Yi Jiun Tan, Chien Ing Yeo, Nathan R. Halcovitch and Edward R.T. Tiekink* Crystal structure of bis(μ_{2}-diethyldithiocarbamato- $\left.\kappa^{3} S, S^{\prime}: S^{\prime}\right)$-bis (tricyclohexylphosphane-кP)dicopper(I), $\mathrm{C}_{46} \mathrm{H}_{86} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$

https://doi.org/10.1515/ncrs-2017-0402
Received December 12, 2017; accepted February 23, 2018; available online March 10, 2018

Abstract

$\mathrm{C}_{46} \mathrm{H}_{86} \mathrm{Cu}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{4}$, triclinic, $P \overline{1} \quad$ (no. 2), $\quad a=9.9626(3) \AA$, $b=11.0489(3) \AA, \quad c=12.3604(3) \AA, \quad \alpha=106.205(3)^{\circ}$, $\beta=99.165(2)^{\circ}, \quad \gamma=100.306(3)^{\circ}, \quad V=1253.53(6) \AA^{3}, \quad Z=1$, $R_{\mathrm{gt}}(F)=0.0232, w R_{\mathrm{ref}}\left(F^{2}\right)=0.0555, T=100(2) \mathrm{K}$.

CCDC no.: 1825489
The structure of the title complex is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

[^0]〇 Open Access. © 2018 Yi Jiun Tan et al., published by De Gruyter. (cc) BY-NC-ND NonCommercial-NoDerivatives 4.0 License.

Table 1: Data collection and handling.

Crystal:	Yellow prism
Size:	$0.53 \times 0.30 \times 0.10 \mathrm{~mm}$
Wavelength:	Mo $K \alpha$ radiation $(0.71073 \AA)$
$\mu:$	$11.1 \mathrm{~cm}^{-1}$
Diffractometer, scan mode:	SuperNova Dual, ω scans
$2 \theta_{\text {max }}$, completeness:	$59.4^{\circ}, 88.4 \%$
$N(h k l)_{\text {measured }}, N\left(h k l l_{\text {unique }}, R_{\text {int }}:\right.$	$25023,6283,0.026$
Criterion for $I_{\text {obs }}, N(h k l)_{\text {gt }}:$	$I_{\text {obs }}>2 \sigma\left(I_{\text {obs }}\right), 5853$
$N(\text { param })_{\text {refined }}:$	255
Programs:	Rigaku programs [1], SHELX [2, 3],
	ORTEP [4]

Source of materials

The title complex was prepared from the in situ reaction of $\mathrm{CuCl}, \mathrm{Cy}_{3} \mathrm{P}$ and $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CNEt}_{2}\right]$ in a 1:1:1 ratio. $\mathrm{Cy}_{3} \mathrm{P}$ (SigmaAldrich; $1.0 \mathrm{mmol}, 0.283 \mathrm{~g}$) dissolved in hexane (10 mL) was added to a hexane solution (10 mL) of CuCl (Sigma-Aldrich; $1.0 \mathrm{mmol}, 0.100 \mathrm{~g})$. The temperature of reaction was maintained at below $4{ }^{\circ} \mathrm{C}$. Then, $\mathrm{Na}\left[\mathrm{S}_{2} \mathrm{CNEt}_{2}\right]$ (BDH, 1.0 mmol , 0.250 g) in hexane (10 mL) was added to the reaction mixture, followed by stirring for 4 h . The resulting mixture was filtered and left for evaporation at room temperature to yield bright-yellow crystals. Yield: 0.239 (68.7\%). M.p.: 418-420 K. IR (cm^{-1}): $2909(s), 2843(s) v(\mathrm{C}-\mathrm{H}) ; 1474(\mathrm{~s}) v(\mathrm{C}-\mathrm{N}) ; 1072$ (m), 995 (m) $v(\mathrm{C}-\mathrm{S})$.

Experimental details

The C-bound H atoms were geometrically placed ($\mathrm{C}-\mathrm{H}=$ $0.98-1.00 \AA$) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2-1.5$ $U_{\text {eq }}(\mathrm{C})$.

Comment

The initial interest in complexes related to the title compound, i.e. of general formula $\left[R_{3} \mathrm{PCu}\left(\mathrm{S}_{2} \mathrm{CNRR}^{\prime}\right)\right]_{2}, R$, $R^{\prime}=$ alkyl or aryl, arose as a result of the desire to generate more efficacious synthetic precursors for copper sulfide nanomaterials [5]. Thus, the addition of base, in this case triorganophosphanes with relatively small R substituents, disrupted the polymeric structure of $\left[\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNRR}^{\prime}\right)\right]_{\mathrm{n}}$ to provide soluble materials that were more suitable for decomposition studies. However, it was in recognition of the biological potential of metal dithiocarbamates [6] that prompted more recent investigations into these types of ternary compounds.

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2}).

Atom	\boldsymbol{x}	y	z	$\boldsymbol{U}_{\text {iso }}$ */ $\boldsymbol{U}_{\text {eq }}$
Cu	0.12237(2)	0.49233(2)	0.56887(2)	0.01060(5)
N1	0.19361(11)	$0.79619(10)$	0.41105(9)	0.0150(2)
P1	0.28568(3)	0.59326(3)	0.73101(3)	0.00891(6)
S1	0.12240(3)	0.54656(3)	0.39823(2)	0.01103(6)
S2	-0.03819(3)	0.73773(3)	0.48691(3)	0.01220(7)
C1	0.10318(12)	0.70499(12)	0.43227(10)	0.0114(2)
C2	0.30950(14)	0.76790(14)	$0.35599(12)$	0.0195(3)
H2A	0.3413	0.6958	0.3768	0.023*
H2B	0.3889	0.8451	0.3854	0.023*
C3	0.26620(17)	0.73107(18)	0.22524(13)	$0.0303(4)$
H3A	0.1918	0.6513	0.1954	0.045*
H3B	0.3470	0.7170	0.1916	0.045*
H3C	0.2319	0.8012	0.2045	0.045*
C4	0.18069(15)	0.93151(13)	0.44115(12)	0.0212(3)
H4A	0.0805	0.9331	0.4301	0.025*
H4B	0.2216	0.9732	0.3888	0.025*
C5	0.25463(17)	1.00744(14)	0.56534(14)	0.0300(3)
H5A	0.2133	0.9671	0.6174	0.045*
H5B	0.2441	1.0969	0.5828	0.045*
H5C	0.3542	1.0074	0.5760	0.045*
C11	0.46488(12)	0.62587(12)	$0.70495(10)$	0.0116(2)
H11	0.4815	0.5394	0.6656	0.014*
C12	0.47318(13)	0.70237(14)	0.61921(11)	0.0185(3)
H12A	0.4583	0.7898	0.6543	0.022*
H12B	0.3981	0.6575	0.5489	0.022*
C13	0.61556(14)	0.71546(15)	0.58591(12)	0.0224(3)
H13A	0.6262	0.6286	0.5436	0.027*
H13B	0.6200	0.7692	0.5339	0.027*
C14	0.73512(13)	0.77773(14)	0.69273(11)	0.0197(3)
H14A	0.8258	0.7805	0.6692	0.024*
H14B	0.7302	0.8679	0.7307	0.024*
C15	0.72666(13)	0.70130(13)	$0.77774(11)$	0.0162(3)
H15A	0.8023	0.7455	0.8478	0.019*
H15B	0.7406	0.6137	0.7421	0.019*
C16	0.58515(12)	0.68917(12)	0.81185(10)	0.0126(2)
H16A	0.5747	0.7763	0.8536	0.015*
H16B	0.5810	0.6362	0.8645	0.015*
C21	0.29670(12)	0.49601(12)	0.83101(10)	0.0114(2)
H21	0.3654	0.5500	0.9043	0.014^{*}
C22	0.34733(14)	0.37356(12)	$0.77842(11)$	0.0158(3)
H22A	0.2846	0.3230	0.7024	0.019*
H22B	0.4427	0.3991	0.7660	0.019*
C23	0.34917(15)	0.28893(13)	0.85759(12)	0.0202(3)
H23A	0.3754	0.2081	0.8189	0.024^{*}
H23B	0.4210	0.3356	0.9297	0.024*
C24	0.20768(16)	0.25474(13)	0.88752(12)	0.0228(3)
H24A	0.2151	0.2053	0.9429	0.027*
H24B	0.1380	0.1990	0.8167	0.027*
C25	0.15820(15)	0.37659(13)	$0.94044(11)$	0.0192(3)
H25A	0.0639	0.3516	0.9551	0.023*
H25B	0.2228	0.4283	1.0153	0.023*
C26	0.15317(13)	0.45857(12)	0.85934(11)	0.0145(2)
H26A	0.1236	0.5383	0.8960	0.017*
H26B	0.0830	0.4091	0.7869	0.017*
C31	0.26895(12)	0.75415(11)	0.82070(10)	0.0104(2)

Table 2 (continued)

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}_{\text {iso }}{ }^{*} / \boldsymbol{U}_{\text {eq }}$
H31	0.3246	0.8203	0.7938	0.012^{*}
C32	$0.32714(13)$	$0.79275(12)$	$0.95165(10)$	$0.0127(2)$
H32A	0.2747	0.7306	0.9831	0.015^{*}
H32B	0.4265	0.7885	0.9664	0.015^{*}
C33	$0.31514(13)$	$0.93010(12)$	$1.01325(11)$	$0.0147(2)$
H33A	0.3747	0.9931	0.9871	0.018^{*}
H33B	0.3495	0.9510	1.0976	0.018^{*}
C34	$0.16414(13)$	$0.94275(12)$	$0.98858(11)$	$0.0153(2)$
H34A	0.1059	0.8858	1.0211	0.018^{*}
H34B	0.1600	1.0333	1.0261	0.018^{*}
C35	$0.10698(13)$	$0.90498(12)$	$0.85875(11)$	$0.0155(2)$
H35A	0.1605	0.9669	0.8277	0.019^{*}
H35B	0.0080	0.9105	0.8440	0.019^{*}
C36	$0.11688(12)$	$0.76766(12)$	$0.79637(11)$	$0.0134(2)$
H36A	0.0822	0.7473	0.7122	0.016^{*}
H36B	0.0570	0.7049	0.8225	0.016^{*}

Specifically, a recent report [7] highlighted the speciesspecific anti-microbial activity of certain $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNRR}^{\prime}\right)$ derivatives and it was this observation that prompted the synthesis of the title compound, $\left[\mathrm{Cy}_{3} \mathrm{PCu}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)\right]_{2}$.

As seen from the Figure (70% displacement ellipsoids; the C4 atom is obscured), the title compound is binuclear and indeed, disposed about a centre of inversion; unlabelled atoms are related by the symmetry operation: $-x, 1-y, 1-z$. The diethyldithiocarbamate ligand is μ_{2}-bridging, chelating one copper(I) centre, while simultaneously binding to a second via one of the sulfur atoms only. The bridging $\mathrm{Cu}-\mathrm{S} 1$ bond length of $2.5169(3) \AA$ is systematically longer than the chelating $\mathrm{Cu}-\mathrm{S}^{1}{ }^{\mathrm{i}}, \mathrm{S} 2^{\mathrm{i}}$ bond lengths of $2.3480(3)$ and $2.3905(3) \AA$; the internal $\mathrm{Cu} \cdots \mathrm{Cu}^{\mathrm{i}}$ separation is $2.8034(3) \AA$. These variations are reflected in the associated $\mathrm{C}-\mathrm{S}$ bond lengths with the bond formed by the bridging-S1 atom being systematically longer than the bond involving the chelating-S2 atom, i.e. 1.7356(13) cf. 1.7087(13) \AA. The pattern in $\mathrm{Cu}-\mathrm{S}$ bond lengths implies the central $\mathrm{Cu}_{2} \mathrm{~S}_{2}$ core is rectangular. The overall $\mathrm{Cu}_{2} \mathrm{~S}_{4}$ arrangement resembles a partial step-ladder as the edgeshared CuS_{2} triangles lie above and below the plane through the central core. The four-coordinate geometry of the copper(I) atom is completed by a phosphane-P atom and the resultant PS_{3} donor set approximates a tetrahedron but, with significant distortions. Thus, the smallest angle subtended at copper(I) of $73.827(11)^{\circ}$ corresponds to the chelate angle and the widest angle of $123.178(12)^{\circ}$ corresponds to $\mathrm{S} 1-\mathrm{Cu}-\mathrm{P} 1$, i.e. involving the bridging-S1 and sterically crowded phosphorous atoms.

There are two direct literature precedents for the structure of the title compound, namely $\left[R_{3} \mathrm{PCu}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)\right]_{2}$ for
$R=$ Me and Et [5]. These adopt the same structural motif and they are both located around a inversion centre.

Acknowledgements: Sunway University is thanked for support of biological and crystal engineering studies of metal dithiocarbamates.

References

1. Rigaku/Oxford Diffraction: CrysAlis ${ }^{\text {PRO }}$. Rigaku Corporation, The Woodlands, TX, USA (2015).
2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849-854.
5. Afzaal, M.; Rosenberg, C. L.; Malik, M. A.; White, A. J. P.; O’Brien, P.: Phosphine stabilized copper(I) complexes of dithiocarbamates and xanthates and their decomposition pathways. New J. Chem. 35 (2011) 2773-2780.
6. Hogarth, G.: Metal-dithiocarbamate complexes: chemistry and biological activity. Mini Rev. Med. Chem. 12 (2012) 1202-1215.
7. Jamaludin, N. S.; Halim, S. N. A.; Khoo, C.-H.; Chen, B.-J.; See, T.-H.; Sim, J.-H.; Cheah, Y.-K.; Seng, H.-L.; Tiekink, E. R. T.: Bis(phosphane)copper(I) and silver(I) dithiocarbamates: crystallography and anti-microbial assay. Z. Kristallogr. - CM 231 (2016) 341-349.

[^0]: *Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my
 Yi Jiun Tan and Chien Ing Yeo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
 Nathan R. Halcovitch: Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom

