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We identify ground states of one-dimensional fermionic systems subject to competing repulsive in-
teractions of finite range, and provide phenomenological and fundamental signatures of these phases
and their transitions. Commensurable particle densities admit multiple competing charge-ordered
insulating states with various periodicities and internal structure. Our reference point are systems
with interaction range p = 2, where phase transitions between these charge-ordered configurations
are known to be mediated by liquid and bond-ordered phases. For increased interaction range p = 4,
we find that the phase transitions can also appear to be abrupt, as well as being mediated by re-
emergent ordered phases that cross over into liquid behavior. These considerations are underpinned
by a classification of the competing charge-ordered states in the atomic limit for varying interaction
range at the principal commensurable particle densities. We also consider the effects of disorder,
leading to fragmentization of the ordered phases and localization of the liquid phases.

I. INTRODUCTION

One-dimensional fermionic physics substantially dif-
fers from its higher-dimensional counterparts. Usual de-
scriptions of interactions, such as Fermi liquid theory,
break down,1,2 which results in an absence of quasi-
particle excitations in the system. Under many circum-
stances, the appropriate theory describing these systems
is the Tomonaga-Luttinger liquid.3–7 However, in the
presence of repulsive interactions and at commensurable
particle densities the system can form charge-ordered
phases,1,8–12 in which it displays insulating properties.

The nature of the quantum phase transition between
liquid and charge-ordered phases has been uncovered in
detailed theoretical studies.13–17 The main factor that
drives the phase transition is the competition between
the kinetic energy and the interaction terms that can
order the system. In particular, lattice fermion mod-
els exhibit an interplay of short-range kinetic quan-
tum fluctuations arising from the uncertainty principle
and repulsive finite-range interactions that cause the in-
sulating phases.18–21 These studies have revealed vari-
ous transition scenarios, including the emergence of a
‘strange metallic phase’ that was later identified to be
of bond order22–27 – a dimerized phase with alternat-
ing bond strengths and without charge ordering. To de-
termine these quantum phase transitions precisely, var-
ious methods have been proposed, such as investigation
of the ground-state curvature,19 structure factors,20,27

bond entropy,28 and scaling of the gap.20 Decaying be-
haviour of the correlation functions was also found to
be a distinguishing feature for the aforementioned quan-
tum phases.27,29 Since spinless fermions in one dimen-
sion are equivalent to hard-core bosons,30–33 these obser-
vations are also of great interest for analogous bosonic
systems.34 Recent advancements in optical lattices have
indeed made it possible to engineer condensed matter
systems35,36 that allow to directly observe the liquid-to-
insulator transition.37–39

Overall, however, the understanding of these transi-

tions is still restricted to a small number of relatively sim-
ple and mutually well compatible charge-ordered states.
As the range of interactions increases, the variety of com-
peting charge-ordered states increases rapidly. This sit-
uation raises a number of unresolved questions. On one
hand, the transitions between these phases may prolifer-
ate as well, and could squeeze out the insulating behavior.
On the other hand, the liquid phases could be suppressed
depending on the complexity of the charge configurations
of competing states. Moreover, the bond-ordered phases
may survive the introduction of additional interactions,
or, completely new transition scenarios could arise.

In this paper, we address these questions within a
model that exhibits multiple transitions between a vari-
ety of ordered states of varying compatibility. This leads
to a rich phase diagram where we can explore how in-
sulating phases survive when the range of the repulsive
interactions is increased, and which transitions between
different insulating phases can occur. The competing
interactions of finite range give rise to a multitude of
charge-ordered phases, which we systematically classify
at the principal critical particle densities. We then in-
vestigate a hierarchy of signatures that characterize the
phases and their transitions at the fundamental and phe-
nomenological level.

Inspection of the atomic limit where the kinetic en-
ergy term vanishes allows us to systematically identify
the candidate charge-ordered phases. In this limit, the
phase transitions are sharp and are only driven by con-
siderations of the interaction energy, while liquid phases
are absent. The carrier mobility at a finite kinetic en-
ergy gives scope for liquid behavior that can intervene
between the charge-ordered states. The consequences are
investigated numerically using the infinite-system density
matrix renormalization group (iDMRG) approach with
a ground state represented as an infinite matrix prod-
uct state (iMPS).40–46 Many of the resulting features
are already visible on the phenomenological level, as we
demonstrate for the experimentally accessible kinetic en-
ergy density and the bond-order parameter, which dis-
play characteristic discontinuities at many (but not all)
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of the phase transitions identified on a more fundamental
level. For the latter we employ density-density correla-
tion functions that capture long-range charge ordering,
as well as the bipartite entanglement entropy, which dis-
plays characteristic scaling in critical phases.

As our main findings, we observe that depending on the
compatibility of the ordered states, the liquid phase can
be strongly suppressed to the extent that the transition
appears to remain directly insulator-to-insulator. Fur-
thermore, we uncover the re-emergence of simple charge-
ordered phases that mediate the transition between more
complicated ones, and exhibit a crossover to liquid behav-
ior at one of the phase boundaries.

We also consider the implications of disorder, which
affects the charge ordering by inducing fragmentization
and further suppresses liquid behavior via localization.
At large disorder strength the system displays the char-
acteristics of a universal fragmented insulating phase.

This paper is organized as follows. In Sec. II we
present the model, method, and further background for
this work. The charge-ordered phases of the model in
the atomic limit are described in Sec. III. Section IV dis-
cusses the consequences of a finite kinetic energy, where
the emergent liquid behavior is supplemented by the di-
rect and crossover-mediated transitions between charge-
ordered phases described above. The disordered system
is studied in Sec. V, and our conclusions are given in
Sec. VI. The Appendix contains details about the clas-
sification of charge-ordered phases for principal critical
particle densities in the atomic limit.

II. MODEL, BACKGROUND AND METHODS

We base our investigations on a model of spinless
fermionic particles that move on a one-dimensional chain
of size L and are interacting through a finite-range re-
pulsive potential of maximal range p. The disorder-free
Hamiltonian of this model is given by18

H = −t
L∑
i=1

(
c†i ci+1 + h.c.

)
+

L∑
i=1

p∑
m=1

Umnini+m, (1)

where c†i , ci are fermionic creation and annihilation oper-

ators on site i = 1, . . . , L, ni = c†i ci are the correspond-
ing particle-number operators, t determines the kinetic
energy, and Um is the interaction energy between two
particles that are m ≤ p sites apart. All interactions are
assumed to be repulsive (Um > 0). While only the ra-
tios Um/t matter for the properties of the system, we will
treat these scales independently as this facilitates the dis-
cussion of the atomic limit (t→ 0). The particle density
is denoted as Q = L−1〈

∑
i ni〉. Disorder can be included

via a term

Hdis =

L∑
i=1

hi

(
ni −

1

2

)
, (2)

with uniformly distributed random potentials hi ∈
[−W,W ] at disorder strength W .

In the seminal Ref. 18, the potential energy is strictly
convex (Um+1 +Um−1 > 2Um), which assures that there
is at most one insulating phase for any given particle
density Q in the system. These phases can then be in-
vestigated assuming a hierarchy of well-separated energy
scales t � · · · � U3 � U2 � U1, hence close to the
atomic limit. Under these conditions the system is found
to sustain a charge-ordered insulating phase at any com-
mensurable particle density

Qm = 1/m, m = p+ 1, p, . . . , 2, (3)

while otherwise the system behaves as a Luttinger liquid.
A distinctively more non-trivial behavior can be en-

countered at these critical densities if the interaction po-
tential is not convex, so that several charge-ordered states
can compete at the same commensurable particle density.
The convexity condition was abandoned in previous stud-
ies of the case p = 2, where the system is also known as
the t-V -V ′ model.19,20,28,29,47–50 This revealed that two
charge-ordered states can compete at half filling, and that
the transition between these phases is mediated by a liq-
uid phase and bond-ordered phases. In this paper, we
explore this competition for the much broader range of
charge orderings that occur at larger values of the inter-
action range p. In the {Um} phase diagram, this gives
rise to multiple instances of charge-ordered phases sepa-
rated by intervening states that mediate their transition,
which are the main focus of this work.

The scene will be set by the analytical classification
of charge-ordered phases in the atomic limit t → 0,
while the consequences of a finite kinetic energy are
investigated numerically. We adopt a density-matrix
renormalization group approach40–42 based on a tensor-
network formulation51–53 where the target states are rep-
resented by matrix product states,43–45,54,55 and utilize
for this the Matrix Product Toolkit46 code together with
our implementation of the Hamiltonian (1). This ap-
proach circumvents, e.g., the restriction to small sys-
tem sizes encountered in exact diagonalization and the
fermionic sign problem encountered in Quantum Monte
Carlo approaches.56 To investigate the ground state near
the thermodynamic limit, the desired state of the system
is represented as an iMPS, which accounts for an infi-
nite number of unit cells. Note that iDMRG used in the
iMPS context is different from the infinite-size algorithm
of DMRG in the context of finite systems.43,44 During
each step of iDMRG the filling is kept at Q (the U(1)
symmetry is preserved – for details, including a discus-
sion of spontaneous breaking of discrete symmetries, see
Ref. 44).

The iMPS unit cell size is chosen to make sure that
the system is commensurable with all possible insulat-
ing phases determined in the atomic limit, whereby we
avoid the frustration of any relevant charge-ordered state.
Specifically, for a half-filled (Q = 1/2) system with p = 2,
the possible charge-ordered states have periods two and
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four, so that we choose a unit cell of 4 sites. For Q = 1/2
but p = 4, the phases are far more richer, which requires
a unit cell of size 24. The maximal number of saved states
(bond dimension χ) in the iDMRG procedure is 1000.

Using these tools, we characterize the phases by a set
of complementary signatures. For the most phenomeno-
logical description we consider the kinetic energy density

T =
1

L

〈
L∑
i=1

(
c†i ci+1 + h.c.

)〉
. (4)

This is a single-particle observable that probes the parti-
cle mobility between neighboring sites and can, in princi-
ple, be assessed in atom-optical experiments by time-of-
flight measurements of atoms released from the optical
lattice.

The extent of bond-order is addressed by the order
parameter,20

OBO =
1

L

〈
L∑
i=1

(−1)i
(
c†i ci+1 + h.c.

)〉
, (5)

which constitutes a staggered version of the kinetic en-
ergy density. This parameter measures the amount of the
dimerization in the system. We report its absolute value,
which is invariant under the translation of the measured
state.

We note that OBO can also be finite in certain charge-
ordered states. This ambiguity is resolved by supple-
menting this quantity with additional information. The
required detailed insight into the charge ordering is pro-
vided by the density-density correlation functions

Nm =
1

L

〈
L∑
i=1

nini+m

〉
, (6)

which probe the ordering of particles that are m sites
apart, and allow to further discriminate charge-ordered
from bond-ordered and liquid phases. To describe the
long-range effects in the system, we exploit that Nm de-
velops an oscillating behavior in m. More precisely, we
observe that the limit

lim
k→∞

Nm+kP = N∞m , m = 1, . . . , P (7)

exists, where P is the unit-cell size of the charge order.
We call N∞m the extrapolated density-density correlator.
This quantity describes the long-range charge correla-
tions in the system.

Finally, on the most fundamental level we characterize
the quantum phases and transitions by the scaling of the
bipartite von Neumann entanglement entropy

S = −tr(ρA log2 ρA), (8)

where ρA is the reduced density matrix of a subchain
A. Away from quantum-critical behavior, S scales as the
system’s boundary (the well-known area law)57–59, and

Table I. Number of distinct charge-ordered insulating phases
in the atomic limit t→ 0 of the model (1), for different inter-
action ranges p and commensurable particle densities Q. For
details of the construction see Appendix A.

Q = ←−
1/2 1/3 1/4 1/5 1/6 1/7 · · ·

p = 1 1
2 2 1
3 3 3 1

↓ 4 5 7 4 1
5 8 12 7 5 1
6 12 > 63 > 23 9 6 1
...

. . .

therefore converges with increasing bond dimension χ in
the charge-ordered and bond-ordered phases. If the sys-
tem is critical, the entropy is expected to increase log-
arithmically with χ60,61, which in our investigation oc-
curs at phase transitions and in the liquid phase. In
the iDMRG algorithm, the entropy is calculated during
each step45, and therefore requires no additional compu-
tational cost.

III. ATOMIC LIMIT

To prepare the investigation of quantum phase tran-
sitions between the insulating phases of different charge
order, we first inspect the atomic limit of t→ 0 at differ-
ent values of p and critical densities Q = Qm [see Eq. (3)].
In this limit we can identify the distinct charge-ordered
phases by purely combinatorial energetic considerations.

The most trivial case occurs at density Q = Qp+1,
where the fermions can be spread out evenly across the
system so that they are outside of the range of their inter-
actions. This then defines a universal ground-state with
vanishing energy, which is (p+ 1)-fold degenerate.

For density Q = Qp, the ground state can constitute
any one of p distinct candidate phases, which we enumer-
ate by an index α = 1, . . . , p. As shown in Appendix A 1,
these consist of N/(p−α+1) blocks of a single fermion ac-
companied by (α−1) empty sites, and N(p−α)/(p−α+1)
blocks of a single fermion accompanied by p empty sites,
where N is the number of fermions in the considered
segment. The competition between these phases is gov-
erned by their energy Eα = NUα/(p−α+1), so that the
ground-state phase α is selected by the condition

Uα <
p− α+ 1

p− β + 1
Uβ , β 6= α. (9)

An important example is the case p = 2, Q = Q2 =
1/2, which corresponds to the t-V -V ′ model at half filling
studied in Refs. 19 and 20. The phase diagram then
consists of two phases: one with a ground-state unit cell
of (•◦), where • is an occupied site and ◦ is an unoccupied
site; and one with a unit cell of (••◦◦). The two phases
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Table II. (Color online) Ground-state (GS) unit cells and their
energies in the atomic limit of half-filled systems (Q = 1/2)
with interaction range p = 2 and p = 4. In the pictorial rep-
resentations of the unit cells, • denotes an occupied site and
◦ denotes an empty site. The degeneracy f accounts for the
translational freedom of these phases. The colors designate
their position in the phase diagrams of Fig. 1.

GS unit cell Energy density f
p = 2, Q = 1/2

•◦ U2/2 2 �
••◦◦ U1/4 4 �

p = 4, Q = 1/2
•◦ (U2 + U4)/2 2 �
••◦◦ (U1 + U3 + 2U4)/4 4 �
•••◦◦◦ (2U1 + U2 + U4)/6 6 �
••••◦◦◦◦ (3U1 + 2U2 + U3)/8 8 �
•◦◦•◦••◦ (U1 + 2U2 + 3U3)/8 8 �

0 1 2 3 4 5

Figure 1. (Color online) Phase diagrams of charge-ordered
ground states in the atomic limit of half-filled systems (Q =
1/2) with interaction range p = 2 (a) and p = 4 (b). In both
cases we exploit the freedom to choose Up as the energy scale.
The colors indicate the phases listed in Tab. II.

have energy densities of U2/2 and U1/4, respectively, and
the phase transition occurs along the U1 = 2U2 line.

At higher critical densities a much wider variety of pos-
sible charge orderings emerges, whose competition can be
assessed by a combinatorial analysis. Table I shows an
overview of the number of insulating phases that we could
determine in the atomic limit of systems with p ≤ 6.
The number of phases grows rapidly with the interac-
tion range p and depends distinctively on the density Q.
The detailed configurations of the corresponding charge-
ordered states are specified in Appendix A 3. This reveals
phases with highly intricate internal structure, indicating

that there are no simple rules governing the ground-state
properties of systems at high critical particle densities.

In the remainder of this paper we focus on the represen-
tative example of p = 4, Q = Q2 = 1/2 (hence again half
filling). Table II lists the distinct charge-ordered phases
for this case. Although the first four phases follow a rel-
atively simple ordering pattern, the fifth phase displays
a more intricate internal structure. The corresponding
phase diagram is shown in Fig. 1, which displays the
phases in the space of interaction parameters U1, U2 and
U3, while U4 serves as the energy scale.

IV. FINITE KINETIC ENERGY

In the atomic limit, the phase transitions between the
charge-ordered phases are abrupt. This situation changes
at a finite kinetic energy t 6= 0, where the transitions
can be mediated by other phases, such as the liquid and
bond-ordered phases previously encountered in the t-V -
V ′ model (p = 2). As the number of competing phases
increases rapidly with larger interaction range, one could
suspect that the phase space may be dominated by the
transitions between these phases, while the insulating
phases are only present close to the atomic limit. Thus,
a large interaction range may imply the loss of insulat-
ing properties of the system. Furthermore, it is per se
unclear how the distinct internal structure of the charge-
ordered states affects the nature of the transitions. We
now explore these questions for the case p = 4 at half fill-
ing, corresponding to the competition of ordered phases
listed in Table II, and contrast this case with p = 2.
Throughout most of this section, we set t = 1 to fix the
unit of energy, and utilize the complementary signatures
described in Sect. II.

For p = 2, we find representative behavior by fixing
U1 = 10 while varying U2, which allows us to verify the
consistency of our results with previous studies of the t-
V -V ′ model.19,20 For p = 4, we find representative results
by fixing U1 = U3 = 4, U4 = 1 and again varying U2. Ac-
cording to the phase diagram in Fig. 1, this covers the
region occupied by the phases (•◦), (•••◦◦◦) and (••◦◦)
in the atomic limit. These three phases are remarkably
robust against the introduction of a finite kinetic energy,
but to a varying degree, which leads to the unconven-
tional transition scenarios that are the main result of this
work. In contrast, the other two phases listed for p = 4
in Tab. II occupy a smaller part of phase space and are
more susceptible to suppression by a finite kinetic energy.
This is illustrated at the end of this section for the phase
(•◦◦•◦••◦), which is quickly replaced by a bond-ordered
phase.

A. Phenomenological signatures

We first consider the impact of a finite kinetic energy
on the phenomenological level. This is most directly cap-
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Figure 2. (Color online) Phenomenological signatures of
phases and transitions in the kinetic energy density T (a)
and bond-order parameter OBO (b) at finite kinetic energy
parameter t = 1, for interaction range p = 2 and half filling
(Q = 1/2). In both panels the next-nearest-neighbor interac-
tion U2 is varied while the nearest-neighbor interaction is set
to U1 = 10. The solid lines indicate the phase transitions in
this setting, while the dotted line in (a) indicates the tran-
sition between the two charge-ordered phases in the atomic
limit. The kinetic energy density only captures a single phase
transition at U2 ≈ 7.15, which coincides with the transition
from the liquid phase into the charge-ordered phase (••◦◦).
The bond-order parameter vanishes in the thermodynamic
limit of the phase (•◦) and the liquid phase, but scales dif-
ferently with increasing bond dimension χ, thereby providing
signatures of all three phase transitions.

tured by inspection of the kinetic energy density T [see
Eq. (4)], which is shown in panels (a) of Figs. 2 and 3,
and its staggered version, the bond-order parameter OBO

[Eq. (5)], which is shown in panels (b). We note that the
range of values taken by both quantities is comparable
for p = 2 and p = 4, which places us at a similar distance
to the atomic limit. The effect of the different interaction
range for both cases is immediately visible.

For p = 2 (Fig. 2), the kinetic energy density increases
as we approach the transition between the two insulating
phases in the atomic limit (dotted line). The analytical
behavior of T resolves a single phase transition, which
is signaled by a discontinuity in its first derivative (solid
line). As confirmed by the bond-order parameter, this
phase transition coincides with the transition from the
bond-ordered phase to the phase (••◦◦), where the lat-
ter admits a finite values of OBO as the cuts (|••|◦◦|)
and (•|•◦|◦) are inequivalent in this phase. The liquid
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Figure 3. (Color online) kinetic energy density T (a) and
bond-order parameter OBO (b) in analogy to Fig. 2, but for
increased interaction range p = 4 and interaction parameters
fixed to U1 = U3 = 4 and U4 = 1. In the atomic limit,
the transitions between the charge-ordered phases occur at
U2 = 3, 6 (dotted lines). Discontinuities in the derivative of
the kinetic energy density indicate three clear phase transi-
tions at U2 ≈ {4.01, 5.00, 6.57} (solid lines). The bond-order
parameter only captures a single transition into the phase
(••◦◦), which is the only encountered phase where OBO is fi-
nite. Note that the transition between the phases (•◦) and
(••◦◦) appears to be abrupt. This is verified in the subsequent
figures, which also determine the indicated nature of the medi-
ating region between the phases (•••◦◦◦) and (••◦◦). There,
we observe a crossover from a re-emergent charge-ordered
state (•◦) to liquid behavior, as indicated by the dashed line.

phase is signaled by the continuing drop of OBO with
increasing bond dimension, as this order parameter has
to vanish in the thermodynamic limit. The bond-order
parameter also vanishes in the phase (•◦), as the cuts
(|•◦|) and (•|◦) are equivalent by particle-hole symme-
try. The resulting sequence of phases is marked on top of
the panels. The resulting picture agrees with the previ-
ous studies of the t-V -V ′ model in Refs. 19 and 20, where
the phase diagram was determined from the bond-order
parameter and the ground-state curvature. In this case,
therefore, the kinetic energy density carries less detailed
information than the bond-order parameter.

In contrast, for the increased interaction range p = 4
(Fig. 3) we find distinctively more pronounced signatures
of several phases already in the kinetic energy density,
with three clear phase transitions indicated by the ana-
lytical behavior of T . As we will confirm below, these
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Figure 4. (Color online) (a) Range dependence of the cor-
relation function Nm for p = 2, Q = 1/2, t = 1, with the
interaction potentials U1 = 10 and U2 = 8 set to values where
the system is in the charge-ordered state (••◦◦). The function
displays a clear oscillatory behavior with period 4, reflecting
that the charge-ordered character of the phase persists at fi-
nite kinetic energy. (b) Extrapolation of the correlation func-
tion N4k with increasing k, with U1 and t as above but for
various values of U2. With increasing range 4k this correlation
function converges to a well-defined value N∞4 , in accordance
to the extrapolated correlators stipulated in Eq. (7).

coincide with an abrupt transition between the phases
(•◦) and (•••◦◦◦), as if still in the atomic limit; a tran-
sition into a mediating region with partially ordered and
partially liquid behavior, to which we will pay particular
attention; and finally the transition into the phase (••◦◦).
The bond-order parameter now carries less insight as it
is only finite in the phase (••◦◦); in the phase (•••◦◦◦) it
vanishes as the cuts (|••|•◦|◦◦|) and (•|••|◦◦|◦) are again
equivalent by particle-hole symmetry. We therefore do
not detect a separate bond-ordered phase. Instead, as
we will argue in the following, the mediating region con-
tains a crossover between a re-emergent phase (•◦) and a
liquid phase, resulting in the sequence of phases indicated
at the top of the panels.

B. Correlation functions

A more detailed characterization of the encountered
phases is provided by the correlation functions Nm de-
fined in Eq. (6). The utility of these functions is illus-
trated in Fig. 4(a), where we show their m-dependence
for a half-filled system with p = 2 in the region where we
expect the charge-ordered phase (••◦◦). The correlation

function displays an oscillating behavior in m, with a pe-
riod P = 4 that reflects the size of the charge-ordered
unit cell. As shown in Fig. 4(b), the limiting quantities
N∞m given in Eq. (7) are indeed well defined.

With these features, the correlation functions give
direct insight into the charge-ordered character of the
phases. In the atomic limit, the extrapolated correla-
tors take values N∞m ∈ {i/P} if the system is in the
insulating phase, where i is an integer. The charge-
ordered phase with a unit cell (•◦) displays two alter-
nating values 0 and 1/2, the phase (••◦◦) admits three
possible values alternating as (1/4, 0, 1/4, 1/2), and the
phase (•••◦◦◦) admits four possible values alternating as
(1/3, 1/6, 0, 1/6, 1/3, 1/2). For t > 0, the precise values
of N∞m in a charge-ordered phase are expected to deviate
from the atomic limit, but their periodicity and the or-
dering of the encountered values should be preserved. In
the liquid phase, we expect the long-range correlations to
become trivial. The average correlation function between
any two positions in the system should therefore acquire
the value 〈nini+m〉/L2 ≈ 〈ni〉〈ni+m〉/L2 = Q2 = 1/4,
where we specified the case of half filling. While these fea-
tures clearly separate all charge-ordered states, the same
value 1/4 is also obtained in the bond-ordered phase,
which we detected above with the bond-order parame-
ter.

Fig. 5 shows the extrapolated correlators N∞m for both
investigated systems under the same conditions as in
Figs. 2 and 3. All charge-ordered phases can be clearly
identified using the expected periodicity from the atomic
limit. We notice that there are regions where all the
correlators reach the value 1/4, indicating the absence
of charge order. The discontinuities in the derivative of
N∞m coincide with the phase transitions detected by T
and OBO.

For p = 4, these results confirm that the transition be-
tween the phases (•◦) and (•••◦◦◦) appears to be sharp,
with an undetectable intervening liquid phase. Signifi-
cantly, the mediating region between the phases (•••◦◦◦)
and (••◦◦) indeed exhibits the signatures of the phase
(•◦). Furthermore, as shown in detail in Fig. 6, the val-
ues of N∞m get progressively closer to 1/4, indicating a
possible crossover into the liquid state, as suggested by
the label (•◦)/LL.

C. Entanglement entropy

To further resolve the details of the mediating transi-
tion region we turn to the entanglement entropy, which is
presented in Fig. 7. In general, in ordered states the en-
tropy can take multiple values depending on the position
of the cut that bipartites the system. In the case of p = 2
(panel a), the mirror symmetry of the insulating phase
(•◦) implies that S remains single-valued, while the in-
sulating phase (••◦◦) has two possible values, where we
account for particle-hole symmetry and mirror symme-
try. In the bond-ordered phase, the ground state is char-
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Figure 5. (Color online) Extrapolated correlators N∞m for
(a) p = 2 and (b) p = 4, with system parameters specified
as in Figs. 2 and 3. The phase transitions indicated by the
solid lines coincide with points where the derivative of N∞m
is discontinuous. The oscillatory behavior of the correlators
with the rangem agrees with the stipulated charge orders. For
p = 4, the transition between the phases (•◦) and (•••◦◦◦)
remains abrupt. The behavior in the mediating transition
region between the phases (•••◦◦◦) and (••◦◦) is examined
more closely in Fig. 6.

acterized by an alternating local structure, and therefore
S again has two possible values. Finally, in the liquid
phase the entropy is single-valued, but does not converge
with increasing bond dimension. Therefore, the entropy
also allows to discriminate the bond-ordered and liquid
phases. The transitions between the different phases are
clearly visible in these numerical results, and agree with
the signatures described above.

Figure 7(b) shows the entanglement entropy for the
half-filled system with p = 4. The entropy can again be
multivalued, where the charge-ordered phases (•◦) and
(••◦◦) and the liquid phase behave in analogy to the
case p = 2. In the phase (•••◦◦◦) the entropy can have
two values, where we again account for mirror symmetry
and particle-hole symmetry. As anticipated above, the
entropy does not detect any indications of a liquid phase
between the phases (•◦) and (•••◦◦◦). We also do not
find any indications of the bond-ordered phase, which
may be attributed to the modified energetic conditions
from the additional interaction terms. Most importantly,
the results confirm that the transition between the phases
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Figure 6. (Color online) Close-up of the extrapolated correla-
tors N∞m from Fig. 5 for the mediating transition region in the
system with p = 4. The correlations gradually approach the
value 1/4, compatible with a gradual crossover from charge
order (•◦) to liquid behavior, where furthermore the results
converge only slowly.

(•••◦◦◦) and (••◦◦) is mediated by an ordered state that
shares all signatures with the phase (•◦). As the ordering
in this state approaches the liquid behavior according to
the correlations in Fig. 6, the system develops the fea-
tures of a liquid state, where the entropy continues to
increase with increasing bond dimension. Within the nu-
merically accessible bond dimensions this takes the form
of a transition as indicated above the panel, but it is also
plausible that this behavior indicates a crossover with
a rapidly increasing convergence threshold in the bond
dimension.

D. Extended phase diagram

According to the picture developed above, the phase
(•◦) is present twice in the phase diagram explored thus
far, where it surrounds the phase (•••◦◦◦). As a phe-
nomenological explanation for this re-emergent behav-
ior once could suggest that the phase (•◦) mediates
the transition between the phases (••◦◦) and (•••◦◦◦)
as its simpler structure reflects the required charge-
reconfigurations between the latter two phases. Further
insight into the mechanism behind this reemergence is ob-
tained by sampling the parameter space more widely. For
this we keep the potential energies U1 = U3 = 4, U4 = 1
fixed as before and continue to vary U2, but also consider
values of t 6= 1 that supplement the results presented ear-
lier in this section.

We recall that for t = 0, the system is in the atomic
limit (see Sec. III), where direct transitions between the
charge-ordered phases occur at U2 = 3 and U2 = 6. For
t → ∞, we expect the phase diagram to display the liq-
uid phase, as the Hamiltonian is then dominated by the
kinetic term. While we cannot map out the full phase
diagram with a high degree of precision, reasonable es-
timates of the phases and their transitions are obtained
by limiting the bond dimension χ to 200 and 400 for rep-
resentative values of t. This leads to the extended phase
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Figure 7. (Color online) Bipartite entanglement entropy for
the systems with p = 2 (a) and p = 4 (b), with parame-
ters as specified in Figs. 2 and 3. For p = 4, no critical be-
havior is detected around the transition between the phases
(•◦) and (•••◦◦◦). However, in the transition region between
the phases (•••◦◦◦) and (••◦◦) the gradual suppression of
charge correlations (Fig. 6) coincides with an onset of finite-
size scaling with increasing bond-dimension, as expected from
a crossover into a liquid phase.

diagram proposed in Fig. 8. Here, most transitions are
captured accurately with good agreement between the
signatures from the extrapolated correlators and the en-
tropy. The determination of the transition between the
phase (•◦) and the liquid phase requires very high bond
dimensions, so that its approximate position at the ac-
cessible bond dimensions is marked by a dashed line.

As can be seen from the diagram, the phase (•••◦◦◦)
only exists up to moderate values of the kinetic en-
ergy parameter t, while the phase (•◦) is distinctively
more robust, wraps around the other phase, and in-
deed reemerges in the mediating transition region along
the t = 1 line. At first sight, one would expect that
this re-emergent behavior cannot extend all the way to
the atomic limit, as the fully charge-ordered state (•◦)
acquires a larger energy than the other charge-ordered
states. However, a consistent scenario would see the me-
diating state to gradually lose its clear charge order and
cross over into the liquid phase, in analogy to the behav-
ior witnessed in the correlations of Fig. 6 and the entropy
in Fig. 7. This assertion is difficult to verify, as the me-
diating phase becomes confined to a very small part of
phase space as one approaches the atomic limit. This
complication does not apply to the region t ≈ 1, where

□ □

□ □

□ □
□ □□ □ □ □□ □ □ □□ □ □ □

□ □□

□ □□

□ □
0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

Figure 8. (Color online) Proposed phase diagram for the
model from Eq. (1) with interaction range p = 4, with in-
teraction parameters U1 = U3 = 4, U4 = 1 while U2 and
the kinetic energy parameter t are varied. The phase tran-
sitions are determined from the extrapolated correlators and
the entanglement entropy, in analogy to Figs. 5 and 7, which
correspond to the case t = 1. The dashed line indicates the
detected onset of finite-size scaling with the bond dimension
in the crossover from the phase (•◦) to the liquid phase.

the (•◦) phase clearly wraps around the (•••◦◦◦) phase,
resulting in its re-emergent behavior.

E. Fragile phases and bond order

According to Table II, for p = 4 the considerations
above cover three of the five possible charge-ordered
phases identified in the atomic limit. As the phase
(••••◦◦◦◦) is confined to a small part of parameter space
already in the atomic limit (see Fig. 1), we here illustrate
the susceptibility to a finite kinetic energy for the phase
(•◦◦•◦••◦), which displays the most complex charge or-
der. To explore this phase we set U1 = 4, U3 = U4 = 1
and again vary U2. We then find that the phase is ab-
sent at t = 1, but can be detected if we significantly
reduce the kinetic energy parameter to t = 0.1. The cor-
responding results are shown in Fig. 9. We find clear
signatures of three charge-ordered phases, which occur
in the sequence (•◦), (•◦◦•◦••◦), (••◦◦) in agreement
with the atomic limit. However, the support of the
phase (•◦◦•◦••◦) is already much reduced. This occurs
in favor of two surrounding regions that both support a
purely bond-ordered phase with no residual charge or-
der, and thereby share the same characteristics as the
bond-ordered phase encountered for p = 2. Note that
the phase (•◦◦•◦••◦) also admits a finite bond-order pa-
rameter, as does again the phase (••◦◦) already discussed
above. These results not only demonstrate the suscepti-
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Figure 9. (Color online) Effect of a small kinetic energy pa-
rameter t = 0.1 on the phase (•◦◦•◦••◦) in the half-filled
system with p = 4, as captured by the kinetic energy den-
sity T (a), the bond-order parameter OBO (b), the bipartite
entanglement entropy S (c), and the extrapolated correlators
N∞m (d). In contrast to the case described in Fig. 3, we now
set U1 = 4 and U3 = U4 = 1, while varying U2 as before. Al-
ready at the chosen small kinetic energy parameter, the phase
(•◦◦•◦••◦) is driven out by a bond-ordered phase, which in-
tervenes in the transition to the other charge-ordered states
covered in this parameter range.

bility of the phase (•◦◦•◦••◦) to suppression by a finite
kinetic energy, but also show that bond-ordered phases
can still occur at this increased interaction range.

V. EFFECTS OF DISORDER

We now determine the effects of disorder, which is in-
troduced into the Hamiltonian according to Eq. (2). To
study these effects numerically within the adopted frame-
work we choose disorder configurations that remain com-
patible with the previously encountered charge-ordered
states, so that these do not experience any artificial frus-
tration. This requires a disordered unit cell of size L that
is commensurable with all the possible insulating phases
present in the atomic limit, hence a multiple of 4 in the
half-filled system with p = 2 and a multiple of 24 in the
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Figure 10. (Color online) Effect of disorder on the kinetic
energy density for p = 2 (a) and p = 4 (b). The disorder-free
case corresponds to Figs. 2 and 3, and is included for guidance.
For each finite value of the disorder, the data represent a
density plot accumulated over 100 disorder realizations. The
size of the disordered unit cell is L = 20 (p = 2) and L = 24
(p = 4).

half-filled system with p = 4. By inspecting the varia-
tions of our results for T , OBO and S with L for moderate
to strong values of the disorder, we have found it suffi-
cient to set L = 20 for p = 2 and keep L = 24 for p = 4,
which has the added benefit of retaining nontrivial ex-
trapolated correlators N∞m as discussed below. The limit
of very weak disorder would require an ever-increasing
disordered unit cell that keeps up with the increasing lo-
calization length, which is beyond the practical scope of
the adopted iDMRG/iMPS approach.

In the atomic limit t = 0, disorder encourages the
fragmentization of charge-ordered states as the energy
expense of a charge configuration can be overcompen-
sated by the energetic gain from the on-site potential.
Furthermore, previously degenerate configurations such
as (••◦◦), (◦••◦), (◦◦••) and (•◦◦•) now acquire differ-
ent energies. These reconfigurations have a direct effect
on the long-range correlations, which can be expected to
persist also at finite kinetic energy t 6= 0. In this general
case, we would expect the disorder also to localize the liq-
uid phase, so that the phase space regions with critical
behavior should be suppressed.

On the phenomenological level these anticipated ten-
dencies are again well captured by the kinetic energy den-
sity T , as shown by the disorder-averaged density plots
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Figure 11. (Color online) Disorder-averaged density plots of
the extrapolated correlators N∞m for the disordered systems
specified in Fig. 10, evaluated at disorder strength W = 1.
These correlators remain nontrivial because of the finite size
of the disordered unit cell.

in Fig. 10. For p = 2 (panel a) the density T drops sig-
nificantly for increasing disorder strength W , in partic-
ular in the transition region between the charge-ordered
phases. At the same time the spread of values of T in-
creases, and all the features present on the W = 0 plot
become progressively washed out so that at W = 8 the
kinetic energy becomes essentially independent of U2. A
similar trend is present for p = 4 (panel b), where the
two prominent peaks present for W = 0 get washed out
as one increases the disorder strength. These results are
consistent with the formation of a universal fragmented
state at large disorder strength.

Insight into the gradual formation of such a state is
given by the correlation functions. Figures 11, 12, and
13 show disorder-averaged density plots of the extrapo-
lated correlators N∞m for disordered systems with W = 1,
W = 3 and W = 8, respectively. Note that these correla-
tors are expected to be trivial (equaling 1/4) at any finite
disorder strength in the thermodynamic limit L → ∞,
but here retain a nontrivial structure as L is finite. For a
small disorder strength (W = 1, Fig. 11), the correlators
for p = 2 behave very similarly to the non-disordered
case. On the other hand, for p = 4 the same disor-
der strength already has a distinct effect on the medi-
ating transition region between the phases (•••◦◦◦) and
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Figure 12. (Color online) Disorder-averaged density plots of
the extrapolated correlators N∞m as in Fig. 11, but for disorder
strength W = 3.

(••◦◦), where the re-emergent phase (•◦) and the liquid
phase are quickly replaced in favor of a disordered in-
sulating phase with a nonuniform charge structure. As
we increase the disorder (W = 3, Fig. 12), the correla-
tors N∞m develop distinct ridges close to rational values
i/L, with i = 0, . . . , L/2 (emphasizing again the role of
the finite disordered unit cell). These ridges are most
prominent in the ranges formerly occupied by the charge-
ordered states, where this behavior is consistent with
their fragmentization. In the former transition regions
the correlators cover a broad and continuous range of
values. For strong disorder (W = 8, Fig. 13), however,
the rational ridges spread out over the whole parame-
ter range, which is consistent with the emergence of a
universal fragmented insulating state. Interestingly, this
state still appears to carry some characteristic ordering
features. For example, in the system with p = 2, the
correlators N∞2 and N∞4 prefer rational values L/i with
even i.

Finally, as shown in Fig. 14 the disorder also has a sig-
nificant effect on the entanglement entropy. In particu-
lar, the entropy develops strong sample-to-sample fluctu-
ations already for small disorder strength, and its value in
the previously liquid phase is already noticeably reduced.
For large disorder strength the entanglement entropy be-
comes very small across the whole parameter range.
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Figure 13. (Color online) Disorder-averaged density plots of
the extrapolated correlators N∞m as in Figs. 11 and 12, but
for disorder strength W = 8.

VI. CONCLUSIONS

In summary, we have investigated the interplay of
charge-ordered fermionic insulating phases that arise
from the competition of finite-range interactions in one
dimension, based on the fermionic lattice model in Eq.(1)
and a range of phenomenological and fundamental quan-
tities described in Sec. II. In the atomic limit of a van-
ishing kinetic energy term, we observe a proliferation of
competing phases, which for large interaction range can
display remarkably rich internal ordering (see Sec. III and
the Appendix). For a finite kinetic energy (Sec. IV), sig-
nificant differences are found already for moderate ranges
p of the interactions, as we explored by comparing the
cases p = 2 (for which we recover the known phenomenol-
ogy of phase transitions mediated by liquid and bond-
ordered phases) and p = 4. While in the latter case some
complex charge-ordered phases are quickly suppressed by
a finite kinetic energy (see e.g. Fig. 9), we observe that
the increased variety of competing phases with increasing
interaction range does not imply an essential loss of in-
sulating properties of the system; see the corresponding
panels and phase diagrams in Figs. 3, 5, and 7. Instead,
we observe, as our two main results, the survival of ap-
parently direct transitions between two charge-ordered
phases mimicking the atomic limit, as well as the ap-
pearance of mediating phases that display re-emergent
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Figure 14. (Color online) Disorder-averaged density plots of
the entanglement entropy S for the disordered systems spec-
ified in Fig. 10.

simple charge order and exhibit a crossover to liquid be-
havior at one of the phase boundaries (see in particular
Fig. 6). These two transition scenarios supplement the
liquid and bond-ordered phases encountered in previous
studies with a small interaction range, leading to a rich
variety of phases, transitions and crossovers in the system
(see Fig. 8). Disorder (explored in Sec. V) has the ex-
pected effect of gradual fragmentization and localization
of the insulating and liquid phases, which is particularly
visible in the density-density correlation functions of a
finite disordered unit cell (Figs. 11-13).

The results in this work are based on an analyti-
cal classification of charged-ordered states in the atomic
limit and extensive numerical investigations at a mod-
erate finite kinetic energy, both applied to a canonical
model of interacting spinless fermions on a discrete one-
dimensional chain. Complementary approaches could
provide useful insights into the exact nature of the ob-
served transitions and crossovers. Numerically, this could
be achieved by exploring the limit of a very large or small
kinetic energy, in which the approach adopted in this
work scales less favorably, or by the investigation of al-
ternative models, such a spin chains or spinful fermions.
Further analytical progress could be made perturbatively
close to the atomic or free limit, or phenomenologically
by field-theoretical approaches of effective, possibly con-
tinuous counterparts of the studied system. In general,
our work should motivate efforts to identify and clas-



12

sify the possible transition scenarios in systems where
the kinetic energy competes with several interactions of
different range. This competition should also persist for
excited states, including for disordered systems that may
display many-body localization.62,63 These endeavors are
left for future considerations.
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Appendix A: Identification of charge-ordered
insulating phases in the atomic limit

In this Appendix we provide classifications of charge-
ordered phases at principal critical densities Q = Qm =
1/m for interaction ranges p ≤ 6. We start with the
instructive case of Q = Qp = 1/p, where the classification
can be carried out for all p.

1. Critical density Q = 1/p

Assume for the moment that Up � Um so that the
preferable distance between two fermions is p. We then
say that Up orders the fermions in the ground state.
For example, a charge sequence • ◦◦ · · · ◦︸ ︷︷ ︸

p−1

• ◦◦ · · · ◦︸ ︷︷ ︸
p−1

• has a

lower energy than the sequence • ◦◦◦ · · · ◦︸ ︷︷ ︸
p

• ◦ · · · ◦︸ ︷︷ ︸
p−2

•. The

ground state has the simple form

• ◦◦ · · · ◦︸ ︷︷ ︸
p−1

• ◦◦ · · · ◦︸ ︷︷ ︸
p−1

• ◦◦ · · · ◦︸ ︷︷ ︸
p−1

· · · , (A1)

and its energy is E1 = (L/p)Up = NUp, where L is the
considered system size and N = L/p the number of par-
ticles.

Next let us inspect how a low value of Up−1 can or-
der the fermions. This cannot be based on a repeating
sequence of segments • ◦◦ · · · ◦︸ ︷︷ ︸

p−2

, as this would not result

in the correct density 1/p. However, by addition of seg-
ments • ◦◦ · · · ◦︸ ︷︷ ︸

p

we can tailor the density without chang-

ing the energy of the system. A representative corre-
sponding ground-state configuration is

• ◦◦ · · · ◦︸ ︷︷ ︸
p−2

• ◦◦ · · · ◦︸ ︷︷ ︸
p

• ◦◦ · · · ◦︸ ︷︷ ︸
p−2

• ◦◦ · · · ◦︸ ︷︷ ︸
p

· · · , (A2)

which gives us the correct density Q = 1/p, and results
in the energy E2 = (L/2p)Up−1 = (N/2)Up−1. Note that
this ground state is highly degenerate—the sections of p
and p − 2 unoccupied sites can be freely arranged along
the system; e.g., all sections with p− 2 unoccupied sites
could be placed besides each other without changing the
energy of the system.

If one follows this prescription for the general case of
ordering driven by Up−n, one obtains ground states of
the representative structure

• ◦◦ · · · ◦︸ ︷︷ ︸
p−n

n−1 times︷ ︸︸ ︷
• ◦◦ · · · ◦︸ ︷︷ ︸

p

• ◦◦ · · · ◦︸ ︷︷ ︸
p

• ◦◦ · · · ◦︸ ︷︷ ︸
p

· · · · · · , (A3)

which have an energy

En =
L

1 + p− n+ (n− 1)(p+ 1)
Up+1−n (A4)

=
L

np
Up−n+1 =

N

n
Up−n+1.

Again, these ground states are highly degenerate.
We can now determine the conditions in which an ar-

bitrary phase (designated by step n) will dominate the
charge ordering. This requires

∀
k 6=n

En < Ek ⇒ ∀
k 6=n

Up−n+1 <
n

k
Up−k+1. (A5)

Renaming α = p− n+ 1 and β = p− k + 1, we arrive at
the condition

∀
β 6=α

Uα <
p− α+ 1

p− β + 1
Uβ , (A6)

which in the main text is expressed as Eq. (9).
If this condition is fulfilled then the phase with energy

Eα = [N/(p − α + 1)]Uα is dominant and the ground
state consists of N/(p − α + 1) segments • ◦◦ · · · ◦︸ ︷︷ ︸

α−1

and

N(p − α)/(p − α + 1) segments • ◦◦ · · · ◦︸ ︷︷ ︸
p

. The ground-

state degeneracy is given by

f =



(
N

N/(p− α+ 1)

)
· p if 2α > p(

N p−α
p−α+1

N/(p− α+ 1)

)
· p(p−α+1)

p−α otherwise.

(A7)

For 2α 6 p, the degeneracy count reflects the requirement
to exclude cases where blocks of structure • ◦◦ · · · ◦︸ ︷︷ ︸

α−1

are

adjacent, which then increases their energy by U2α.

2. General properties at higher critical densities

To construct the charge-ordered phases at larger crit-
ical densities Qm = 1/m with m < p, we rely on the
following two general properties:

http://dx.doi.org/10.17635/lancaster/researchdata/234
http://dx.doi.org/10.17635/lancaster/researchdata/234
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Property 1 In any atomic charge configuration of den-
sity Q, there is at least one sequence of 1/Q− 1 or more
unoccupied sites.

Proof. When the particles are evenly spread out over the
system they are 1/Q sites apart, i.e., separated by 1/Q−1
unoccupied sites, corresponding to the configuration

• ◦◦ · · · ◦︸ ︷︷ ︸
1/Q−1

• ◦◦ · · · ◦︸ ︷︷ ︸
1/Q−1

• ◦◦ · · · ◦︸ ︷︷ ︸
1/Q−1

. (A8)

Any attempt to reduce one of these spacings further nec-
essarily increases another spacing. 2

Property 2 For any atomic ground state of the system,
the largest sequence of unoccupied states cannot exceed p
sites.

Proof. Assume that there exists a ground state unit cell
with a sequence of (p + 1) unoccupied sites, which we
place to the very right in the cell by exploiting transla-
tional invariance. A periodic arrangement of these unit
cells then takes the form

•?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

◦ · · · •?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

◦

︸ ︷︷ ︸
q times

, (A9)

and has an energy density EA/(N/Q) where EA is the
energy of the denoted block A. We can now move the
right-most unoccupied sites in each cell to the very end of
this chain without changing the energy density, resulting
in the rearranged configuration

•?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

· · · •?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

◦◦ · · · ◦︸ ︷︷ ︸
q

. (A10)

As guaranteed by the finite density Q > 1/p+ 1, block A
contains at least one particle that makes a finite contribu-
tion E∆ to the energy of this state. We can now take this
particle from block A and place it into the terminating
segment of the chain,

•?? · · ·?•︸ ︷︷ ︸
Block A

◦◦ · · · ◦︸ ︷︷ ︸
p

· · · •?? · · ·??︸ ︷︷ ︸
Block A′

◦ · · · ◦︸ ︷︷ ︸
p

• ◦◦ · · · ◦︸ ︷︷ ︸
q−1

, (A11)

where block A′ is block A with the particle replaced by a
hole. Block A′ has energy EA −E∆, while the displaced
particle no longer contributes to the energy of the state
as soon as q ≥ p+ 1, so that it is surrounded by at least
p unoccupied sites on both sides. This segment can now
serve as a new unit cell with an energy density

pEA − E∆

pN/Q
=

EA
N/Q

− E∆

pN/Q
, (A12)

which lowers the energy in contradiction to our assump-
tions. A similar process can be used to show that a
ground state cannot have a sequence of (p+2) or more un-
occupied sites. Thus, we conclude that the largest spac-
ing in any ground state has at most p unoccupied sites.

2

Table III. Charge-ordered ground states (GS) and their ener-
gies in the atomic limit of systems with commensurable par-
ticle densities Q = 1/(p − 1), where p is the range of the
interactions. The degeneracy of these states is denoted as f ,
which accounts for the translational freedom and the possi-
bility of a mirror-reflected phase. Lmax is the maximal size of
the considered unit cell.

GS unit cell Energy density f
p = 3, Q = 1/2, Lmax = 28
•◦ U2/2 2
••◦◦ (U1 + U3)/4 4
•••◦◦◦ (2U1 + U2)/6 6
p = 4, Q = 1/3, Lmax = 36
•◦◦ U3/3 3
••◦◦◦◦ U1/6 6
•◦•◦◦◦ (U2 + U4)/6 6
••◦◦◦•◦◦◦ (U1 + 2U4)/9 9
•◦•◦•◦◦◦◦ (2U2 + U4)/9 9
•◦•◦◦•◦•◦◦◦◦ (2U2 + U3)/12 12

•••◦◦◦◦•◦•◦◦◦◦•◦•◦◦◦◦ (2U1 + 3U2)/21 21
p = 5, Q = 1/4, Lmax = 32
•◦◦◦ U4/4 4

•◦◦•◦◦◦◦ (U3 + U5)/8 8
•◦•◦◦◦◦◦ U2/8 8
•◦•◦◦◦◦•◦◦◦◦ (U2 + 2U5)/12 12
•◦◦•◦◦•◦◦◦◦◦ 2U3/12 12
••◦◦◦◦•◦◦◦◦•◦◦◦◦ (U1 + 3U5)/16 16

••◦◦◦◦◦••◦◦◦◦◦•◦◦◦◦◦ 2U1/20 20
p = 6, Q = 1/5, Lmax = 40
•◦◦◦◦ U5/5 5

•◦◦◦◦◦•◦◦◦ (U4 + U6)/10 10
•◦◦◦◦◦◦•◦◦ U3/10 10

•◦◦◦◦◦•◦◦•◦◦◦◦◦ (U3 + 2U6)/15 15
•◦◦◦◦◦◦••◦◦◦◦◦◦ U1/15 15
•◦◦◦◦◦◦•◦◦◦•◦◦◦ 2U4/15 15

•◦◦◦◦◦•◦•◦◦◦◦◦•◦◦◦◦◦ (U2 + 3U6)/20 20
•◦◦◦◦◦••◦◦◦◦◦•◦◦◦◦◦•◦◦◦◦◦ (U1 + 4U6)/25 25
•◦◦◦◦◦◦•◦•◦◦◦◦◦◦•◦•◦◦◦◦◦◦ 2U2/25 25

3. Specific cases

The general properties listed above allow us to sig-
nificantly reduce the effective charge-configuration space
of ground-state candidates. Based on Property 1 and
exploiting the system’s translational invariance, we can
place the guaranteed large spacing towards the front of
the sequence, and therefore fix the first 1/Q sites to

• ◦◦ · · · ◦︸ ︷︷ ︸
1/Q−1

. (A13)

This reduces the effective configuration space to reduced
systems of size (N − 1)/Q and (N − 1) particles. Based
on Property 2, we then can remove any charge configu-
ration with unoccupied segments exceeding p, which at
the same time significantly reduces the maximal unit-cell
size encountered in the construction.

For each admissible state obtained in this way, we de-
termined the general expression of the ground-state en-
ergy density as a function of the interaction parameters
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Table IV. Charge-ordered ground states as Table III, but for systems with particle densities Q = 1/(p− 2).

GS unit cell Energy density f
p = 4, Q = 1/2, Lmax = 26

•◦ (U2 + U4)/2 2
••◦◦ (U1 + U3 + 2U4)/4 4
•••◦◦◦ (2U1 + U2 + U4)/6 6
••••◦◦◦◦ (3U1 + 2U2 + U3)/8 8
••◦•◦◦•◦ (U1 + 2U2 + 3U3)/8 8

p = 5, Q = 1/3, Lmax = 27
•◦◦ U3/3 3
•◦•◦◦◦ (U2 + U4)/6 6
••◦◦◦◦ (U1 + U5)/6 6
••◦◦◦•◦◦◦ (U1 + 2U4 + 2U5)/9 9
•◦•◦•◦◦◦◦ (2U2 + U4 + U5)/9 9
•◦•◦◦•◦•◦◦◦◦ (2U2 + U3 + 3U5)/12 12
••◦◦•◦◦◦•◦◦◦•◦◦ (U1 + 2U3 + 4U4)/15 15
•••◦◦◦◦◦••◦◦◦◦◦ (3U1 + U2)/15 15
••◦◦••◦◦◦◦◦••◦◦◦◦◦ (3U1 + U3 + 2U4 + U5)/18 18
••◦◦•◦◦••◦◦◦◦◦••◦◦◦◦◦ (3U1 + 2U3 + 2U4)/21 21
•••◦◦◦◦•◦•◦◦◦◦•◦•◦◦◦◦ (2U1 + 3U2 + 3U5)/21 21
•◦•◦◦◦◦◦•••◦◦◦◦◦•••◦◦◦◦◦ (4U1 + 3U2)/24 24

Table V. Charge-ordered ground states as Table III, but for systems at half filling (Q = 1/2).

GS unit cell Energy density f
p = 5, Q = 1/2, Lmax = 26

•◦ (U2 + U4)/2 2
••◦◦ (U1 + U3 + 2U4 + U5)/4 4
••◦•◦◦ (U1 + U2 + 2U3 + U4 + U5)/6 2× 6
•••◦◦◦ (2U1 + U2 + U4 + 2U5)/6 6
••◦•◦◦•◦ (U1 + 2U2 + 3U3 + 3U5)/8 8
••••◦◦◦◦ (3U1 + 2U2 + U3 + U5)/8 8
••◦••◦◦•◦◦ (2U1 + U2 + 4U3 + 3U4)/10 10
•••••◦◦◦◦◦ (4U1 + 3U2 + 2U3 + U4)/10 10

p = 6, Q = 1/2, Lmax = 26
•◦ (U2 + U4 + U6)/2 2
••◦◦ (U1 + U3 + 2U4 + U5)/4 4
••◦•◦◦ (U1 + U2 + 2U3 + U4 + U5 + 3U6)/6 2× 6
•••◦◦◦ (2U1 + U2 + U4 + 2U5 + 3U6)/6 6
•◦••◦•◦◦ (U1 + 2U2 + 3U3 + 3U5 + 2U6)/8 8
••••◦◦◦◦ (3U1 + 2U2 + U3 + U5 + 2U6)/8 8
••◦••◦◦•◦◦ (2U1 + U2 + 4U3 + 3U4 + 3U6)/10 10
•••••◦◦◦◦◦ (4U1 + 3U2 + 2U3 + U4 + U6)/10 10
•◦••◦•◦•◦◦•◦ (U1 + 4U2 + 3U3 + 2U4 + 5U5)/12 12
••••••◦◦◦◦◦◦ (5U1 + 4U2 + 3U3 + 2U4 + U5)/12 12

•••◦•◦◦◦•◦•••◦◦•◦◦ (4U1 + 4U2 + 4U3 + 5U4 + 2U5 + 3U6)/18 18
•••◦•◦◦◦••◦••◦◦•◦◦ (4U1 + 3U2 + 5U3 + 5U4 + 2U5 + 3U6)/18 2× 18

{Um}. Next, we discarded symbolically all configura-
tions that can never drop below the energy densities of
all other charge configurations. The final list contains
the energy densities of all phases that can have the low-
est energy for some set of values {Um}. This leads to the
charge-ordered phases listed in the following tables.

Table III lists the unit cells and energy densities for
critical densities Q = 1/(p − 1) and p = 3, 4, 5, 6, with
the unit-cell size limited to the specified values Lmax.
In these cases we are highly confident that there are no
ground states with larger unit cells. Table IV presents

the unit cells and energy densities for Q = 1/(p−2) with
p = 4 and 5. Notice that for p = 5 we find ground-state
unit cells of size up to (Lmax − 3), so that we cannot
fully exclude the possibility of additional ground-state
configurations with even larger unit cells. Finally, re-
sults for Q = 1/2, p = 5 and 6 are presented in Table V.
Amongst the combinations listed in Table I, this leaves
the case p = 6, Q = 1/3 where we find 63 phases with
L ≤ Lmax = 27, and p = 6, Q = 1/4, where we find 23
phases with L ≤ Lmax = 32, which defines the limit of
our computational capabilities; the corresponding phases
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are therefore not listed here.
In all these tables, the degeneracy of the states ac-

counts for the translational displacement by a finite num-

ber of sites (up to the size of the unit cell), as well as
for the possible duplication by a distinct mirror-reflected
phase.
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18 G. Gómez-Santos, Phys. Rev. Lett. 70, 3780 (1993).
19 P. Schmitteckert and R. Werner, Phys. Rev. B 69, 195115

(2004).
20 T. Mishra, J. Carrasquilla, and M. Rigol, Phys. Rev. B

84, 115135 (2011).
21 J. F. Dodaro, H.-C. Jiang, and S. A. Kivelson, Phys. Rev.

B 95, 155116 (2017).
22 J. Voit, Phys. Rev. B 45, 4027 (1992).
23 E. V. Tsiper and A. L. Efros, J. Phys.: Condens. Matter

9, L561 (1997).
24 M. Nakamura, J. Phys. Soc. Jpn. 68, 3123 (1999).
25 A. K. Zhuravlev and M. I. Katsnelson, Phys. Rev. B 61,

15534 (2000).
26 P. Sengupta, A. W. Sandvik, and D. K. Campbell, Phys.

Rev. B 65, 155113 (2002).
27 C.-B. Duan and W.-Z. Wang, J. Phys.: Condens. Matter

23, 365602 (2011).
28 R. A. Molina and P. Schmitteckert, Phys. Rev. B 75,

235104 (2007).
29 K. Hallberg, E. Gagliano, and C. Balseiro, Phys. Rev. B

41, 9474 (1990).
30 P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
31 E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407

(1961).
32 S. Katsura, Phys. Rev. 127, 1508 (1962).
33 F. D. M. Haldane, J. Phys. C: Solid State Phys. 12, 4791

(1979).
34 M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.

Fisher, Phys. Rev. B 40, 546 (1989).
35 M. Lubasch, V. Murg, U. Schneider, J. I. Cirac, and M.-C.
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