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Abstract 

It is well established that the abundances of nitrogen (N) transforming microbes are strongly 

influenced by land-use intensity in lowland grasslands. However, their responses to management 

change in less productive and less fertilized mountain grasslands are largely unknown. We studied 

eight mountain grasslands, positioned along gradients of management intensity in Austria, the UK, 

and France, which differed in their historical management trajectories. We measured the abundance 

of ammonia-oxidizing bacteria (AOB) and archaea (AOA) as well as nitrite-reducing bacteria using 

specific marker genes. We found that management affected the abundance of these microbial 

groups along each transect, though the specific responses differed between sites, due to different 

management histories and resulting variations in environmental parameters. In Austria, cessation of 

management caused an increase in nirK and nirS gene abundances. In the UK, intensification of 

grassland management led to 10-fold increases in the abundances of AOA and AOB and doubling of 

nirK gene abundance. In France, ploughing of previously mown grassland caused a 20-fold increase in 

AOA abundance. Across sites the abundance of AOB was most strongly related to soil NO3
--N 

availability, and AOA were favoured by higher soil pH. Among the nitrite reducers, nirS abundance 

correlated most strongly with N parameters, such as soil NO3
--N, microbial N, leachate NH4

+-N, while 

the abundance of nirK-denitrifiers was affected by soil total N, organic matter (SOM) and water 

content. We conclude that alteration of soil environmental conditions is the dominant mechanism by 

which land management practices influence the abundance of each group of ammonia oxidizers and 

nitrite reducers. 
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Introduction 

Mountain grasslands cover a substantial proportion of the European land surface (Tasser et al., 2005, 

Quétier et al., 2007). Over the past few decades these marginal grasslands have undergone 

significant shifts in land management practices, involving both increases and decreases in the 

intensity of management, as well as complete abandonment. This variety of land-use trajectories is in 

contrast to lowland grasslands, where management has typically intensified. Changes in land 

management can have lasting effects on the composition of vegetation and the soil microbiome, with 

cascading effects on ecosystem processes (Bardgett and Leemans 1995; Robson et al., 2007; Schmitt 

et al. 2010; Legay et al. 2014; Harris et al. 2018) and ecosystem services (Lavorel et al., 2011; Grigulis 

et al., 2013). The nitrogen (N) cycle plays a key role in the provisioning of ecosystem services, both 

directly and indirectly (Galloway et al., 2004). However, the mechanisms by which changes in the soil 

microbiome are linked to shifts in soil quality and N cycling under different management trajectories 

in mountain grasslands are poorly understood.  

In order to fill this gap, a network of European mountain grasslands was established across 

three sites in Austria, France and the United Kingdom (UK), each site comprising a gradient of 

agricultural management intensity representative of the farming practices for the respective region. 

Management trajectories included agricultural improvement in the UK, land abandonment in Austria, 

and extensification in France (Lavorel et al., 2017). Previous research using this network of sites 

indicates that both abiotic soil properties and plant traits influence the microbial processes related to 

N cycling across the sites (Grigulis et al. 2013; Legay et al. 2014).  In the present study we explored 

the effects of land management changes on key drivers of the grassland N cycle. In particular, we 

analysed the effects on the abundances of N-transforming microbes that drive nitrification and 

denitrification, which determine, to a large extent, the availability of ammonia and nitrate in soil.  We 

measured the abundances of ammonia oxidizing bacteria (AOB) and archaea (AOA) as a proxy for 

nitrifiers using the amoA gene as marker, and quantified denitrifiers using the two functional 

redundant nitrite reductase genes nirK and nirS as markers. 
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In lowland grasslands, the abundance of AOB is thought to be regulated primarily by 

inorganic N availability (Meyer et al., 2013, Di et al., 2009, 2010). AOB abundance has been found to 

increase with fertilization (Schauss et al., 2009, Hallin et al., 2009), while AOA abundance often 

showed no such response (Di et al., 2009, Shen et al., 2008, 2011). The abundance of AOA is more 

strongly influenced by other soil properties, including pH, moisture content and organic matter 

(Tourna et al., 2011; Stahl and de la Torre, 2012; Zhalnina et al., 2012; Stieglmeier et al., 2014). 

  Similarly to nitrifiers, population sizes of denitrifiers (nirK, nirS nitrite reducers) have been 

shown to respond strongly to environmental factors, such as the soil pH (Nicol et al., 2008; Enwall et 

al., 2010, Pereira et al., 2012), N concentrations (Prosser and Embley, 2002), plant species identity 

(Bremer et al., 2007), as well as management practices such as such as tillage (Attard et al., 2010) 

and grazing (Patra et al., 2005).  

Much of the current knowledge on effects of management practices and land-use changes on 

nitrifiers and denitrifiers stems from lowland grasslands (Stempfhuber et al., 2014; Meyer et al., 

2014), where intensification is the key trajectory of land-use change, and where background fertilizer 

inputs are typically higher than in the less productive mountain grasslands studied here. The aim of 

our study was to assess the effects of management intensity on the abundances of nitrifiers and 

denitrifiers for land-use trajectories typical for European mountain grasslands. Furthermore, the 

range of geographic, edaphic and climatic conditions covered by our study enabled us to explore the 

role of management versus environmental context on nitrifiers and denitrifiers.  We hypothesized 

that land management change drives the population size of N converting microbes through a direct 

effect on the size of the inorganic N pools, and that higher inorganic N pools favour AOB abundance 

more than AOA abundance and increase nir-denitrifier abundance. We furthermore tested the 

hypothesis that soil organic matter content and pH affect the abundances of nitrifiers and 

denitrifiers, and that higher SOM content is associated with increased abundances of AOA and of nir-

denitrifiers assorting to a heterotrophic lifestyle.   

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Methods 

Sites and sampling 

We studied a total of eight grasslands representing different levels of management intensity in terms 

of the level of fertilizer application, mowing frequency, and grazing intensity. The selected individual 

management forms represent typical types of grassland management in the investigated regions. 

The Austrian research site is located in the Stubai Valley and includes a mountain meadow (M) and 

an abandoned site (A). The French site is located on south-facing slopes in the Central French Alps 

and comprises of three fields; a fertilized mown terrace (FMT), an unfertilized terrace (UT) and an 

unmown meadow (UM). The UK sites are located in the Yorkshire Dales and cover a management 

gradient including an improved meadow (I), a semi-improved meadow (SI) and an unimproved 

meadow (UI). For details concerning the management of these sites and for information on their 

geographic location, climate, geology, soil and vegetation characteristics we refer the reader to Table 

1. Photographs of the sites are provided as supplementary materials.  

Soils were sampled within three plots (30x30 m) at each of the studied grasslands. In each plot, four 

replicate quadrats of 50x50 cm were established. At each quadrat four soil cores of the main rooting 

horizon (0-5 cm depth in A and 0-10 cm depth in F, UK) were sampled at peak vegetation growth 

phase in July/August 2010. Replicate soil cores (4) sampled within a quadrat were pooled, sieved to 

5.6 mm and kept at 4°C for soil chemical analyses, or at -20°C until DNA extraction, respectively. In 

total 12 samples (3 plots x 4 composite soil samples) were taken for each type of grassland. 

 

Soil chemical and physical properties 

Soil abiotic properties including water content, bulk density, porosity, and pH were determined 

according to Schinner et al. (1996). Soil organic matter content was measured using 5 g dried soil 

samples (at 70°C for one week) after combustion at 550°C for 4 h; the soil organic fraction was 

determined as the mass loss during combustion (Schinner et al., 1996). Total C and N contents were 

determined in sieved soil aliquots, ground to a powder using a ball mill and analysed with a  FlashEA 
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1112 elemental analyser (Fisher Scientific Inc., Waltham, MA, USA). For determining soluble 

inorganic (NH4
+, NO3

-), dissolved organic N (DON), and total organic carbon (TOC), 10 g of fresh soil 

was extracted with 50 ml of 0.5 M K2SO4 and shaken at 150 rpm for 1 h (Jones & Willett, 2006) . Soil 

TOC, NH4
+-N, and NO3

--N concentrations were determined colorimetrically (FS-IV colorimetric chain, 

OI-Analytical Corp., TX, USA). For measuring total dissolved nitrogen (TDN), extracts were digested 

with persulfate and subsequently subjected to analyses of NO3
--N (Ross, 1992; Ameel et al., 1993). N-

DON was calculated as the difference between N-TDN and inorganic N (N-NO3
- + N-NH4

+). Inorganic N 

in leachates was used as a measure of bioavailable N. In each quadrat one extra soil core was taken 

and placed on a mesh inside a plastic funnel. A defined amount (between 100 and 150 ml) of distilled 

water was gently poured into the soil core, trickling through until the dripping stopped. Leachates 

were collected, filtered (Whatmann 42, 2.5 µm) and frozen at -20 °C until analysis of NH4
+-N and NO3

- 

-N.  

 

Microbial parameters 

Microbial biomass N was analyzed using the chloroform-fumigation method according to Brookes et 

al. (1985). Microbial community structure was measured using phospholipid fatty acid (PLFA) 

analysis, as described by Bligh and Dyer (1959), adapted by White et al. (1979) and Bardgett et al. 

(1996). The fatty acids i150:0, a150:0, 15:0, i16:0, 17:0, i17:0, cy17:0, cis18:1ω7 and cy19:0 were 

chosen to represent bacterial fatty acids and 18:2ω6 to represent fungal fatty acids, allowing us to 

calculate the fungal to bacterial PLFA ratio (F:B) which is commonly used as a measure of the 

composition of microbial communities (Bardgett and McAlister, 1999). 

Nitrifiers and denitrifiers were quantified using DNA directly extracted from soil samples, followed by 

a quantitative real-time PCR (qPCR) approach for marker genes of the respective group. Therefore 

DNA was extracted from 0.5 g of fresh soil using the FastDNA® SPIN Kit for Soil (MP Biomedicals, 

Irvine, CA) and a Precellys24 (Bertin Technologies, France). After extraction, DNA was tested in 

quantity and quality with a spectrophotometer (Nanodrop, PeqLab, Germany). QPCR was carried out 
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on a 7300 Real-Time PCR System (Applied Biosystems, Germany) using SYBR green as a fluorescent 

dye. The Power SybrGreen Master Mix was obtained from Applied Biosystems, primers were 

synthesized by Metabion (Germany), and bovine serum albumin (BSA) and dimethyl sulfoxide 

(DMSO) were purchased from Sigma (Germany). Compositions of reaction mixes as well as detailed 

qPCR cycling conditions for the functional marker genes nirK (Braker et al., 1998), nirS (Michotey et 

al., 2000), bacterial amoA (Rotthauwe et al., 1997) and archaeal amoA (Leininger et al., 2006) are 

provided as supplementary material. 

Dilution series of the DNA extracts were tested in a pre-experiment to avoid inhibition of PCR, 

resulting in an optimal dilution of 1:64 for all samples. Serial plasmid dilutions of the respective genes 

ranging from 101 to 106 gene copies µl-1 were used as standards. All PCR runs started with an initial 

step for enzyme activation and pre-denaturation at 95 °C for 10 mins. To confirm the specificity of 

the amplicons after each PCR run, a melting curve and a 2 % agarose gel stained with ethidium 

bromide were conducted. The efficiencies (Eff) of the amplification were calculated from the 

standard curve with the formula Eff = [10 (−1/slope) − 1] * 100 % and resulted in the following values: 

AOB 93-95%, AOA 91–98%, nirS 99–100%, nirK 94–99%. 

 

Data analyses 

The effects of grassland management intensity on the abundance of nitrifying and denitrifying 

microbes were tested by comparing the different degrees of management intensity within each site. 

As many of these variables did not meet the assumptions of normality and homogeneity of variance 

required for the use of parametric tests, these analyses were carried out using non parametric tests: 

The Kruskal-Wallis test (with post hoc pairwise Mann-Whitney U tests with Bonferroni corrections 

used for testing differences between treatments) was used to  compare the three treatments at the 

French and UK sites, and the Mann-Whitney U (Wilcoxon rank-sum) test was used to compare 

between the two treatments at the Austrian site. All tests used a significance level of p=0.05. Sites 

were treated separately to take management gradients within sites into account. Analyses were 

carried out using the R software package (R Core Team, 2014).  
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Relationships between the measured variables and ammonia oxidizers (AOA, AOB) and nitrite 

reducers (nirK, nirS) were explored using a principal components analysis carried out by using the 

ade4 package (Dray et al., 2007), with biologically informative axes of variation being retained.  

Missing values made up less than 6% of the dataset and were replaced by the mean value of that 

sites variable across all (Peng et al., 2006). Correlations between parameters (Table 3) were 

calculated by means of multiple-variable analysis (Pearson correlations) at the p<0.001 and p<0.05 

level. These analyses extend significantly beyond those of our previous studies (Grigulis et al. 2013, 

and Legay et al. 2014), which reported on fixed effects retained within multiple variable REML 

models, but did not report any absolute values nor any potential effects of grassland management. 

 

Results 

Abiotic soil properties 

At the UK site, total N and C concentrations increased in soil from unimproved to improved and semi-

improved grassland (UI<I<SI). In France, soil C and N concentrations did not differ between 

differently managed grasslands. In Austria, soil C and N concentrations were twice as high in the 

abandoned grassland compared to the managed grassland (Tab. 2). Soil C/N ratios of the unimproved 

site in the UK (UI) and the abandoned site in Austria (A) were significantly higher than those of the 

more intensively managed soils, whereas the opposite trend was observed in France. For Austria and 

France, soil organic matter content (SOM) was highest at the abandoned and unmown sites (A; UM), 

which contained up to 15% more SOM than alternative management types (M; UT and FMT). Total 

soil organic carbon (TOC) concentrations were 2 times higher at the improved (I, SI) compared to the 

unimproved site in the UK, whereas in Austria the abandoned site contained more TOC than the 

managed meadow soil. 

Soil inorganic N concentrations (NO3
--N + NH4

+-N) increased with management intensity at the UK 

site (UI<SI<I) (Tab. 2). Soil NO3
--N concentrations were highest at the most intensively managed 

grassland site (I), while the semi-improved grassland contained most NH4
+-N (Fig. 1A, 1C). At the 
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Austrian sites, the abandoned site contained more inorganic N than the fertilized meadow;  

concentrations of NH4
+-N were twice as high in the soil of the abandoned site compared to the 

fertilized meadow site, but NO3
--N concentrations were distinctly lower (Fig. 1A, 1C).  At the French 

sites, soil NH4
+-N concentrations differ between the differently managed grasslands and NO3

--N was 

highest at the intermediately managed unmown site UT. 

The amount of leached NO3
--N was higher at the more intensively managed sites in France and the 

UK (Fig. 1D), and amounted to 7% and 13% of the total NO3
--N measured in the improved grassland 

(I) of UK and at the more intensively managed sites (UT, FMT) in France, respectively (Tab. 2). In 

Austria, a higher fraction of NO3
--N was leached at the abandoned site (25%) as compared to the 

managed site (4%). The leached NH4
+-N fraction was highest at the UK sites (Tab. 2), where almost 

two times more NH4
+-N was leached from the improved and semi-improved sites (SI and I) compared 

to the unimproved (UI) site (Fig. 1B). Soil DON concentrations were related to management 

differences in Austria, where more DON was found in the abandoned as compared to the managed 

meadow soil, and in the UK, where DON was increased at the more intensively managed site (I). 

Soil pH varied from 5.7 to 8.0 across all sites. pH decreased from abandoned to managed grassland in 

Austria, was greater in previously ploughed grasslands (UT, FMT) than in never ploughed, unmown 

grassland (UM) in France, and showed no overall management-trend in the UK (Tab. 2).  At the 

Austrian and French site, soil water contents were 1.4- and 2 times higher in the abandoned or 

unmown soils (A, UM) compared to the more intensively managed soils; however, water holding 

capacity (WHC) within sites were similar (Tab. 1).  At the Austrian site, soil porosity was 9 % lower in 

the managed compared to the abandoned soil, whereas in the UK and France variation in soil 

porosity did not vary significantly between the different management regimes.  

 

Microbial biomass and bacteria:fungi ratio  

Total fungal and bacterial PLFA were lowest at highest management intensity across all studied 

transects (Tab. 2).  At the semi-improved site in the UK (SI) and the least managed site in France (UM) 

microbial biomass was 2 and 1.2 times higher compared to the more intensively managed soils, 
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respectively. At the Austrian site, microbial biomass was three times higher in the abandoned soil 

compared to the meadow soil. 

Microbial biomass N increased with management intensity at the UK and Austrian sites; in the UK, 

microbial biomass N was more than twice as high in the soil of the improved sites (I and SI), while in 

Austria the meadow site contained 4 times more microbial biomass N than the abandoned site. The 

opposite trend was observed in France, where microbial biomass N in formerly ploughed FMT and UT 

soils was 2 to 4 times lower than in the unploughed soil (UM), which had a distinctly lower pH.  

Fungi to bacteria ratios (F:B) decreased by a factor of two along the intensity gradient of 

management at the UK site (Tab. 2), whereas in France F:B was lowest in unmown grassland (UM) 

soil. The F:B ratio did not vary with management in Austria. 

 

The abundance of nitrifiers and denitrifiers  

Copy numbers of archaeal amoA genes were higher in soils of the more intensively managed sites in 

the UK and France, whereas AOA abundance remained unaffected by management intensity in 

Austria (Fig. 2). In the UK, AOA abundance increased with increasing management intensity by a 

factor of approximately 8, and in France AOA abundance was more than 20 times higher in soil of the 

previously ploughed sites (UT, FMT) relative to the unmown meadow (UM) soil. At the UT and FMT 

sites in France, AOA abundance was exceptionally high, being an order of magnitude greater 

compared to the other sites studied (Fig. 2A).  

The abundance of AOB was lower and less variable than AOA in the grassland soils investigated. 

Bacterial amoA gene copy numbers increased with management intensity in the UK, were higher at 

the managed relative to the abandoned site in Austria, but showed no variation according to 

management in France. AOB abundance was greatest in the soil of the managed (M) than the 

abandoned (A) site in Austria, and in the most intensively managed site in the UK (Fig. 2B). The 

AOA/AOB ratio increased with management intensity at the French site, where the AOA/AOB ratio 

was 10-times higher in the most intensively managed (FMT), compared to the unmown meadow 
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(UM) (Tab. 2). At the intermediately managed (SI) site in the UK, the AOA/AOB ratio was twice as 

high compared to the unmanaged (UI) and intensively (I) managed sites. 

In the UK, no differences in nirS gene copy numbers were observed across the management gradient, 

whereas at the Austrian site nirS gene copy numbers were 2.7 times more abundant in the 

abandoned compared to the managed soil (Fig. 3). At the French site, nirS gene abundance increased 

with management intensity in the order UM<UT<FMT. Across all sites, nirK gene abundance was 

greater than nirS gene abundance (Fig. 3). While along the UK transect, nirK gene copy numbers were 

highest in the more intensively managed soils (SI, I), in Austria and France nirK was more abundant at 

the least intensively managed sites (UM and A). The abandoned soil in Austria and the unmown 

meadow soil in France harbored 2 and 3 times more nirK genes, respectively, than managed soils (M, 

UT and FMT). The nirK/nirS ratio was generally highest in the Austrian grasslands, but did not vary 

with management (Tab. 2). Within the French transect at the unmown meadow (UM), the nirK/nirS 

ratio was 20- and 46-times higher than in the more intensively managed grasslands (UT, FMT). 

 

Relationships between soil characteristics, N concentrations and marker genes for nitrifiers and 

denitrifiers 

Amongst all environmental drivers, and across all sites, the abundance of the archaeal amoA gene 

correlated best with soil pH (R = 0.65) (Tab. 3, Fig. 4A), and was negatively correlated to soil water 

content, leachate NH4
+-N concentration, SOM and microbial biomass N (Tab. 3). The abundance of 

the bacterial amoA gene was related to soil NO3
--N concentration and inorganic N (Tab. 3). The 

abundance of the nirK gene correlated best with soil water content, SOM, and soil N and C, while it 

was negatively related to soil C/N, pH, and inorganic N (NO3
--N + NH4

+-N). The nirS gene abundance 

correlated best with soil NO3
--N, leachate NH4

+-N, and microbial biomass N, and correlated negatively 

with the F:B ratio (Tab. 3, Fig. 4B).  
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Discussion 

In the mountain grasslands studied, agricultural management affected a range of soil abiotic 

properties, including N availability, pH, organic matter content and water availability. However, many 

soil properties, including total N and C concentrations and soil inorganic N concentrations as well as 

nitrifier and denitrifier abundances were not clearly related to management intensity. Responses of 

nitrogen-transforming microbes differed between the management transects in each country.  

 

Drivers for AOA and AOB in managed mountain grasslands 

It has been suggested that AOA and AOB differ regarding their preferences for abiotic factors, 

including pH, nitrogen content and soil organic C. AOB are typically more responsive to fertilizer 

application compared to AOA (Erguder et al., 2009, Wéssen et al., 2011). In our study, AOB 

abundances increased with management intensity at two of the three studied sites (i.e., UK and 

Austria). In France, AOB abundance did not change significantly across the management transect, but 

tended to be higher at the intermediately managed (UT) site, where N in ammonium and especially 

nitrate tended to be highest. Previous studies identified several drivers for bacterial amoA 

abundance in lowland systems, including soil pH, microbial biomass, nitrate and total nitrogen 

content (Hayden et al., 2010). Among these factors, N availability related most strongly to the AOB 

abundance in our study, since the number of bacterial amoA genes correlated significantly with NO3
--

N and total inorganic N across all the grasslands investigated. This is in accordance with Che et al. 

(2018), who also found that soil NO3
--N and inorganic N concentrations were positively correlated 

with bacterial amoA genes in Tibetan alpine meadows . 

AOA abundance was also higher in the more intensively managed grasslands in the UK and 

France. While Keil et al. (2011) found a higher abundance of AOA in fertilized compared to 

unfertilized grasslands, which was associated with increased NO3
- availability, in our study soil 

inorganic N concentrations were not always related to management intensity; as such, other soil 

parameters may been the more important drivers of the AOA abundances in the studied grassland 
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soils. For instance, while soil NO3
--N concentrations were higher in the managed compared to the 

abandoned meadow at the Austrian site, concentrations of NH4
+-N and DON were greater in the 

abandoned grassland site compared to the fertilized meadow. This latter response is possibly due to 

the accumulation of plant residue as particulate organic matter over the 29 years since abandonment 

(Meyer et al. 2012, Zeller et al., 2000), which has increased the amount and C/N ratio of soil organic 

matter (Table 2), potentially providing negatively charged binding sites for NH4
+ cation adsorption 

(Tipping, 2002).  

In contrast to AOB, there was no positive relationship between AOA abundance and N 

concentrations. Additionally, AOA and SOM were negatively correlated. This is in line with the recent 

finding that in mountain grassland AOA abundance is enhanced under increased soil organic matter 

contents (Che et al., 2017 and 2018). Along the French transect, the abundance of AOA was much 

higher at the terraced sites (UT and FMT). The soils of these grasslands were alkaline (pH 8) due to 

former ploughing and mixing of the soil with alkaline bedrock (Robson et al., 2007 and 2010). In 

these soils, AOA were between 20- and 529-times more abundant than in all other grassland soils 

investigated in our study. Thus, AOA abundance appeared to be driven by pH rather than by soil 

inorganic N availability or organic carbon content.  

Until recently, the prevalent paradigm has been that AOA have a preference for low pH 

environments (Nicol et al., 2008; Erguder et al., 2009; Lu and Jia, 2012; He et al., 2012; Monteiro et 

al., 2014; Shen et al., 2014; Hu et al., 2013). This general notion is not supported by our findings: AOA 

abundance clearly increased with soil pH, indicating a potential importance of AOA in alkaline soils. In 

accordance with our findings, Gubry-Rangin et al. (2011) studied niche specialization of terrestrial 

AOA and reported archaeal amoA diversity and abundance to increase with soil pH. While the 

extremely high substrate affinity of the archaeal ammonia oxidase enzyme (Könnecke et al. 2014) 

may explain the advantage of AOA in acidic/oligotrophic environments, the mechanism by which 

AOA cope with alkaline conditions remains open. These findings imply a niche partitioning for pH 

within the group of ammonia-oxidizing Archaea (Tripathi et al., 2013). The clear dominance of AOA 
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under alkaline conditions was underlined by AOA/AOB ratios as high as 57 and 97, which clearly 

exceed the ratios (between 2 and 16) found previously in managed grasslands (Meyer et al., 2014).  

AOA have generally been suggested to be better adapted to hostile conditions such as salinity 

(Venter et al., 2004), high temperatures (Reigstad et al., 2008), freezing temperature (Nakagawa et 

al., 2007), sulfidity (Beman and Francis, 2006), acidity (Nicol et al., 2008), as well as alkalinity, as 

indicated in the present study. This may be partly due to the archaeal lipid membranes which are 

nearly impermeable to ions and protons (Van de Vossenberg et al., 1998) and may prevent archaeal 

cells from the invasion of hydroxyl ions under alkaline conditions. Only few mesophilic archaeal 

ammonia-oxidizers have been successfully cultivated to date (Hatzenpichler, 2012), thus little is 

known about their biochemistry and about their preference of alkaline conditions. 

While higher abundance of AOA does not necessarily signify their functional dominance over AOB 

(Prosser and Nicol, 2008), increased archaeal amoA copy numbers certainly indicate a higher 

potential for archaeal ammonia oxidation. 

 

Drivers for nitrite reducers in managed mountain grasslands 

As with AOA and AOB abundance, the response pattern of nirK- versus nirS-type nitrite reducers to 

management was strongly site-specific and driven by management effects on environmental 

parameters. At the UK site, nirK gene abundance was increased under more intensive management, 

whereas nirS gene abundance was unaffected. In contrast, nirK gene abundance at the French site 

was highest in the unmanaged soil, while nirS increased with management intensity, which was also 

reflected in different nirK/nirS ratios. Similar specific responses of nirK- versus nirS- type nitrite 

reducers were reported by Enwall et al. (2010), who hypothesized that they were due to differential 

habitat selection of the two groups of nitrite reducers. A further study by Keil et al. (2011) on low and 

high land-use intensity grasslands reported niche partitioning between nirK- and nirS-type nitrite 

reducers with pH as a selecting factor. Other driving factors such as copper, or the presence or 

absence of plants, which were not considered in this study, have been suggested (Hallin et al., 2009; 

Enwall et al., 2010). However, in our study, soil inorganic N concentration appeared to be a key factor 
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determining the abundance of nirS genes, which was related to NO3
--N and leachate NH4

+-N 

concentrations, as hypothesized. The nirK abundance correlated with soil total N content, but also 

responded to other soil parameters. For example, in Austria and France, nirK was most abundant in 

soils from abandoned or least managed grasslands, which were characterized by highest within-site 

SOM contents of 34% (A) and of 18.4% (UM) respectively, and at the sampling time both soils had 

highest within-site water contents at comparable water holding capacities. The enhanced water 

contents in these highly organic soils may have favored growth of nirK-nitrite reducers, which is 

consistent with the key role of soil water availability and lack of oxygen for denitrification (Firestone 

1982; Tiedje 1988; Szukics et al., 2010). Soil water availability may be modulated by grassland 

management, which can indirectly affect the water balance, e.g. by altering biomass and its 

functional composition (Obojes et al. 2015) or the thickness of the litter layer (Quétier et al. 2007), 

which can store water and protects the soil from drying out (Meyer et al. 2012). The importance of 

these factors determining the availability of soil water was previously highlighted by Fuchslueger et 

al. (2014), who reported effects of drought and rewetting in Austrian mountain grassland soils. 

Moreover, we observed a relationship between the nirK gene abundance and the SOM content (and 

soil C), indicating that this group of denitrifiers responds to the availability of organic substrates more 

than nirS nitrite reducers.  In a study by Attard et al. (2011), 81% to 92% of the variance observed for 

potential denitrification in differently managed sites was explained by soil organic carbon, together 

with water-filled pore space and nitrate. Since denitrification represents a facultative process 

performed by bacteria alternatively to O2 respiration, population sizes need to be interpreted 

cautiously since a vast majority of bacteria is believed to be able to denitrify. Still, in our study the 

quantification of the respective population sizes indicated that, besides soil N, soil organic carbon 

and water-filled pore space affected nirK abundance, while variation in the nirS abundance 

correlated with N concentrations in mountain grasslands, indicating niche specialization of the two 

groups of nitrite reducers. 
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Conclusion 

Our study of mountain grassland soils in three European countries has shown that, while both 

nitrifier and denitrifier abundance is broadly affected by land management intensity, their responses 

to management are group- and site-specific, and primarily influenced by soil abiotic properties. We 

found that among ammonia oxidizers, the abundance of AOA was favored by more alkaline 

conditions, while AOB abundance was preferentially related to soil NO3
--N concentrations. Across 

sites, nitrite reducers of the nirS type dominated under N rich conditions, while their counterpart 

(nitrite reducers of the nirK–type) was most abundant in moist soils of high organic matter content. 

We conclude that management practices determine niche specialization of N converting microbes in 

mountain grasslands through their effects on soil properties and nutrient availability. How the 

observed changes in nitrifier and denitrifier abundances affect nutrient fluxes and in situ 

transformation rates needs to be studied in further experiments, which also measure activity 

parameters of the respective functional microbial groups, for example by using specific mRNA as a 

proxy.  
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Legends to Figures 

 

Figure 1. A) Soil NH4
+-N concentration and B) leachate NH4

+-N fraction C) soil NO3
--N and D) leachate 

NO3
--N fraction of the meadow (M), abandoned (A), unmown meadow (UM), unmown terrace (UT), 

fertilized mown terrace (FMT), unimproved (UI), semi-improved (SI) and improved (I) sites in Austria, 

France and the UK. Different lower case characters represent significant differences between 

treatments within a country (site), P<0.05; n=12 for each treatment. Error bars represent the 

standard deviation. Statistical tests were performed with the Kruskal-Wallis test (post hoc Bonferroni 

comparisons) for UK and F and the Mann-Whitney U (Wilcoxon rank-sum) test for AUT. 

 

Figure 2. Functional gene abundances of A) archaeal ammonia oxidizers and B) bacterial ammonia 

oxidizers on the meadow (M), abandoned (A), unmown meadow (UM), unmown terrace (UT), 

fertilized mown terrace (FMT), unimproved (UI), semi-improved (SI) and improved (I) sites in Austria, 

France and the UK. Different lower case characters represent significant differences between 

treatments within a country (site), P<0.05; n=12 for each treatment. Error bars represent the 

standard deviation. Statistical tests were performed with the Kruskal-Wallis test (post hoc Bonferroni 

comparisons) for UK and F and the Mann-Whitney U (Wilcoxon rank-sum) test for AUT. 

 

Figure 3. Functional gene abundances of A) type nirS-and B) type nirK-nitrite reducers on the 

meadow (M), abandoned (A),  unmown meadow (UM), unmown terrace (UT), fertilized mown 

terrace (FMT), unimproved (UI), semi-improved (SI) and improved (I) sites in Austria, France and the 

UK. Different lower case characters represent significant differences between treatments within a 

country (site), P<0.05; n=12 for each treatment. Error bars represent the standard deviation. 

Statistical tests were performed with the Kruskal-Wallis test (post hoc Bonferroni comparisons) for 

UK and F and the Mann-Whitney U (Wilcoxon rank-sum) test for AUT. 
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Figure 4. Principal component analyses (PCA) of soil porosity, pH, SOM, soil C, soil N, soil C/N, soil 

water content, NH4
+-N, NO3

--N, inorganic N, leachate NH4
+-N, leachate NO3

--N, microbial biomass N, 

F:B, AOB, AOA, nirK, nirS including data from all study sites in Austria, France and the UK. A) Axes 1 

and 2 represent 26 and 18% respectively of explained variation. Vectors represent parameters 

associated with the abundance of ammonia oxidisers (bacterial and archaeal amoA). B) Axes 1 and 2 

represent 29 and 21% respectively of explained variation. Vectors represent parameters associated 

with the abundance of nitrite reducers (nirK, nirS); n=96 for each parameter. 
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Figures and Tables 

Table 1. Site characteristics and soil properties of the abandoned (A) and the meadow (M) site, 

unmown meadow (UM), unmown terrace (UT), fertilized mown terrace (FMT), unimproved (UI), 

semi-improved (SI) and improved (I) sites in Austria, France and the UK.  Abbreviations refer to 

‘above sea level’ (a.s.l.), ‘mean annual temperature’ (MAT), ‘mean annual precipitation’ (MAP) and 

‘water holding capacity of soil samples’ (WHC). For further details on the sites see Grigulis et al. 

(2013) and references therein. 

 

country AUT F UK 

site acronym A M UM UT FMT UI SI I 

management 

type 
abandoned meadow 

unmown 

meadow 

unmown 

terrace 

fertilised mown 

terrace 
unimproved semi-improved improved 

location Stubai Valley, Kaserstattalm Villar d'Arène, Central French Alps Wensleydale Valley, Yorkshire Dales 

geographic 

coordinates 

46° 55' to 47°15' N, 11° 6' to 11° 

25' E 
45°03’ N, 6°24’ E 54°18' N, 2°5' W 

elevation  

(m a.s.l) 
1970 1850 2047 1840 1835 220 

MAT (°C) 3 3 7.3 

MAP (mm) 1097 902 1620 

bedrock Siliceous 
Mixture of colluviums dominated by calshists with 

eolian material 
Carboniferous limestone 

soil type dystric cambisol 

 

brown soils 

  

brown-earth 

 
WHC (%) 24.5 24.6 48.4 56.3 51.4 94.4 131.1 130.8 

clay (%) 33.5 13.5 30.0 28.3 36.8 11.0 13.5 12.9 

silt (%) 30.3 44.1 46.6 44.7 45.8 47.6 38.0 32.1 

sand (%) 36.1 42.8 23.4 27.0 17.4 41.4 48.5 55.0 

vegetation 

type 

Seslerio 

Caricetum 

Trisetum 

flavescentis 

Centaureo 

uniflorae-

Festucetum 

spadiceae 

Mesobromion 

erecti / Seslerio 

caeruleae-

Mesobromenion 

erecti 

Triseto-Polygion 

bistortae 

Anthoxanthum 

– Geranium 

sylvaticum 

(MG3) 

Lolium perenne 

– Cynosurus 

cristatus  

(MG6) 

Lolium perenne 

– Alopecurus 

pratensis 

(MG7) 

fraction of 

legume 

biomass (%) 1.8 2.4 0.1 14.1 14.6 0.8 1.6 0.6 
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management 

details 

abandoned 

since 1983 

cut 

once/season                    

fertilised with 

manure every 

2-3 yrs grazed 

in late summer 

no history of 

cultivation 

unmown, 

summer grazed 

(1 day of 

livestock 

units/ha/yr) 

unmown, 

grazed in spring 

and autumn (<2 

days of livestock 

units/ha/yr), 

previously 

ploughed 

fertilised (every 

2-3 yrs), mown, 

previously 

ploughed 

cut annually, 

low intensity 

grazing through 

spring 

medium 

intensity 

grazing through 

spring, fertilised 

with manure 

every 2 yrs 

ploughed, 

reseeded with 

Lolium 

perenne cut 1-

2 times/yr, 

high intensity 

grazing 

through 

spring, 

fertilised with 

manure once 

a yr 
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Table 2.  Soil characteristics and microbial parameters of the meadow (M) and the abandoned (A) 

site, unmown meadow (UM), unmown terrace (UT), fertilized mown terrace (FMT), unimproved (UI), 

semi-improved (SI) and improved (I) sites in AUT, F and the UK. Different lower case characters 

represent significant intra-site differences at P<0.05; n=12 for each treatment. Statistical tests were 

performed with the Kruskal-Wallis test (post hoc Bonferroni comparisons) for UK and F and the 

Mann-Whitney U (Wilcoxon rank-sum) test for AUT. na indicates that data were not available. 

 

             AUT                          F                UK 

  A  M   UM  UT  FMT   UI  SI  I  

Soil characteristics                   

Inorganic N (µg g-1) 11.7 a 7.1 b  14.5 a 21.1 a 15.1 a  8.4 c 16.6 b 21.7 a 

Proportion of leachate NH4
+-N 

of total NH4
+-N (%) 

3 a 2 a  3 a 3 a 2 a  8 b 13 ab 14 a 

Proportion of leachate NO3
--N 

of total NO3
--N (%) 

25 a 4 b  8 a 13 a 13 a  2 a 2 a 7 a 

Total soil C (mg g-1) 135.2 a 69.0 b  82.5 a 90.0 a 90.1 a  40.7 c 90.0 a 68.8 b 

Total soil N (mg g-1) 11.7 a 6.5 b  6.8 a 6.6 a 6.1 a  2.8 c 7.0 a 5.5 b 

Soil C/N ratio 11.6 a 10.6 b  12.1 b 14.0 a 14.9 a  14.6 a 13.0 b 12.6 b 

SOM (%) 34.0 a 18.4 b  18.4 a 14.4 b 13.2 b  11.1 c 26.3 a 18.7 b 

Soil TOC (µg g-1) 152.7 a 122.2 b  na  na  na   81.5 b 175.1 a 163.0 a 

Soil DON (µg g-1) 28.4 a 21.3 b  64.6 a 67.2 a 53.6 a  323.5 a 90.1 ab 17.1 b 

Soil pH 6.4 a 5.7 b  6.3 b 8.0 a 8.0 a  6.2 b 6.9 a 6.1 b 

Soil water content at sampling 

time (g g-1 soil) 
0.73 a 0.54 b  0.35 a 0.18 c 0.22 b  0.29 b 0.49 a 0.33 b 

Soil porosity (%) 86 a 77 b  78 b 83 a 79 ab  70 b 80 a 68 b 

Microbial parameters                   

Total PLFA (nmol g-1) 101.6 a 32.9 b  86.5 a 73.2 b 60.5 b  47.8 b 82.7 a 38.7 b 

Microbial biomass N (µg g-1) 8.2 b 115.1 a   338.7 a 176.2 b 96.4 c   290.1 b 780.5 a 666.5 a 

F:B ratio 0.09 a 0.09 a  0.07 b 0.1 a 0.09 ab  0.03 a 0.02 a 0.01 b 

AOA/AOB ratio 2.8 a 3.1 a  10.6 c 56.6 b 96.8 a  2.4 b 4.9 a 2.3 b 

nirK/nirS ratio 2211 a 2199 a  2970 a 155 b 136 b  136 a 222 a 179 a 
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Table 3. Pearson correlations between functional gene abundances and environmental parameters. 

Numbers given represent R values. Highlighted values are significant at the p<0.001 level, others at 

the p<0.05 level; n=96 for each parameter. 

 AOA AOB nirK nirS 

Soil porosity    -0.37 

pH 0.65  -0.36  

Water content -0.37  0.58  

Inorganic N  0.25 -0.25 0.28 

NO3
--N  0.27  0.44 

SOM -0.25  0.52  

Soil N   0.43  

Soil C   0.25  

Soil C/N   -0.50  

Leachate NH4
+-N -0.27   0.60 

Microbial biomass N -0.31   0.51 

F:B    -0.56 
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Figure 1 
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Figure 2 
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Graphical abstract 
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Highlights: 

 The abundances of nitrifiers and denitrifiers differed across grasslands 

 Site-specific conditions and management, but not its intensity, determined abundances 

 Management responses within functional groups indicated niche partitioning 
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