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Abstract 

Motivation: In recent years Mendelian randomization analysis using summary data from 
genome-wide association studies has become a popular approach for investigating causal 
relationships in epidemiology. The mrrobust Stata package implements several of the recently 
developed methods. 

Implementation: mrrobust is freely available as a Stata package. 

General Features: The package includes inverse variance weighted estimation, as well as a 
range of median, modal and MR-Egger estimation methods. Using mrrobust, plots can be 
constructed visualising each estimate either individually or simultaneously. The package also 
provides statistics such as	𝐼#$% , which are useful in assessing attenuation bias in causal 
estimates. 

Availability: The software is freely available from GitHub 
[https://raw.github.com/remlapmot/mrrobust/master/]. 
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Key Messages 
 

• The mrrobust software package facilitates two-sample summary MR analyses using 
summary data from genome-wide association studies. 
 

• The package allows for implementation of a range of summary MR estimators using Stata, 
improving the extent to which results are reproducible. 
 

• Conclusions from the supported analyses can be robust to sources of confounding bias and 
pleiotropy, though findings should be considered with respect to the underlying 
assumptions of each estimator. 
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Introduction 

Mendelian randomization(1) has developed into a popular approach to examining causal 

relationships in epidemiology(2, 3). By employing genetic variants as instrumental variables 

(IVs) it is possible to limit bias from confounding, provided variants satisfy the assumptions 

of IV analysis(1, 4). For a genetic variant to serve as a suitable instrument, three assumptions 

must hold, 1) it must be associated with the exposure of interest, 2) there must be no 

confounders of the instrument and outcome, and 3) the instrument must not affect the 

outcome except via the exposure of interest.(5).  

Candidate variants are usually identified through large genome-wide association studies 

(GWASs) (6). However, IV analyses using single variants rarely have sufficient power to test 

hypotheses of interest(6, 7). One approach to increase the statistical power of Mendelian 

randomization studies is to use multiple genetic variants as instruments within a two-sample 

summary framework(8, 9). Two-sample Mendelian randomisation estimates the effect of the 

exposure using instrument-exposure and instrument-outcome associations from different 

samples, often through methods originally developed for meta-analysis(8, 9). This is 

particularly useful, as MR estimators such as MR Egger and median based regression are 

robust to certain forms of violation of the third instrumental variable assumption(8, 10, 11). 

Violations of this assumption can occur through directional pleiotropy- where a genetic 

variant affects the study outcome through pathways that are not mediated via the exposure. 

Such developments have contributed to the increasing popularity of two-sample summary 

MR(5). 

This paper introduces the mrrobust Stata package as a tool for performing two-sample 

summary MR analyses. The mrrobust package is a tool to help researchers implement two-

sample MR analyses, and can be viewed as the Stata counterpart to toolkits such as the MR-

Base web application, and the MendelianRandomization and TwoSampleMR R packages(12, 

13). Whilst it is possible to conduct individual level IV analyses in Stata using modules such 

as IVREG2(14), two-sample summary MR has previously required bespoke code to 

implement. The mrrobust package addresses this limitation, providing a suite of popular two-

sample MR methods and sensitivity analyses. Before continuing, we briefly outline the three 

primary estimation methods included in the mrrobust package, using the notation of Bowden 

et al(10, 15). 
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Inverse variance weighting (IVW) 

To perform IVW a weighted average	𝛽'()* is calculated using the set of ratio estimates 𝛽'+ for 

each individual variant	𝐽 = 1,2, … , 𝑗 (9). Ratio estimates are obtained for each variant by 

dividing the instrument-outcome association by the corresponding instrument-exposure 

association. Such association estimates are obtained by fitting simple linear regression 

models of the outcome and exposure upon the genetic variant, primarily by conducting a 

GWAS. Let	𝛾45 and 𝜎75%  denote the instrument-outcome association and variance respectively 

for the	𝑗89 variant. The IVW estimate is then defined as: 

𝛽'()* =
∑ 𝑤5𝛽'5
+
5<=

∑ 𝑤5
+
5<=

, 𝑤5 =
𝛾45%

𝜎75%
 

This corresponds to the estimate one would obtain from a weighted linear regression of the 

set of instrument-outcome associations upon the set of instrument-exposure associations, 

constraining the intercept at the origin(9). One drawback of the IVW approach is that causal 

effect estimates can be biased in cases where one or more variants exhibit directional 

pleiotropy(9). 

MR-Egger regression 

MR-Egger regression is valid under weaker assumptions than IVW, as it can provide 

unbiased causal effect estimates even if the variants have pleiotropic effects. 

In this case, the set of instrument-outcome associations is regressed upon the set of 

instrument-exposure associations, weighting the regression using precision of the instrument-

outcome associations as in the IVW case(8). However, MR-Egger does not constrain the 

intercept at the origin, and the intercept represents an estimate of the average directional 

pleiotropic effect across the set of variants. The slope of the model provides an unbiased 

estimate of the causal effect(8, 10). If there is little evidence of systematic differences 

between the IVW and MR-Egger, then the IVW should be preferred. The IVW is more 

efficient, but potentially less robust, and in such cases the IVW estimate is often most 

appropriate estimate to adopt due to the greater precision of IVW estimates in comparison 

with other approaches(10). If there are differences between the IVW and MR-Egger 

estimates, this may be due to pleiotropy or heterogeneous treatment effects. 
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The utility of MR Egger regression hinges upon two core assumptions. First, the INstrument 

Strength Independent of Direct Effect (InSIDE) assumption requires the effects of SNPs on 

the exposure and their pleiotropic effects on the outcome to be independent. If the InSIDE 

assumption holds, estimates for variants with stronger instrument-exposure associations	(𝛾?@) 

will be closer to the true causal effect parameter than variants with weaker associations(8). 

Second, the NO Measurement Error (NOME) assumption requires no measurement error to 

be present in the instrument-exposure associations, and therefore that the variance of the 

instrument-exposure association	𝜎$5% = 0.  In cases where NOME is strictly satisfied, 

estimates	𝛾45 will be equal to	𝛾5 and the variance of the ratio estimate for each variant	𝑗 is 

𝑣𝑎𝑟F𝛽'5G =
HIJ
K

L@J
K . We further note that the NOME assumption applies to other two sample MR 

approaches and is not therefore a unique feature of the MR Egger approach. 

In cases where the NOME assumption is violated, individual variants will suffer from weak 

instrument bias, leading to attenuation of MR Egger estimates towards the null. This can 

occur if the SNPs were not genome-wide significant (𝑝 = 5 × 10PQ) or were selected from 

small GWAS. One novel approach to assessing the strength of the NOME assumption is to 

evaluate the	𝐼#$%  statistic, interpreted as the relative degree of attenuation bias in the MR 

Egger regression in the interval (0,1)(10). Thus, for example, an 𝐼#$%  value of 0.7 represents 

an estimated relative bias of 30% towards the null. Further details regarding calculation of the 

𝐼#$%  statistic are presented in the supplementary material. 

Weighted median 

The weighted median approach is an adaptation of the simple median estimator for two-

sample summary MR(15). For a total number of variants	𝐽 = 2𝑘 + 1, the simple median 

approach selects the middle ratio estimate	𝛽'TU=, from ordered ratio estimates	𝛽'=, 𝛽'%, …𝛽'5(15). 

In cases where the total number of variants is even, the median is interpolated 

as	=
%
F𝛽'T + 𝛽'TU=G. As the simple median approach is inefficient, particularly in cases with 

variable precision in the set of ratio estimates, it is preferable to incorporate weights in a 

similar fashion to the IVW and MR Egger approaches. Let	𝑠5 = ∑ 𝑤T
5
T<=  be the sum of 

weights for the set of variants	1,2, … 𝑗, standardised so the sum of weights	𝑠+=1. The weighted 

median estimator is the median of a distribution having estimate 𝛽'5 as its	𝑝5 =
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100 W𝑠5 −
YJ
%
Z
89

 percentile(15). For the range of percentile values, we perform a linear 

extrapolation between neighbouring ratio estimates. 

An important assumption of the median summary MR approaches is that more than 50% of 

the genetic variants do not exhibit directional pleiotropy. In the simple median case, this 

threshold refers to the number of variants, whilst in the weighted median case the 50% 

threshold is with respect to the weights of the non-pleiotropic variants(15). 

Additional estimators 

As two-sample MR represents a developing area of genetic epidemiology, novel approaches 

to causal effect estimation are incorporated into the mrrobust package through frequent 

updates. One such method is the mode-based estimator put forward by Hartwig et al(16). 

Details on the implementation of this approach with accompanying examples can be found in 

the supplementary material. 

Visualizing MR estimates 

One useful approach to presenting the results of MR analyses is to produce a scatterplot, with 

the x and y axes representing the instrument-exposure and instrument-outcome associations 

respectively for each variant. If one were to draw a hypothetical regression line leading from 

the origin to each variant, the slope of the line would represent a ratio estimate of the causal 

effect using the single variant as an instrument, that is, dividing the instrument-outcome 

association by the instrument-exposure association (defined as 𝛽5 above). The precision of 

the instrument-outcome association estimate for each variant is illustrated using vertical error 

bars, whilst horizontal error bars pertaining to the instrument-exposure association may be 

omitted for clarity. As the IVW, MR-Egger, median, and modal approaches essentially meta-

analyse the set of ratio estimates, it is possible to include regression lines highlighting effect 

estimates of each approach for comparison. For such regression lines, positive and negative 

slopes are indicative of a positive or negative effect respectively, whilst a slope of zero 

represents the absence of an observed association. 

 

Implementation 

The mrrobust package uses functions from moremata(17), addplot(18), and the heterogi(19) 

command. For versions of Stata 13 and higher, it can be installed using the .net install 
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command from [https://raw.github.com/remlapmot/mrrobust/master/]. For older versions of 

Stata, a zip archive of the files is freely available for download at: 

[https://github.com/remlapmot/mrrobust]. 

The package facilitates two-sample summary MR analyses with key features including: 

• IVW and MR-Egger regression approaches, including fixed effects MR-Egger 

regression, standard error correction, and weighting options. 

• Unweighted, weighted and penalized weighted median IV estimators, providing 

pleiotropy robust estimates in cases where fewer than 50% of the genetic instruments 

are valid. 

• Modal estimation following Hartwig et al(16), including weighted and unweighted 

variations.  

• Presentation of heterogeneity statistics, statistics such as 𝐼#$%  for use in assessing 

attenuation bias(10), and Simulation Extrapolation (SIMEX) correction following 

Bowden et al(20). 

• Plotting tools to visualise IVW, MR-Egger and weighted median estimators, as well 

as density plotting with respect to implementing the modal estimator. 

• Illustrative examples and documentation using data from Do et al(21). 

Applied Examples: Adiposity and Height as predictors of serum glucose levels 

To illustrate key features of the mrrobust package, we perform two analyses investigating 

potential relationships between adiposity, height, and serum glucose. Adiposity was selected 

owing to the vast body of evidence supporting a positive association with serum glucose 

levels(22-25), whilst height was based upon limited evidence of association(26-28). Glucose 

was selected as an outcome with respect to its hypothesised role in the development of Type-

II diabetes(22, 28). Datasets were obtained from the MR-Base web application and pruned 

for linkage disequilibrium prior to conducting the analyses(13). 

 

Applied Example I: Adiposity and Serum Glucose  

Though the relationship between adiposity and glucose has received much attention in the 

literature, such studies are predominantly observational and therefore may be subject to bias 

from confounding. This provides motivation for considering Mendelian randomization 

techniques which are able to control for such unobserved confounding. In the initial analysis, 
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we select adiposity as an exposure measured using standardised body mass index (BMI), 

obtaining estimates of its associations with genotypes and their respective standard errors 

from Locke et al(29).  

 

For the outcome, we consider log transformed measures of serum glucose 𝑙𝑜𝑔(𝑚𝑀) utilising 

effect estimates and standard errors from Shin et al(30). The summary data utilised for this 

analysis is provided in the supplementary material. Adopting a GWAS significance p-value 

threshold of 5 × 10PQ a total of 79 independent SNPs were identified in both samples. We 

confirmed the linkage equilibrium (LD) between the SNPs using a clumping algorithm, and a 

clumping distance of 10000kb, and an LD 𝑅% of 0.001. This resulted in a total of 79 SNPs for 

use as instrumental variables, details of which are presented in the supplementary material. 

 

Using mrrobust, we conducted IVW, MR-Egger, and weighted median regression approaches 

using the above summary data. The code for our analysis is in the supplementary material.  

For IVW and MR Egger approaches the regression was weighted using the variance of the 

instrument-outcome association. The set of summary MR estimates are presented in Table 

1A. 

 

We find strong evidence of a positive association between BMI and serum glucose using both 

IVW and weighted median methods. Considering the MR Egger case, a substantial average 

directional pleiotropic effect was not detected, and the lack of significance with respect to the 

effect estimate can be attributed to a lack of statistical power. An	𝐼#$%  value of 0.88 was 

reported, which can be interpreted as a relative bias in the MR-Egger estimate of 12% 

towards the null. The estimates are shown in Figure 1A, constructed using the mreggerplot 

command, which generates a scatterplot of the instrument-exposure and instrument-outcome 

associations for each variant. This shows the set of estimates to be in agreement, with the plot 

being constructed as previously described. 

 

Applied Example II: Height and Serum Glucose 

As a further example, we consider the effect of standardised height (meters) upon serum 

glucose using summary data from Wood et al(31), and outcome summary data on log 

transformed serum glucose from Shin et al(30). The summary data utilised for this analysis is 

provided in the supplementary material. We assess the SNPS for LD using criteria from the 
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previous example and identify 367 SNPs as suitable instruments for the analysis, details of 

which are presented in the supplementary material. The set of summary MR estimates are 

presented in Table 1B.  

From Table 1B we find no evidence against the null hypothesis of no association between 

height and serum glucose levels using IVW, weighted median, and MR Egger regression. 

Considering the MR Egger case, there appeared to be no evidence of directional pleiotropy, 

with an 𝐼#$%  value of 0.90 indicating a relative bias of 10% towards the null. As in the 

previous example, a plot of the MR estimates can be generated using the mreggerplot 

command as shown in Figure 1B. In this scenario the estimates appear in agreement, 

indicating a lack of evidence for a substantial directional pleiotropic effect. 

Discussion 

The mrrobust package is a freely available Stata package, containing a number of summary 

MR estimation methods which can be used to estimate causal effects. In the applied example, 

the mrrobust package was able to provide a series of estimates, finding evidence of a positive 

association between BMI and serum glucose, and no evidence of association between height 

and serum glucose. One possible conclusion that can be drawn from these results is that 

previously reported associations between height and glucose are driven by confounding 

factors(32, 33). It is important, however, to consider the extent to which Mendelian 

randomization is appropriate for a given analysis, and by extension situations in which 

mrrobust is suitable. 

In the first instance, Mendelian randomization studies only produce unbiased estimates when 

genetic instruments satisfy the assumptions of each estimator (e.g. IVW, MR-Egger, or 

weighted median). In two-sample analyses genetic instruments should be associated with the 

exposure of interest at genome-wide levels of significance (satisfying the first instrumental 

variable assumption), and pruned for LD to limit the overlap between SNPs. The IVW 

estimator also requires that genetic variants should not have directional pleiotropic effects. 

The MR Egger and median estimators are robust to directional pleiotropy if the effects of the 

exposure are constant. MR Egger regression requires the InSIDE assumption, whilst median 

methods assume that the number of valid instruments being greater than 50%. For MR-Egger 

estimation where the value of 𝐼#$%  is low, it is possible to use SIMEX to correct for regression 

attenuation towards the null. This is implemented using the mreggersimex command. 
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In this paper, we have presented the mrrobust Stata package as an accessible toolkit for 

performing summary MR and instrumental variable analysis using many instruments. It 

contains a range of summary MR approaches, and should make examining causal 

relationships using Mendelian randomization more accessible for genetic epidemiologists. 

Supplementary Data 

Within the supplementary material we include example code and Stata output for each of the 

analyses performed within this paper, as well as the summary data obtained from the 

MRBase GWAS catalogue. We also include a brief summary of the 𝐼#$%  statistic, as well as 

guidance on implementing and interpreting the modal estimator. 

Further details and supplementary materials can be found at: 
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Tables 

 
Table 1: Summary MR estimates for the effect of standardised BMI (A) and height (B) upon 
log transformed serum glucose. 
 

 Estimate SE p-value 95% CI 
BMI (A)     

     
IVW     
Effect 0.023 0.008 0.004 0.01, 0.04 

MR Egger     
Intercept 0.000 0.001 0.948 -0.001,0.001 

Effect 0.022 0.022 0.325 -0.02, 0.07 
Weighted Median     

Effect 0.034 0.012 0.005 0.01, 0.06 
     

Height (B)     
     

IVW     
Effect 0.002 0.003 0.641 -0.005, 0.008 

MR Egger     
Intercept 0.0001 0.0003 0.627 -0.0001,0.0001 

Effect 0.003 0.009 0.777 -0.02, 0.02 
Weighted Median     

Effect <0.0001 0.005 >0.99 -0.01, 0.01 
 


