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Abstract—Certain proposed coding schemes require sets of irrational
numbers (a1, a2, ..., an) which define linear forms. It is conjectured that
the more badly approximable these linear forms, meaning the greater
the positive lower bound of qn|q+p1a1 + · · ·+pnan| for any choice
of integers (q, p1, . . . , pn), the better the coding scheme. In contrast
to classical one-dimensional Diophantine approximation theory (n=1),
the situation for n>1 is full of unsolved problems, and it is not even
known what the worst approximable pair is. The aim of this paper
will be to present some purely numerical results which suggest some
good candidates for bad pairs, and to demonstrate the performance of
these pairs in a transmission protocol. For this we use an algorithm
due to Vaughan Clarkson, but the software implementation requires
some delicate treatment of floating-point arithmetic. This results in
the first fully-rigorous implementation of an algorithm for finding the
sequence of best approximants for a linear form q+p1a1+p2a2, and for
the simultaneous rational approximation of two irrationals. Finally, we
demonstrate the effect of using such linear forms on the error rate of
our coding scheme.

1 Summary of the classical one-dimensional
theory
We may measure the goodness of approximation of the
rational number p/q to α by c(α, p, q)≡q|qα−p|. For
each irrational α we know that there are infinitely many
rationals p/q such that |α−p/q|<1/q2; that is, c(α, p, q)<1.
It is therefore of interest to ask how small one may make
κ in c(α, p, q)<κ before this property fails to hold. The
approximation constant of α is thus defined as c(α)≡
lim infq→∞minp c(α, p, q); or, introducing the notation α
for the distance from α to the nearest integer, c(α)=
lim infq→∞ q qα .
Thus, numbers α with a large c(α) are hard to ap-

proximate by rationals. The one-dimensional diophan-
tine approximation constant can now be defined as c1 =
lim supα∈R c(α), and this is known to have the value
1/
√

5. Otherwise expressed, this means that c1 is the
unique number such that for each ε>0, c(α, p, q)<c1+ε has
infinitely many rational solutions p/q for all α, whereas
there is at least one α such that c(α, p, q)<c1−ε has only
finitely many rational solutions.

2 Two-dimensional theory
We wish to simultaneously approximate a pair of ir-
rationals (α1, α2) by a pair of rationals with common

denominator. For a norm (radius function) f , we extend
the meaning of the symbol · by

α ≡ min
p∈Z2

f(|qα1−p1|, |qα2−p2|).

Now for

p=(p1, p2)∈Z2, q∈Z,α=(α1, α2)∈R2\Q2,

let

c(α, q) = q α 2,

c(α) = lim inf
q→∞

c(α, q).

The two-dimensional f -norm simultaneous diophantine
approximation constant is then c2 =supα c(α). Despite
much work over the last few decades (Adams 1969, 1980;
Cassels 1955; Cusick 1974, 1983; Kratz 1999; Szekeres
1984, 1985), the value of c2 is unknown, though folklore
suggests that its value is 2/7. Nowak 1981 has shown that
the value of c2 is less than or equal to 64

169≈0.378698. To
study this question further (at least, numerically) we need
an algorithm for finding all best approximations for a given
α up to a given denominator qmax.

3 Two-dimensional algorithms
Our aim is to implement a practical algorithm for com-
puting the sequence of best Diophantine approximations
for two dual problems, given a pair of irrational numbers
(α1, α2). This is done in order to estimate the approxima-
tion constant of the pair.
• Firstly, we have the simultaneous approximation

problem; that is, to make the “radius” r(|qα1−
p1|, |qα2−p2|) small, where r is some norm on R2,
while not making the “height” h(q)≡q too big.

• Secondly, we have the problem of minimization of a
linear form; that is, to make the radius

|q+α1 p1+α2 p2| (1)

small, while not making the height h(α1, α2) (mea-
sured by some norm h on R2) too big.

This was achieved, under some (relatively weak, and man-
ageable) constraints on the functions r and h, by Clarkson
(1997).
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disc=49: t = cos(2π/7); linear form (4t2 − 1, 2t− 1)

Fig. 1. Diophantine minimization of a linear form defined
by a badly approximable irrational pair, plotted at at best
approximation denominators.

3.1 The worst approximable pair
The algorithm allows an estimate of several properties of
the irrational pair of number-theoretic interest: decrease
of log norm (radius) with log denominator q; growth rate
of the best approximation denominators q1/i

i ; the values
c(α, q)=qα 2 at best approximation denominators. The
(uncomputable) value c(α) is the liminf of this as q→∞.
The behaviour for the pair (4t2−1, 2t−1) with t=cos (2π/7) is
shown in Figure 1. Using other techniques, Briggs (2003)
has shown that there exists a pair (α, β) with c(α, β)≈
0.285710526941, and this value (very close to 2/7), is still
the highest known.

The algorithms of Clarkson have several appealing fea-
tures:

– They are designed for quite general approximation
problems.
– They come with correctness proofs.
– All the real arithmetic is contained within one
function L.
– They can be implemented with an “oracle” model
for the computation of the irrational pair.
– The irrational pair is not mapped to a new one
for subsequent steps, unlike on some other algorithms
(which would make backtracking when increased pre-
cisiosn is needed very difficult).

4 Wireless communications
We now introduce the basics of wireless communications
and explain the motivation for applying the theory in pre-
vious sections to the underlying design of certain wireless
systems.

Our interest is in coding schemes equipped with a
receive constellation, which functions as a key telling the
receiver which waveform to produce for which symbol, and
vice versa. Visually, it is a diagram containing 2n points,

each of which the transmitter assigns to a unique symbol of
length n. The modulation of the carrier wave is determined
by the co-ordinates of the point representing each symbol
in the constellation. When the signal arrives at the receive
antenna, it measures the voltage and frequency of the
current generated and refers to its own constellation map
to determine which symbol to produce from the wave form.

Noise distortion over the wireless channel means that
variables are sometimes altered enough to result in an
incorrect constellation point assignment upon receipt, so
that some bits are decoded incorrectly. We seek to min-
imise this error rate by using constellations based on
badly approximable linear forms. The key variables are the
variance of the noise in the environment and the spacing
of the points in the transmit and receive-constellations
(Proakis 1995).

4.1 Model
For this paper we consider a generalised uplink multiple-
input-single-output (MISO) system that supportsm users,
and is subject to flat fading. We assume there is a single
antenna in each user’s device, each with its own channel
link to a base station, and that the m transmitted data
streams are independent. We model a data stream as a
vector S of randomly assigned bits and the noise as a
vector with Gaussian distributed entries having 0 mean
and variable variance v, which we add pointwise to S.
Table 1 shows the arrival points of symbols transmitted

and distorted using our model, for a constellation of just
four points on the real line. Notice that the bit error rate
(BER) increases as the noise variance increases, but de-
creases when we increase the space between constellation
points.
Definition 4.1: We define a constellation Um on the

real line as the set of all linear combinations ui of the
basis elements {α0, α1, ..., αm−1} (m∈N) over the set
S={0, 1, ..., 2n−1} where

ui=q+α1pi1+...+α(m−1)pi(m−1)
∣∣ q, pik∈S.

If we set m=3, this constellation contains points in the lin-
ear form given in Equation (1). This type of constellation is
used in Motahari et al. 2010. and we may denote the min-
imum separation of any two distinct points ui, uj∈Um as
a function dmin :R2 7→R of the elements (α1, α2, ..., αm−1):

dmin(α1, α2, ..., αm−1)= min
i 6=j

∣∣ui−uj∣∣.
Maximising the minimum separation reduces error rate
because it means that a distorted signal is less likely to
be mapped to the wrong constellation point.

5 Investigation
In this section, we carry out a new investigation into
the effect the values α1 and α2 have on the BER of the
constellation Um, and test the hypothesis:
H 1: Um has a greater minimum separation of points for

simultaneously badly approximable values of αk.
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Var Spacing=1 Spacing=2

0.05
BER=0.01875 BER=0.0

0.10
BER=0.06875 BER=0.00625

TABLE 1
Effect of changing variance and spacing.

5.1 One dimension
By the results in Section 1, if a simultaneously badly
approximable pair produces better constellations in two
dimensions, it should follow that ϕ= 1+

√
5

2 , the golden
ratio, produces an optimal constellation in one dimension.
Therefore, we start by testing the one-dimensional con-
stellation U1, in which our rationally independent basis
has two elements, 1 and α and our constellation points
are U13ui=q+α1pi1, where q, pi1∈{0, 1, ..., 2n}.
H 2: The more badly approximable the value of α1, the

more evenly spaced the constellation U1.

0 2 4 6 8s s s s s s s s s s ss s s s s s

Fig. 2. Constellation for 2-bit symbols over rational basis
{1, ϕ}.

Figure 2 shows a constellation of the form given in Hypoth-
esis 2 with n=2 and α1=ϕ. In order to disprove Hypothesis
2, we need only show that there is some irrational α1 6=ϕ for
which dmin(α1)>dmin(ϕ) for some symbol length n. When
n=4 we find that dmin(ϕ)≈0.00142<0.00228≈dmin(π).
Since ϕ is the most badly approximable irrational number,
and since, in particular, π is less badly approximable, this
disproves Hypothesis 2. In fact, we find that different val-
ues of α1 maximize dmin(α1) for different symbol lengths
n. For example, when n=3 we have dmin(ϕ)>dmin(π), in
contrast to the case we have just demonstrated for n=4,
and we conclude that the optimum value for α1 depends
on n.
To investigate the impact of changing α1, on the con-

stellation spacing, we consider the most basic case where
n=1, we have 22n=4 constellation points and the possible
linear combinations are given by 0, 1, α1 and α1+1. Given
our definition of minimum distance, the optimally spaced
constellation in this instance is given by α1= 1

2 , since this
value will produce an evenly spaced constellation.

0 1α 1+αs ss s
Fig. 3. Constellation with α1= 1

ϕ and n=1.

0 1α 1+αs ss s
Fig. 4. Constellation with α1= 1

2 and n=1.

In fact, by taking α1 = 1
2n the resulting constellation of

points is optimally spaced for each n giving a generalised
constellation of the form in Figure 5.

0 1α 2α 3α

· · ·

(2n−1)α 1

...

1+α (2n−1)+(2n−1)αs ss s s s s s

Fig. 5. Constellation for any n with α1= 1
2n .

Table 2, demonstrates explicitly the preferability of α1= 1
2n

to α1=ϕ by picturing the relevant (scaled) constellations
side by side for some values of n and comparing the
minimum distance between points.
The reason our hypothesis fails is that, in practice, we

do not allow the linear combinations to be taken over
the entire range of integers but restrict it to the finite
set {0, 1, ..., 2n−1}. In fact, the basis {1, 1

2n } is rationally
independent over this bounded set, which is why we are
able to use a rational number for α1. Therefore, we cannot
improve upon constellation 5.1 using the theory of badly
approximable numbers.

n α= 1
ϕ α= 1

2n

1
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

dmin=0.236 BER=0.106 dmin=0.333 BER=0.072

2
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

dmin=0.0301 BER=0.167 dmin=0.0666 BER=0.104

3
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0

dmin=0.00796 BER=0.325 dmin=0.0159 BER=0.261

TABLE 2
Comparison of constellations with α=ϕ and α= 1

2n .

5.2 Multiple dimensions
As we would expect, the same problem occurs in two
dimensions. In this case, our most basic constellation con-
sists of points ui=q+α1qi1+α2qi2 such that p, qik∈{0, 1}.
Using the candidates for the worst approximable pair,
α1=4t2−1 and α2=2t−1 for t=cos

( 2π
7

)
, put forward in

Section 3.1, we obtain the constellation in Figure 6.

0 1α1 1+α1α1+α2 1+α1+α2α2 1+α2s ss ss ss s

Fig. 6. Constellations with α1 =4t2−1 and α2 =2t−1 for
t=cos

( 2π
7

)
.
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As before, however, we can improve on this by defining
α1 and α2 in terms of n. If we let α1= 1

2n and α2= α1
22 =

1
22n we get an evenly spaced constellation containing 23n

points, so that the linear combinations containing α2 as
a component produce a point in the centre of each of the
spaces in Figure 4. In the general case, the points for which
the coefficient of α2 is non-zero ‘fill up’ the spaces in the
corresponding one-dimensional case so that the generalised
constellation is given by figure 7.

0 α1 2α1
α2 2α2 3α2

· · ·

(2n−1)α2

...

α1+α2 α1+(2n−1)α2

... s(2n−1)+(2n−1)α1+(2n−2)α2s ss s s s s s s

Fig. 7. Constellation for any n with α1= 1
2n and α2= 1

22n .

In fact we can extend this reasoning beyond the 2-
dimensional case. Suppose we have a constellation of the
form

Um3ui=q+α1pi1+α2pi2+...+αmpim

such that m∈N, pik∈{0, 1, ..., 2n−1} and the αk are ra-
tionally independent for k∈{0, 1, ...,m}. Then we have m
dimensions, and if we define αk= 1

2kn for each k∈{1, ...,m},
we obtain an evenly spaced constellation, where the points
with non-zero coefficients for αk+1 are evenly spaced to fill
the gaps between points with non-zero coefficients αk and
zero coefficients for αk+1.

We may also calculate the minimum distance in any
such constellation, since it is given by the smallest αk as
is demonstrated in Figures 5 and 7. Once we scale this
distance to account for range, we have, for a constellation
X of linear combinations of the basis {1, α1, ..., αm} over
the set of symbol representations {0, 1, 2, ...2n}:

dmin(X)= 1
2(m+1)n(2n−1)(1+α1+...+αm)

,

which depends only on n and m.

6 Conclusion
Our research has extended the search for badly approx-
imable numbers into two dimensions and given candidates
for badly approximable pairs α=(α1, α2). We have shown
that using badly approximable numbers, or badly approx-
imable pairs of numbers as basis elements for one and two-
dimensional linear combination generated constellations
respectively, has no advantage over using regular even
spacing, which can be achieved easily as is detailed above.

There are several areas for further investigation, for
instance, we have focussed on maximising minimum dis-
tance, however, assuming a uniform distribution, perhaps
an ideal constellation should make it equally likely for any
symbol to be decoded correctly. In this case, having points
spaced closer together at the ends and more sparsely in the
middle of the range would be more appropriate.

Another point to consider is that the set of symbols
to be transmitted may not be uniformly distributed. In

this case, a constellation with unevenly spaced points with
varying probabilities of being received in error could be
intelligently assigned in order to reduce the BER of the
system. It would be interesting to discover the optimal
constellation for a given probability distribution, and this
might be an opportunity to use the linear combinatory
approach.
We have seen that Diophantine Approximation, despite

being an area known to mathematicians for hundreds of
years, is still producing new results. Further examples of
applications can be found in the areas of physics, the geom-
etry of numbers, room acoustics and cryptography, which
can be read about in Schroeder 2009, along with many
other applications of more generalised number theory.
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