
A Binarisation Heuristic for Non-Convex Quadratic

Programming with Box Constraints

Laura Galli∗ Adam N. Letchford†

To appear in Operations Research Letters

Abstract

Non-convex quadratic programming with box constraints is a fun-
damental problem in the global optimization literature, being one of
the simplest NP-hard nonlinear programs. We present a new heuris-
tic for this problem, which enables one to obtain solutions of excellent
quality in reasonable computing times. The heuristic consists of four
phases: binarisation, convexification, branch-and-bound, and local op-
timisation. Some very encouraging computational results are given.

Keywords: Global optimisation, heuristics, integer programming.

1 Introduction

Non-convex quadratic programming with box constraints (QPB) is the prob-
lem of minimizing a nonconvex quadratic function subject to lower and
upper bounds on the variables. An instance takes the form:

min
{
xTQx+ c · x : ` ≤ xi ≤ u

}
,

where Q ∈ Qn×n and c, `, u ∈ Qn. As usual in the literature, we assume
that (a) the box constraints take the simple form x ∈ [0, 1]n, and (b) Q
is symmetric. Any instance not satisfying these properties can be easily
transformed into one that does.

When Q is positive semidefinite (psd), QPB can be solved quickly using
convex programming techniques. In general, however, it is NP-hard in the
strong sense. It has received much attention in the global optimization
literature (e.g., [3–6,9–11,13,14,24,27,30,31,33]), being one of the simplest
NP-hard nonlinear programs. The current leading exact algorithms are the
ones in [9, 27].

∗Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa,
Italy. E-mail: laura.galli@unipi.it
†Department of Management Science, Lancaster University, Lancaster LA1 4YX,

United Kingdom. E-mail: A.N.Letchford@lancaster.ac.uk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/196586219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this paper, we present a new approach to QPB. It is heuristic in
nature, but solves a subproblem by branch-and-bound, and therefore can
be viewed as a “matheuristic” (see [28]). The heuristic exploits the fact
that there now exist good software packages for solving mixed 0-1 con-
vex quadratic programs. It consists of four phases: binarisation, convex-
ification, branch-and-bound and local optimisation. In our computational
experiments, on both standard test instances and new ones, the heuristic
consistently found solutions of excellent quality in reasonable computing
times.

The structure of the paper is as follows. The literature is reviewed in
Section 2, the heuristic is described in Section 3, the computational results
are given in Section 4, and some concluding remarks are made in Section 5.
Throughout the paper, we let N denote {1, . . . , n}.

2 Literature Review

We now review the relevant literature. For the purposes of exposition, we
cover QPB itself in Subsection 2.2. Subsections 2.1 and 2.3 are concerned
with related problems: unconstrained binary quadratic programming and
integer quadratic programming. For brevity, we mention only works of direct
relevance.

2.1 Unconstrained binary quadratic programming

Unconstrained binary quadratic programming (UBQP) is like QPB, but the
variables are binary instead of continuous. It was shown in [22] that UBQP
is equivalent to the well-known max-cut problem. Since max-cut is NP-hard
in the strong sense [18], so is UBQP. Both max-cut and UBQP have been
studied in great depth; see [15].

Fortet [16] proposed the following linearisation approach. For 1 ≤ i <
j ≤ n, replace the product xixj with a new binary variable yij , and add the
constraints yij ≤ xi, yij ≤ xj and yij ≥ xi + xj − 1.

(
There is no need to

define yij when i = j, since x2i = xi.
)

The result is a 0-1 LP with O
(
n2
)

variables and constraints.
Glover [19] proposed a different linearisation. For i ∈ N , define a new

continuous variable, say wi, representing xi
∑

j∈N qijxj , and replace the ob-
jective function with

∑
i∈N wi. For all i ∈ N , compute a lower bound Li and

an upper bound Ui on the value of wi. (One can use, e.g.,
∑

j∈N min{0, qij}
and

∑
j∈N max{0, qij}, respectively.) Then add the following constraints for

i ∈ N :

Lixi ≤ wi ≤ Uixi
n∑

j=1

qijxj − Ui(1− xi) ≤ wi ≤
n∑

j=1

qijxj − Li(1− xi).

2



The resulting mixed 0-1 LP has only O(n) variables and constraints.
A third approach is to make the matrix Q psd, if necessary, by adding

terms of the form λi(x
2
i − xi) to the objective function, where λ ∈ Qn. One

can then solve the resulting convex UBQP instance via branch-and-bound
with convex QP relaxations. Hammer & Rubin [23] proposed to set all of the
λi to the minimum Eigenvalue of Q multiplied by −1. A more sophisticated
method to determine the λi is given in [7].

2.2 Quadratic programming with box constraints

Any UBQP instance can be transformed to a QPB instance, by adding the
penalty M

∑
i∈N

(
x2i − xi

)
to the cost function, where M is a large positive

constant. This implies that QPB is NP-hard in the strong sense. Good
surveys of QPB can be found in [3, 12].

To our knowledge, the first exact algorithm for QPB was due to Mc-
Cormick [29]. It is a spatial branch-and-bound algorithm based on LP re-
laxation. The LP relaxation uses a continuous variable yij for 1 ≤ i ≤ j ≤ n,
representing xixj . The relaxation can be strengthened using various valid
inequalities; see, e.g., [11, 33].

Hansen et al. [24] presented a spatial branch-and-bound algorithm that
works in the space of the original x variables. This algorithm has a clever
branching rule based on the signs of the partial derivatives of the objective
function. It also performs extensive variable fixing, based on the following
proposition:

Proposition 1 (Hansen et al., 1993) Let N− =
{
i ∈ N : Qii ≤ 0

}
.

There exists an optimal QPB solution in which xi ∈ {0, 1} for all i ∈ N−.

We will use this proposition to good effect in Subsection 3.1.
An & Tao [2] presented another spatial branch-and-bound algorithm for

QPB, based on difference-of-convex (DC) programming (see [25]). This
algorithm was recently improved in [27].

A completely different approach was proposed by Vandenbussche & Nemhauser
[30, 31]. They used first-order KKT conditions to convert QPB into an LP
with complementarity constraints, and use complementarity to branch.

There are also several papers on SDP relaxations of QPB (e,g., [4–
6, 13]). Burer & Vandenbussche [13] used SDP relaxation together with
complementarity-based branching, as in [31], to obtain a finite branch-and-
bound algorithm. An enhanced version was presented in [10].

Finally, we mention Bonami et al. [9], which presents an exact algorithm
based on spatial branch-and-bound with convex QP relaxations.

2.3 Integer quadratic programming

UBQP is a special case of integer quadratic programming (IQP) with bounded
variables. Using an approach of Watters [32], one can reduce bounded IQP

3



to 0-1 LP. The approach is in two steps. The first step is what we call
“binarisation”. Suppose that xi ∈ Z ∩ [0, ui], where ui is a positive integer.
We replace xi with

blog2 uic∑
s=0

2s x̃is,

where the x̃is are new binary variables. Applying binarisation to all vari-
ables, we reduce IQP to 0-1 QP. In the second step, we use a method such
as that of Fortet [16] to reduce 0-1 QP to 0-1 LP.

A few papers have used binarisation to convert bounded mixed-integer
bilinear programs into mixed 0-1 LPs [19–21]. In our recent paper [17], we
show how to extend the approaches in [19–21,32] to bounded mixed-integer
quadratic programs (MIQPs). A related paper is Billionnet et al. [8], which
uses binarisation to convert bounded MIQPs into convex mixed 0-1 QPs.

3 Our Approach

Although QPB and UBQP are both NP-hard, QPB tends to be much more
challenging in practice. This led us to consider a heuristic approach to QPB
which solves UBQP as a subproblem. We describe this approach in the
following four subsections.

3.1 Binarisation

The first step is to use binarisation to create a UBQP instance that “ap-
proximates” the QPB instance. From Proposition 1, the variables with
Qii ≤ 0 can be declared binary immediately. For the remaining variables,
we use the following approach. Let p be a positive integer parameter. For
s = 0, . . . , p − 1, introduce a binary variable zis. Then eliminate xi using
the following identity:

xi =
1

2p − 1

p−1∑
s=0

2p−1 · zis. (1)

The effect of this is to restrict xi to take a value that is a multiple of
1/(2p−1). Of course, this restriction can cause optimal solutions to be lost.
Nevertheless, we will see in the next section that it works well in practice.

3.2 Convexification

Now that we have a UBQP instance, the next step is to make it convex. From
the results mentioned in Subsection 2.1, there are three options available:

1. Use the approach of Fortet [16], and convert the UBQP into a 0-1 LP.
Since the UBQP already has O(np) variables, the resulting 0-1 LP has
O
(
n2p2

)
variables and constraints.

4



2. Use the approach of Glover [19] to convert the UBQP into a mixed 0-1
LP. The resulting mixed 0-1 LP has O(np) binary variables, continuous
variables and constraints.

3. Use the approach of Hammer & Rubin [23], to convexify the cost
function of the UBQP directly. This yields a convex UBQP with O(np)
variables.

3.3 Branch-and-bound

At this point, we have a 0-1 LP, mixed 0-1 LP or convex UBQP. To solve
the 0-1 LP or mixed 0-1 LP, one can use a standard branch-and-bound (or
branch-and-cut) solver. As for the convex UBQP, we found that it was
best to convert it into a 0-1 second order cone program (SOCP), using the
standard transformation (see, e.g., [1]). We could then feed the 0-1 SOCP
into the CPLEX mixed-integer SOCP solver. We remark that this solver itself
provides two algorithmic options. In one, the SOCP relaxations are solved
via an interior-point method (IPM). In the other, they are solved via a
simplex-based cutting-plane method.

We conducted some preliminary experiments to gain some insight into
the relative performance of the four different options (i.e., 0-1 LP, mixed
0-1 LP, 0-1 SOCP with IPM, and 0-1 SOCP with simplex). We found that,
in all cases, the IPM option was at least an order of magnitude faster than
the other three. This is rather surprising, given that re-optimisation after
branching is much harder for IPMs than for the simplex method. We do not
have a convincing explanation for this phenomenon.

3.4 Local optimisation

The optimal solution to the convexified problem can be converted into a
feasible solution x∗ ∈ [0, 1]n to the original QPB instance, using the mapping
(1) where necessary. Along with the feasible solution, of course, we get an
upper bound.

Observe that x∗ is not guaranteed even to be a local minimum for the
original QPB instance. Our fourth and final phase is therefore to move
from x∗ to a nearby local minimum. To do this, we use the open-source
non-linear programming solver IPOPT [26]. As we understand it, IPOPT is
a primal-dual interior-point solver with a logarithmic barrier function, in
which a line-search is conducted in each Newton iteration. As in the case of
CPLEX, we use default parameter settings.

Actually, there is a complication: IPOPT needs to start from solutions
that are in the strict interior of the feasible region, but almost all of the
solutions obtained by the branch-and-bound procedure lay on the boundary.
To deal with this, we simply moved the initial x∗ a little towards the centre

5



of the unit hypercube, before passing it to IPOPT. More precisely, we changed
x∗i to 0.9x∗i + 0.05 for i = 1, . . . , n.

4 Computational Results

In order to ascertain the potential of our heuristic, we ran experiments,
using the callable library of CPLEX 12.8 to solve all 0-1 LPs, mixed 0-1 LPs
and 0-1 SOCPs, and IPOPT 3.11.8 to perform the local optimisation step.
The experiments were performed on a 64-bit 2.3 Ghz AMD Opteron 6376
processor with 16Gb RAM, under the Ubuntu 12.4 operating system. All
programs were implemented in C++ and compiled with gcc 4.4.3.

4.1 Vandenbussche-Nemhauser instances

We began with the QPB instances described in Vandenbussche & Nemhauser
[31], which we call “VN” instances. They were created as follows: given a den-
sity ∆ ∈ (1, 100], each entry in Q and c is set to zero with probability (100−
∆)%, and to a random integer between−50 and 50 with probability ∆%. For
30 different combinations of n and ∆%, there are three random instances.
So there are 54 instances in total. These instances, which are all of maximi-
sation type, are available at http://sburer.github.io/projects.html.
Their optimal solution values were kindly given to us by Kurt Anstreicher.

First, we report some results concerned with the quality of the QPB
solutions found by our heuristic. These results are in Table 1. Each row
corresponds to a particular combination of n and ∆. For numbers of bits
ranging from 1 to 5, we report the average, over the three instances of the
given type, of the percentage gap (i.e., the difference between our lower
bound and the optimum, expressed as a percentage of the optimum). For
interest, we also report the gaps for solutions obtained using IPOPT alone,
using five different random feasible initial solutions as starting points. Also,
in Table 2, we report the gaps obtained by our heuristic when the local
optimisation step is switched off.

We were surprised to see that solutions of excellent quality are obtained
with p = 1, even when local optimisation is switched off. Not only that, but
using additional bits is of little benefit. A partial explanation is that, for
these instances, the number of positive Qii values is around n∆/200 ≤ n/2.
Then, by Proposition 1, we can expect the majority of the variables to
take binary values at the optimum. It is also apparent that our heuristic
consistently yields solutions of much higher quality than those found with
IPOPT alone.

For brevity, we report running times only for the fastest algorithm (called
“0-1 SOCP and IPM” in Subsection 3.3). These times are shown in Table 3.
All times are in seconds, and each figure is the average over three instances.

6



Number of bits (p)

n ∆ 1 2 3 4 5 IPOPT

20 100 0.00 0.00 0.00 0.00 0.00 1.46

30 60 0.02 0.02 0.02 0.02 0.02 1.14
30 70 0.00 0.00 0.00 0.00 0.00 2.33
30 80 0.02 0.02 0.02 0.02 0.02 0.87
30 90 0.00 0.00 0.00 0.00 0.00 0.00
30 100 0.02 0.00 0.00 0.00 0.00 1.22

40 30 0.00 0.00 0.00 0.00 0.00 0.57
40 40 0.04 0.04 0.04 0.04 0.04 2.55
40 50 0.00 0.00 0.00 0.00 0.00 0.49
40 60 0.00 0.00 0.00 0.00 0.00 0.48
40 70 0.01 0.01 0.01 0.01 0.01 0.01
40 80 0.00 0.00 0.00 0.00 0.00 0.01
40 90 0.00 0.00 0.00 0.00 0.00 0.83
40 100 0.03 0.00 0.00 0.00 0.00 0.00

50 30 0.00 0.00 0.00 0.00 0.00 0.42
50 40 0.00 0.00 0.00 0.00 0.00 0.37
50 50 0.00 0.00 0.00 0.00 0.00 2.53

60 20 0.00 0.00 0.00 0.00 0.00 1.74

Table 1: Average percentage gaps for VN instances

As one might expect, the time increases with both p and ∆. We remark that
the time taken by the local optimisation step was negligible in all cases.

A natural question is how the running time of our heuristic compares
with that of the leading exact algorithms, described in [9, 27]. Due to the
different machines used, a precise comparison is difficult. In general, our
impression is that the two-bit version of our algorithm is around one order
of magnitude faster that the exact algorithms. The four-bit version has a
comparable running time.

4.2 Other instances

Burer and Vandenbussche [13] created 36 larger instances using the same
scheme that was used to create the VN instances. These instances have
n ∈ {70, 80, 90, 100} and ∆ ∈ {25, 50, 75}. The results obtained with these
instances were very similar to those obtained for the VN instances. In par-
ticular, just one bit, plus local optimisation, was enough to obtain solutions
within 0.01% of optimal for all instances apart from one. (For the remaining
instance, which was the third instance with n = 100 and ∆ = 75, CPLEX ran
into memory difficulties.) By comparison, the average gap for the solutions
found by IPOPT was around 0.82%.

In a sense, then, the VN and BV instances are relatively “easy” for our

7



Number of bits (p)

n ∆ 1 2 3 4 5

20 100 0.00 0.00 0.00 0.00 0.00
30 60 0.03 0.03 0.02 0.02 0.02
30 70 0.02 0.01 0.00 0.00 0.00
30 80 0.05 0.03 0.02 0.02 0.02
30 90 0.06 0.00 0.00 0.00 0.00
30 100 0.05 0.01 0.00 0.00 0.00

40 30 0.00 0.00 0.00 0.00 0.00
40 40 0.04 0.04 0.04 0.04 0.04
40 50 0.11 0.01 0.00 0.00 0.00
40 60 0.03 0.00 0.00 0.00 0.00
40 70 0.01 0.01 0.01 0.01 0.01
40 80 0.00 0.00 0.00 0.00 0.00
40 90 0.00 0.00 0.00 0.00 0.00
40 100 0.05 0.00 0.00 0.00 0.00

50 30 0.01 0.01 0.00 0.00 0.00
50 40 0.01 0.01 0.00 0.00 0.00
50 50 0.08 0.00 0.00 0.00 0.00

60 20 0.00 0.00 0.00 0.00 0.00

Table 2: Average percentage gaps for VN instances: without local optimisa-
tion

8



Number of bits (p)

n ∆ 1 2 3 4 5

20 100 0.26 0.87 3.85 8.34 23.26

30 60 1.12 3.61 8.92 14.33 32.40
30 70 1.01 4.35 10.45 24.27 55.05
30 80 1.07 4.00 7.05 18.62 34.55
30 90 1.81 7.53 21.14 51.41 107.67
30 100 3.67 14.44 43.63 121.65 272.76

40 30 0.10 0.14 0.14 0.36 0.57
40 40 1.41 2.67 4.45 10.72 16.87
40 50 1.65 3.39 5.40 13.47 19.38
40 60 2.35 7.80 23.20 61.86 137.63
40 70 3.95 13.91 49.99 148.18 320.25
40 80 4.70 19.33 57.39 176.89 329.50
40 90 5.70 18.54 57.89 167.35 253.95
40 100 14.51 107.69 424.62 1742.30 4039.57

50 30 0.95 2.16 2.60 2.72 2.97
50 40 4.48 9.39 19.79 21.76 31.39
50 50 16.93 24.49 73.33 228.02 211.74

60 20 1.16 1.46 1.60 1.92 2.58

Table 3: Average running times for VN instances

approach. Following the suggestion of an anonymous referee, we attempted
to modify the VN instances to make them harder. Specifically, for each
instance, we computed the maximum Eigenvalue of the profit matrix Q,
which we denote by λ. We then added

λ

2

∑
i∈N

(
xi − x2i

)
to the profit function. The effect of this modification is to make the in-
stances “closer” to being concave, without actually making them concave.
(Intuitively, it also makes the extreme points of the box less “attractive”
than the points in the interior.) Surprisingly, we found that, for all but two
of the modified instances, both IPOPT and the one-bit version of our heuris-
tic found the optimal solution. The gaps for the two remaining instances
are given in Table 4.

5 Conclusion

Non-convex quadratic programming with box constraints is very hard to
solve to proven optimality, in both theory and practice. We have presented
a heuristic that is easy to understand and (fairly) easy to implement using

9



Without local opt. With local opt.

n ∆ p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 IPOPT

30 70 4.81 0.69 0.11 1.32 0.00 0.00 4.63
40 50 2.81 0.26 0.08 0.00 0.00 0.00 0.62

Table 4: Average percentage gaps for the two hard “near-concave” instances

readily available software. The computational results show that our heuristic
finds solutions of remarkably good quality, in reasonable computing times.

An interesting topic for future research is to explain, perhaps using prob-
abilistic arguments, why (near-)optimal solutions can often be found at ex-
treme points of the box, even for instances that are neither convex nor
concave. Another interesting topic is the development of rules for reducing
the domains of the variables. Some preliminary results along these lines are
included in the appendix.

Acknowledgement

We thank Kurt Anstreicher and Sam Burer for providing us with the optimal
solution values for several benchmark instances.

References

[1] F. Alizadeh & D. Goldfarb (2003) Second-order cone programming.
Math. Program., 95, 3–51.

[2] L.T.H. An & P.D. Tao (1998) A branch and bound method via d.c.
optimization algorithms and ellipsoidal technique for box constrained
nonconvex quadratic problems. J. Glob. Optim., 13, 171–206.

[3] P.L. De Angelis, P.M. Pardalos & G. Toraldo (1997) Quadratic pro-
gramming with box constraints. In I.M. Bomze, T. Csendes, R. Horst &
P.M. Pardalos (eds.) Developments in Global Optimization. Dordrecht:
Kluwer.

[4] K.M. Anstreicher (2009) Semidefinite programming versus the
reformulation-linearization technique for non-convex quadratically con-
strained quadratic programming. J. Glob. Optim., 43, 471–484.

[5] K.M. Anstreicher (2012) On convex relaxations for quadratically con-
strained quadratic programming. Math. Program., 136, 233–251.

[6] K.M. Anstreicher & S. Burer (2010) Computable representations for
convex hulls of low-dimensional quadratic forms. Math. Program., 124,
33–43.

10



[7] A. Billionnet & S. Elloumi (2007) Using a mixed-integer quadratic pro-
gramming solver for the unconstrained quadratic 0–1 Problem. Math.
Program., 109, 55–68.

[8] A. Billionnet, S. Elloumi & A. Lambert (2012) Extending the QCR
method to general mixed-integer programs. Math. Program., 131, 381–
401.

[9] P. Bonami, O. Günlük & J. Linderoth (2017) Solving box-constrained
nonconvex quadratic programs. Working paper, available at Optimiza-
tion Online.

[10] S.A. Burer & J. Chen (2012) Globally solving nonconvex quadratic
programming problems via completely positive programming. Math.
Program. Comput., 4, 33–52.

[11] S.A. Burer & A.N. Letchford (2009) On non-convex quadratic program-
ming with box constraints. SIAM J. Optim., 20, 1073–1089.

[12] S.A. Burer & A.N. Letchford (2012) Non-convex mixed-integer nonlin-
ear programming: a survey. Surveys in Oper. Res. & Mgmt. Sci., 17,
97–106.

[13] S.A. Burer & D. Vandenbussche (2007) Globally solving box-
constrained nonconvex quadratic programs with semidefinite-based fi-
nite branch-and-bound. Comput. Optim. Appl., 43, 181–195.

[14] T.F. Coleman & L.A. Hulbert (1989) A direct active set algorithm for
large sparse quadratic programs with simple bounds. Math. Program.,
45, 373–406.

[15] M.M. Deza & M. Laurent (1997) Geometry of Cuts and Metrics.
Springer: Berlin.

[16] R. Fortet (1959) L’Algèbre de Boole et ses applications en recherche
opérationnelle. Cahiers Centre Etudes Rech. Oper., 4, 5–36.

[17] L. Galli & A.N. Letchford (2017) Using bit representation to improve
LP relaxations of mixed-integer quadratic programs. Working paper,
Department of Management Science, Lancaster University.

[18] M.R. Garey, D.S. Johnson & L. Stockmeyer (1976) Some simplified
NP-complete graph problems. Theor. Comp. Sci., 1, 237–267.

[19] F. Glover (1975) Improved linear integer programming formulations of
nonlinear integer problems. Mgmt. Sci., 22, 455–460.

11



[20] O. Günlük, J. Lee & J. Leung (2012) A polytope for a product of real
linear functions in 0/1 variables. In J. Lee & S. Leyffer (eds) Mixed
Integer Nonlinear Programming, pp. 513–529. New York: Springer US.

[21] A. Gupte, S. Ahmed, M.S. Cheon & S. Dey (2013) Solving mixed integer
bilinear problems using MILP formulations. SIAM J. Optim., 23, 721–
744.

[22] P.L. Hammer (1965) Some network flow problems solved with pseudo-
Boolean programming. Oper. Res., 13, 388–399.

[23] P.L. Hammer & A.A. Rubin (1970) Some remarks on quadratic pro-
gramming with 01 variables. RAIRO, 3, 67–79.

[24] P. Hansen, B. Jaumard, M. Ruiz & J. Xiong (1993) Global minimization
of indefinite quadratic functions subject to box constraints. Naval Res.
Log. Quart., 40, 373–392.

[25] R. Horst & N.V. Thoai (1999) DC programming: overview. J. Optim.
Th. Appl., 103, 1–43.

[26] IPOPT (Interior-Point Optimizer). Managed by A. Wächter &
S. Wigerske. Available at https://projects.coin-or.org/Ipopt

[27] C. Lu & Z. Deng (2017) DC decomposition based branch-and-bound
algorithms for box-constrained quadratic programs. Optim. Lett., to
appear.

[28] V. Maniezzo, T. Stützle & S. Stefan (eds.) (2010) Matheuristics: Hy-
bridizing Metaheuristics and Mathematical Programming. Annals of In-
formation Systems vol. 10. Springer US.

[29] G.P. McCormick (1976) Computability of global solutions to factorable
nonconvex programs: Part I — Convex underestimating problems.
Math. Program., 10, 147–175.

[30] D. Vandenbussche & G.L. Nemhauser (2005) A polyhedral study of
nonconvex quadratic programs with box constraints. Math. Program.,
102, 531–557.

[31] D. Vandenbussche & G.L. Nemhauser (2005) A branch-and-cut algo-
rithm for nonconvex quadratic programs with box constraints. Math.
Program., 102, 559–575.

[32] L.J. Watters (1967) Reduction of integer polynomial programming
problems to zero-one linear programming problems. Oper. Res., 15,
1171–1174.

12



[33] Y. Yajima & T. Fujie (1998) A polyhedral approach for nonconvex
quadratic programming problems with box constraints. J. Glob. Optim.,
13, 151–170.

Appendix

In this appendix, we present some simple results that, under certain condi-
tions, enable one to reduce the domains of some of the variables in a QPB
instance. Throughout, we assume that the instance takes the form:

min
{
xTQx+ c · x : x ∈ [0, 1]n

}
,

where Q is symmetric. We also let N , N− and N+ denote {1, . . . , n},{
i ∈ N : Qii ≤ 0

}
and N \N−, respectively.

We define the following function for each i ∈ N :

F (i) = Qiix
2
i + cixi + 2xi

∑
j 6=i

Qijxj .

Note that F (i) is the component of the objective function that involves xi.
We also define the following constants:

si = 2
∑
j 6=i

min
{

0, Qij

}
and ti = 2

∑
j 6=i

max
{

0, Qij

}
.

We then have the following results.

Proposition 2 Suppose that i ∈ N−. If Qii + ci + si ≥ 0, we can fix xi to
0, while retaining at least one optimal solution. If Qii + ci + ti ≤ 0, we can
fix xi to 1. (If both are true, then we can fix xi to either value.)

Proof. From Proposition 1 in Hansen et al. (1993), xi will be binary in
any optimal solution. Now, if xi = 0, then F (i) = 0. On the other hand, if
xi = 1, then

F (i) =
(
Qii + ci

)
+ 2

∑
j 6=i

Qijxj .

Thus, if xi = 1, we have:(
Qii + ci

)
+ si ≤ F (i) ≤

(
Qii + ci

)
+ ti.

If the term on the left is non-negative, then changing xi from 0 to 1 can
never reduce the cost. Similarly, if the term on the right is non-positive,
then changing xi from 1 to 0 can never reduce the cost. �

13



Proposition 3 Suppose that i ∈ N+. If ci + ti < 0, we can increase the
lower bound on xi from 0 to

min

{
1,
−(ci + ti)

2Qii

}
,

while retaining at least one optimal solution. Moreover, if 2Qii +ci +si > 0,
we can decrease the upper bound on xi from 1 to

max

{
0,
−(ci + si)

2Qii

}
.

Proof. Since i ∈ N+, F (i) is a convex function. Its derivative with respect
to xi is:

2Qiixi + ci + 2
∑
j 6=i

Qijxj .

Setting the derivative to zero, we find that F (i) is minimised when xi equals
−
(
ci + 2

∑
j 6=iQijxj

)
/
(
2Qii

)
. This quantity lies between −

(
ci + si

)
/
(
2Qii

)
and −

(
ci + ti

)
/
(
2Qii

)
. �

14


