distinctly by intro-
ducing variations in topological structure, while modification to local features can enhance
the characteristic appearance of a style.

2.1.2 Shape Aesthetics

In this subsection, we report on literature connected to shape aesthetics features such as cur-
vature and symmetry. We also discuss the use of aesthetics for design applications.

Curvature It has been known for a long time that more curved a shape is more beautiful
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Figure 2.1.1: Specific aesthetic features used in [39] as a template to translate an indus-
trial design into a CAD system.

or attractive it is perceived. For example, while buying a product, people have strong
preferences for curvilinear designs [73]. The results of psychological experiments done
in [6] suggest a strong link between perceptual aesthetics and curvature of geometric
shapes. The authors use eight different object classes in their study, including visual
art, landscapes, faces and different design classes to establish the link between visual
aesthetics and curvature. They ask participants to describe their aesthetic impressions
about objects using a set of words. In a study that uses functional magnetic resonance
imaging, authors [119] ask participants to judge whether architectural spaces are beau-
tiful. When presented with stimuli, 200 photographs of architectural spaces, each par-
ticipant was instructed to respond by ‘beautiful’ or ‘not beautiful’. The authors found
that participants were more likely to judge them as beautiful if they were curvilinear
than rectilinear. Another study asks art gallery visitors to observe an image set con-
taining shape variations of a sculpture [40]. Participants were asked to note their ‘most
preferred’ and ‘least preferred’ shapes on a ballot. This experiment found that the vis-
itors prefer shapes with gentle curves as opposed to those with sharp points. For aes-
thetic design applications, a formalisation of aesthetic curves and surfaces is presented
in [86]. Authors use specific shape criteria such as ‘fairness metric’, ‘bending energy’,
and ‘minimum variation surface’ as a way to describe the relation between curvature
and aesthetic surfaces. Two mathematical equations for aesthetic curves are also pro-
vided for implementations purposes.

Symmetry The term ‘symmetry’ in day to day language signifies harmony and beauty in pro-
portion and balance. Authors in [12] associate symmetry [85] as a feature to shape aes-
thetic. Using quantifiable properties of surface geometry, namely, entropy, complexity,
deviation from normality, noise, and symmetry; image aesthetics models are extended
towards the evolution of 3-dimensional structures. Locher and Nodine [69], demon-
strate throughpsychological experiments that the symmetrical compositions are linked
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to arousal and aesthetic judgements. Using flash experiments it is demonstrated that
symmetry is detected by subjects during the first glance. Further, the authors found
that the axis of symmetry is used as a perceptual landmark for visual exploration of vi-
sual stimuli. Considering polygons as an art form, the work in [38] first asks observers
to rate the attractiveness of octagonal polygons that varied in contour length but had
approximate constant area, and then ask for judgements about polygons with different
numbers of concavities but with constant contour length. On analysing the responses,
they show that shapes with partial symmetry are judged more attractive and also the
shapes with more total contour length.

Aesthetic Applications There is much work in developing CAD tools that aid in designing
products that could satisfy consumer emotional needs. With an aim tobuildCAD tools
for aesthetic product modelling, a study to find a link between a user’s emotional reac-
tions and a product’s basic geometric elements has been performed in [45]. The study
involved an analysis of the design activities carried out by stylists and surfacer in auto-
motive and household supplies fields. As an outcomeof the study are two languages for
aesthetic product expression. Sequin [108] introduces the idea of “optimising a surface
by maximising some beauty functional”. His work focuses on abstract sculptural forms
for artistic purposes and hemathematically defines ‘beauty functionals’ that have prop-
erties that lead to more beautiful shapes. Their work has been applied to the automo-
tive and household supplies fields. Similarly, a fuzzy shape specification system to sup-
port design for aesthetics is described in [99]. It uses pre-defined aesthetic descriptors
for designing shapes by allowing designers to specify and work with rough models in
a more intuitive fashion. Again, from a product design perspective, elements of design
including colour, light, line and shape, texture, and space and movement are consid-
ered useful for understanding aesthetics by designers in [37]. The features shown in
Figure 2.1.1 are used as a template to translate an industrial design into a CAD system.
For example, Figure 2.1.1 (a) shows the face shaving feature that is used for defining
fundamental exterior of a product with free surfaces [39].

For building exteriors andurbandesign, high-level features that determine the aesthetic
quality of buildings and their surroundings have been studied in [87]. The high level
building aesthetic variables that are studied in thiswork include: enclosure, naturalness,
style, complexity and order. Following the similar pattern of research, that is focusing
on specific features, researchers have studied aesthetics of objects such as furniture and
jewellery. For example, for office chair design, researchers have considered user satis-
faction criteria such as luxuriousness, balance, and attractiveness in [95]. They build a
fuzzy rule-based model based on specific variables that are related to these user satis-
faction criteria. For jewellery design, the aesthetics of jewellery shapes have been con-
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sidered [124]. They allow the user to adjust specific shape features such as golden ratio,
mirror symmetry, and rotational symmetry to design more aesthetic shapes.

2.1.3 Shape Feature Perception

Humans perceive an object as a two dimensional image in their retina. The perception of
shape can happen from real 3D objects or from 2D images of objects. In computer graphics
research, several different representations are possible for an object depending upon the ren-
dering style used. For example, a shape can be rendered as a line drawing or as a polygonal
surface. Researchers have investigated how shape perception is related to rendering style used
for an object. The usage of line drawings to convey a 3D shape is presented in [26]. The idea of
‘suggestive contours’ is proposed, which are lines drawn on clearly visible parts of the surface
of a 3D shape. Such line drawings convey reliable shape visual information. The important
work of Todd et al. [118] investigates the use of different sources of information (e.g. shad-
ing, texture, contours) that humans can use to visually perceive 3D shapes. The authors found
that the perceptual representation of 3D shape in human brain involves a relatively abstract or
less detailed data structure. This data structure is based primarily on qualitative properties of
the shape that can be reliably determined from visual information. Using a set of perception
studies, Ferwerda et al. [36] find that rendering methods (such as global illumination) and
viewpoint have a significant effect on the ability to discriminate shape differences. Their work
also suggests that changes in viewpoint increase the human ability to discriminate shapes.

McDonnell et al. [82] conduct a series of psycho-physical experiments to study the effect
of different rendering styles on the perception of virtual humans. They found that render style
does not change the interpretation of content in a positive or negative manner. This finding
is important in the sense that for an animation movie, it is the content not the rendering style
that contributes to success or failure. In a similar work, Zell et al. [135] study how shape
and material stylisation affect the perception of characters and facial expressions. They show
that realism alone is a bad predictor of attractiveness, and shape is the important factor for
realism and material is important for appeal. Further to above, in domains related to human
perception, researches have explored aesthetics in many different ways [110, 128], suggesting
a transcendental nature of aesthetics.

Our work is different from the previous works along two important lines. First, we focus
on 3D shape aesthetic judgements on crowdsourcing platforms. Second, our stimuli selection
is motivated by use of different shape representations used in data-driven shape analysis and
processing. Specifically, we investigate the question of whether rendering 3D shapes in differ-
ent shape representations (such as polygonmeshes, point clouds, voxels) affect the perceptual
aesthetics judgements.
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2.2 Crowdsourcing inGraphics

The use of crowdsourcing platforms such as Amazon Mechanical Turk (AMT) is constantly
on the rise in computer graphics and human-computer interaction research. Crowdsourcing
is defined as “the process of obtaining needed services, ideas, or content by soliciting contribu-
tions from a large group of people, and especially from an online community, rather than from
traditional employees or supplier [Merriam-Webster 2005]”. Crowdsourcing platforms offer
many benefits for surveying, user studies, data collection, including: low costs per participant,
online recruitment, procedural analysis of the data, and variety of participant backgrounds to
choose from [8].

In this section we discuss the ways researchers have utilised crowdsourcing in graphics re-
lated projects, how they control the quality of collected data, and a brief comparison to our
data collection approach.

2.2.1 Crowdsourcing Visual Perceptual Data

Adrian Second et al. [107] crowdsource a user study to measure 3D object viewpoint good-
ness, in which participants are shown two different viewpoint images of an ‘object’ and are
asked: “Which of these two views do you prefer?”. The results of the large user study are
then used to optimise the parameters of a computational model for viewpoint goodness. The
learnedmodel is used to predict people’s preferred views for different varieties of objects. Au-
thors in [20] propose the concept of ‘schelling points’, which are ‘salient’ feature points on 3D
surface having several fundamental applications in computer graphics. In their study, they ask
users to select points on the surface of an object mesh that they think will also be selected by
other users. The collected data from humans is analysed using local and global shape proper-
ties such as symmetry and curvature. The same properties are further used to predict where
‘schelling’ points on the surface of an input mesh will be.

Gingold et al [46] introduce human micro-tasks to solve perceptual problems in graphics,
for example in the problemof augmenting an imagewith high-level semantic information such
as symmetry can be aided by human input (Figure 2.2.1). They emphasise on the idea that hu-
mans are good at visual tasks such as tagging an image, while computers are good at numerical
computations. Thus, in their approach they define an algorithm that uses ‘human processors’
for small visual tasks along with digital processors.

Nghiem et al. [88] demonstrate a system to exploit workers at crowdsourcing platforms
to build semantic links between a product’s textual description and it’s corresponding 3D vi-
sualisation. On a web-page based interface, participants read textual product description and
locate product features on the rendered 3D model of the same product. For example, in the
textual description of a digital camera, participants may read ‘shutter button to capture photo’
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Figure 2.2.1: The process envisioned in [46] to involve human computation (HC) to
solve problems in computer graphics and vision. The figure depicts a human who is us-
ing an interactive application to solve a perceptual problem such as “create depth lay-
ers”. The application code invokes a Human Computation (HC) algorithm to utilise hu-
man processors (HP). Specifically, The HC algorithm takes advantage of crowd of human
workers to solve perceptual tasks and give results back to the main application.

Figure 2.2.2: Crowdsourcing interface used in [61] to learn tactile mesh saliency. In (a)
authors show, as part of instructions before attempting the task (or ‘HIT’ in Mechanical
Turk terms), two examples of images with correct answers. The participants are asked to
‘imagine the virtual shape as if it were a real-world object, and to choose which point is
more salient (i.e. grasp to pick up, press, or touch for statue) compared to the other or
that they have the same saliency’. In (b), authors show two examples of real questions.

in the product description and locate the same on the rendered 3D model of the camera. This
linkage is useful in enhancing online 3D product browsing experience for customers.

Lau et al. [61] use Amazon Mechanical Turk crowdsourcing platform to collect mesh
saliency data to measure tactile mesh saliency. They ask humans to compare between pairs
of vertices of a mesh and decide which vertex is more salient (Figure 2.2.2). In another work
[60], they learn a model of perceived softness of virtual 3D objects. Similar to previous work,
they collect crowdsourced data where humans rank their perception of the softness of vertex
pairs on virtual 3D models.

Authors in [112] useAmazonMechnical Turk to collect ratings of geometric humanbodies
with respect to 30 body attributes, such as curvy, fit, heavyset, round apple etc. Using the
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collected data they learn a linear function relating these ratings to3Dhuman shape parameters.
Specifically, they learn amapping between a linguistic body space and a geometric body space.
An important finding of their work is that humans share an understanding of the 3D meaning
of shape attributes used in their work.

The work presented in [41] builds a data-driven model of style similarity for 2D clip art
with crowdsourced data. In order to collect large amount of data on human style preferences,
authors use crowdsourcing platform to show each participant questions having three pieces of
clip art A, B, and C, and ask: “Is A more similar to B or to C?” (Figure 2.2.3 a) The collected
data is used in a linear ‘metric learning’ method to develop a style distance measure between
two given pieces of clip-art. The distance metric is build by computing an over-complete set
of features encoding ‘colour’, ‘texture’, ‘strokes’, and ‘shading’.

Jun-YanZhu et al. [139], use popular crowdsourcing platformAmazonMechanical Turk to
collect pairwise comparisons (e.g., “Is expression A more attractive than B?”) to score the at-
tractiveness of facial expressions to train a model to automatically predict facial attractiveness
of different expressions of a person. They note that collecting data for such studies in pairwise
comparisons is a common approach since it is much harder for people to provide an absolute
score. In their approach, a novel active learning scheme is also described to help both cus-
tomise the learnedmodel to the user’s data and select the user’s top expressions across a range
of seriousness levels.

Liu et al. [67] learn a measure of style compatibility for furniture models using a combi-
nation of crowdsourcing and machine learning. In each task they pair one furniture item (say
chair) with six other different pieces of furniture from another category (say tables), and ask
participants to select two pairs that are stylistically similar. In this way, using one task they are
able to gather more style similarity data. Lun et al. [74] use similar setup as in [41], except
the participants are given two additional options: “can not tell-both B and C”, “can not tell-
neither B nor C”.

Sean Bell and Kavita Bala [9], learn an embedding for visual search in interior design.
Specifically, they learn a distance metric between an object in-situ (i.e., a chair in a drawing
room image) and independent product image of that object (i.e., product image with white
background). They use a unique crowdsourced pipeline to collect a large number of pairings
between scene images and the individual product images. For data collection, participants are
asked to draw bounding boxes around a product appearing in a scenewith other objects. With
this data, they design a deep convolutional neural network to learn an a distance function.

Koyama et al. [58], present a method to incorporate crowdsourced human computations
for a traditional design optimisation problem dealing with parameter tweaking in graphics de-
sign. An example of such problems is when a designer has to spend a lot of time in color en-
hancement of photographs because parameters such as ‘brightness’ and ‘contrast’ need a care-
ful tweaking to obtain pleasing results. In this method, the participants are asked to perform a
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Figure 2.2.3: Examples of tasks presented to participants for collecting style similarity
data for clip-art (a) and 3D shapes (b) in [41] and [74], respectively. In (a), left image
shows an example in which style of source clip-art ’A’ is matched with target clip-art ’C’,
and right triplet shows a real style matching task. In (b), there buildings ’A’, ’B’, and ’C’
are shown where participants are asked to click on either ’B’ or ’C’ based on which they
think matches more in style with ’A’.

sequence of single-slidermanipulationmicro-tasks to adjust the parameters. Data collected in
this manner from crow is used in a novel technique extending Bayesian optimisation to allow
many manipulation tasks using a single slider.

2.2.2 Issues and Quality Control

Amazon runs a survey website called Mechanical Turk (MTurk), on which a large number
of workers agree to fill out surveys in exchange for some monetary benefits. Typically, the
results of a survey are available within a few hours to a few days. The process of posting and
retrieving results is easy and efficient. A typical survey takes a couple of minutes to complete,
so hourly rates per person are low. In short, for a majority of work available on Mechanical
Turk, crowdsourcing is a bargain for researchers but not for workers.

Issues

Although crowdsourcing allows large amounts of data collection at low prices and in relatively
lesser time, it presents challenges for recruiting crowds and collecting quality data. We now
briefly discuss some issues concerning crowdsourcing studies used to conduct surveys.

Privacy andConfidentiality Two important downsides of crowdsourcing surveying are pri-
vacy of workers’ personal data and confidentiality of requester’ tasks. To the best of
our knowledge, enforcement of such responsibilities is not technically supported by
on line platforms. However, the anonymity of workers helps respect privacy of their
data. For example, a worker on Amazon Mechanical Turk is identified by a code like
“A3IZSXSSGW80FN”, which we don’t share outside of our research. A careful study
design is still the best way to reduce privacy and confidentiality risks. The details of
method or technology should be kept hidden as much as possible.
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Worker Communication When the number of crowd workers in a study is large, say a few
thousands, communicatingwith all of them in ameaningful way becomes very difficult.
This issue gets more complicated due to anonymous nature of the workers. This results
in workers making assumptions if some aspects of the survey are not clearly defined.

Right Crowd Selection The selection of right crowd workers is essential for collection of
good quality data. It is expected that some crowdsourcingworkers would prefer certain
kind of taskmore over others. For example, performing visual tasks using amouse-click
is considered easier over text entry task. Thus, it is desirable to have such workers for
visual tasks. Further, for visual tasks related surveys, lack of worker background on de-
ficiencies such as colour blindness exposes limitations of crowdsourcing. The research
reported by Julie S. Downs et al. [31], suggests that some respondents may be partici-
pating in AmazonMechanical Turk (AMT) studies for quick cash rather than inherent
interest, and may not be inclined to answer conscientiously

Ethical Considerations The basic idea of crowdsourcing is based on reciprocity or mutual
benefit. Theworkers registeredona crowdsourcingplatformvolunteer toperform tasks
in exchange of money. This process may result in two issues: unfair compensation
and not everybody gets paid. Our compensation is designed based on what other re-
searchers pay for similar studies. Some researchers choose to pay bonus to those work-
ers whosework is highly satisfactory, howeverwe do not do so as our tasks are relatively
easy, for example for aesthetics, workers click on one shape out of a pair to choose the
one they think is more beautiful. We reject and do not pay only those workers who do
not correctly answer less than fifty percent of control questions (see below). Further,
we block thoseworkers fromattempting our taskswhosework get rejected at least three
times.

Quality Control

Julie S. Downs et al. [31] develop a method to disqualify participants who participate but
don’t take the study tasks seriously. They design a set of qualification tests and find that young
men seem to be most likely to fail the qualification task. However, participants with profes-
sional, student, or non-workers backgrounds seem to be more likely to take the task seriously
than financial workers, hourly workers, and other workers. JeffreyHeer andMichael Bostock,
[49], replicate a set of previous experiments onMechanical Turk to conclude that it is a useful
tool to conduct graphical perception studies. However they raise some concerns related to
ecological validity, subject motivation and expertise, display configuration and viewing envi-
ronment are specific to visual perception. They found that crowdsourcing provides up to an
order of magnitude cost reduction. Garces et al. [41], use short training sessions and control
questions to improve the reliability of the crowdsourced data. Specifically, they use a set of
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questions with obvious answers to test the participants. The participants could only access
the real test if they answer all the questions correctly on the qualification test. As a second
measure of quality control, a set of questions, called control questions with obvious answers,
are embedded in the set of actual test questions. Only those workers who provide correct an-
swers to a specific percentage of control questions are paid for their word and their data used
for further consideration.

We believe that collecting data as relative comparisons is more efficient compared to using
a rating scale. In literature, researchers have investigated different presentation methods for
collecting perceptual data on images and shapes. For example, a binary like/dislike rating and
a numerical 10-point scale [3] have been tested with crowdsourced voters to understand im-
age aesthetics. Authors in [80] explore different experimental setups to collect data to assess
image quality to suggest that forced-choice pairwise comparison method allows collection of
most accuratedata. Inour experimentswealsouse forced-choice relative comparisonmethod,
however in slightly different formats. Similar to [41, 67, 74, 105], we collect relative similarity
comparison responses of the form “is object A more stylistically similar to object B or to C”,
using popular crowdsourcing platform Amazon Mechanical Turk as it offers more flexibility,
especiallywhen a quick response tomany thousands of queries is required. In shape aesthetics
work (Chapters 4 and 5), we collect aesthetics preference data by showing shape pairs belong-
ing to the same high level category (e.g. chairs) and asking which is more aesthetic. Although,
subtle, the “key feature” of our crowdsourcing studies is the use of multi-view images (gifs)
showing multi-viewpoints of 3D shapes.

We use several techniques to ensure that participants provide quality data. First, we de-
sign qualifications test for the participants before they can complete the original tasks. The
qualification tests serve as training session for participants before they can start the real test.
Second, we embed control questions in themain test and discard the collected data if number
of correct answers to control questions falls below the pre-set thresholds. Third, if some par-
ticipants repeatedly give incorrect answers (to control questions), they are detected and are
blocked fromdoing any furtherwork. Fourth, for aesthetics perception study, wemake partic-
ipants spend at least 2.5 second on each shape pair to select the more aesthetic shape. Finally,
we use Mechanical Turk’s built-in qualifications to define the audience of workers to work on
survey questions. These qualifications are a set of requirements that a potential worker has to
satisfy in order be eligible to complete surveys on Mechanical Turk. We define our questions
only for those workers who have an overall HIT (Human Intelligence Task) acceptance rate
of 95% or more. In the instructions before every survey, we ask workers to use only desktop
or laptop devices to complete the surveys. Although, this feature wasn’t available at the time
we collected data for our projects, however recently, Mechanical Turk offers the possibility
where a researcher can specify different parameters related to a worker, such as location (e.g.
US, Asia, Africa etc), age, gender, or type of smart phone etc. By doing so, researchers can
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recruit workers that meet a certain profile.

2.3 Learning and Predicting Perceptual Attributes

In computer graphics research community, the use of machine learning techniques is rapidly
growing. These techniques have the potential to help save both human and computational
times in creating, editing, and organising both 2D and 3D content. We focus on develop-
ing data-driven models of shape visual perceptual properties using machine learning. These
methods allow learning “measures of visual perceptual properties” to allow search and scene
composition among other uses. Data-driven visual computing and machine learning has the
potential to overcome the current bottlenecks prevalent in the use of computer graphics tech-
niques. For example, computer generated film production requires a lot of manual work (e.g.
modelling and texturing) by artists, which can be aided by building data-driven models using
“big geometric data”.

Here we discuss the background and related work in metric learning and deep learning.
These are two specificmachine learning techniques whichwe use in learningmeasures of style
similarity and aesthetics.

2.3.1 Style Metric Learning

Pairwise metric learning methods have long been used [129] to compute distance functions
between data points in fields such as computer vision, data mining, computer graphics, and
pattern recognition. As stated in [10], “the goal of metric learning is to adapt some pairwise
real-valuedmetric function, say theMahalanobis distance to the problem of interest using the
information brought by training examples”, we follow the same paradigm in our style metric
learning problem.

Recently, there is a significant interest in research in style-based retrieval of both 2D and
3D content, such as clip-art, info graphics, and 3D furniture, for applications in design and
composition. In this section, we discuss style similarity based related work by separating into
2D and 3D content style matching.

2D Content Style

There have been continuous attempts to learn or classify styles of different kinds ofmedia. The
most recent ones include theworkof [53], which looks into theproblemof furniture style clas-
sification, both using hand-crafted features and using deep learning (learning-based features).
They explore features for style classification into categories such as American Style, Gothic
Style, Rococo style etc. Their results show the superiority of learning-based features and also
the comprehensiveness of handcrafted features. The techniques proposed in [41, 56, 89],mea-
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sure style similaritymetric between clip art and fonts using crowdsourcing are also directly re-
lated to ourwork. These techniques use a combination ofmachine leaning and crowdsourcing
to construct functions that compute style distance between two pieces of clip art or fonts.

Also related to our work is the area of design style classification from object images. Aruna
Lorensuhewa [70]use an imagebasedquestionnaire to collect data about theproperties of ob-
jects for use with a machine learning based classification. Specifically, they use Bayesian Net-
work to classify furniture designs into different styles, such as Jacobian, William and Marry,
and Quessn Anne etc. The classification utilises the data collected from humans for a set of
furniture features, including ‘appearance’, ‘proportions’, ‘chair arms’, ‘back material’, and ‘leg
type’ etc. The work in [7] presents a method to learn the typographical style and produce
characters in same style. For this, a deep neural network is build on large amount of train-
ing data. In their setup they explore 60 neural network architectures and observe that deeper
networks do not lead to significantly higher accuracy.

Authors in [42] extend the work of [41], by reasoning about the illustration attributes peo-
ple consider more important when they respond to style similarity matching tasks. Their
crowdsourcing setup involves directly asking people what they look at when comparing two
pieces by style. A deep network to learn image style, aesthetic quality, and image quality is
presented in [72]. The networks take as input multiple patches taken from an image.

Andreas Veit et al. [120] propose a novel Siamese Convolutional Neural Network (CNN)
architecture to learn cross-category fit or compatibility for fashion items. The network is
trained on pairs of items from clothing category that are either compatible or incompatible.
The trained network is able to learn interesting semantic information about clothing styles
and lets a user create outfits of clothes using items from different categories, that go well to-
gether. The work presented in [56] describes a method to learn to predict style of images
using deep convolution neural networks. Authors use annotation information to define sev-
eral different types of image style, such as of visual style, including photographic techniques
(Macro, HDR), composition styles (Minimal, Geometric), moods (Serene, Melancholy),
genres (Vintage, Romantic, Horror), and types of scenes (Hazy, Sunny). Kai Xu and col-
leagues [130] present a shape co-analysis method to allow style transfer between 3D models.
This is achieved by analysing shapes at part level and treating the anisotropic part scales as a
shape style. A data driven method to study style and abstraction in human face sketches is
presented in [13]. This method uses properties of strokes and geometry to define style and
build models of abstraction and styles of different artists. A similar deep neural network that
creates artistic imagery is introduced in [43].
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3D Content Style

Ruizhen et al. [52] develop a method to characterise the styles of furniture models by lo-
calising geometric elements or regions over shapes. This is done by extracting style defining
elements and co-locating them over the set of shapes. Very closely related to our work are
the methods presented by Liu et al. [67] and Lun et al. [74] to study style compatibility
and style similarity respectively. Both methods compute a weight matrix using distance met-
ric learning. The main inputs to metric learning algorithm are human style judgements and
shape descriptors capturing local and global shape properties. The style compatibility work
[67] uses co-segmentation to construct part-aware feature vectors for style metric learning
using crowdsourced data.

In a very recent work, Isaak Lim et al. [64] employ deep neural networks to tackle 3D shape
style similarity problem. They are motivated to use deep learning as all previous approaches
used hand-crafted geometric descriptors to learn ameasure of similarity. Use of deep learning
offers several advantages including: learning style metric on the shape collection directly and
avoiding to search and match element level similarity. Authors in [33] analyse the decorative
style of 3DHeritageCollections. Their analysis is basedon shape saliency. Main contributions
of the article include an ontology for documenting 3D representations of heritage artefacts
decorated with ornament. Authors in [75] solves the problem of shape style transfer with-
out changing target shape functionality. They view it as a constrained optimisation problem
that tries to minimise the style distance between elements and maximises the functionality
characteristics.

Wehighlight the keydifferences of our approachhere. First, we compute geometric features
directly on the 3D meshes i.e. without segmentation, and compute colour and texture proper-
ties on the associated material files. Second, our triplet construction method is different from
the previous work. We use an iterative approach to construct triplets rather than doing it ran-
domly [67] or with subjective bias [74]. Since, due to large data size, constructing triplets at
random results in a large number of possible queries, many of which are hard to answer and
lead to inconsistencies in learning. Although, [67] uses co-segmentation to construct part-
aware feature vectors, there is no correspondence between shape parts, e.g. chair legs getting
matchedwith table legs. In contrast, ourmethod produces fixed length feature vectors andwe
use an over complete set of features to capture shapes numerically. Lun et al. [74] perform
a very detailed analysis of the shapes to define style similarity based on similarity in individ-
ual parts. It is important to note that in these methods, the accuracy of results depend on the
quality of segmentation. Finally, our work is different from these methods as we use a combi-
nation of geometry and material (colour and texture) features to study style similarity of 3D
shapes.
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2.3.2 Deep Learning

The term deep learning refers to the class of machine learning algorithms that employ a chain
of non-linear information processing layers for feature learning, data encoding and transfor-
mation. Li Deng [27] provides an informative tutorial on architectures, algorithms, and appli-
cations on deep learning categorising them into three classes: generative, discriminative, and
hybrid. Recently, deep learning has been used to build data-drivenmodels of perceptual prop-
erties and solving3Dmodelling problems. Examples of these include, computinghumanbody
correspondences [126], 3D shape recognition [113], and tactile mesh saliency [61]. Our for-
mulation to learn and predict 3D the shape aesthetics also uses the concept of deep learning,
however our problem definition is different.

We observe that much of the work in deep ranking is motivated by the idea of learning
directly from the raw data rather than using any hard-coded rules or hand crafted features. In
the paragraphs below, we first talk about the input to deep learning techniques followed by a
discussion of recent deep learning based techniques for 3D graphics.

Input to Deep Learning

It is very common to use different shape representations as input to deep neural networks,
such as multi-view images, depth images, volumetric or voxels, polygonal mesh, point cloud,
and primitive based models etc. While the first three can be considered as regular grids the
next three are irregular geometric forms. The choice of 3D representation should allow easy
formulation of input-output for the neural network.

Charles R. Qi et al [101] use symmetric max pool function to build a novel deep learning
neural network that can reason directly from point cloud data, either sampled from a shape or
pre-segmented from a scene point cloud. The point sample are represented as a set of three
coordinates (x, y, z), taken from 3D mesh surfaces. They demonstrate the applicability of such
network in the areas ranging from object classification, part segmentation, to scene semantic
parsing. Mehmet Ersin Yumer and Levent Burak Kara [133] present a data-driven, learning-
based surface creationmethod for unstructured point sets. Themethod first embeds the given
point cloud to 2D space. This is followed by training of the learner. Finally, creation of the tes-
sellation and generation of the surface in three dimensions is done. Authors in [123] present
an octree based convolutional neural network for 3D shape analysis tasks such as classifica-
tion, shape retrieval, and shape segmentation. The novel octree data structure allows efficient
storage of octant information and CNN features into the graphics memory and execute the
entire O-CNN training and evaluation on the GPU. Rohit Girdhar et al. [47] use two com-
ponents: an autoencoder and a novel convolutional network architecture to build predictable
and generative vector representations of 3D shapes. The novel architecture helps learn an em-
bedding space to allow generation of new 3D shapes and make predictions from 2D images.
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Alexey Dosovitskiy et al. [30] implement a generative neural network to generate object im-
ages from three inputs: object style, viewpoint and color. The network is essentially an up-
sampling CNN, trained on images rendered from 3D shapes.

Learning Aesthetics

Although, our focus is on 3D shape aesthetics, we begin by looking at works that assess im-
age aesthetics in both computer vision and computer graphics domains. Many of the works
treat the challenge of automatically inferring aesthetic and other picture qualities as amachine
learning problem. Datta et al. [24] use a online peer-rated photo sharing site as the data source
to build a classifier for automatic assessment of image aesthetics. They use their intuition to
extract 56 image visual features which are useful to discriminate between aesthetically pleas-
ing and displeasing images. The selected image features include, measure of colorfulness, rule
of thirds, saturation and hue, and familiarity measure etc.

An approach to optimize photo composition using rules taught in photography commu-
nity is presented in [66]. In addition to optimising composition, this method computes a
score of image beauty using features such as rule of thirds, diagonal dominance, visual bal-
ance, and size region. The optimisation procedure works by devising a compound operator
of crop-and-retarget that selects a subset of the image objects and then the re-targeting oper-
ator allows adjustment of their relative locations. The work of Christoph Redies et al. [103]
focuses on aesthetic quality assessment of paintings by devising a novel set of features. The
proposed features, calculated using computational method called Pyramid of Histograms of
OrientationGradients (PHOG), provide values that are linked to aesthetic perception as sug-
gested by different psychologists. Eisenthal et al. [34] train a predictor for the attractiveness
of face images, where facial images are represented as raw gray scale pixels. The human ratings
are collected for training the predictor along with vectorized representation of facial images.
A data-driven method to enhance facial shape beauty is presented in [62]. Human rates are
first asked to provide their ratings on facial beauty, which are then used to train a facial attrac-
tiveness engine. This process works by identifying a set of points on face images, called feature
points, and optimising their position to improve facial beauty. Said et al. [104] build a regres-
sion model to predict facial beauty from facial images. It works by relating attractiveness of
input faces to a high dimensional face space. As symmetry of a shape is central to aesthetic
perception. Liao et al. [63] use unsupervised learning with geometric priors to improve the
perceived beauty of 3D face models, without deviating much from the original faces. Their
method enhances a 3D face model by performing symmetrization and adjusting various facial
proportions based on the golden ratio 1.

Researchers in [79] design a deep neural network that learns image aesthetics directly from

1For two quantities to be in ‘golden ratio’, their ratiomust be same as the ratio of their sum to the larger of the
two quantities.
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input images i.e. without performing any transformation which destroys the image compo-
sition. This is done by the use of pooling layers to directly handle input images with original
sizes and aspect ratios. Jiajing Zhang et al. [136] first define a set of metrics to evaluate impor-
tant aspects in design principles such as balance, contrast, and harmony of logos. The ratings
on design principles are collected from 60 volunteer participants, which are then used to build
a regression model to predict aesthetics. Yubin Ding et al. [28] review the recent computer
vision techniques used in assessment of image aesthetic quality. Chew et al. [21] directly
measure the aesthetic perception of virtual 3D shapes with electroencephalogram (EEG) sig-
nals. The work of [71] develop a novel double-column deep convolutional neural network to
handle both global and local image views for learning a model of image aesthetics. By doing
such architecture they claim to capture both global and local characteristics of images, as one
column takes a global view of the image and the other column takes a local view of the image.
Authors in [137] describe a CNN based framework to model how humans perceive aesthet-
ically pleasing regions in an image. They first associate textual attributes obtained from user
specified tags to pixel level in image regions or patches. The importance of this process is that
it suggests where humans look at as appealing regions with respect to each textual attribute.
Then such patches are used in a convolutional neural network (CNN) to model how humans
perceive the visual attributes.

A deep metric learning approach has been used to compare between the facial images in
[51]. Deep metric learning has advantages to this challenging problem of comparing faces as
it allowsmodelling a complex and non-linear transformations of face images to useful features.
Following the basic principle of deep neural networks, this method passes a face pair through
multiple layers of nonlinear transformations. At the last layers, the reduced representations
are used to compute the Euclidean distance between two faces. In an attempt to show how
to learn directly from image data (i.e. without manually defined features), a convolutional
neural network architecture is demonstrated in [134]. This method, trained using gradient
descent backpropagation, operates on and compares image patches. Jiang Wang et al. [122]
describe a deep ranking method to learn a similarity measure directly from the images and
without using any hand-crafted features. They employ a triplet-based convolutional neural
network architecture to realise a ranking loss function. The research presented in [19] solves
the problem of person re-identification using deep convolutional neural network (CNN) di-
rectly from raw image pixels. The proposed network is able to learn the relation between in-
put image pairs and their similarity scores through a joint representation. Authors in [132]
propose a deep ranking method to model relationship between video segments considered
‘highlight’ and ‘non-highlight’. The model can be used to assign highlight scores to segments
in a long video sequence for the purpose of video summarising. The work in [138] improves
the existing learning-to-rank approaches using a novel joint learning-to-rank technique. This
technique allows for effectively modelling the intrinsic interaction relationships between the
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feature-level and ranking-level components of a rankingmodel. With the goal of relating phys-
ical compliance to perceived compliance of 3D objects, authors [100] collect perceptual elas-
ticity data from a user study using 3D printed metamatrials. The collected stimuli data is then
used to learn and predict perceived compliance.

In our approach to study the aesthetics problem, we also apply the concept of deep rank-
ing to attain representational learning paradigm. A representation learning paradigm doesn’t
require manually selected and computed shape descriptors to represent a shape for learning.
Our novelty lies in learning 3D shape aesthetics from human preference data rather than using
any predefined aesthetics rules and without using any predefined shape descriptors.

2.4 Shape Retrieval and Personalisation

Directly related to our work is the area of content-based shape retrieval from 3D shape
databases. Over the past few years, interest in content-based retrieval methods has resulted in
large number of geometry analysis techniques [14, 68, 116]. These techniques allow comput-
ing features on a range of aspects of 3D meshes to accurately describe them numerically.

However, these methods perform simple 3D similarity search based on the feature-vectors
or on any other representation of three-dimensional meshes. Our work is different from these
works as we use human perception studies to understand similarity in 3D shapes. Our focus
is on content reuse for content creation; however our technique could be used to perform
content-based retrieval as well. Moreover, we focus on colour and texture properties, which
traditionally have been ignored in this domain of research.

Personalised information retrieval [96] involves learning a user specificmodel of perceived
relevance to present reordered search results. While there is a considerable work in person-
alised image search [57, 106], all prior works in 3D content-based retrieval focus on learning
a monolithic model using many users’ preference data from crowdsourcing platforms. To our
knowledge, no effort has beenmade to learn auser-specific perceptualmodel of style similarity
for 3D content.

2.5 Summary

In this chapter we have introduced the related work by means of grouping in four categories,
resulting in four sections, namely, “3DShapeAttribute Perception”, “Crowdsourcing inGraph-
ics”, “Learning and Predicting Perceptual Attributes”, and “Shape Retrieval and Personalisa-
tion”. In the very first section, we introduce the techniques that explore ‘style’ and ‘aesthetics’
in different domains. We introduce works that look into identification of style and the vi-
sual characteristics of a style. The published research shows that the style of objects such as
‘pottery’ and ‘architecture’ is unique to these categories. We then introduce works in under-
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standing “similarity in styles”, which show that having shared visual features is important for
similarity in style. We also survey the relevant works in the broad area of shape aesthetics. The
review of shape aesthetics literature throws light on techniques that pay attention to analysis
of curvature and symmetry, and on the development of specific applications. We also review
works that studyperceptionof 3Dobjects fromdifferent representations, such as line drawings
and under different lighting conditions.

The second section, “Crowdsourcing inGraphics”, not only provides a review of the crowd-
sourcing techniques for collecting humanperceptual judgements but alsomentions the design
and data quality related issues in surveys. Themain idea of the reviewedwork is to collect large
amount of perceptual data and use the same for building data-driven models using machine
learning. The reviewed work in “quality issues subsection” suggests several considerations for
designing data collection studies for crowdsourcing. These consideration are related to par-
ticipant payment, communication, and recruitment. In the next section, “Learning and Pre-
dicting Perceptual Attributes”, we provide an introduction and up to date listing of strongly
relatedmetric and deep learning oriented data-drivenmodellingmethods in computer graph-
ics. These methods utilise some 3D shape representation, such as voxels, as input. Finally,
we review works that implement ‘personalised’ applications for shape retrieval in computer
graphics. This is motivated from our desire to implement a ‘personalised’ style similarity met-
ric.

Ourwork is different from the previous approaches on several key points. We explore shape
style similarity not only with shape geometry but also include colour and textural attributes.
We let participants try style metrics and adjust the results to produce subjective style judge-
ment data, which we use to learn subjective style similarity metrics. Our setup to build a data-
drivenmodel of 3D shape aesthetics and study on perception of 3D shape aesthetics are novel.
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Fashion fades; only style remains the same.

Coco Chanel

3
Matching Styles of 3D Shapes

Figure 3.0.1: Example scene depicting two groups of 3D shapes having similar styles.
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3.1 Introduction

The word ‘style’ is inseparable from our lives as it relates very deeply to literally everything
around us. Whether it is our dressing style, hair style, living room style, style of our car, style
of themusicwe listen to, writing style, the style of paintings, or the food style, the list is endless;
emphasising theomnipresenceof style. Further, it is not just the style of individual objects that
matters, also matters is when we group a set of objects together(say in our living room Figure
3.0.1). We try to mix in such a way that there is a harmony in overall style, or to be precise we
tend to match styles of shapes. The style matching can be considered with objects belonging
to: same category (chair to chair), different categories (chair to table or table lamp), and dif-
ferentmedia (chair to sound). The earliest known source on the study of similarity is the pop-
ular “law of similarity” from gestalt psychology, which lays the foundation of understanding
perceptual similarity. According to this law, things that appear similar are automatically linked
and grouped by our brain based on spatial relations, shape, colour, size or texture. A strategy
called “perceptualmatching” is used in [76] to investigate stylematching of 20wheel hubs and
6 car types to provide guidelines on choosing wheel hubs for a given car style. The important
work of Ming-huang Lin et al. [65], record brain activity when participants match styles of
shapes. Their study involves showing tables and chairs in a sequence and recording their brain
activity and also asking them to provide ‘match’ or ‘mismatch’ judgements. The important re-
sult of their study is that a stronger variation in style elicits stronger N400 (record-able brain
response to different types of stimuli) effects within the same semantic category.

To build a useful model of style similarity, the colour and texture attributes of 3D models
need to be taken into account as these play an important role in overall look and feel of a style
in addition to the shape characteristics. To our knowledge, no previouswork has endeavoured
to learn the model of style matching of objects based on their form, colour and texture. We
are inspired by the previous works in defining style similarity metrics for different kinds of
media [41, 67, 74, 105]. Our focus is on learning a holistic metric of style similarity of 3D
shapes based on their geometry, colour and textures. Wemake the following contributions to
advance the state of the art of this area.

• We build a colour and texture aware shape style matching metric. The real-life obser-
vation about style matching leads us to hypothesise that colour and texture features
contribute more to style matching than shape features. The learned weights for geom-
etry, colour and material features allow us to shed light on this hypothesis. Our metric
learning algorithm uses colour and texture features in addition to geometric features.

• We introduce novel high level grouping as a way to define cross-category metrics. Al-
though, an attempt [67] to learn a weak cross-category (e.g. between table and lamp)
style similarity metric has already been made, we apply a more holistic approach by
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learning a cross-cluster style similarity metric. We derive the concept of clusters by ob-
serving that the day-to-day use words like ‘furniture’ can be used to represent different
kinds of movable items such as chairs, tables, lamps, and beds etc. We define clusters of
items using words such as ‘furniture’, ‘cutlery’, and ‘tableware’, for instance, items such
as chairs and tables can be placed in ‘furniture’ cluster. Thus, in addition to learning a
metric between individual object classes (e.g. chairs and tables), we learn metrics be-
tween the high level clusters (e.g ‘furniture’ and ‘cutlery’), allowing us to substantially
reduce the number of learnedmetrics givenN object categories, assuming these can be
clustered into M clusters, where M << N.

• We demonstrate learning a metric adapted to individual style preferences. Since style
perception can be a subjective process, style matching judgements received from indi-
viduals can be used to adapt a style metric according to their preferences. The generic
metric is based on the crowdsourced style matching preferences, while a user-guided
metric is based only on one user’s style preferences. If a user is not satisfied with the
search results from a crowdsourced metric, our interface allows the user to provide in-
formation (e.g. re-rank the results) and create new training data for learning a user-
guided style similarity metric.

• We introduce an iterative approach to construct and crowdsource triplet queries and
consequently learn a distance metric with them. Rather than creating all the triplets
randomly [67] or with subjective bias [74], we use the learned metric in steps to gen-
erate the most informative triplet queries (except in the first step).

In this chapter, we will demonstrate the above four contributions with various classes of
3D shapes (e.g. furniture, tableware, and cutlery) and build tools to show the applications of
style-based similarity search and 3D scene composition. Our results will help to improve the
development of style similarity metrics of 3D shapes.

3.2 Approach

In this section, we introduce our approach to realise the four contributions mentioned above.
Figure 3.2.1 shows an overview of our approach. We collect 3D models from online sources
(step 1). We then compute various shape descriptors or features (including colour/texture
features) for each 3D model (step 2). We generate queries containing triplets of 3D mod-
els and place them on Amazon Mechanical Turk to collect crowdsourced data regarding style
preferences of the 3D shapes (step 3). The features and collected data are then used to com-
pute a style similarity measure with an iterative approach (step 4). The style metric can be
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Figure 3.2.1: Overview of our approach. Shapes in the dataset (1) are first preprocessed
to compute descriptors (2). Triplets are constructed for posting on crowdsourcing plat-
form (3). Triplet responses and shape features are used to learn the style metric (4),
which is then used in style-based search application and user guided metric learning (5).

used in various applications, including style-based search of 3D models (step 5). An individ-
ual user can re-rank the models in our interface according to their style preferences, and this
information can then be used to compute a user-guided style metric.

3.2.1 Datasets

We collected 3D models from the following sources: 3D Warehouse, Threeding.com, Thingi-
verse, Lun et al.[67, 74], and ShapeNet [17]. 3D Warehouse is the most popular online open
library for sharing3Dmodels createdby3Dmodelling tool SketchUp. It offers a keywordbased
search interface to find relevantmodels. Threefing.comprovides an onlinemarketplace where
3D models can be bough or sold or exchanged freely. The high quality textured models in this
dataset are separated into thirteen categories. Similarly, Thingiverse is an online platform for
sharing user-created digital design files. The models are high quality designs suitable for use
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Figure 3.2.2: Example shapes demonstrating different shape classes. (Left to right and
top to bottom), chairs, tables, spoons, forks, knives, sofas, coffee tables, teapots, sugar
bowls, and creamers.

with 3D printers, laser cutters, milling machines and many other technologies to physically
create the files shared by the users on Thingiverse. Finally, mainly for academic research pur-
poses, ShapeNet provides an online 3D content library of richly-annotated, large-scale dataset
of 3D shapes. This dataset is organised into two sets, namely ShapeNetCore and ShapeNet-
Sem, based on the quality of mesh data. The object types (Figure 3.2.2) can be categorised
into ‘dining’ room furniture (chairs, tables), ‘cutlery’ (knives, spoons, forks), ‘living’ room
furniture (sofas, coffee tables), and ‘tableware’ (teapots, sugar bowls, creamers).

In order to investigate the interplay between shape, colour, and texture, we collected 3D
models in two ways. First, we specifically build a set of shapes such that we can easily con-
struct queries (Figure 3.2.4) where the user can specify whether his/her style preferences of
3D shapes ismoredependent ongeometry or colour/texture. For example, in the ‘living’ room
furniture example in Figure 3.2.4, ‘A’ matches with ‘B’ more in its geometry aspects while ‘A’
matches with ‘C’ more in its colour/texture. Understanding whether users prefer the geome-
try or colour/texture aspects more is important for our analysis of style similarity. Hence we
map a selected set of textures onto a set of 3D shapes (Figure 3.2.3). For texture mapping,
we use 3D modelling tool called Blender that allows interactive mapping of a selected texture
image to a 3D shapes. Our choice of texture images is inspired by commonly-used patterns in

43



Figure 3.2.3: Example texture images used to study style similarity.

Figure 3.2.4: A subset of our dataset is purpose built to allow us carefully experi-
ment with shape, colour, and texture perception. Specifically, we have models to al-
low us to test whether users prefer to match the style of 3D shapes based on geometry,
colour/texture, or both. We show some examples in various categories. For the ‘living’
category, B is more similar to A than C in geometry but is less similar in colour/texture.
For the ‘tableware’ category, C is more similar to A than B in both geometry and
colour/texture. For the ‘cutlery’ category, both B and C are different from A in their
geometry and colour/texture.

real life. For example, dining room furniture mainly uses wooden shades and textures while
living room furniture uses fabric shades and textures. We have 17Models×5 textures for each
type of tableware (i.e. 17× 5 teapots, 17× 5 creamers, 17× 5 sugar bowls), 21× 7 for each type
of cutlery (i.e. 21× 7 spoons, 21× 7 forks, 21× 7 knives), 18× 7 for each type of living room
furniture (i.e. 18×7 sofas and 18×7 coffee tables), and 21×7 for each type of dining room fur-
niture (i.e. 21×7 chairs and 21×7 tables). Second, we downloaded a general set of 3Dmodels
from the ShapeNet [17] online repository. For the ‘living’ and ‘dining’ categories, we have the
following types and numbers of models: chairs (37), tables (35), sofas (35), and coffee tables
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(27). These models have much variety in both their geometry and colour/texture.

3.2.2 Geometric Features

We compute shape descriptors on the dataset of 3D models to obtain a 2728-dimensional
feature vector for each 3D model, which includes shape, colour and texture features. Before
computing features, all models are oriented in the same direction and scaled to have simi-
lar proportions within each object type. We use an over-complete set of features and let the
learning decide the relative importance of each feature. We aim to capture both global and
local shape properties. The features are not new on their own. Please refer to previous work
[18, 74, 78, 90] for details of them. We compute histograms of the following (with the num-
ber of histogrambins in brackets): shape distribution (128), curvature (Gaussian,mean,max,
min: 128 each), shape diameter (128), light field descriptor (470), voxel gradient (192), voxel
gradient direction (128), silhouette centroid distances (192), silhouette Fourier descriptor
(57), silhouette Zernike moments (108), silhouette D2 descriptor (192), silhouette gradient
(192), silhouette gradient direction (96), and shape histogram (192). For these geometric
features, there are a total of 2587 dimensions in the feature vector.

Before computing features, all models are oriented in the same direction and scaled to have
similar proportionswithin eachobject type. Since the inputmeshes have different resolutions,
computing some features (e.g. shape diameter) directly on the 3D mesh results in incompa-
rable or incompatible feature vectors for the learning stage. To rectify this, we use uniformly
sampled (with 10,000 samples) surface versions of 3D models to compute the first three fea-
tures. Specifically, we compute the shape distribution or D2 descriptor as histograms of 128
bins histogram; Gaussian, mean, min and max curvatures histograms with 128 bins each; and
shape diameter descriptor with 128 bins. The remaining features above are computed using
the volumetric representation of the 3D model by a voxel grid of size 3003. We rasterize the
models into binary voxel grids, where a voxel has value 1 if it is on the boundary of the model,
and a voxel has a value 0 if it lies elsewhere. To compute voxel gradient from voxel representa-
tion, we use 33 sobel filter along x, y, and z axis. The voxel gradient direction histograms of 64
bins each along x-z and x-y are computed from the voxel gradient. The silhouettes along x, y,
and z directions are obtained by projecting the voxel space along the three axes respectively.
Silhouettes centroid histogram for each projection (64 bins) is constructed from Euclidian
distances between center and boundary points. Additionally, on silhouettes, we compute
Fourier, Zernike moments, D2 (between each point on boundary), and silhouette gradient
(2D sobel filter) and silhouette gradient direction histograms. Lastly, we compute the shape
shell histogramdescriptor, which is similar to the shapedistributiondescriptor. Thehistogram
bins for each shell (3) in this case represent the distance of each point to the barycenter of the
3D mesh. Finally, we combine all the features above to give a feature vector of 2587 dimen-
sions.
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3.2.3 colour and Texture Features

We compute the following features (inspired by [41]) to capture colour and texture proper-
ties: average HSV of the top five dominant colours (3), hue histogram (32), saturation his-
togram (32), value histogram (32), and local binary patterns (42). These features are com-
puted directly from the texture images, not from the 3D shape domain. Our feature vector has
a total of 141 dimensions of these colour/texture features. Tomaintain uniformity, all texture
images are resized to 512 × 512. A 3D shape may have more than one texture. For example, a
3D model of a chair may consist of a wooden texture for its seating area and a steel texture for
its legs. We handle multiple textures by computing the same features above for each texture
and combining their histograms.

To compute the above mentioned features for each model, we use the .obj and .mtl files
along with texture images available in folders associated with each object. Specifically, the
.obj file gives the information about total number of materials used and which material is as-
signed to which face. The .mtl file specifies colour and texture properties for each material,
and the image folder contains texture images used. We begin by computing the fraction (F)
of total surface area covered by each material based on the number of faces using it. For this
we use the .obj files. Next, for eachmaterial specified in the .obj file, we construct two lists us-
ing the information in .mtl files. The first list represents colour information present in diffuse
parameters and second list represents texture images used. Given these two lists, we use the
following steps to compute colour features:

• For eachmaterial: (a) If no texture exists, use diffuse parameters to get 32 bins each for
the hue, saturation, and value histograms. (b) If texture exists, use texture image to get
32 bins each for the hue, saturation, and value histograms.

• Finally, combine the above histograms for all materials to get 32 bins for each hue, sat-
uration, and value histograms.

To compute texture features we use Local Binary Pattern (LBP) on the associated texture
images. We use three different resolutions of rotation invariant LBP to construct a 42 dimen-
sions vector. We also include the average HSV of the top five dominant materials based on
surface area covered (F). These features give us a colour feature vector of length 141 dimen-
sions.

3.2.4 Crowdsourcing Style Similarity Data

Since it is difficult for humans to provide absolute similarity values (for example, to provide a
real number to say how stylistically similar a chair model is to a table model), we ask humans
to provide relative values. We differentiate between crowdsourced data collection with many
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Figure 3.2.5: Example showing four example Human Intelligence Tasks (HITs) for four
different shape categories. In each task, users selected two pairs of models out of the six
that are more similar in style compared to the others. They were instructed to base their
selection on: number of parts and their arrangement, colour, texture, dimensions of parts
and the overall shape, and curviness of parts and the overall shape.

users and user-guided data collection. We collect data by gathering the preferences of a large
number of humans by posting tasks onAmazonMechanical Turk. This idea is similar to previ-
ous work [41, 67, 74] andwe describe our process here for completeness. The key is to collect
data in the form of triplets where we have three objects (A, B, C) andA ismore similar in style
to B than C. To collect such triplets, we create queries where a human is presented with a 3D
model of one object type X and six models of object type Y. Figure 3.2.5 shows some exam-
ple queries. The task is to identify which two of the six of type Y are more similar in style to
the model of type X. For each task, we get eight triplets. If we let the two preferred type Y
be Y1 and Y2 and the rest be Y3 to Y6, the eight triplets are of the form (X, Y1, Y3 − Y6) and
(X, Y2, Y3 − Y6).

We post these tasks as HITs (Human Intelligence Tasks) on Amazon Mechanical Turk.
EachHIT contains 25 tasks and we paid $0.15 for eachHIT.We can choose the 3D models in
these tasks manually or with an iterative approach (Section 4.2). We generate tasks with var-
ious pairs of object types, as indicated in Figure 3.2.6. Each human ‘Turker’ is initially given
written instructions and an example task with the responses (two pairs) already chosen by us.
We ask Turkers to specifically pay attention to the overall shape, shape of parts, colour, and
texture before providing their preferences. For the crowdsourced data collection, we had 220
users and collected 48,000 triplets.

3.2.5 Used-Guided Data Collection

We also investigate if we can learn user-guided metrics and hence we collect data from indi-
viduals. We do not use Mechanical Turk here as it can be difficult to require a specific Turker
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Figure 3.2.6: Bidirectional arrows show pairings of 3D model types for which crowd-
sourcing queries were generated in this work.

to work on many HITs to collect the needed data (as many Turkers would do just one HIT).
Hencewehave userswhodirectly use our tools in our lab to collect personalised data. Wehave
two ways to collect such data and we use both of them and combine the data. First, we built a
tool to allow users to specify their own preferences by interactively re-ranking search results.
The idea is that if a user is not satisfied with the results from the crowdsourcedmetric, he/she
can re-rank the results to generate training data which can then be used to learn a user-guided
metric. The tool (Figure 3.2.7: top) allows a user to visualise all3Dmodels of an object type on
the left scrollable panel, where themodels can be ranked according to their style similarity to a
selected 3D model in the current environment on the right. A user is initially asked to perform
a searchwith the tool using the crowdsourcedmetric. The user can then re-arrange the ranked
results based on his/her preferences of how well they match in style with a model selected in
the current environment. The user is asked to specifically place the ten closest match at the
top since we use them to generate triplets data. The user interface consists of dragging and
dropping the images of the 3D models interactively with the mouse to re-order them. If there
is a long list of 3D models in the scrollable panel, the user can also move the mouse cursor
over a 3D model and press a key on the keyboard to move it to the top of the ranking. After
re-arranging themodels, the user clicks a button to generate new triplets according to the rank-
ing. The triplets are of the form (A, B, C) where A is the selectedmodel in the environment, B
is one of the top ten ranked models, and C is one of the other models (not ranked as top ten).
Such triplets indicate that for the selected model A, the model B is more similar in style to it
thanC.This process generates 10(n− 10) triplets where n is the number ofmodels we have for
the object type being ranked. Second, we provide another tool (Figure 3.2.7: bottom) for the
user to generate triplets data. For this tool, the user can choose two object types X and Y, and
the system randomly chooses onemodel of type X and six models of type Y.The user chooses
two of the six and the system generates eight corresponding triplets (as described in the HIT
tasks above). For this user-guided data collection process, we had eight users who collected
data for various object types. Each user generated just over 30,000 triplets and took about 45
minutes.
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Figure 3.2.7: Our application user-interface and user-guided data collection. (Top)
Style-based search and scene composition tool. On the left, we have the model view
panel showing the available shapes in the form of a list, while on the right, a panel shows
a 3D environment. The list of models can be ranked based on the style similarity com-
pared to the selected model on the right. We allow the user to interactively drag and
drop these models to re-rank them to specify their own style preferences, and then the
metric can be re-trained. (Bottom) Screen-shot of our tool to allow a user to generate
personal style matching triplets similar to the a format used on crowdsourcing platform.

3.2.6 Learning Style Similarity Metric

We wish to develop a method to learn a style distance function between a given pair of 3D
shapes. Metric learning [59] approach allows one to learn such functions and hence develop a
measure of style similarity. It is a formof supervisedmachine learningwithin the domain of ar-
tificial intelligence. The general model of metric learning can be considered to have two parts:
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a loss function and a regulariser. A typical metric learning method thus can be formulated by
choosing a regulariser and a loss function. We use a metric learning approach to compute a
distance between two 3D models based on their style similarity. Let xA and yB be the feature
vectors for two 3D models A and B, and we wish to compute the distance dW, parameterized
byW, between them as follows:

dW(xA, yB) =
√
(xA − yB)

TW(xA − yB) (3.1)

The existing methods in metric learning are closely related to regression and classification,
with a goal to learn a similarity function fromexamples. Such function canbeused tomeasures
how similar or related two objects are. Broadly speaking, the metric learning techniques fall
under three categories: regression, classification, and ranking. We focus on “ranking-based’’
style similarity learning, to allow search by style or to rank large number of shapes in a dataset
based on their style distance from a selected shape. Our method takes advantage of human
style judgements collected in the form of style triplets of 3D shapes (A, B,C), where a partici-
pant can chooseA to bemore similar in style toB thanC.Wedefineq=1 if a participant selects
B as more similar to A, and q=0 if a participant selectsC as more similar toA.The probability
[41] that a participant’s response is q=1 for a triplet (A, B, C) can be defined as:

PA
BC(q = 1) = σ(dW(xA, xC)− dW(xA, xB)) (3.2)

σ(x) =
1

1+ exp(−x)
(3.3)

An objective function can be defined with this probability function and then minimised
using a suitable optimisation algorithm [59]. Our framework is inspired by previousmethods
inmetric learning [41, 105]. The learning formulation and solution to solve forW is the same
as in previous approaches [41, 105], and hence we do not repeat the details here but refer the
reader to the previous works.

We take an iterative approach to learn ametric and to gradually build a betterWmetric. The
algorithmpresented in (Algorithm1) captures themain idea of this iterative approach. Webe-
gin with an identity weight matrix (Step 2) to construct an initial set of random triplets (Step
9). This initial random set of triplets is used to adjust the weights to produce a new weight
matrix. The new weight matrix is used to select Yi in each triplets (Xi, Yi,Zj) to produce a set
of triplets, which are used to produce the newweightmatrix. This process is repeated to a fixed
number of times or when learning performance declines (as discussed below). We post HITs
on Amazon Mechanical Turk to collect data and learn the weight matrix in each iteration of
(Algorithm 1). We can either stop the iterative process after a fixed number of iterations or
until the accuracy starts to decrease. We compute the prediction accuracy of a metric learned
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with a set of triplets by performing five-fold cross validation on them. Specifically, we ran-
domly divide the triplets data set into five subsets. We use one of the five subsets as the test set
and the rest four subsets are used for training the metric. We report the prediction accuracy
as the average across all five trials.

Specifically, we take the steps in (Algorithm 1) for each pair of object typesX and Y, with xi

and yi denoting the feature vectors ofXi and Yi respectively. The random_pick_from(X) func-
tion returns a randomshape fromobject typeX, and the function learn_matrix_using_triplets(S)
returns the weight matrix using the set of triplets S and the corresponding feature vectors.
Themain idea of iterative approach is ‘information gain’ by selectively constructing the triplet
queries. The information gain happens by constructing triplets with object shapes with clear
majority answer. We avoid generating large number of triplets that don’t helpmuch in learning
style metric. We argue that the final metric learned using either iterative approach (ours) or
completely random approach would result in similar prediction accuracy. However, random
generation of triplets incurs more cost in terms of human style judgements crowdsourcing.

Algorithm 1 Iterative learning algorithm
1: procedure Iterative–Learn
2: W0 = identity matrix or random matrix
3: for p=1:N
4: S = ∅
5: for q=1:M
6: Xi = random_pick_from(X)
7: Yi = argminY dWp−1(xi, y)
8: Yj = random_pick_from(Y \ Yi)
9: S = S ∪ {(Xi, Yi, Yj)}

10: Wp = learn_matrix_using_triplets(S)
11: end procedure

The reliability of Turkers was an issue when collecting crowdsourced data. For each HIT,
we have 5 tasks out of 25 as control questions to check the quality of the responses. We only
accept aHIT if 80% ormore of the control questionsmatchwith our responses. This is similar
to the idea of control questions in previous work [41], and these control questions have clear
answers that are meant to check if Turkers are realistically attempting the questions or just
randomly selecting answers. In each iteration, we keep re-posting the rejected HITs (which
can be done by new Turkers) until we get the desired number of HITs.

We noticed that the HIT rejection rate tends to be high in the initial iterations (as high as
60% in some cases). This is because the initial iterations produce essentially ‘random’ triplets
(i.e. Yi and Yj being random due to the initial W). Hence it was difficult for Turkers to pro-
vide good responses without paying proper attention and many of them gave responses that
seem random. As we progress towards more iterations, the learnedWmatrix becomes more

51



effective and the triplets become less ‘random’.

3.3 Results

Wepresent the results towards each of our four contributions. We use the applications of style
similarity based 3D model search and 3D scene composition to demonstrate our work.

3.3.1 colour and Texture

We learn the weight matrices for various object categories with the iterative approach. We
experimented with both diagonal and full matrices and empirically observe no significant dif-
ferences. Hence we choose to learn diagonal matrices and plot the log of the diagonal values
(Figure 3.3.1) which correspond to the relative importance of the feature values. The plots
show that colour-related features consistently dominate over the geometry features (range of
colour-features is 105 compared to 103 of geometry features). These results are observed for
our data collection which includes 3D shapes we manually textured and general 3D shapes
downloaded from online datasets. Visually looking at the weights’ plots gives the impression
that the distributions are same and weights learned on one dataset would work with another
dataset. However this is not true. There are both large and subtle differences between actual
weight values for different datasets. Similarly, the values differ for the corresponding feature
values for shapes in different datasets. These differences for both weights and features for one
dataset result in very poor prediction (<55%) accuracy when used with a dataset not used for
learning the weights.

Figure 3.3.2 shows the results of style similarity based search with our style metric. The top
five search results for each query 3Dmodel show that while both geometry and colour/texture
are important, colour/texture is considered first when attempting tomatch style before geom-

Figure 3.3.1: Example weights (first two) and features (last) plots. The first two ex-
ample plots show the learned weights for ‘dining’ and ‘cutlery’ categories (y-axis show
the actual range of values). The weights correspond to features in the feature vector
(last plot). There are 13 geometric features (blue bar on bottom of each plot) and 5
colour/texture features (red bar).
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Figure 3.3.2: Style similarity based sample search results with our crowdsourced metric.
There are two columns of results. First model in each column is the query model which is
followed by top five models that best match in style with the query.

etry is considered. This is true across the different types of shapes that are shown, which again
include 3D shapes we manually textured and general 3D shapes downloaded online. In the
second row (right column) of Figure 3.3.2, the red sofa happens to match well with the query
model as their curvatures are similar. In Figure 3.0.1, we use our style similarity metric with
our search tool to compose 3D scenes. As the 3D models that are preferred by the crowd-
sourced metric are placed at the top of the search results, it is easier to find models that match
in style with a selected shape. Hence we have empirical evidence to support our hypothesis
that colour/texture features dominate over geometry features, in the plots of weights and in
the style based search results.

3.3.2 Clustering of Object Types

Table 3.3.1 shows the accuracy results for different pairings of object types and clusters. We
do not take the iterative approach here to ensure that the randomness does not affect the re-
sults. We instead created HITs manually to cover the range of 3D models in each object type.
We took 5 HITs with acceptable responses (after control questions) for each pair of object
types, and generated a total of 6040 triplets. For the clustering into groups, the idea is that
chairs/tables can be a ‘furniture’ cluster and forks/spoons can be a ‘cutlery’ cluster. Since the
models in our dataset have already been labelled (e.g. as chairs, forks), we manually cluster
them into higher-level categories (e.g. chairs/tables is ‘furniture’). We combine the collected
triplets from the separate types to create the triplets data for the clusters.
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Chairs Tables Forks Spoons
Chairs - 66.73 34.52 50.44
Tables 73.29 - 41.67 47.52
Forks 64.25 51.19 - 80.19
Spoons 38.87 61.17 61.38 -

Chairs and Tables Forks and Spoons
Chairs 66.73 42.24
Tables 73.29 42.99
Forks 61.94 80.19
Spoons 50.16 61.38

Chairs and Tables Forks and Spoons
Chairs and Tables 73.15 42.65
Forks and Spoons 51.83 72.21

Chairs, Tables, Forks and Spoons
Chairs, Tables, Forks, and Spoons 56.84

Table 3.3.1: Cross-validation percentages for different pairings of object types and clus-
ters. We learn metrics for X → Y, where X (and Y) is the type or cluster in each row
(and column).

Observing the results from Table 3.3.1, we see that the percentages for some object types
(e.g. chairs and tables) are comparable to the results with the iterative approach (shown be-
low). We intentionally compared across different object types here (e.g. forks→ tables) and
hence some pairings give low percentages as it may be difficult to compare between some ob-
ject types. This does not affect what we aim to show: the trade off between learning metrics
for specific object types versus clusters of object types.

We observe that the percentages of the clustered pairings are somewhat averaged from the
percentages of the separated pairings. We hypothesised that the clustered metrics would be
less accurate, as they may be mixing object types that are quite different. However, our em-
pirical results show no clear consensus of whether the metrics from specific object pairings or
clustered pairings is better.

Chairs and Tables Forks and Spoons
Chairs and Tables 72.30 40.68
Forks and Spoons 52.12 71.10

Chairs, Tables, Forks and Spoons
Chairs, Tables, Forks, and Spoons 56.36

Table 3.3.2: We randomly take half of the original triplets (compared to Table 3.3.1) in
each of these five cases and re-calculate the cross-validation percentages.

Sincewe combine the triplets data to learn a stylemetric during this ‘clustering’ process, we
also tested whether the number of triplets would have been a variable that affects the percent-
ages (i.e. more triplets data may lead to a higher percentage). Table 3.3.2 shows the results
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Figure 3.3.3: Example search results for crowdsourced and user-guided metrics for three
source shapes shown on the left in each row: chair, sofa, and spoon. We show top five
crowdsourced metric results immediately after each source shape, followed by top five
shapes using user-guided metric, all in the same row.

Figure 3.3.4: An example re-ranking (right) done by a participant of original ranking
(left). Specifically, left image shows original ranked results using the generic metric and
the right image shows rearranged results by a participant. Please note that the user gave
more weightage to the geometry.

where we randomly take half of the triplets in each case and re-calculate the percentage. These
results show that the number of triplets does not affect the percentage.

3.3.3 User-Guided Style Similarity Metric

Figure 3.3.3 shows that the user-guided results are interestingly somewhat different from the
crowdsourced results. For example, the colour and shape of the legs of the furniture pieces are
different between the two results. For the ‘cutlery’ example, the crowdsourced results mainly
match with the colour/texture features, while the user-guided results include a spoon that has
very similar geometry (i.e. round-shaped handle) but different colour/texture. The individual
user in this casewas attentive to the geometry of the cutlery in addition to their colour/texture.
These results demonstrate that we can learn a style metric for individual users that is different
from the crowdsourced metric, providing evidence for our hypothesis that the user-guided
concept can be beneficial in some cases.

The participants in our study rearranged (or re-ranked) the position of shapes within the
ranking produced as a result of style-based search (Figure 3.3.4). We found that three proper-
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Figure 3.3.5: Cross-validation percentages for the iterative learning for ‘dining’
(chairs→tables), ‘living’ (sofas→coffee tables), ‘cutlery’ (spoons→forks), and ‘tableware’
(teapots→sugar bowls). First bar (blue) in each category shows the accuracy of the met-
ric learned on randomly generated triplets.

ties of objects led to re-ranking of shapes, namely geometry, colour and texture. We also found
that one third of the participants preferred colour over geometry while re-ranking the shapes.
For a set of common reference shapes, forwhich all participants performed style-based search,
and re-ranked the search results, we report Spearman’s Rank correlation. Specifically, we use
Spearman’sRank correlationon re-ranked results to report howmuch ranking results differ be-
tween participants. We compute Spearman’s Rank correlation between first fifteen re-ranked
shapes by pairs of participants. The average value of this correlation is high (0.88), signify-
ing consistency between re-rankings done by participants. This result signifies that the idea of
personalised data collection by allowing re-ranking of the results if useful. Further, since the
overall colour and shape preferences among different people are still mostly consistent, the
differences in the user-guided metrics are subtle.

3.3.4 Iterative Learning Approach

For each category of shapes, we started with posting randomly generated triplets. We col-
lected the same number of triplets for each iteration, and we have between 1600 and 2000 of
triplets for each of our four object categories (in each iteration). The accuracy achieved with
themetric learned on such triplets in each iteration are shown in Figure 3.3.5. As the first itera-
tion represents the non-iterativemethod since it is the same as randomly generating triplets as
done in previouswork, we can compare between the percentages for the non-iterativemethod
and the iterative method (our last iteration). The percentages increased from 69% to 87% for
‘dining’, from 65% to 85% for ‘living’, from 57% to 82% for ‘cutlery’, and from 49% to 86% for
‘tableware’. These results support our hypothesis that the iterative process can generate useful
HITs, and can avoid having to randomly generate triplets or tomanually group the 3D models
in advance [74]. We found that stopping after a fixed number of three iterations worked well,
and this was consistent across the four object categories.
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3.4 Discussion

Learning a pairwise distancemetric between 2Dor 3D data pairs has recently become popular
in computer graphics due to applications in shape retrieval, scene composition, and visual-
isation. In this chapter, we build a style similarity metric of 3D shapes that overcomes the
limitations of existing stylemetrics. Themethodology presented in this chapter is general and
can be applied to problems having similar formulation. For example, in addition to colour and
texture characteristics, we may build more advanced style metrics that take into account the
construction material of the shapes, since, in general, style matched furniture sets are made
with similar material. Next, we present a discussion of our technique by focusing on limita-
tions, human aligned metric learning, and crowdsourcing style data, followed by drawing the
main conclusion.

3.4.1 Limitations

Our style similarity metric has two minor limitations that arise due to use of specific dataset
of shapes and learning using a simple linear distance metric. Fist, we build part of our dataset
by manually mapping a set of texture images to a set of shapes in order to better understand
the relative importance of colour, texture and shape characteristics, please see Figure 3.2.4.
Specifically, the use of subjectively built subset of dataset used in this study makes our con-
tribution slightly biased to our dataset. Further, manually mapping textures to shapes is time
consuming and also limits the ways the texture can be mapped to geometry.

Second, the metric learning method used in our study is very naive. Specifically, the mod-
elled distance function is simply the Euclidean distance metric. Hence the learned style met-
rics are limited in their expressive power, and more complex non-linear functions can allow
the metrics to better represent human preferences. To this end, Isaak Lim et al. [64] use deep
learning tomodel shape style similarity. However they don’t consider other useful visual stim-
uli possessed by the shapes in online repositories, like colour, texture, and material, to build a
practical style similarity metric.

3.4.2 Human Aligned Style Metric

Ourmethod iswell alignedwith the humanperceptionof style considering colour, texture and
shape attributes of the object models present in current day shape repositories. We demon-
strate that a single shape descriptor capturing shape, colour and texture features can be used to
compute style distance using metric learning. Additionally, the set of shape features (Section
3.2.2) used in our study robustly allow for learning the style distance providing prediction ac-
curacy comparable to previous approaches [67]. This is significant as previous methods rely
on more advanced part-based segmentation methods to compute shape features before per-
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forming metric learning. The overall approach used in our paper can be easily extended to
include other prominent model attributes such as construction material to further make the
style similarity metric more aligned to various perceptual characteristic. As desired by previ-
ous work, our results highlight the usefulness of building cross-category (Section 3.3.2) shape
style metrics e.g. between furniture and cutlery. We notice that cross category metrics tend
to be less accurate owing to structural and categorical differences between the shapes being
compared.

3.4.3 Crowdsourcing Style Data

Our system relies on large amount of crowdsourced data for parameter learning. One consid-
eration for collecting such data is the how we present the queries to humans. We choose to
ask humans about their preference by showing triplets of shapes (Figure 3.2.3). Although, this
approach allowed us to collect useful and reliable data for our problem, other approaches for
collecting style similarity judgements may also be considered. For example, rather than using
relative comparison triplets, wemay employ an absolute value of style similarity between pair
of shapes and then see how consistent humans are in providing data in such format. Another
consideration is the selection of stimuli for style comparisons. Specifically, our data collec-
tion process employs single-view object images to shown in triple queries, we argue that usage
of multi-view images may allow participants to perceive more shape details and thus aid in
collecting more accurate style similarity judgement data.

3.4.4 Conclusion

In this chapter, we presented a colour and texture aware style similarity model for 3D shapes.
Ourmethod is based on crowdsourcing and learning to build amodel of perceptual style simi-
larity of 3D shapes. Ourwork is different frompreviousworks in fourways. We use colour and
texture properties to match styles, introduce a way to build inter-class style similarity without
requiring large amounts of perceptual data, learn and demonstrate personalised style metrics,
and use iterative approach to build a style metric. Our method operates in both image and
object space since texture images and geometry are both used to generate a unique shape de-
scriptor for each shape in the dataset.
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It’s not what you look at that matters, it’s what you see.

Henry David Thoreau

4
Stimuli for Aesthetics Judgements and Beyond

Figure 4.0.1: Example shape demonstrating stimuli created from four shape represen-
tations, namely points, wires, voxels, polygons, used in our study to collect and compare
perceptual aesthetics judgements of 3D shapes.

In previous chapter we described our computational model for measuring perceptual style
similarity of 3D shapes. Themodel was build on perceptual preference data collected fromhu-
man participants. In this chapter, we study human perception of 3D shape aesthetics. To this
end, we show participants 3D shapes in pairs to choose the one they think is more beautiful.
The experiments are repeated using stimuli created from four different shape representations,
namely, polygonal, voxel, point-clouds, and wire-mesh representations of 3D shapes (Figure
4.0.1). Since these representations offer varying degrees of shape details, based on this, one
of our main goal is to investigate the affect that shape details have on perception of 3D shape
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aesthetics.
Although there are other possible shape representations, the motivation to use polygonal,

voxel, point-cloud, and wire-mesh shape representations is derived from their use in recent
data-driven research in 3D graphics [47, 101, 133]. Using these representations in mind, we
first wish to study human perception of shape aesthetics, which has implication for crowd-
sourcing human aesthetics judgement data collection and also in the further use of such data
formodelling and analysis problems. We use renderings produced from these representations
as shape stimuli in our experiments. The renderings are created in a consistent manner by
fixing the rendering parameters (e.g. lighting, camera, position).

4.1 Introduction

Historically, the perception of 3D shape has remained an active research area inmany different
disciplines, including psychology, neuroscience, computer science, physics and mathematics,
and we argue that it will remain to do so until the secrets behind working of human brain are
completely unearthed. An important outcome of the research in these areas suggests that hu-
manbrain uses relatively abstract data structure for the perceptual representation of 3D shapes
[118]. In this work, considering aesthetics or beauty as a perceptual concept, we present our
first step towards computational exploration of this concept usingmachine learning andwith-
out any pre-defined rules traditionally used to evaluate aesthetics of shapes. Specifically, we
focus on collecting human aesthetics judgements for use in data-driven techniques to learn
and predict shape aesthetics.

Recently, data-driven techniques have been successfully used to explore aesthetics of im-
ages [62, 66] and 3D shapes [12, 40, 91, 108]. These techniques allow learning from human
preference data rather than on subjective hard-coded rules 1. The input to these is a range of
shape representations, such as voxels, points samples, depth images, multi-view images, and
polygonal meshes, to name a few. It is relatively unclear as how to decide which representa-
tion to use and howmany input samples, pixels, points or voxels are enough for learning shape
aesthetics for instance.

The primary input to many data-driven methods [131] in computer graphics is the visual
perception data crowdsourced from large population of participants. A typical crowdsourcing
study involves showing shape stimuli as images on which participants are required to provide
their judgements about a specific perceptual attribute, such as style or aesthetics [29, 41, 74].
Among many other parameters in a study, selection of stimuli is the key ingredient, and in
our view has not received the due research attentions in more recent crowdsourcing based
computer graphics research endeavours. As [64] rightly observes, a single view may hide im-
portant visual content, we investigate if any differences can be seen in perceptual judgement

1Please see Chapter 1
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Figure 4.1.1: Example showing possible ways to depict a 3D shape using: (a) shading,
(b) line drawing, (c) pattern of dots, and (d) pattern of parallel surface contours [118]

when a multi-view stimuli is used for the aesthetics problem. Further, inspired by the use of
different input shape representations to (as mentioned in previous paragraph) learningmech-
anisms, we experiment with collecting shape aesthetics judgements with such representations
and compare the received responses.

How to collect large number of perceptual aesthetics preferences of 3D shapes is a challeng-
ing task. We believe, there are two important considerations: how to and what to present as
the stimuli, and how do humans provide their judgements to the presented stimuli. The stim-
uli could be single image and participants respond by providing an absolute aesthetics score.
The stimuli could be paired shapes and humans say which is more aesthetic by clicking on it.
The ease with which humans can give their judgements is critical to the effective data collec-
tion process. One method is to show users a single shape and ask them to give an absolute
aesthetics score. However, an absolute scale may not be consistent across individuals. One
person might give a score of 0.95 to indicate an aesthetic shape while another might say that
a score of 0.7 is already very aesthetic. Instead of an absolute scale, we choose a relative scale
of scores. This is motivated by recent work in collecting crowdsourced data [61, 67, 74, 89]
where triplets or pairs of media types (including fonts, 3D shapes, and vertices) are shown
to users. We collect aesthetics data by showing participants two shapes (or a shape pair) and
asking them to choose one that they perceive to be more aesthetic.

In this work, in addition to comparing single-view and multi-view images, the important
problem we explore is whether the shape representation affects the human aesthetic prefer-
ences of 3D shapes, where 3D shapes are presented in pairs (Figure 4.0.1). We believe that this
problem is interesting from two important perspectives. First, the quality of human aesthetics
judgement data is important for the study of shape aesthetics [2, 29, 40, 91]. Second, to aid
in the design of learning based shape analysis methods that use various shape representations
(e.g. voxels [127] and point clouds [101]) as input. An understanding of the effects of dif-
ferent representations would be useful for robust data collection for shape aesthetics and for
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Figure 4.1.2: Example of a 3D shape pair of chairs in four shape modelling representa-
tions: polygon mesh, wireframe mesh, point cloud (250 points), and voxels (resolution of
32x32x32).

general shape analysis problems.
Specifically, the following points summarise the key idea and the approach used in this

work.

• We first compare between single-view andmulti-view representations of 3D shapes and
investigate whether there is a difference between them towards the human aesthetics
preferences of shape pairs.

• We then compare between the polygonmesh and wireframemesh representations, be-
tween the polygon mesh and point cloud (for various numbers of points) representa-
tions, and between the polygon mesh and voxel (for various voxel resolutions) repre-
sentations.

• We take a shape pair (shapes A and B) from each style and ask humans whether they
perceiveAorB tobemore aesthetic. For example, to comparebetweenpolygonmeshes
and voxels, we take the polygonmesh renderings of A and B and collect the preferences
for a number of participants.

• We use Fisher’s exact test to test the null hypothesis that there is no difference in the
proportionsof preferences (ofAandB)between thepolygonandvoxel representations.
We perform this test formany shape pairs to compare between the two representations.

Finally, comparing between various types of stimuli for collecting the aesthetics preferences
of 3D shapepairs is themain contributionof thiswork. Contrary towhat is believed in general,
our analysis of collected data suggests that abstracted shape representations, such as voxels,
can be reliably used to collect aesthetics preferences. For example, aesthetics preferences with
voxel resolution of 323 are comparable to that with polygon meshes. We find that between
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Figure 4.1.3: Steps used in generation of shape pairings. (a) Dataset of shapes having
12 categories, namely: chairs, tables, table lamps, air planes, abstracts, ashcans, bags,
birdhouses, buildings, dishes, teapots, and vases. (b) Generation of images for four ren-
dering styles: (top to bottom) wire-frame, points, voxels, and polygonal. (c) Pairing of
images for crowdsourcing: (top to bottom) single view polygonal, multi-view polygonal,
multi-view voxels, multi-view wire frames, and multi-view points.

single-view and multi-view representations, there is no significant differences in the human
aesthetics preferences, suggesting that having just a single-view is enough. These observations
lead us to say that humans tend to look at the global structure for comparing aesthetics of
shapes in pairs and need not observe the details, and very detailed (continuous or high reso-
lution) representations of shapes are not needed.

4.2 Approach

Our experiments are aimed at exploring whether the stimuli created using different rendering
methods affect the human aesthetics preferences of shape pairs and how they compare be-
tween differentmethods. In this section, we describe the3D shapeswe used, the3Dmodelling
representations, the crowdsourced data collection, and the method used to compare whether
different modelling representations give significantly different user aesthetic responses (Fig-
ure 4.1.3).
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4.2.1 3D Shapes

Our dataset of 3D shapes comes from ShapeNet [17] online shape repository. We collect
shapes belonging to twelve categories: Abstract (30), Air plane (20), Ashcan (18), Bag (15),
Basket (15), Candelabra (28), Bench (15), Birdhouse(18), Building (15), Chair (30), Dish
(15), Teapot (10), Lamp (30), Vase (20), Table (30), the number in brackets show randomly
selected shapes for each category from ShapeNet online 3D repository. Since the downloaded
meshes comewith texture and colour information, wemanually remove such information be-
fore using the shapes in our study. The shapes are already oriented and scaled. We generate
pairs of shapes, where each pair comes from the same category. It makes more intuitive sense
to compare a chair against another chair, rather than a chair against a lamp. For each category,
we generate 60-30 shape pairs randomly.

4.2.2 Stimuli Creation

We convert each shape into these 3D modelling representations (stimuli) before using them
in our data collection process:

• Single-view polygon mesh (or just ‘single-view’). We create a single-view image that
shows a representative forward-facing viewpoint of the polygon mesh.

• Multi-view polygon mesh (or just ‘multi-view’). We rotate the mesh along the up-axis
and have a slightly slanted up-direction to better show the 3D shape. We choose to take
three seconds for each complete rotation followed by half a second of pause at the same
representative viewpoint for single-view. These are then repeated continuously as a gif
image and rendered with the same shading parameters as the single-view case.

• Wireframe mesh. It is created with original wireframe and with remeshed wireframe
(appearing more uniform). We then apply a quadric-based edge collapse method to
reduce the number of polygons to a desired number while maintaining the shape. For
mesh simplification, we use MeshLab [22] built in filters.

• Point clouds. We use geodesic surface sampling [98] to get the desired number of
points. We tested various cases in our experiments and eventually used meshes with
250, 500, 1000, 2000 points.

• Voxels. We tested various cases and took voxel resolutions of 163, 323, and 643. The
voxels are rendered as small cubes.

The viewpoints are chosen by us and the shapes are consistently rendered in the same way by
choosing similar lighting and shading parameters.
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Figure 4.2.1: The interface on Amazon Mechanical Turk allows users to click anywhere
on the image or the small box to the right to indicate the one they perceive to be more
aesthetic. The left pair is for voxel resolution of 323 and the right pair is for polygon
meshes.

4.2.3 Human Intelligence Tasks

Our study to collect crowdsourced aesthetics data is designed by taking inspirations from sim-
ilar studies in evaluation of image aesthetics (Please see the 2 Related Work Section). We use
double stimulus method to collect human preference data for our study [80]. All participants
are shown pairs of static or animating images. In case of animations (gifs of 3secs in length)
the first frame is shown for 1 secs. We ask the participants to select one shape from each pair
that visually appears more aesthetic to them. They are required to select one shape from each
pair.

Each participant is paid $0.05 to $0.10 on completing aHIT comprising 60 pairs of shapes.
Each HIT was done by 25 participants. Since our setup requires data collection for a large
number of 3D shapes, we use Amazon Mechanical Turk (AMT) crowdsourcing platform to
collect aesthetic preferences. However, data collected from crowdsourcing platforms for such
studies can be very noisy and unreliable. In order to collect quality responses, we use three
strategies. First, we create a qualification test with 10 tasks. Only those participants who an-
swered all the 10 tasks correctly were allowed to take the main HITs. The qualification test
was designed with pairs showing an ugly shape with an aesthetics shape chosen by us manu-
ally. We manually created some distorted or ugly shapes (Figure 4.2.2) and paired them with
normal shapes. Second, in the instructions before working on the HIT, we clearly state that
un-honest workers Ids will be detected and blocked from future work offered by us. Third,
to ensure that participants actually spend time to have multi-view aspect of the shape, when a
participant has provided the response to ‘xth’ pair by clicking on the check box, the next pair’s
( i.e. ‘x+1th’) check box becomes clickable only after 4secs when pair ‘x’ was clicked. We filter
out ‘bad’ participants by allowing only those with HIT acceptance ratios of 95% or more. We
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Figure 4.2.2: Manually created distorted shapes paired with normal shapes in qualifica-
tion tests. If a participant does not answer pairs with ugly chairs correctly then he can’t
qualify to work on our tasks.

also collect age, gender, and geographic location as participants demographic information.

4.2.4 Demography

Since workers on a typical crowdsourcing platform come from all over the globe, collecting
data about their backgrounds couldhelpus betterunderstand thenatureof aesthetic responses
collected. For example, people living in different regions (Africa, Asia, or America) may have
different preferences for aesthetics owing to the cultural differences. Thus, in addition to col-
lecting the aesthetic preferences, we ask user to provide the following information: gender,
age, and the region where they come from.

In total, we had 1165 unique participants working on 2850 HITs, with 37.42%(436) males
and 62.58% (729) females. The percentages of participants belonging to Africa, North Amer-
ica, S. America, Asia, Europe, Australia are 0.65%(8), 74.08%(863), 1.37%(16), 16.57%(193),
6.87%(80), 0.00%, andpercentages of participants belonging to age groups 0-20, 21- 30, 31-40,
41-50, 51-60, 61-100 are 3.35%(39), 37.34%(435), 30.04%(350), 17.00%(198), 7.55%(88),
4.64%(54) respectively. Based on these figures, we can say that the collected data represents
diverse regional backgrounds and different age groups.

4.2.5 Comparing Responses

Our main aim is to make observations about perceptibility of shape aesthetics using stim-
uli created using several different representations. This hasn’t been studied before especially
in the context of shape aesthetics judgements on crowdsourcing platforms for input to data-
driven methods. Specifically, using the collected data, we wish to study the effect of the mod-
elling representation on participant choice, by comparing the results of two modelling rep-
resentations each time. First, we compare between single-view and multi-view (of polygon
meshes). We then use polygon mesh as a basis to compare between: polygon mesh and wire-
frame mesh (original and re-meshed wireframe), polygon mesh and point cloud (125, 250,
and 500 points), and polygon mesh and voxels (163, 323, 643 resolutions). In layman terms,
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if most people choose shape A for one representation of the pair (A,B), while most people
choose shape B for another representation, then these two modelling representations lead to
a significantly different user choice. We describe the modelling representations that we com-
pare against, and themethod to compare the data collected for twomodelling representations
to decide whether they lead to significantly different user responses.

We compare between two modelling representations by using Fisher’s exact test [4]. This
test tells us whether any differences that we observe in the proportions of (A,B) choices be-
tween twomodelling representations is significant. As thenumberof responses for a particular
choice can be small or even be zero, we choose Fisher’s exact test which can handle these cases.
The null hypothesis for each of the comparisons above is that the two modelling representa-
tions are equally likely to have the same proportions of choices. As an example of this test, to
compare between polygon mesh and voxels (at a specific resolution), we take each shape pair
(A,B) and observe the choices of 25 participants. For polygon mesh, we may have 18 partic-
ipants choosing A and 7 choosing B. For voxels, we may have 9 choosing A and 16 choosing
B. Intuitively (18,7) and (9,16) are quite different. Fisher’s exact test gives a p-value of 0.022.
Since the p-value is less than 0.05, this provides evidence to reject the null hypothesis at the
5 significance level or that the two modelling representations lead to significantly different
proportions of responses (note that this was just an example to illustrate the process). We
perform Fisher’s exact test with the data for each shape pair. Then for all shape pairs for each
shape category, we note the percentage of pairs where the null hypothesis is rejected or where
the two modelling representations lead to different responses. The results in the next section
show these percentages.

4.3 Results

We show and analyse the results to give insights into whether the modelling representation of
3D shapes affects the human aesthetic preferences of shape pairs. Please see the Table 4.2.1 for
a quick summary of results.

4.3.1 Single-View vs. Multi-View

We compare between the single-view andmulti-view representations by using themethod de-
scribed in the previous section i.e using Fisher’s test. The percentages of shape pairs where we
observe significant differences (according to Fisher’s exact test at the 5% significance level)
in the proportions of (A,B) aesthetic choices between single-view and multi-view are shown
in the second column of the Table 4.2.1. The overall percentage for all shape pairs is 3.31%.
These are the percentages of shape pairs where the null hypothesis is rejected. To consistently
compare between the various types of modelling representations, we decide on a percentage
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Category Static Points Voxels
250 500 1000 2000 16 32 64

Abstract 2.22 17.78 11.11 13.33 8.89 20.0 8.89 11.11
Air plane 0.00 6.67 6.67 0.00 0.00 0.00 3.33 0.00
Ashcan 2.22 17.78 11.11 13.33 6.67 17.78 2.22 0.00
Bag 3.33 6.67 3.33 6.67 6.67 20.0 0.00 3.33

Basket 6.67 16.67 10.00 26.67 26.67 6.67 3.33 6.67
Bench 4.44 22.22 11.11 31.11 26.67 35.56 22.22 11.11

Birdhouse 9.30 11.63 11.63 11.63 11.63 6.98 6.98 0.00
Buildings 0.00 24.44 8.89 6.67 4.44 15.56 4.44 0.00

Candelabra 6.82 6.82 4.55 2.27 13.64 29.55 20.45 6.82
Chair 1.70 10.00 6.70 8.33 5.00 13.30 5.0 5.0
Dish 2.22 2.22 8.89 0.00 0.00 8.89 0.00 2.22

Teapot 0.00 10.34 0.00 3.45 0.00 6.90 0.00 3.45
Lamp 6.70 6.70 6.70 5.00 5.00 11.7 10.0 4.65
Vase 2.33 20.93 11.63 16.28 9.30 13.95 16.28 11.11
Table 1.70 18.30 8.30 3.33 5.00 11.70 1.7 0.00

Average 3.31 13.28 8.04 9.87 8.64 14.57 6.99 4.36

Table 4.2.1: Numbers representing percentages of shape pairs where null hypothesis is
rejected by Fisher’s test between polygonal and three other representations: static (col-
umn 2), points (columns 3-6 for 250, 500, 1000, and 2000 points respectively), and vox-
els (columns 7-9 for 16, 32, and 64 voxel resolutions respectively).

of shape pairs where the null hypothesis is rejected that is still acceptable. This is a parame-
ter that we choose. We choose that 10% or less is ‘acceptable’ meaning that two modelling
representations have similar proportions of (A,B) responses.

Figure 4.3.1 shows examples of shape pairs where the single-view andmulti-view cases give
either the same or quite different (A,B) responses. In (c), we see that the left chair when ro-
tated has a bottom part that appears to be more hollow, while the right chair’s bottom part
looks more normal and appealing. This explains the difference in the (A,B) choices shown in
(b). In (f), we see that although the left lamp looks simple from one viewpoint, it has a nice
curved geometric shape that looks appealing when rotated. This explains the difference in the
(A,B) choices shown in (e). In (i), we see that the left table has a nice shape when rotated
although it looks a bit squashed from a single viewpoint. The right table looks nice from one
view, while the rotation would expose more of the rectangular table top (which users seem
to prefer less). This explains the difference in the (A,B) choices shown in (h). Based on the
results, we conclude surprisingly that the single view polygon mesh and multi-view polygon
mesh have similar proportions of aesthetic responses. The implication is that having a single-
view is enough even though the shapes are in 3D, at least for the shape categories we tested.
However, there were a few cases where the single-view and multi-view lead to significantly
different proportions of (A,B) responses. These tend to be cases where some additional in-
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Figure 4.3.1: Single-View vs. Multi-View: Examples of shape pairs with user (A,B)
responses. (a) A shape pair of chairs with the same (A,B) responses (numbers below
shapes) for both single-view and multi-view. (b) A shape pair of chairs with quite dif-
ferent responses between single-view (numbers above shapes) and multi-view (numbers
below shapes). (c) Two views for each of the shapes in (b). The second row shows the
same type of examples as in first row but for lamps, and the third row is for tables.

formation about a 3D shape is provided by other viewpoints. Therefore, we suggest that the
shape category and the shapes themselves are important when considering to select between
the single-view and multi-view representations.

4.3.2 Polygon Mesh vs. Point Clouds

We compare between the polygon mesh and point cloud representations. The percentages
of shape pairs where we observe significant differences (according to Fisher’s exact test at the
5% significance level) in the proportions of (A,B) aesthetic choices between polygon mesh
and point clouds (for 250, 500, 1000, and 2000 points respectively) are shown in Table 4.2.1
in third, fourth, fifth, and sixth columns respectively. We can see that the average values of
Fisher’s test score gradually decrease with increase in number of points. Figure 4.3.2 shows
examples of shape pairs where the polygon mesh and point cloud cases give either the same
or quite different (A,B) responses. With 250 points per mesh, we can see that it is a sparse
representation of the overall shape. For (b, d, f),we attempt to explain the difference in the
(A,B) choices between the two cases. In (b), the left chair’s point cloud does not show as
much curvature compared to its polygon mesh, while the right chair’s point cloud seemingly
show a better structure of a chair compared to the left chair. In (d), the right lamp’s intricate
pattern in the polygon mesh is much less visualisable in the point cloud. The structure of the
lamp base and shade are also less clear and more planar in the right lamp’s point cloud. In (f),
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Figure 4.3.2: Polygon Mesh vs. Point Clouds (250 points): Examples of shape pairs
with user (A,B) responses (numbers below shapes). (a) A shape pair of chairs with the
same (A,B) responses for both polygon mesh and point clouds. (b) A shape pair of chairs
with quite different responses between polygon mesh and point clouds. The second row
shows the same type of examples as in first row but for lamps, and the third row is for
tables.

the left table’s polygon mesh shows a more elegant table, while the right table’s point cloud
shows a more normal-looking table. Based on the results, we do not find a consistent number
of points across the shape categories that are just comparable to polygon meshes. However,
it is clear that a relatively small number of points is enough. For instance, a good number of
points to use for chairs is 250, for lamps is 125, and for tables is 500. This is surprising as these
numbers of points are very small compared to the thousands of vertices that some shapes have.
In some cases, the point representation canmiss some shape details or even parts of the shape
(e.g. the lamp pole). This implies that participants typically do not need to observe the details
of a shape to make the aesthetics choices.

4.3.3 Polygon Mesh vs. Voxels

We compare between the polygon mesh and voxel representations. The percentages of shape
pairs wherewe observe significant differences (according to Fisher’s exact test at the 5% signif-
icance level) in the proportions of (A,B) aesthetic choices between polygon mesh and voxels
(for resolutions of 163, 323, and 643 respectively) are shown in the last three columns of the Ta-
ble 4.2.1. Figure 4.3.3 shows examples of shape pairs where the polygonmesh and voxel cases
give either the same or quite different (A,B) responses. For (b, d, f), we attempt to explain
the difference in the (A,B) choices between the two cases. In (b), the right chair as a poly-
gon mesh looks fancy, while its voxel representation makes it look more planar. In (d), the
left lamp as a polygon mesh look fancy, while its voxel representation smooths some details
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Figure 4.3.3: Polygon Mesh vs. Voxels (resolution of 323): Examples of shape pairs with
user (A,B) responses (numbers below shapes). (a) A shape pair of chairs with the same
(A,B) responses for both polygon mesh and voxels. (b) A shape pair of chairs with quite
different responses between polygon mesh and voxels. The second row shows the same
type of examples as in first row but for lamps, and the third row is for tables.

in the lamp pole and creates some jagged artefacts in the lamp shade. In (f), the right table
as a polygon mesh looks nicer, while the left table’s voxel representation looks more normal
due to its circular shapes (as opposed to more oval for the right table). Based on the results,
we conclude that the polygon mesh and a voxel resolution of 323 have similar proportions of
aesthetic responses, while a resolution of 163 clearly leads to higher percentages of ‘different’
responses. We therefore suggest using a voxel resolution of 323 for collecting aesthetics data of
shape pairs. This result is surprising as a resolution of 323 is quite small and in some cases can
miss many details of the shape. Similar to the previous subsection for point clouds, this also
provides evidence that participants typically do not need to observe the details of a shape to
make their choices.

4.3.4 Polygon Mesh vs. Wireframe Mesh

We compare between the polygon mesh and wireframe mesh representations for three cate-
gories only: chairs, lamps and tables. The percentages of shape pairs where we observe sig-
nificant differences (according to Fisher’s exact test at the 5% significance level) in the pro-
portions of (A,B) aesthetic choices between polygon mesh and ‘original’ wireframe are 8.3%
for chairs, 5.0% for lamps, and 10.0% for tables. The overall percentage for all shape pairs is
7.8%. The percentages between polygon mesh and ‘re-meshed’ wireframe are 5.0% of chairs,
1.7% for lamps, and 5.0% for tables. The overall percentage for all shape pairs is 3.9%. Figure
4.3.4 shows examples of shape pairs where the polygon mesh and wireframe mesh cases give
either the same or quite different (A,B) responses. For (b, d, f), we attempt to explain the dif-
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Figure 4.3.4: Polygon Mesh vs. Wireframe Mesh (original): Examples of shape pairs
with user (A,B) responses (numbers below shapes). (a) A shape pair of chairs with the
same (A,B) responses for both polygon mesh and wireframe mesh. (b) A shape pair of
chairs with quite different responses between polygon mesh and wireframe mesh. The
second row shows the same type of examples as in first row but for lamps, and the third
row is for tables.

ference in the (A,B) choices between the two cases. In (b), the left chair’s wireframe is more
coarse as some large planar parts are composed of a small number of large triangles. In (d),
the right lamp’s wireframe shows the light bulb and more of the intricate pattern to make the
overall shape look more strange. In (f), the left table’s wireframe is not uniform in the sizes of
the triangles, as the table top has larger triangles and the table leg has smaller triangles. Based
on the results, we conclude that the polygon mesh can be the ‘same’ as the original wireframe
as they have similar proportions of aesthetic responses. If we create a re-meshed wireframe
that has a more uniform triangle size throughout the shape (such that for example large pla-
nar surfaces are represented bymore and smaller triangles), the re-meshed wireframe is better
in that it leads to a lower number of different aesthetics (A,B) cases compared to the original
wireframe. The implication is that showing the wireframe mesh either way is just as good as
the polygon version for collecting aesthetics data for shape pairs. In addition, fromour experi-
ences, the transparency of a wireframemesh is sometimes helpful to showmore details of the
shape as we may not need to rotate the shape to show the 3D aspects or any occluded parts.
However, the transparency may also reveal some inner parts that are not necessary or makes
the overall shape more strange to visualise (e.g. seeing the details of a light bulb and wiring
inside the lamp shade that one normally would not observe).
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4.4 Discussion

With a goal to build a data-driven model of shape aesthetics, we first conduct a crowdsourc-
ing study having implications in quality of human aesthetics judgement data and design of
machine-learning methods. We argue that several design parameters are important for such
studies needed to collect data for building data-driven models. In our preliminary analysis
of the problem of learning a measure of shape aesthetics, we realise that such parameters are
related not only to “human perception and discrimination of shape aesthetics” but also for
“helping choose appropriate shape representation as input” to data-driven technique. We
clarify these two points further. First from the perspective of “human perception and dis-
crimination of shape aesthetics”, we demonstrate that human judgement data collected using
single-view object pairs is similar to data collected using multi-view object pairs. However
there are subtle differences (Section 4.3.1) due to multi-view stimuli presenting more shape
information due to having several shape viewpoints. The results suggest that crowdsourcing
studies can be designed to show single-view shape pairs to gather human aesthetics judgement
data. Our original impression was that, since a multi-view object image allows perception of
shape details from several viewpoints, usage of single-view and multi-view images would re-
sult in substantial difference in collected judgements. However, this is not the case even for
non-symmetric shapes used in our study. Second, for choosing appropriate shape representa-
tion as input to data-driven techniques, our comparison of collected aesthetics judgements us-
ing different shape representations shows that shape details don’t matter much when humans
compare aesthetics of shapes in pairs. Specifically, the voxelized shape representations are as
good as the polygonal shape representations for collecting shape aesthetics judgement data.
This is an important result as much of the deep learning based data driven methods learn on
non-polygonal shape representations, such as voxels or point clouds. In our view, the general
belief is that using one of such representations, say voxels, as input to data-driven algorithm is
not an ideal case as these results in loss in shape details. For example, compared to polygonal
representation, voxelized representations have non-smooth surfaces.

4.4.1 Shape Aesthetics Perception

The focus of this work is crowdsourcing study design and perceptual aesthetics data collec-
tion for data-driven modelling of visual aesthetics of 3D shapes. We argue that ideas from our
study can be generalised to study perception of aesthetics from representations Figure 4.1.1
not used in our study. For example, non-photorealistic rendering techniques [23] in com-
puter graphics have studied shape depiction using different styles, such as line drawings. It is
unclear that how perception of aesthetics is affected by usage of such abstracted shape repre-
sentations. Although the participants are provided clear instructions to click on a shape they
think is more aesthetic, however we believe that their responses may have been influenced by
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participants unconsciously thinking of other forms of aesthetics, such as functional aesthetics.
Specifically, consider a chair for example, it may appear beautiful structurally however looking
at it may give the impression that it may not be comfortable to sit on, or it may have low func-
tional aesthetics. Thus, investigating the question “do participants unconsciously think about
other shape properties such as perceived functional aesthetics or perceived ergonomics or in-
terestingness?” may help throw more light on the gamut between structural and functional
aesthetics. Our study collects aesthetics judgement data by showing shape pairs belonging
to shape categories, for examples, chairs are paired with chairs and buildings are paired with
buildings. We make this pairing choice by assuming that it is easier for humans to compare
shapes from same structural and semantic category. It is relatively unclear how humans would
respond if they are asked to compare shapes coming from different object categories, for ex-
ample a chair is compared with a table. Finally, in this chapter we show that crowdsourcing
allows collection of large amount of human perception data from participants coming from
diverse geographic and cultural backgrounds, hence, replicating the already existing lab based
low participant perception studies or conducting new ones [44] on crowdsourcing platforms
allows for better generalisations of results and findings.

4.4.2 Stimuli Presentations

Wewould like to highlight the considerations in the presentation of stimuli that have implica-
tions in the design of algorithms trying to use the collected data for modelling the perceptual
property under consideration. Themost important is the collection of data as relative compar-
ison judgements for pairs of shapes rather than as an absolute aesthetics score for each shape.
The way judgement data is collected has implications in the formulation of data-driven algo-
rithm. For example, an absolute aesthetics score collected for each shape allows formulation
of this problem as a supervised learning problem with availability of direct labels. Hence rel-
atively less complex deep neural network formulation can be used to model aesthetics in this
case. However in case of data collected as paired responses, formulation of deep learning neu-
ral networks is more complex as there are no direct labels for each shape. Since it is easier
for humans to provide their aesthetics judgements as relative comparisons, we adopt pairwise
data collection approach. We suggest that other forms of data collection approaches such as
using a continuous rating bar, allowing data collection as ‘bad’, ‘poor’, ‘fair’, ‘good’, and ‘excel-
lent’ could take ideas from our data collection approach. Further, while collecting data in our
study, participants are forced to choose one shape as more aesthetic for each pair. Another
possibility for data collection process that has implication in the data-driven modelling, is to
let participants to provide options such as ‘same’ or ‘none’, if they think for the given pair both
objects have similar aesthetics or none is aesthetic, respectively.
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4.4.3 Conclusion

Visual aesthetics is one of the fundamental properties of manmade 3D shapes. To our knowl-
edge, this is the first work attempting to evaluate how the shape representations affect the
human judgements of 3D shape aesthetics. Although, results of this study are restricted to the
shape representations used in our experiments, but can help provide useful insights on per-
ception of aesthetics and building data driven models. The major contribution of this work is
in suggesting that human aesthetics judgements for shape pairs are not affected by the usage
of less detailed shape representations. This result has implications for the selections of shape
representations as input to deep learning based data-driven models.
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Beauty depends on size as well as symmetry. No very small
animal can be beautiful, for looking at it takes so small a por-
tion of time that the impression of it will be confused. Nor can
any very large one, for a whole view of it cannot be had at once,
and so there will be no unity and completeness.

Aristotle

5
Measuring Perceptual Aesthetics of 3D Shapes

In this chapter, we learn to predict visual aesthetic value or beauty of 3D shapes. To do so,
we employ a more natural way to learn the aesthetics using deep neural networks rather than
learning on pre-computed shape features, though the crowdsourcing setup is similar to pre-
vious two problems. The observations made in previous chapter on aesthetics perception
from different 3D shape representations form an important input to the method presented in
this chapter. We learn a model of 3D shape visual aesthetics that aligns with human aesthetic
judgements well as it is built on large amount of visual aesthetic judgement data collected on
AmazonMechanical Turk crowdsourcing platform. In this chapter, we describe our approach,
demonstrate results and applications, and discuss the potential future work.

5.1 Introduction

We are hardwired to seek beauty or aesthetics in everything around us to experience pleasure
and satisfaction [32]. The idea of aesthetics can be applied to a variety of completely unrelated
things, such as poems, clothes, landscapes, chairs, flowers, dance performances, music, and
food etc. The traditional attempts to explore aesthetics focused onmathematical criteria such
as minimum description length and self-similarity [97]. Although, previous work has tried to
define aesthetics in different ways [6, 55], in ourworkwe consider beauty as awidely accepted
and simplest notion of aesthetics and thus we interchangeably use the terms ‘aesthetic value’,
‘beauty’, and ‘visually pleasing’ to have the samemeaning. In this chapter, we focus on learning
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Figure 5.1.1: Shape design (first row) and image (second row) aesthetics examples.
Curvilinear design (top left) results in stronger pleasure rating than rectiliner design (top
right) [25]. Next row, first two images with high aesthetic value, followed by two images
with low aesthetic appeal [71]

to predict aesthetic value of 3D shapes, where we consider aesthetic shapes as those that are
visually attractive or pleasing. In addition, we present an analysis of computable shape features
in relation to shape aesthetics.

Although, perception of aesthetics can be subjective [92], irrespective of our backgrounds
and experiences, our brains find certain shapes as universally pleasing [37, 40, 45] (consider
two scenes in top row in Figure 5.1.1). The visual attractiveness of the form of a product plays
an important role in the decision towards purchasing that product [25]. We argue that compu-
tational understanding of shape aesthetics can help us to more effectively use large datasets of
3D shapes, for search, scene composition, and visualisation for example. Furthermore, learn-
ing to predict shape aesthetics can contribute to other fields such as psychology, neurology,
and philosophy.

As in our style similarity work (Chapter 3), we consider aesthetics as a perceptual concept.
Consequently, to build a data-driven system, we collect a large amount of shape aesthetics
preferences data from humans and learn from that data. Our data collection study is carried
out on Amazon Mechanical Turk, where each participant records their responses for a set of
questions showing paired shapes, by selecting one shape as more aesthetic or pleasing. We
believe, it is relatively difficult for humans to give an absolute aesthetics score to a single shape
[41, 61, 67, 74], so we use paired comparison task [92]. Since we use several shape categories
to experiment with, an important question to ask is, “how to choose which shapes to pair for
aesthetic judgement data collection?” To this end, we can either pair shapes that belong to
same high level category 1 or sub-category (e.g. dining chair with dining chair) or allow pair-

1The input to our data-drivenmethods is a collection of semantically-relatedman-made shapes, mainly taken
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Figure 5.1.2: Example showing a large number of 3D shapes (i.e. chairs) ranked from
high to low (left to right and top to bottom) aesthetic scores. Top and bottom rows are
shown in large size to see the difference clearly. Given this kind of aesthetics ranking, a
user can easily find what she is looking for.

ings between shapes belonging to two completely different categories (e.g. chair with bed).
However, in this work we focus on pairing shapes belonging to same category and leave the
exploration of other way of pairing as future work, since it is interesting to see from perceptual
and consistency points of view howhumans compare aesthetics of two shapes that come from
two different categories.

There exist several interesting works that look into the problem of learning and analysing
aesthetics of 2D content, such as images [66, 103] (Figure 5.1.1) and human faces [34, 62,
104]. In case of 3D shapes, almost every work [12, 45, 86, 119] focuses on manually de-
fined features to evaluate aesthetics, prominent ones include curvature, symmetry, and math-
ematical properties such as bending energy and minimum variation surface. In contrast, our
approach to model 3D shape aesthetics isn’t based on the use any hard-coded rules or any
manually-crafted features. We learn directly from raw shape data using human aesthetic judge-
ments, allowing us build a model of shape aesthetics that aligns with human aesthetics prefer-
ences.

We demonstrated the ability of humans to perceive shape aesthetics from different shape
representations in previous chapter. We take inspiration from there and aim to learn directly
from the volumetric shape representation or voxelized volume. To this end, we exploit deep
neural networks, which have been shown to learn complex and non-linear functions, to com-
pute the shape aesthetic measure. Specifically, we take a deep convolutional 3D shape ranking
approach to compute our aesthetics measure since our collected data is ranking-based (e.g.
one shape is more aesthetic than another). The deep architecture allows us to autonomously

fromShapeNet [17] large-scale online repository, whichprovidesmultitude of semantic categories andorganises
them under the WordNet [84] taxonomy.
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Class of 3D Shapes Number |Itrain| |Ivalidation|
Club Chairs 778 7600 400
Pedestal Tables 40 2578 297
Mugs 75 743 82
Lamps 88 2250 250
Dining Chairs 277 4790 310
Abstract Shapes 40 600 60

Table 5.2.1: We separate the total number of collected samples in each class into a
training data set Itrain and a validation data set Ivalidation. |I| is the number of samples
in I. Please note that one sample of data here is one human response to one pair of
shapes.

learn features from raw voxel data. The raw voxel data is the first layer to a deep neural net-
work that computes an aesthetics score for each mesh. To learn the weights for the network
with our ranking-based data, we use a deep convolutional ranking formulation and backprop-
agation that uses two copies of the deep neural network. After training the network, we can
use one copy of the learned network to compute an aesthetics score for a new 3D mesh of the
corresponding object type.

This chapter is organised as follows. In the next section, we describe the design of crowd-
sourcing study to collect shape aesthetic judgements, analysis of collected data to shed light on
participant consistencies, deep learning formulation, and testing strategy. The results sections
addresses the qualitative patterns, quantity of training data, comparison of network architec-
tures, failure cases, link between shape features and their aesthetic scores, aesthetic duality,
and applications. Finally, we present the conclusion.

5.2 Approach

Tomodel3D shape aesthetics, ouroverall framework involvesfirst to collect dataon thehuman
perception of visual shape aesthetics and then learn from the data to get an aestheticsmeasure.

5.2.1 Crowdsourcing Shape Aesthetics Judgement Data

Our crowdsourcing setup is similar to one used in previous chapter, where we show shapes in
pairs and ask participants to click onmore aesthetic shape. We collect a 3D shape dataset (Ta-
ble 5.2.1) fromShapeNet [17], wheremodels are already grouped into humanunderstandable
categories, and also already rotated and scaled correspondingly with the other models in the
same category.
Quality Control and Participant Backgrounds. In each HIT (Human Intelligence Task is
a set of questions) Figure 5.2.1, we collect data for 30 shape pairs and pay $0.10. In an attempt
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Figure 5.2.1: Example shape pairs for use in Human Intelligence Task on Amazon Me-
chanical Turk crowdsourcing platform.

to collect as good data as possible, we use various methods during the data collection. First,
we provide clear instructions to tell the potential participants that dishonest workers can be
blocked from doing future work. We classify a worker as dishonest if he repeatedly answers
control questions incorrectly. Second, we force participants to spend enough time to view the
shape and then provide their response. To do this, after users click on a response, we have a 4
second delay before they can click on the next response. Third, we include control questions
as in previous work [41] where one shape from the pair is intentionally made to be ugly (see
Figure 5.2.2 for some examples). In each HIT, we include five control questions and the user
must correctly answer all of them for us to accept the tasks in theHIT. At the start of eachHIT,
we also collect somedemographics data from the participants. This data includes their gender,
age group, and region. We had 403male and 360 female Turkers (and 12 who did not provide
their gender). The HIT acceptance rates based on gender are 87.1% for males and 82.8% for
females. We had the following age groups: (0-20, 21-30, 31-40, 41-50, 51-60, 60-100) and
the percentages of Turkers in each group respectively are: (1.6%, 36.0%, 37.1%, 14.3%, 9.6%,
1.3%). We had the following regions: (Africa, Asia, Australia, Europe, North America, South
America). The HIT acceptance rates based on region are: (N/A due to no Turkers, 85.1%,
100%, 87.9%, 85.0%, 77.3%).

Consistency Analysis

In data-driven shape analysis and processing, the term consistency is used to check robust-
ness of the collected data and thus can be computed in different ways [67, 74]. In this work
we perform two types of consistency checks. First, to see if crowdsourcing is a good option to
collect large number of judgements, and then the level to which judgements agree to a major-
ity. As demonstrated in [102], there can be differences between paid and unpaid participant
responses. To verify this in our case, we collect and compare responses for each 25 shape pairs,
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Figure 5.2.2: Example shapes intentionally distorted to look ugly for pairing with nor-
mal shapes to check participants responses in crowdsourcing study. First row, three ugly
chairs and three ugly tables. Similarly, in second row we have three lamps and three
mugs.

first from 15 unpaid participants recruited on Facebook and then from15 paid participants re-
cruited onAmazonMechanical Turk. We performFishers Exact Test at 0.05 significance level
on all shape pairs and found that it does not reject the null hypothesis of non-random associ-
ation between the responses collected from two platforms i.e. on Facebook and Amazon Me-
chanical Turk. This result provides the necessary motivation to use crowdsourcing to collect
large number of shape aesthetic judgements. In a second test, after splitting the responses for
25 shape pairs by 42 participants into male or female categories, and then performing Fisher’s
test as in previous case, we get the same results i.e. non-rejection of null hypothesis, allowing
us to conclude that collected responses are consistent based on the populations.

5.2.2 Deep Ranking

This section describes how we learn an aesthetics measure from the collected data described
in the previous section. We take a deep multi-layer neural network architecture to allow us to
learn a potentially complex and non-linear function of shape aesthetics. The learned function
maps input shape data to its aesthetics score. We use voxels to represent 3D shapes which has
been shown to be an effective representation for deep learning [127]. Further, the study in
previous chapter gives us confidence to choose voxel based shape representation as input to
our deep ranking techniques. Specifically, we found inChapter 4 that slight loss in shape detail
with voxel representation does not affect human judgement of shape aesthetics in pairs. This
implies that voxel representation carries enough visual information to help learn a measure of
3D shape aesthetics. We choose to experiment with voxels at different resolutions as input to
the neural network.

As our collected data is based on rankings of pairs of 3D shapes, we use a learning technique
commonly known as learning-to-rank [94] to compute an overall measure that ‘best fits’ with
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the paired rankings in the data. As we collect pairs of data, we take a deep ranking formulation
that is inspiredby [51, 61, 134] and that fitswellwith our collecteddata andproblem. Thenov-
elety of our method include: our data compares between pairs of 3D shapes instead of points
on the shapes, and we convert the shapes into their voxel representations instead of work-
ing with images taken from different viewpoints of the shapes. If the voxel resolution is high,
we use a convolutional neural network architecture as otherwise a fully-connected network
would not be practical to train. We experimented with various voxel resolutions and neural
network architectures to gain insight into what works well for this shape aesthetics problem.
Furthermore, we have two copies of the neural network (which takes the concept of Siamese
networks [9] instead of four copies in the backpropagation. We train a separate network for
each category of shapes. Specifically, 3D shapes representing real life objects of varying sizes
and topology, such as mugs, chairs, tables, air planes, buildings, and vases are examples of the
shape categories used in our study of objects for which we collect aesthetics judgement data.

Since the perception of aesthetics of a 3D object shape, for example a chair, can be sub-
jective, we leave this to our neural network to model. Ours is a data-driven model that takes
human aesthetic judgements for shapes in pairs and adjusts the network weights to best fit the
judgements.

We first describe the voxel data representation and the neural network architectures. We
next describe the deep ranking formulation and the backpropagation in the neural network
that works with the collected data pairs. After the training process, we have an aesthetics mea-
sure that gives a score for each 3D shape.

Voxel Data Representation

Our choice of voxel representation is motivated from two key observations: first this is a basic
representation from which more complex features may be computed and second, as demon-
strated in previous chapter, the human perception of shape aesthetics can be done at manage-
able voxel resolution. We voxelize eachmesh and the voxels become the input to the first layer
of the deep neural network.

We experimentedwith different neural network architectures (Figure 5.2.3). We can have a
low resolution voxel representation, where the nodes between each successive layers are fully-
connected. As we increase the voxel resolution, we need a convolutional architecture. We do
not use any pooling layers as we wish to keep the details of the shapes in the voxel represen-
tation. The motivation for specifically experimenting with different resolutions is that when
humans make decisions on shape aesthetics, we may observe the overall shape and this cor-
responds to a lower resolution and fully-connected layers for the whole shape (Figure 5.2.3
top diagram). We may also observe the details of the shape and this corresponds to a higher
resolution and some convolutional layers to recognisemore local features of the shape (Figure
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Figure 5.2.3: Example deep neural network architectures: fully connected (top) and
convolution network (bottom). The input in layer 0 is the voxel representation of a 3D
shape and the output in the last layer is the shape’s aesthetics score. We experiment
with convolution neural network with 1283 voxel resolution.

5.2.3 bottom diagram). The convolution network takes as input voxel volume and transforms
it to a score using a set of convolution and fully connected layers. For example, if we have a
kernel size of 153 [3375 values] and a stride of 7, the total number of volume patches (or ker-
nels) will be 512 for a input voxel size of 643. We choose to reduce 3375 values in each volume
patch to 200 (can be a different value) values resulting in a [512x200] matrix as activations to
first layer, which can be represented as [8x8x8x200] activation matrix.

We letW be the set of all weights consisting ofW(l) between each successive layers, where
W(l) is the matrix of weights for the connections between layers l− 1 and l. We use the neural
network in Figure 5.2.3b to provide some examples. In this case, W(6) has 50x200 (between
Layer 5 and Layer 6) values. Between layers 2 and 3, there are multiple (e.g. 200 in this case)
sets of such weights. For the convolutional layer between layers 0 and 1, there are 1331x200
weight values. We let b be the set of all biases consisting of b(l) for each layer except for layer
0, where b(l) is the vector of biases for the connections to layer l. For example, b(6) has 50x1
values. Between layers 2 and 3, there are multiple sets of such biases. For the convolutional
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layer between layers 0 and 1, there are 1x200 bias values.

Deep Ranking Formulation and Backpropagation

Our algorithm takes the set Itrain and learns a deep neural network that maps the voxels of a
3D shape x to the shape’s aesthetics score y = hW,b(x) (Figure 5.2.3). We follow the deep
ranking formulation in [61], but there are many subtle and important differences including:
the 3D shape and voxel representation, the formulation for the 3D convolutional architecture,
and the two copies of the neural network for the A and B cases.

While supervised learning frameworks have the target values y in the training data, we do
not directly have such target values. Our data is ranking-based and provides rankings of pairs
of 3D shapes. This is the motivation for taking a learning-to-rank formulation and we learnW
and b to minimise this ranking loss function:

L(W, b) =
1
2
∥W∥22 +

Cp

|Itrain|
∑

(xA,xB)∈Itrain

l(yA − yB) (5.1)

where ∥W∥22 is the L2 regularizer (2-norm formatrix) to prevent over-fitting,Cp is a param-
eter, |Itrain| is the number of elements in Itrain, l(t) = max(0, 1− t)2 is a suitable loss function
for the inequality constraints, and yA = hW,b(xA).

The training setItrain contains inequality constraints. If (xA, xB) ∈ Itrain, ourneural network
should give a higher aesthetics score for shapeA than for shape B (i.e. h(xA) should be greater
than h(xB)). The loss function l(t) enforces prescribed inequalities in Itrain with a standard
margin of 1.

To minimise L(W, b), we perform an end-to-end neural network backpropagation with
gradient descent. First, we have a forward propagation step that takes each pair (xA, xB) ∈
Itrain and propagates xA and xB through the network with the current (W, b) to get yA and yB

respectively. Hence there are two copies of the network for each of the A and B cases. Note
that in some cases there aremultiple sets of weights and biases between layers and the forward
propagation proceeds as usual between each set of corresponding nodes. In the convolutional
layer, the sameweights and biases in each 3D convolutionalmask are forward propagatedmul-
tiple times.

We then perform a backward propagation step for each of the two copies of the network
and compute these delta (δ) values:

δ(nl) = 1− y2 for output layer (5.2)

δ(l)i = (

sl+1∑
k=1

δ(l+1)
k w(l+1)

ki ) (1− (a(l)i )2) for inner layers (5.3)
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where the δ and y values are indexed as δAi and yA in the case for A. The index i in δ is the
neuron in the corresponding layer and there is only one node in our output layers. nl is the
number of layers, sl+1 is the number of neurons in layer l + 1, w(l+1)

ki is the weight for the con-
nection between neuron i in layer l and neuron k in layer (l+ 1), and a(l)i is the output after the
activation function for neuron i in layer l. We use the tanh activation function which leads to
these δ formulas. Because of the learning-to-rank aspect, we define these δ to be different from
the usual δ in the standard neural network back-propagation. Note that in some cases there are
multiple sets of weights and biases between layers and the backward propagation proceeds as
usual between each set of corresponding nodes. The backward propagation computes these δ
values from the last layer up to layer 1.

We now compute the partial derivatives for the gradient descent. For ∂L
∂w(l)

ij
, we split this

into a ∂L
∂∥W∥2

∂∥W∥2
∂w(l)

ij
term and ∂L

∂y
∂y

∂w(l)
ij

terms (a term for each yA and each yB computed from

each (xA, xB) pair). The ∂L
∂y

∂y
∂w(l)

ij
term is expanded for the A case for example to ∂L

∂yA
∂yA
∂ai

∂ai
∂zi

∂zi
∂w(l)

ij

where the last three partial derivatives are computed with the copy of the network for the A
case. zi is the value of a neuron before the activation function.

The entire partial derivative is:

∂L
∂w(l)

ij

= w(l)
ij

+ C
∑
(A,B)

max(0, 1− yA + yB) chk(yA − yB) δ(l)Ai a
(l−1)
Aj

− C
∑
(A,B)

max(0, 1− yA + yB) chk(yA − yB) δ(l)Bi a
(l−1)
Bj

(5.4)

where C =
2Cp

|Itrain| . There is one term for each of the A and B cases. (A,B) represents
(xA, xB) ∈ Itrain and all terms in the summation can be computed with the corresponding
(xA, xB) pair. For the chk(t) function, if t ≥ 1 then chk(t) = 0, and if t < 1 then chk(t) = −1.
For each (A,B) pair, we can check the value of chk(yA − yB) before doing the backpropaga-
tion. If it is zero, we do not have to perform the backpropagation for that pair as the term in
the summation is zero.

For the weights in a convolutional layer, the partial derivative is:

∂L
∂w(l)

ij

= w(l)
ij

+ C
∑
(A,B)

∑
k

max(0, 1− yA + yB) chk(yA − yB) a(l−1)
Ajk δ(l)Aki

− C
∑
(A,B)

∑
k

max(0, 1− yA + yB) chk(yA − yB) a(l−1)
Bjk δ(l)Bki

(5.5)

where k is the number of times each 3D convolutional mask is used. The last part a(l−1)
Ajk δ(l)Aki
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is reversed from the previous formula, since in the implementation it is easier to consider the
computation as a multiplication of the corresponding vectors in this order into a matrix. This
computation typically takes the longest time in the whole training process. To speed up the
overall process for the first layer, since our activations represent voxels and are only binary
values, we can explicitly construct the matrix with this knowledge rather than performing the
actual matrix multiplications.

The partial derivative for the biases is:

∂L
∂b(l)i

= C
∑
(A,B)

max(0, 1− yA + yB) chk(yA − yB) δ(l)Ai

− C
∑
(A,B)

max(0, 1− yA + yB) chk(yA − yB) δ(l)Bi

(5.6)

For the biases in a convolutional layer, the partial derivative is:

∂L
∂b(l)i

= C
∑
(A,B)

∑
k

max(0, 1− yA + yB) chk(yA − yB) δ(l)Aki

− C
∑
(A,B)

∑
k

max(0, 1− yA + yB) chk(yA − yB) δ(l)Bki

(5.7)

The gradient descent (Algorithm 2) starts by initialising W and b randomly. We then
go through the training data for a fixed number of iterations (epoch), where each iteration
involves taking a set of data pairs and performing the forward and backward propagation
steps and computing the partial derivatives. Each iteration of gradient descent sums (in
ΔW(l)andΔb(l)) the partial derivatives from a set of data pairs and updates W and b with a
learning rate α.

Learned Aesthetics Measure

After gradient descent learnsW andb, we can use them to compute an aesthetics score for a3D
shape. For a new shape of the corresponding category, we voxelize it into x and use one copy
of the neural network and a forward propagation pass to get the score hW,b(x). This score is
an absolute value, but since the data and method are ranking-based, it has more meaning in a
relative sense when the score of a shape is compared to that of another.

Validation Data Sets

We use a validation dataset to set the parameters of the neural network. For each category, we
keep about 5 to 10% of the collected data as a separate validation set Ivalidation which has the
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Algorithm 2Deep Ranking Training Algorithm
1: procedureTrain Deep Network
2: W(l) ← RandomWeights, b(l) ← RandomBiases
3: for i← 1 : epoch do
4: ΔW(l) ← 0 , Δb(l) ← 0
5: for eachpair(xA, xB)inItrain do
6: Feed-forward (xA, xB) to get OutAandOutB as network outputs
7: if ((OutA − OutB) < 1) then
8: Back-propagate to compute partial derivatives ∂L

∂w(l) and ∂L
∂b(l)

9: ΔW(l) ← ΔW(l) + ∂L
∂w(l)

ij

10: Δb(l) ← Δb(l) + ∂L
∂b(l)i

11: end if
12: end for
13: W(l) ← W(l) + αΔW(l)

14: b(l) ← b(l) + αΔb(l)
15: end for
16: end procedure

same format as the training data Itrain. We use only those pairs where there is a difference of
three ormore between the number of users who select ’A’ asmore aesthetic and the number of
users who select ’B’ as more aesthetic. For each pair of shapes in Ivalidation, the prediction from
the measure learned with Itrain is correct if the collected data says shape A is more aesthetic
than shapeB andour score of shapeA is greater than that of B.To select the parameter for α, for
example, we can let α be {1e−1, 1e−2, 1e−3, 1e−4, 1e−5}. The selected α is the one that minimises
the validation error. There is typically a wide range of parameters that works well.

Neural Network Parameters

In each iteration of the gradient descent, we use all the data samples or sampled pairs in Itrain.
We typically perform 10 iterations of all samples. TheweightsW and biasesb are initialised by
sampling from a normal distribution with mean 0 and standard deviation 0.1. The parameter
Cp is set to 100 and the learning rate α is set to 0.0001. The learning process is done offline and
it can take up to one hour of execution time in MATLAB to perform 10 iterations of gradient
descent for 1000 data samples. After the weights and biases have been learned, computing the
score for a shape is interactive as this only requires straightforward forward propagation.

5.3 Results

We demonstrate our learned aesthetics measure by showing the rankings of a large number of
various classes of 3D shapes basedon their aesthetics scores. Our aestheticsmeasure is learned
fromcrowdsourceddata andcontains the collectivepreferencesofmanypeople. A single score
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Figure 5.2.4: Shapes ranked (from top to bottom and left to right in each row) ac-
cording to our aesthetics measure. There are 30 pedestal tables, 65 mugs, 78 lamps, 267
dining chairs, and 30 abstract shapes.

for one shape is not meaningful, while the scores for multiple shapes can be compared against
each other to give information about their relative aesthetics.
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Figure 5.2.5: Abstract shapes (30) ranked (from top to bottom and left to right in
each row) according to our aesthetics measure.

Figure 5.2.6: Test sets of shapes ranked (from high to low scores) by our aesthetics
measures. There are 4 classes of 10 shapes each: pedestal tables, dining chairs, mugs,
and lamps. The last 2 shapes in each row are intentionally created to be ugly shapes and
have the lowest scores. The ugly shapes are also used as part of the control questions in
the data collection process and are not included in the training data.

5.3.1 Qualitative Patterns in Results

Figure 5.1.2 shows the results for a large set of club chairs. We can observe some clear patterns
in these results. Thehighest ranked chairmodels tend tohavemore curved surfaces and/or tall
(but not too tall) backs. The lowest ranked models tend to have more planar surfaces and the
lowest few inparticular are somewhat ugly. All of these aspects are learned autonomously from
the human aesthetics data and no geometric features that for example correspond to curved,
round, or planar surfaces are specified.

There are a few examples of models in the club chair dataset that are the same and they are
ranked beside each other. For the fourth chair in the first row of Figure 5.1.2, for example,
there are a few other chairs that are similar but slightly different. While they are not ranked
immediately beside each other, all of them are still ranked near the top. For all the classes of
models in general, models that are very similar tend to be ranked near each other. A small
change to a 3D shape tends to result in a small change to its ranking and this shows that our
algorithm is robust.

Figure 5.2.4 shows the aesthetics rankings for four classes of shapes. We describe the pat-
terns that we can observe in the images. For the pedestal tables, the top fewmodels have fancy

89



and/or rounded table legs. The middle row has four similar rounded tables near each other.
In the last row, there are a few taller tables followed by the most ugly tables at the end. For
the mugs, the top models tend to be tall (but not too tall) and not wide. The handle shapes
typically match with the corresponding body shapes of the mugs: they are not too thin and
neither too big nor too small. Many mugs in the middle are similar, with subtle differences
in their shapes and handles in contrast to the top ones. The bottom ones tend to be the op-
posite: taller, shorter, wider, and/or with a handle that is thick or thin and too large or more
rectangular. The last five are relatively ugly and the upside down one is ranked low (there just
happened to be an upside downmug in the downloaded dataset). For the lamps, the top ones
tend to be rounded in some way and have some spherical or circular shapes. The bottom ones
are wider, taller, planar, and/or not symmetric. The last lamp appears to be broken due to the
separated parts of the model. For the dining chairs, the top models tend to have nice propor-
tions, somewhat curved backs, and/or some nice patterns on the backs. The bottom models
tend to have taller or simpler backs, and/or planar surfaces. In case of abstract shapes (Figure
5.2.5), although the differences are very subtle, we can see the presence of smooth surfaces
among the top ranked shapes. Further, the sharpness of curves or edges contributes to less
aesthetic shapes as exhibited by low ranking shapes.

The results for all classes typically show a distribution where there are some particularly
aesthetic shapes, some particularly ugly shapes, and many shapes that are in between. If we
take two shapes that are relatively far apart in their computed scores, they typically look quite
different in their aesthetics. If we take two shapes that are relatively close in their scores, it
can sometimes be difficult to say which one is more aesthetic. There can be cases where given
the same two shapes to a group of people, half of them may prefer one shape while the other
half may prefer the other shape. We show examples of these cases and analyse them in the
evaluation section.

Test Data Sets

In addition to ranking many existing shapes for each class, we can take separate testing sets
of 3D models and rank them. Figure 5.2.6 shows the rankings of ten such models for four
classes and these results show similar patterns as in the rankings above. There are then twougly
shapes for each class that we intentionally made and these have the lowest aesthetics scores.
The results here also provide a good way to test that these models can be considered ugly for
our control questions in the data collection process.
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Category 153 303 603 1283 1283∗
Abstract 74.10 78.48 81.32 81.32 79.32
Club Chairs 79.38 79.38 76.29 77.32 76.29
Pedestal Tables 78.30 84.80 82.18 82.80 80.48
Mugs 80.08 79.78 81.29 81.29 80.78
Lamps 76.54 79.01 85.19 85.19 81.48
Dining Chairs 81.82 83.84 84.85 83.43 82.84

Table 5.3.1: Comparison of Network Architectures and Voxel Resolutions. The last
column is for convolutional network with 1283 voxel resolution, while rest are for fully-
connected networks with resolution of 153, 303, and 603, in first, second, and third columns
respectively. The percentages are the percent of samples that are correctly predicted.

5.3.2 Quantitative Evaluation

Weperformvarious typesof evaluation togain abetterunderstandingofourmethod. Through-
out this section, we consider the validation datasets Ivalidation as ‘correct’ or ground truth data
anduse them to evaluate the accuracyof the learnedmeasure. For eachdata sample inIvalidation,
the learned measure is correct if the collected data says shape A is more aesthetic than shape
B and our score of shape A is greater than that of B.

Comparison of Network Architectures

We show a comparison of different network architectures and voxel resolutions (Table 5.3.1).
These architectures are non-linear functions that can already represent complex relations from
raw voxel data to an aesthetics score, and hencewedonot compare themwith linear functions.
We start with a 153 voxel resolution for a fully-connected architecture (Figure 5.2.3a). This
resolution is relatively low but still gives a reasonable representation of the 3D shapes. For this
case, there are 200 nodes in the first and second layers and 50 nodes in the third layer. Thenext
resolutions are 303, 603, 1283 with the same architecture. We also use a convolutional network
(Figure 5.2.3b) for 1283 resolution. For this case, the 3D convolutionmask or filter in layer 0 is
of size 18 (with a stride of 10) and layer 1 is a cube (of nodes) of size 12.

Quantity of Training Data

The effectiveness of the learned aesthetics measure depends on the quantity of data. We show
the percentage accuracy on Ivalidation as the amount of training data increases for each class of
shapes (Figure 5.3.1). In each case, we train with the number of data samples for 10 iterations
of gradient descent and compute the accuracy with the full Ivalidation set. For each class, the
voxel resolution (we take the best in each class from the previous subsection even if it is better
by only a small amount) and amount of data (four units in the x-axis of the graph) are different.
The voxel resolutions for club chairs, pedestal tables, mugs, lamps, and dining chairs are 15,
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Figure 5.3.1: Plots of percent accuracy on Ivalidation versus the amount of data sam-
ples in Itrain for five classes of shapes. We show this to highlight the relationship between
amount of training data and prediction accuracy.

Figure 5.3.2: First two example pairs where all ten Turkers chose the same shape (right
dining chair and left club chair) as being more aesthetic. Next two example pairs where
five chose one shape and five chose the other.

15, 60, 45, and 15 respectively. Each unit of data is 1900, 640, 180, 550, and 1150 samples
respectively. In the graph, the main idea is to show that the plots exhibit decreasing returns.
As the amount of data keeps increasing, the percentage increases but this increase will slow
down. Observing these plots provides one empirical way of knowingwhetherwehave enough
training data.

Failure and Limitation Cases

In the data samples, there are some samples where the pairs of shapes have consistent re-
sponses. Given the same pair of shapes to different people, theywill choose the same response
(see examples in Figure 5.3.2). In these cases, our aestheticsmeasureworkswell. On the other
hand, there are some pairs of shapes that can be very close in their aesthetics. Given the same
pair of shapes to different people, half of themwill choose one shapewhile half will choose the
other (Figure 5.3.2). In these cases, our aesthetics measure fails since we will get an accuracy
of 50% regardless of what we predict, and a random measure will also get this accuracy.

We showanumerical analysis of these cases (Figure 5.3.3). The idea is tohave some samples
of pairs of shapes where we collect the aesthetics preferences from multiple people. We then
separate the samples into groups based on the multiple responses. For example, a sample pair
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Figure 5.3.3: We post 5 HITs and have 10 Turkers provide responses to each HIT. For
some HIT tasks, all ten gave the same response (A or B), and these are placed into the
91-100% group. There are some tasks where five chose A and five chose B, and these
are placed into the 50% group. For each data sample, we use our learned measure to
compute the difference in aesthetics scores. If A is the more common response, we take
the score of shape A minus that of shape B. We plot the mean of these differences for
each group.

(A,B) given to 10 people with responses (9,1) (i.e. 9 choose A and 1 choose B), (1,9), or (1,8)
goes into the 81-90% group 2. Note that some Turkers are rejected so we may not have 10
responses for each sample pair. We wish to compute the difference in the aesthetics scores
from our learnedmeasure for each sample pair of shapes. If the user chooses A, the difference
is the score of A minus the score of B.

Figure 5.3.3 shows the results for club chairs and dining chairs. We observe an increasing
trend in the mean of differences of scores and this trend matches with our intuition. For the
50% group, the two shapes in each pair tend to be similar in aesthetics and the difference in
their scores tend to be smaller. If these types of pairs are in Ivalidation, it may not be useful
to consider them. For the 91-100% group, the two shapes in each pair tend to have a clear
difference in aesthetics and the difference in their scores tend to be larger. These are also cases
that the learned measure can predict well.

5.3.3 What makes a 3D shape aesthetic?

In this section, we use different qualitative and quantitative shape attributes to predict aes-
thetics scores with. We compute quantitative attributes such as: bounding box volume, area,
intrinsic volume,mean curvature, Gaussian curvature, D2 shape distribution, 3D histogramof
gradients, shape diameter function, light field descriptor, and show that some of these corre-
lates positively with aesthetics scores. We alsomeasure correlation with a qualitative attribute
related to shape functionality or ergonomicswhichwe call as ‘functional aesthetics’. Although,

2Please note that before learning we order (A, B) based on which of A or B is preferred by the participant.
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Category GCUR MCUR HOG D2 SDF LFD VOX
Abstract 80.00% 70.00% 70.00% 40.00% 50.00% 50.00% 81.32%

Club Chairs 63.64% 54.55% 54.55% 56.25% 59.09% 72.73% 79.38%
Tables 80.00% 80.00% 70.00% 60.00% 50.00% 70.00% 82.80%
Mugs 57.14% 42.86% 28.57% 71.43% 28.57% 78.57% 81.29%
Lamps 70.00% 70.00% 50.00% 60.00% 40.00% 70.00% 85.19%

Dining Chairs 75.00% 75.00% 55.00% 55.00% 50.00% 70.00% 84.85%

Table 5.3.2: Prediction accuracy with different shape features and voxels (VOX in last
columns). GCUR is Gaussian Curvature, MCUR is Mean Curvature, HOG is 3D His-
togram of Voxel Gradients, D2 is D2 Shape Distribution, SDF is Shape Diameter Func-
tion, LFD is Light Field Descriptor Curvature, The percentages are the percent of sam-
ples that are correctly predicted.

the main idea is to study the link between individual feature and shape aesthetics, we notice
that learning with a combination of these features is less effective than input voxel representa-
tion.

Simple Features

Are simple 3D shape features enough to decide if a shape will be perceive as more or less aes-
thetic? We computed three simple shape features: bounding box volume (BBV), surface area
(SA), and intrinsic volume (INV) and plot (Figure 5.3.4 ) these against the sorted aesthetics
scores. While bounding box volume gives the volume of the smallest box that encloses the
given shape, intrinsic volume is related to the inner volume occupied by the shape and gives
an estimate of how thick or thin a shape is perceived. We found that these feature alone do not
have any correlation with shape aesthetics, thus more descriptive characteristics are needed.

Curvature

As discussed before, curvature alone has been established to contribute a lot to the beauty of
a form. In order to understand this, we compute 256 bin histograms of Gaussian curvature,
mean curvatures, and voxel gradient on all shapes and train two layer ranking neural net to
see if these descriptors alone can predict aesthetics, if yes to what accuracy (Table. 5.3.2). We
compute curvature on uniformly sampled 10,000 surface points and compute voxel gradients
along x, y, and z direction on a voxelized volume of 1283. The choice of these descriptors is
motivated by the observation that pair (s) where structure is similar but more curved shape
(evenwithminor difference in curvature) is selected bymajority (80%ormore). For example,
for the first pair of shapes in Figure 5.3.6), the left shape is the majority vote (90%).

We found that both Gaussian and mean curvature descriptors provides good prediction
5.3.5. These results concord with research in psychology and other fields establishing curva-
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Figure 5.3.4: Aesthetics and simple 3D shape features. For all features and plots, we
first sort the aesthetic scores and plot along x-axis. First row plots are for club chairs
bounding-box volume, intrinsic volume, surface area respectively. The next row shows
the plots for table lamps. Plots for the rest of the categories are in the supplementary
material.

ture as an important feature in perceptual shape aesthetics.
Looking at the first two columns suggests slightly different prediction accuracy for different

shape categories. For example abstract shapes category has a prediction accuracy of 80%while
mugs have an accuracy of 57.14%. This may be due to the reason that abstract shapes exhibit
more variation in curvature than the coffeemugs. Also, we note that both Gaussian andmean
curvatures are equally good at predicting aesthetics. Another descriptor 3D HOG related to
shape curvature doesn’t predict the aesthetics very well.

Structure

We observed that participants on a majority prefer some structures as more aesthetic than
the others. For example, the first shape in last pair in Figure 5.3.6 is the majority vote (90%).
Motivated by these observations, we study the role several structural attributes such as ‘shape
diameter’, ‘D2 shape distribution’, and ‘light field descriptor’ in prediction of aesthetics of a 3D
shapes (Figure 5.3.5). The first two descriptors are computed on uniformly sampled 10,000
shape surface samples, while the third one is generated from 100 views of the shape.

As given in theTable. 5.3.2, the shape diameter function doesn’t provide a good prediction,
while the other twodescriptors seem to have a better contribution in prediction, especially the
light field descriptor.
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Figure 5.3.5: Ranking of shapes based on aesthetic scores learned on different shape
descriptors. First two rows show top and bottom ten aesthetic dining chairs using Gaus-
sian curvature descriptor respectively. Similarly, in the next two rows we have results for
club chairs using d2 shape descriptor, followed by results for lamps using light field shape
descriptor, and results for club chairs using shape diameter function.

Figure 5.3.6: Some example pairs where left shape in each pair is selected as more aes-
thetic by more than 90% participants. First pair shows similar structures however the
more curved one (left) is the majority vote. Second pair shows similarity in curvature,
however more functionally aesthetic shape (left) is the majority choice. Third example
shows, structural difference guiding users to select more aesthetic shape (left).

5.3.4 Aesthetics Duality

As Steve Jobs observed, “Design is not just what it looks like and feels like. Design is how it
works”. In our daily lives, we use objects that have both form and functionality. Our aesthetic
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Figure 5.3.7: Example showing differences and similarities in majority vote for func-
tional and shape aesthetics responses. In the first column, both the pairs have clear
majority in functional aesthetics responses while this is not true for shape aesthetics re-
sponses. In the second column, for both the pairs, participants agree on both functional
and shape aesthetics. In the last column, the first pairs have opposite majority vote,
while the second pair has no clear majority on functional aesthetics however participants
clearly agree on more aesthetic shape. *FA-Functional Aesthetics, *SA-Shape Aesthetics,
(x,y) means x and y number of participants choose first shape and second shapes as more
functionally aesthetic.

Figure 5.3.8: Correlating shape and functional aesthetics scores. Two line plots on the
left: (top) sorted shape aesthetics scores plot and (bottom) functional aesthetics scores
plot of the same shape order. Scatter plot on the right showing sorted shape aesthetic
scores along x-axis and functional aesthetics scores along y-axis. Clearly, these two can
not be correlated.

judgements about such objects may be influenced by either the form or the functionality. We
refer to the degree to which a shape or object serves its function as ‘functional aesthetics’. For
example, a chair when viewed gives perceptual clues about how comfortable to sit on, or er-
gonomic, or functionally aesthetic it will be when used for sitting on, second pair of shapes
in Figure 5.3.6. We conduct a study on MTurk to study the influence of perceived functional
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Figure 5.3.9: Comparing functional and shape aesthetic predictions. First row shows
top 5 and bottom 5 functionally aesthetic shapes respectively, as predicted by ranking
network trained on functional aesthetic responses. Similarly, the next rows show the
results of shape aesthetics predictions using the network trained on shape aesthetic re-
sponses.

aesthetics on shape aesthetic judgements. Specifically, we do the following:
First, we collect perceptual functional aesthetics response data onMTurk by showing pairs

of chairs in a way similar to normal shape aesthetic data collection (Section 5.2). We ask par-
ticipants to choose which shape they think is functionally more aesthetic, or comfortable, or
ergonomic to use. We used 277 dining chairs for this purpose and collected data from 120
participants (4 rejections based on incorrect control question answers) with a total of 4050
responses.

Second, we compare the collected functional aesthetics data with shape aesthetics data in
following ways: First, we counted the percentage of responses that users agree (or disagree)
on a majority (70% or more) in a pair for both functional and shape aesthetics. We found
that 64.8% (84/125) participants agree on amajority on functional aesthetic responses, while
this figure is 35.2% for the shape aesthetic responses. This suggests that it is relatively easier
for people to agree on a majority on functional aesthetic responses than on shape aesthetic
responses. Additionally, we found that out of 84 pairs in functional aesthetic responses, 28
(33.33%) pairs have similar majority vote in shape aesthetic responses. This figure has a value
of 63.63% (28/44) on shape aesthetic to functional aesthetic responses. This suggests that
while responding to functional aesthetic questions participants focus more on function than
form, however this is not true in the opposite direction. Second, we trained a ranking network
on functional aesthetic responses to rank the shape collection and compare with the rankings
received from shape aesthetics responses. We found 0.18 Spearman’s rank correlation and
predicted scores are plotted in Figure 5.3.8, also rankings of top 5 and bottom 5 models is
shown in Figure 5.3.9. Clearly, in Figure 5.3.9 the shapes in the first row and the shapes in
the third row have several differences. For example, the shapes in the first row looks more
ergonomic while those in the third row depicts more variety and aesthetics.
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5.3.5 Applications

The learned aesthetics measure can be used for various applications. We demonstrate the ap-
plications of aesthetics-based visualisation, search, and scene composition.

Aesthetics-based Visualisation

The idea is to visualise a large dataset of 3D shapes in one image based on aesthetics. First,
the aesthetics scores can affect the size of each shape icon in the overall image. We take the
aesthetics scores to scale the size of the shape icons. This helps to create a more aesthetics
overall image (as the aesthetics shapes are larger) andmakes it easier to view themost aesthetic
shapes.

Second, the aesthetics measure can affect the 2D positions of the shape icons within the
overall image. We can take a voxel resolution of 15 and use t-SNE [77] to map the raw voxel
data to two dimensions. The input to t-SNE is 1D vectorised representation from 3D voxel
grid and output is the position (x, y coordinates)in 2D space. Since this is based on the raw
voxels, aesthetics is not considered in this case. If we increase the voxel resolution to 30, t-
SNE typically does not work well and the shape icons become mostly laid out with uniform
spacing in the overall image. In this case, we take the activation values in the neurons of an
inner layer of the neural network (which can be considered as a dimension reduction based
on aesthetics) and use t-SNE to map these values to two dimensions. This works well and in
this case the aesthetics features learned in the inner layers can influence the 2D positions.

Figure 5.3.10 shows some examples of visualisations created this way. We can observe some
patterns in these images. For dining chairs, a voxel resolution of 15 works well as input to t-
SNE.There aremany regions of similar shapes grouped together. Chairs with taller backs tend
to be near the top, and there is a group of taller back and aesthetic chairs near the top middle
of the overall image. For mugs, taking a voxel resolution of 15 and the 200 activation values of
the first layer of the architecture in Figure 5.2.3a works well. There are aesthetic mugs around
the middle column part of the image while the ugly mugs are very small. The shorter mugs
tend to be near the top and the taller mugs tend to be near the bottom. The mugs on the right
side of the image tend to have a body shape that ismore vertical or cylindrical. For club chairs,
taking a voxel resolution of 60 and the activation values of a later layer (e.g. fourth to sixth
layer) of the architecture in Figure 5.2.3b works well. The more aesthetic club chairs tend to
be on the right side of the image. Some chairs with tall backs and curved surfaces are near the
bottom right while some chairs with curved arms are near the top right of the image.
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Figure 5.3.10: Aesthetics-based Visualisation, where size of each shape depends on its
aesthetic score and its 2D position, showing regions of shapes similar in both geometry
and aesthetics.
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Figure 5.3.11: Aesthetics-based Search and Scene Composition. Our search tool dis-
plays each class of 3D shapes in the left panel and they can be ranked according to our
aesthetics scores. We can use the tool to compose 3D scenes (two examples in image).

Aesthetics-based Search and Scene Composition

Webuilt a search toolwherewe can rank each class of shapes according to the aesthetics scores,
allowing us to to browse through and choose from themost aesthetic shapes that are at the top.
Figure 5.3.11 shows some example screenshots of our search tool. We can use our search tool
for 3D scene composition. The idea is that the tool makes it easier to compose more aesthetic
shapes together if there are a large number of shapes in each class. Figure 5.3.11 shows some
example scenes made with our tool.
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5.4 Discussion

To our knowledge, this is the first work to build a data-drivenmodel of 3D shape aesthetics by
utilising the concept of perceptual aesthetics, crowdsourcing, and deep ranking. The way we
crowdsource perception data by showing shapes in pairs has strong influence on our deep net-
work design. We maintain two copies of neural network to represent two shapes in pairwise
data collection approach. The learned measure of aesthetics is a real value between 1 and -1.
This restriction is due to the selection of ‘tanh’ as the neural network activation function. Fur-
ther, the aesthetic learned in our approach is relative, and can be used to rank large number of
shapes from high to low aesthetics. We believe there are several interesting avenues to extend
and improve the techniques presented in this chapter.

5.4.1 Image, shape, and scene aesthetics

Computer vision community has paid a lot of attention to advance the technical understand-
ingof several different perceptual attributes of images, such as aesthetics [137], interestingness
[48], andmemorability [54]. Their focus has been on characterising the attributes of aesthetic
images using different machine learning methods including recent deep learning based tech-
niques. We argue that, since an image is a 2D representation of underlying 3D object (s), de-
veloping ameasure of image or scene aesthetics directly from 3D shapes comprising it, is more
natural way to deal with image aesthetics modelling problem. One approach to understand
this is by learning a function that takes as input the set of 3D shapes that comprise a scene,
a representation of their arrangement, and viewpoint direction to provide a measure of im-
age aesthetics i.e. aesthetics of the image representing a snapshot of the scene created by 3D
objects and their arrangement. Another approach would be to first create scene images with
different sets of objects and then tying to relate the data-driven modelled aesthetics measure
of scene images with the objects comprising the scenes.

5.4.2 Modelling Functioning of Aesthetic Regions of Human Brain

Our results show that it is possible to build a data-drivenmodel of visual perceptual aesthetics
of 3D shapes. This data driven model uses artificial neural networks to model the reasoning
followed by a natural neural network i.e. human brain. A number of key questions can be
raised from this observation which could be the potential fundamental problems to explore.
The first question is what we can say about the reasoning followed by human brain to judge
more aesthetic shapes based on the learned function of shape aesthetics. Further, what shape
features and representations do human brain use to process aesthetics aspects of 3D shapes
and how do these relate to representations used by the artificial neural network’s hidden layer.
Our work is the preliminary investigation into this direction and if extended has the potential
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to through light on functioning of the parts of the human brain that help decide if an object is
aesthetic or not.

5.4.3 Neural Network Design

We train separatedeepnetworks for differentobject categories. Thismeans that for eachobject
category we learn a different function to approximate aesthetics. There are two possibilities
in the way we train our neural networks. First, we can build a data-driven model of aesthetics
that is object category oblivious. Itmeans thatwe try to learn a single function to predict shape
aesthetics. In our view, although it would be possible to learn such a function, however the
prediction accuracy would always be less than a category specificmodel. Second, we can train
a neural network by collecting data by paring shapes belonging to different object categories,
such as a chair paired with a table. The learned network can thus be compared with a object
category specific network. Our intuition is that owing to structural and semantic difference
betweendifferent object categories, collectingdata for shapes belonging todifferent categories
is difficult and needs consistency analysis before using for leaning.

5.4.4 Conclusion

In this work, we conducted crowdsourcing studies to collect shape aesthetics preferences to
build ranking based data-drivenmodel of shape aesthetics. The key advantage of our setting is
the use of human aesthetics judgements and deep ranking networks to build a computational
model of shape aesthetics, rather than manually defining shape aesthetics and using any pre-
computed shape features for learning. We demonstrated the usefulness of our technique by
ranking a large number of shapes belonging to different categories on the basis of their per-
ceived visual aesthetics, creating visualisations by emphasising more aesthetics shapes, and
interactively building virtual 3D scenes using more aesthetics shapes. In our analysis, we also
try to relate computable shape features, such as for curvature and shape structure, to aesthetics
scores. We found that curvature features such asGaussian curvatures ormean curvature alone
say a lot about the perceived aesthetics of shapes. This result agrees with the results presented
in the perceptual study [6]. We would like to emphasise that the learned measure is not a for-
mal measurement but is based on human perception as the data is collected based on human
perception. The learned measure is based on data from many people and there can be cases
where one person’s perception may not agree with it.
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I hate that aesthetic game of the eye and the mind, played by
these connoisseurs, these mandarins who “appreciate” beauty.
What is beauty, anyway? There’s no such thing. I never “ap-
preciate,” any more than I “like.” I love or I hate.

Pablo Picasso

6
Conclusion

Thekeymotivation for the work presented in this thesis is the need to find, analyse, and re-use
shapes present in ever growing online 3D shape repositories, a form of precise “big geomet-
ric data” [131]. We focus on perceptual attribute learning, for search, reuse by scene com-
position, and visualisation. We view “crowdsourcing perceptual attributes for building data-
driven models without predefined rules” as the central theme of this thesis. We next present
the contribution made in this thesis by the way of discussing the lessons learned followed by
the discussion on related aspects and how to improve and extend this work.

6.1 Contributions

Webuild two data-drivenmodels of perceptual attributes of 3D shapes. The first model learns
a metric of style similarity between pairs of 3D shapes while the other allows computing a
real value as a measure of visual aesthetics of a 3D shape. The two measures are essentially
represented as two different real valued functions, one modelled using metric learning and
the other using deep learning.

We demonstrate that it is possible to extend metric learning (Chapter 3) by using descrip-
tors that include colour and texture information in addition to shape features. We build two
metrics of style similarity. One using triplets collected from large number of participants on
crowdsourcing platform Amazon Mechanical Turk. We call this ‘objective’ style similarity
metric as it reflects the style judgements of a large crowd. The secondmetric is built by adapt-
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ing the objective metric to one specific user’s style preferences. We thus call it ‘personalised’
style metric. We found that some users, although a minority, desired to adapt the objective
metric to their style preferences. TheGUI-based applicationwe designed to validate our tech-
nique allows a user to perform style based search, scene composition by interactively search-
ing, matching, and viewing collections of 3D shapes, and personalised style matching. Our
results show that in addition to shape characteristics, the colour and texture attributes play a
vital role in style similarity of 3D shapes.

The approach to build a data-drivenmodel of 3D shape aesthetics is carried in two steps. In
the first step (Chapter 4), we run a crowdsourcing study to conclude two important results.
First, we show that using either one viewpoint or multi-viewpoints images to collect aesthet-
ics is equally good. Our original assumption was that there will be difference between human
judgements collected on one-view images and on multi-view images, since multi-view images
show more shape information compared to shape information shown by single-view image.
Second, on comparison of collected aesthetics judgements using different shape representa-
tions we found that for humans shape details don’t matter much when they compare and dis-
criminate aesthetics of shapes in pairs. This means that the coarse shape representations such
as voxels are as good as the polygonal shape representations for collecting shape aesthetics
judgement data. Since polygonal shape representations can’t be used directly in deep learning
based data-drivenmethods. Weuse the results of our study to choose voxels as the input shape
representation for data-driven model of shape aesthetics.

The second step to build a data-driven model involved designing and training a deep rank-
ing neural network. The formulation of learning technique follows our paired data collection
approach by maintaining two copies of the deep neural network. Our deep neural network
produces a real value as a measure of aesthetic score of an input 3D shape. This computed aes-
thetic value is relative and can be used to rank shapes from high to low aesthetics, for instance.
Our aestheticsmeasure is alignedwith the large amount of data collected on human aesthetics
preferences. This means that we don’t base our formulation on a specific set of shape features
such as curvature or symmetry. We let the deep neural network learn what features are impor-
tant for aesthetics. We demonstrate the learned aesthetics measure by building user interface
to rank shapes in large data-sets and creating visualisations.

6.2 Discussion

6.2.1 Quality of geometry

The quality and organisation of geometric data available in online shape repositories is still a
concern. This lack in quality sometimes requires manual pre-processing of large number of
shapes before they can be used for research. We found that many shapes are classified into in-
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correct object categories. For example, there aremany shapes in chairs category which are not
semantically chairs. These need to bemanually removed from the collection to not to bias the
learning results and perceptual data collection process. Further, a large number of shapes have
abnormalities in their geometry. For example, much geometry have disoriented faces, holes,
very high number of polygons, misalignment in relation to others, and non-uniform scaling
etc. The presence of these makes it impossible to rely on these repositories without either fix-
ing or discarding these geometries. In our research, we spent a lot of time by first manually
going through the shapes and then either fixing or discarding many. We argue that since a
large number of researchers rely on such online shape repositories, the quality of data avail-
able there for research can thus be improved to save time wasted in manually going through
the geometries.

6.2.2 Aesthetic shape modelling and auto-enhancing shape aesthetics

The key challenge still faced by computer graphics research community is to develop easy-to-
use tools for casual and novice users to create 3D content. One way to overcome this chal-
lenge is by using data-driven models to synthesise new shapes automatically. For example,
data-driven models can learn to generate shape models from a set of exemplars so that the
synthesised shapes are novel. Our shape aesthetics measure can be extended by such genera-
tive models to automate generation of visually more aesthetics shapes. Further this approach
could be embedded in an interactive shape modelling interface to suggest aesthetic value of
shape being modelled and possible edits to enhance it. One way to do this is by building a
data-driven shape editing method. This allows learning a model that characterises the plau-
sible variation of the shapes from a collection of closely related more aesthetic shapes. The
learned model can then be used to constrain the user’s edit to maintain plausibility.

6.2.3 Shape representations for learning perceptual properties

The geometry of an object can be digitally represented in different ways. The polygon based
representations are typically stored as a list of vertices, edges, and faces. When it comes to
using these in machine learning, researchers employ either image-based or object based rep-
resentations. Examples of images based representations are depth-images or single- or multi-
viewpoint images rendered from different camera locations. Object based representations in-
clude voxelized volume or point clouds. Since, time and memory constraints are critical in
deep learning algorithms, the chosen shape representation can have implications on these.
We argue that a systematic evaluation of different shape representations as inputs to deep net-
works is needed to learn their relation with time and memory requirements.

There are many other fundamental perceptual attributes of 3D shapes related to human vi-
sion (or visual perceptual attributes) and touch (or tactile perceptual attributes) [60, 61]. In
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addition to the two perceptual problems, namely style and aesthetics, which we explored in
this thesis, we envision several other interesting perceptual problems to look into to allow bet-
ter organisation and exploration of large 3D shape repositories. These problems include taste
perception from 3D shapes, interestingness of 3D shape, and memorability of 3D shapes. We
argue that learning to predict perceptual taste from3Dprinted foodhas applications in3D food
printing, a buzzword in 3D printing industry. A system that can learn to 3D print personalised
food could be advantageous to hospitality industry.

6.2.4 Shape perception

Weargue that fromperceptionperspectivemorework is need toexplorehowhumans compare
shapes to conclude if one is more or less aesthetic, say in a pair. It is relatively unclear if they
look at the overall shapes quickly to give their responses or they perform a more local or part
level comparison. We think that use of shape saliency and eye tracking while viewing shapes
canbeuseful. Further,morework is needed to investigate the linkbetween3D shape aesthetics
and other perceptual attributes [54] such as interestingness and memorability, in order for us
tobe able to answer questions such as “Are aesthetic3D shapes also interesting?”. Furthermore,
when source shapes are selected for scene composition,morework is needed to investigate the
relative weighting of style similarity between and aesthetic value of source and target shapes.

6.2.5 Crowdsourcing Perceptual Judgements

Although we took inspirations from already published works in computer graphics to design
and conduct our crowdsourcing studies, there are several directions to improve the data col-
lection process. First, we can inquire about the details of the display screen used to conduct
the study. For example the type of display (mobile or stationary), screen resolution (high or
low), dimensions (width and height), or colour range etc. This could allow us to build an un-
derstanding of the dependency between display device and perceptual aesthetic judgements.
Since focus of our data collection process was visual tasks completion, we do not poll partici-
pants on these specific details.

We use several metrics provided by Amazon Mechanical Turk (AMT) to filter out reliable
workers. These worker metrics, such as HIT approval rate, are automatically computed based
on the work done by workers. For example if a worker attempts a total of 100 tasks and gets
only 80 accepted by the requester (or employer who posted the work on AMT), then AMT
would assign a HIT approval rate of 80 percent to this worker. These values are like confi-
dence values of the workers measured over all the tasks in which a worker has participated. It
is important to understand that this metric is not necessarily an indicator of reliability with re-
gards to any specific task. Thuswe suggest that amore rigorous, task-specific subject reliability
method needs to be developed to crowdsource perceptual data. Further, future studies could
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benefit by paying attention to parameters such as participants viewing conditions, performing
visual tests, and collecting reports on time spent on performing tasks.

6.2.6 Style and Aesthetics for Scene composition

In addition to explosion of 3D shapes in online repositories, the number of 3D scenes is also
rapidly growing indigital repositories. This growthprovidesnewopportunities and challenges
for data-driven scene analysis, editing, synthesis, and reuse. In our work we developed mea-
sures of style similarity and shape aesthetics independently. These measures allow for style
and aesthetics based scene composition among other uses. However when 3D scenes are
composed either interactively or automatically, which property between style and aesthet-
ics contribute to choosing the new shape to add to the existing shapes in the scene needs to
be evaluated. For example some users may prefer matching the overall style of the shapes in
scene while other may prefer choosing more aesthetic shapes. Developing an understanding
of relative weightings between style and aesthetics for building 3D scenes can be beneficial
to automating the building of data-driven models for optimisation of these properties to help
produce perceptually more stylish and aesthetic scenes.
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