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We use continuous weak measurements of a driven superconducting qubit to experimentally study
the information dynamics of a quantum Maxwell’s demon. We show how information gained by a
demon who can track single quantum trajectories of the qubit can be converted into work using
quantum coherent feedback. We verify the validity of a quantum fluctuation theorem with feedback
by utilizing information obtained along single trajectories. We demonstrate, in particular, that
quantum backaction can lead to a loss of information in imperfect measurements. We furthermore
probe the transition between information gain and loss by varying the initial purity of the qubit.

The thought experiment of Maxwell’s demon reveals
the profound connection between information and energy
in thermodynamics [1–5]. By knowing the positions and
velocities of each molecule in a gas, the demon can sort
hot and cold particles without performing any work, in
apparent violation of the second law. Thermodynam-
ics must therefore be generalized to incorporate infor-
mation in a consistent manner. Classical Maxwell’s de-
mon experiments have been realized with cold atoms [6],
a molecular ratchet [7], colloidal particles [8, 9], single
electrons [10, 11] and photons [12]. Recent advances in
fabrication and control of small systems where quantum
fluctuations are dominant over thermal fluctuations allow
for novel studies of quantum thermodynamics [13–19]. In
particular, Maxwell’s demon has been realized in several
systems using feedback control to study the role of infor-
mation in the quantum regime [20–23]. While these ex-
periments probe information and energy dynamics in the
regime of single energy quanta, the dynamics either does
not include quantum coherence or the demon destroys
these coherences through projective measurements [20–
23]. Therefore, in either case, the action of the demon can
be understood using entirely classical information. How-
ever, in quantum systems the information exchanged in a
measurement may present strikingly nonclassical features
owing to the measurement backaction [24–27].

In this work, we use continuous weak measurements
followed by feedback control of a superconducting qubit
[28–31] to realize Maxwell’s demon in a truly quantum
situation, where quantum backaction and quantum co-
herence contribute to the dynamics. This approach en-
ables us to experimentally verify a quantum fluctuation
theorem with feedback [27, 32, 33] at the level of sin-
gle quantum trajectories. This fluctuation theorem is a
nonequilibrium extension of the second law that accounts
for both quantum fluctuations and the information col-
lected by the demon. At the same time, this method
allows us to study the role of quantum backaction and
quantum coherence in the acquired information. In par-
ticular, we show that the average information exchanged
with the detector can be negative due to measurement
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Figure 1: Classical demon vs quantum demon. (a) In the
classical situation the dynamics can be seen as an evolution
of the populations in the definite eigenstates, yet in the quan-
tum case (b), the dynamics includes coherences and can no
longer be understood as a classical mixture. (c) The experi-
mental configuration consists of a quantum two-level system
coupled to a cavity mode via a dispersive interaction which
allows for both weak and strong measurements of the qubit
state populations. A resonant drive at the qubit transition
frequency turns these populations into coherences and vice
versa leading to coherent quantum evolution.

backaction. Here the loss of information associated with
the perturbing effect of the detector dominates the mea-
surement process. By preparing the qubit at different
temperatures according to a Gibbs distribution, we ex-
perimentally map out the full transition between regimes
of information gain and information loss [27].

Superconducting circuit—In order to study the infor-
mation exchanged with the detector in a genuinely quan-
tum situation, we employ quantum measurement tech-
niques in a superconducting circuit to realize a quan-
tum Maxwell’s demon (Fig. 1a,b). Our setup consists
of a transmon qubit dispersively coupled to a 3D alu-
minum cavity by which we readout the state of the qubit
with dispersive measurement using Josephson parametric
amplifier operating in phase sensitive mode with a total
measurement quantum efficiency of 30% (Fig. 1c). The
corresponding effective Hamiltonian in the presence of a
coherent drive is,

H = −ωq

2
σz − iΩRσy cos(ωqt)− χa†aσz + ωca

†a, (1)
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where σz, σy are Pauli matrices, ωq the resonance fre-
quency of the qubit, ωc is the cavity frequency, a†, a
are creation and annihilation operators, and ΩR is the
Rabi drive frequency [34]. The quantity χ is the dis-
persive coupling rate between the cavity mode and the
qubit state. In this measurement architecture [28–31],
the qubit-state-dependent phase shift of a weak cavity
probe tone is continuously monitored, resulting in a mea-
surement record, r, that is proportional to 〈σz〉. Using
the record r we obtain the qubit conditional state evolu-
tion ρt|r, which depends on the record from time 0 to t,
using the stochastic master equation (SME) [35, 36],

ρ̇t|r =
1

i~
[HR, ρt|r] + k(σzρt|rσz − ρt|r)

+ 2ηk(σzρt|r + ρt|rσz − 2Tr(σzρt|r)ρt|r)r(t), (2)

where k is the strength of the measurement, η is the ef-
ficiency of the detector, and HR = −iΩR/2σy describes
the qubit drive in the rotating frame [34]. The first two
terms correspond to the standard Lindblad master equa-
tion that accounts for unitary evolution and dephasing
of the qubit by the dispersive measurement. The third
term describes the state update due to the measurement
record which includes the stochastic measurement signal
r(t) ∝ 〈σz〉(t) + dWt, with dWt a zero-mean Gaussian
distributed Wiener increment [37]. Owing to the weak
coupling to the measuring device, information about the
state of the qubit may be gathered without projecting it
into energy eigenstates, thus preserving coherent super-
positions.

The demon’s information—The SME (2) tracks the
state of knowledge about the qubit obtained by the quan-
tum demon. The amount of information exchanged with
the detector depends on both the measurement outcome
and the state of the system. It may be quantified as [27],

I(ρt|r, r) = lnPz′(ρt|r)− lnPz(ρ0), (3)

where Pz′ represents the probability of getting the result
z′ = 0, 1 in the z′-basis where the system is diagonal.
The stochastic evolution of the information (3) along a
quantum trajectory follows as,

Ĩr =
∑

z,z′=±1
[Pz′(ρt|r) lnPz′(ρt|r)− Pz(ρ0) lnPz(ρ0)]

= S(ρ0)− S(ρt|r), (4)

with the von Neumann entropy S(ρ) = −Tr[ρ ln ρ]. In
Eq. (4) the conditional probabilities Pz′(ρt|r) come from
the SME corresponding to a single run of the experiment,
that is, an individual quantum trajectory. The averaged
value of the exchanged information is obtained by aver-
aging over many trajectories,

〈I〉 =
∑
r

p(r)Ĩr = S(ρ0)−
∑
r

p(r)S(ρt|r), (5)

where p(r) is the probability density of the measurement
record r. Equation (5) is the information about the state
of the system gathered by the quantum demon [24, 26,
38]. Remarkably, it may positive or negative.

For classical measurements, e.g. when the measure-
ment operator commutes with the state, Eq. (5) reduces
to the classical mutual information which is always pos-
itive [39]. By contrast, quantum measurements perturb
the state in addition to acquiring information. Due to
this unavoidable quantum backaction, the uncertainty in
the detector state can be transferred to the system and
increase its entropy. While Eq. (5) is positive for effi-
cient measurements, it may become negative for ineffi-
cient measurements [24, 26, 38]. Quite generally, mod-
elling the detector uncertainty as an average over inac-
cessible degrees of freedom, parametrized by a stochastic
variable a, the exchanged information (5) may be written
as a sum of information gain and information loss, 〈I〉 =
Igain − Iloss, with Igain = S(ρ0)−

∑
a p(a, r)S(ρt|r,a) > 0

and Iloss =
∑
r S(ρt|r)−

∑
a p(a, r)S(ρt|r,a) > 0 [27]. Ex-

pression (5) is hence negative whenever the information
loss induced by the quantum backaction is larger than
the information acquired through the measurement.

Feedback protocol—We now turn to the experimental
procedure and our feedback protocol. The experiment
consists of five steps as depicted in Figure 2. In Step 1,
the qubit is initialized in a given thermal state charac-
terized by an inverse temperature β. Experimentally, we
have control over β by applying a short excitation pulse
to the qubit at the start of the experimental sequence.
In Step 2, we perform a first projective measurement,
which, when combined with a second projective mea-
surement during the final step, will quantify the energy
change during the whole protocol [40]. In Step 3, we em-
ploy a continuous resonant drive at the qubit transition
frequency to induce Rabi oscillations of the qubit state.
In conjunction with the drive, we continuously probe the
cavity with a measurement rate k/2π = 51 kHz generat-
ing a measurement record r for the demon to track the
evolution according to the SME (2). The axis of the reso-
nant drive and measurement basis constrict the evolution
of the qubit to the X–Z plane of the Bloch sphere. A
typical qubit evolution is depicted by solid lines in the
Step 3-inset of Fig. 2. The quantum trajectory is val-
idated with quantum state tomography as indicated by
the dashed lines [30, 31]. At the final time τ , the de-
mon uses the knowledge about the state of the system
to perform a rotation in Step 4 to bring the qubit back
to the ground state, and extract work. To implement
the feedback, we perform a random rotation pulse in the
range of [0, 2π] and select the correct rotations (within
the error of ±π/20) in a post-processing step. This ap-
proach avoids long loop delays that occur for realtime
feedback. We eventually finish the experiment with the
second projective measurement in Step 5. We note that
the measurement basis (σz) is the same in Steps 2 and 5.
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Figure 2: Experimental sequence. Step 1: The qubit is initialized in a thermal state at inverse temperature β. Step 2: As the
first step in determining the energy change through projective measurements, we perform a projective measurement (labeled
“X”) in the energy basis. Step 3: We drive the qubit with a coherent drive characterized by ΩR/2π = 0.8 MHz while the
quantum demon monitors the qubit evolution with a near-quantum-limited detector. The demon’s knowledge about the state
can be expressed in terms of the expectation values x ≡ 〈σx〉 and z ≡ 〈σz〉 (solid lines) with the corresponding tomographic
validation showing that the demon’s expectation values are verified with quantum state tomography [30, 31]. Step 4: The
quantum demon uses the acquired information from the previous step to apply a rotation to bring the qubit to the ground
state. Step 5: We perform a projective measurement labeled “Z” as the second step in a two-point energy measurement.

We evaluate averaged quantities by repeating the exper-
iment many times.

Experimental results—We begin by experimentally
verifying a quantum fluctuation theorem with feedback
in the form of a generalized quantum Jarzynski equal-
ity, 〈exp [−β(W −∆F )− I]〉 = 1, where W is the work
done on the system by the external driving, ∆F the equi-
librium free energy difference between final and initial
states, and I the information (3). This fluctuation the-
orem generalizes the second law to account for quantum
fluctuations and information exchange. It has been de-
rived for classical systems in Ref. [32] and experimentally
investigated in Refs. [8, 11]. It has later been extended
to quantum systems in Refs. [27, 33] and recently experi-
mentally studied with a two-level system whose dynamics
is that of a classical (incoherent) mixture [23].

In order to test the quantum fluctuation theorem for
the considered two-level system, we write it explicitly as,

〈e−βW−I〉 = P0(0)P00(τ)e−I00 + P1(0)P11(τ)e−I11

+ P0(0)P10(τ)e+β−I10 + P1(0)P01(τ)e−β−I01

= 1, (6)

with ∆F = 0 since the initial and final Hamiltonians
are here the same. The initial occupation probabilities
for ground and excited states are respectively given by
P0(0) = 1/(1 + e−β) and P1(0) = e−β/(1 + e−β), corre-
sponding to the initial thermal distribution. Note that
we work in units where ~ωq = 1. We determine the tran-
sition probabilities Pij(τ), i, j = {0, 1}, from the results
of the projective measurements performed in Steps 2 and
5, following the two-point measurement scheme [40], as
illustrated in Fig. 3a. We further evaluate the informa-
tion term Iij = lnPi(ρτ |r)− lnPj(ρ0) from the recorded
quantum trajectory according to Eq. (3) (Fig. 3b). In
Fig. 3c (round markers), we show the experimental result
for Eq. (6) for β = 4 for five different protocol durations

τ . We observe that the generalized quantum Jarzynski
equality with feedback is satisfied. However, the fluctu-
ation theorem is violated (square markers), as expected,
when the information exchange is not taken into account.

Every measured trajectory contains a complete set of
information by which the expectation value of any (rele-
vant) operator can be calculated. In particular, the tran-
sition probabilities Pij(τ) may be determined directly
from the weak measurement data, instead of the out-
comes of the two projective measurements. To establish
the consistency between the two approaches, we rewrite
the quantum fluctuation theorems with feedback (6) as,

〈e−βW−I〉 = P0(0)P0(τ)e−I00 + P1(0)P1(τ)e−I11

+ P0(0)P1(τ)e+β−I10 + P1(0)P0(τ)e−β−I01

= 1, (7)

with the respective final ground and excited states pop-
ulations P0(τ) = P0(ρτ |r) = (1 + z(τ))/2 and P1(τ) =
P1(ρτ |r) = (1 − z(τ))/2, along single quantum trajecto-
ries. All these quantities are obtained from the quantum
state tracking in Step 3 and the consequent feedback ro-
tation in Step 4. Figure 3b (triangular markers) shows
that Eq. (7) is verified in our experiment and that the
two approaches are thus indeed consistent.

Figure 3d shows the evolution of the information
Ĩr along single quantum trajectories calculated from
Eq. (4). The probabilities in Eq. (4) are evaluated at
each time step in the diagonal basis z′, as illustrated in
Fig. 3b [27]. Figure 3e further exhibits the last point of
400 trajectories before (after) feedback rotation in red
(blue). The red (green) circles indicate the expectation
〈z〉 before (after) the feedback rotation calculated using
weak measurements. On the other hand, the black cross
represents an independent evaluation of 〈z〉 from the sec-
ond projective measurement data. The good agreement
between the green circle and the black cross validates
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Figure 3: Experimental test of the quantum fluctuation the-
orem. (a) Transition probabilities are calculated using the
two projective measurements in Steps 2 and 5. (b) By track-
ing a single quantum trajectory we calculate the information
change (4). The diagonal basis z′ at time t is indicated. (c)
Combining the transition probabilities and the information
change we verify the quantum fluctuation theorem (6) (round
markers), however if the information is ignored (I = 0) the
fluctuation theorem is not valid (square markers). The fluc-
tuation theorem is also verified at the level of single quantum
trajectories where the projective measurements are not used
to determine transition probabilities (triangle markers). (d)
Information change, I, Eq. (3), along single quantum trajec-
tories; the dotted curve shows a typical information change
obtained by Eq. (4). The background color shows the distri-
bution of information change for many trajectories. The solid
curve is the average information change, 〈I〉, Eq. (5). Two
dashed line shows the Shannon entropy of initial state H(0)
(coarse dash) and H(0)− ln(2) (fine dash) which indicate the
maximum and minimum limit for information change for a
given initial state. (e) Red (Blue) dots show the qubit state
distribution obtained by trajectories at t = 2 µs right before
(after) the feedback rotation and the average of this distribu-
tion indicated by the red (green) circle. The cross indicates
the reconstruction of the state of the qubit after the feedback
using projective measurements.

that feedback rotations are properly executed.
We next study the information dynamics of the mean

information 〈I〉, Eq. (5), averaged over many trajectories,
and the transition from information gain to information
loss. In Fig. 3d (solid curve), we observe that the mean
information 〈I〉 for β = 4 averaged over 400 trajectories
is negative. This negativity of 〈I〉 is a consequence of
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Figure 4: Transition from information gain to information
loss. (a) Classical and quantum noise corresponding to the un-
known detector configuration randomly shifts the probe tone
(shown here as a coherent state in the quadrature (I–Q) space
of the electromagnetic field) and degrades the total efficiency
of the measurement. The inefficient unraveling of the SME is
the statistical average of possible unravelings corresponding
to different detector configurations. (b) Transition from in-
formation gain to information loss by changing the purity of
the initial state of the system controlled by its temperature
via z0 = tanh(β/2). The dashed line indicates a linear de-
pendence of the information exchange on initial state purity
and the solid line indicates the Shannon entropy of the initial
state which is obtainable only with projective measurements
corresponding to the Lanford-Robinson bound [41].

both the quantumness of the dynamics, which generates
states with coherent superpositions of the eigenstates of
the measured observable, and of the quantum backaction
of the measurement [26]. For a classical measurement
for which the density matrix commutes with the mea-
surement operator, 〈I〉 reduces to the (positive) mutual
information between the measurement result and the en-
semble made up of the eigenstates of the density matrix.
On the other hand, the quantum backaction of the inef-
ficient measurement disturbs the state of the system and
reduces our knowledge about it. When this information
loss is larger than the information gained through the
measurement, the total information exchanged is nega-
tive, as seen in the experiment.

In our setup, the finite efficiency of the measurement,
as shown in Fig. 4a, follows from the fact that the de-
tector signal is affected by classical and quantum noise
which induces random shifts of the readout value. The
resulting uncertainty about the state of the detector de-
termines the information loss [27]. Meanwhile, the infor-
mation gain may be controlled by the purity of the ini-
tial state, that is, by its temperature. If we parametrize
the initial thermal state as ρ0 = (1 + z0σz)/2, with
z0 = 〈z〉|t=0 = tanhβ/2, the information gain, and in
turn the averaged information 〈I〉, is a monotonically de-
creasing function of z0, as seen in Fig. 4b. The transition
to 〈I〉 < 0 happens for sufficiently pure initial states, that
is, for sufficiently large z0, when the initial entropy of the
system is low enough so that the Iloss induces by the mea-
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surement can overcome Igain. In the limit β → ∞, the
initial state would reduce to a pure state, corresponding
to Igain = 0.

Conclusion—We have experimentally realized a quan-
tum Maxwell’s demon using a continuously monitored
driven superconducting qubit. By determining the in-
formation gathered by the demon by tracking individual
quantum trajectories of the qubit, we have first verified
the validity of a quantum fluctuation theorem with feed-
back by using both a weak-measurement approach and
the two-projective measurement scheme. In doing so,
we have established the consistency of the two methods.
We have further investigated the dynamics of the aver-
aged information exchanged with the demon and demon-
strated that it may become negative, in stark contrast to
the classical mutual information which is always a posi-
tive quantity. Because of the combined effect of the quan-
tum coherent dynamics and of the quantum backaction of
the imperfect measurement, the description of the demon
thus requires quantum information.
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