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Abstract 

Resource acquisition, distribution, and end-use (RADE) networks are ubiquitous in 

natural and human-engineered systems, connecting spatially-distributed points of 

supply and demand, to provide energy and material resources required by these systems 

for growth and maintenance. A clear understanding of the dynamics of these networks 

is crucial to protect those supported and impacted by them, but past modelling efforts 

are limited in their explicit consideration of spatial size and topology, which are 

necessary to the thermodynamically-realistic representation of the energetics of these 

networks. This thesis attempts to address these limitations by developing a spatially-

explicit modelling framework for generalised energetic resource flows, as occurring in 

ecological and coupled socio-ecological systems. The methodology utilises equations 

from electrical engineering to operationalise the first and second laws of 

thermodynamics in flow calculations, and places these within an optimisation algorithm 

to replicate the selective pressure to maximise resource transfer and consumption and 

minimise energetic transport costs. The framework is applied to the nectar collection 

networks of A. mellifera as a proof-of-concept. The promising performance of the 

methodology in calculating the energetics of these networks in a flow-conserving 

manner, replicating attributes of foraging networks, and generating network structures 

consistent with those of known RADE networks, demonstrate the validity of the 

methodology, and suggests several potential avenues for future refinement and 

application.  
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1.  Introduction 

The processes of physical resource acquisition and distribution within a system, such as 

an organism, community, or ecosystem, play a fundamental role in shaping the 

behaviour and properties of the system as a whole. The types and quantities of resources 

that a system requires, and what is available to it, drive both its efforts to obtain those 

resources and the measures with which it allocates them between maintenance and 

different expressions of growth and development (Ulanowicz, 2003). Considerable 

effort has been invested in studying the properties, such as scaling (e.g. West et. al., 

1997; Banavar et. al.; 1999, 2010), resilience (e.g. Holling, 1973; Callaway et. al., 2000; 

Gao et. al., 2011), and optimisation (e.g. Dandy et. al., 1996; Prasad and Park, 2004; 

Gen et. al., 2008; Falke et. al., 2016) of the resource acquisition, distribution, and end 

use (RADE) networks in a diverse array of natural and human-engineered systems. Less 

attention has been paid to the explicitly spatial modelling and representation of RADE 

networks in ecological and socio-ecological systems, however. Spatial scale is a key 

consideration in the interpretation and applicability of models of these systems (Wiens, 

1989), especially when accounting for size-related energetic costs (Jarvis et. al., 2015), 

or scale-dependent effects of environmental factors such as land use change (Verburg 

et. al., 1999). Furthermore, characteristics of underlying spatial topology have been 

shown to have a significant impact on the structural dynamics of networks (e.g. 

Kosmidis et. al., 2008). The majority of network analysis, especially for natural 

systems, focusses on interactions between components in the network, however, 

without clear consideration of spatial distance between these components, and its effect 

on the processes occurring across the network. This limits the realism, accuracy, and 

applicability of these analyses. Given the ubiquity of RADE networks, and how they 

direct and constrain the functioning of systems as a whole, their accurate modelling and 

analysis is crucial for our ability to understand them and thus protect those supported 

and impacted by them. 

1.1 Generalised Flows 

The focus of the work here is on energetic resource flows, as comprised of energy and 

its mass carrier, though it could be extended in the future to study flows of materials not 

designed to be consumed specifically for energy, such as water, or even the movements 
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of people along transportation networks. Although also not addressed in depth here, 

information, taken to mean the characteristics or values of a process’s output (Losee, 

1998), plays a vital role in allowing for the existence of these energetic resource flows 

and determining their efficiency. This information identifies the location, use, and 

quality of the resource, and can potentially be embodied in the infrastructure through 

which the resource flows, or coupled with the flow itself. As it would require further 

study to determine specifically whether information, as defined in this manner, is 

conserved or obedient to other thermodynamic principles governing physical flows, a 

full consideration of its role and dynamics is outside of the scope of this work. Its 

existence as a pre-requisite for the resource flows within RADE networks must be 

noted, however, especially in the decentralised networks presented later.  

In total, then, the energetic resource flows such as those occurring in the networks 

discussed hereon are a combination of information, matter, and energy. Both matter and 

energy are unequivocally constrained by their respective conservation laws, and the 

energy transformations and flows of a system are further directed by the entropy-

generation imperative of the second law of thermodynamics. The first two laws of 

thermodynamics, introduced below, are therefore used in the following sections to 

discuss the energetics of these RADE networks in natural and human-engineered 

systems, and to assess the applicability and realism of past modelling efforts with 

regards to representation of resource flow conservation and entropy generation. 

Equations based on these laws will also be used to direct the development of the 

generalised resource flow methodology presented further on. 

1.2  Resource Thermodynamics 

As with all physical systems, or those with a physical component, the energy flows 

within RADE networks are governed by thermodynamic laws, which describe the 

dynamics of energy undergoing transformation processes. In the context of RADE 

networks specifically, one such transformation is that of energy being expended in the 

transportation of resources from points of supply to consumption. Energy conversions 

also take place in biotic and abiotic RADE networks at points of end use, such as the 

conversion of food via metabolic processes in organisms, although for the purposes 

herein the energy requirement for transportation is more in view. The thermodynamic 
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laws governing these transformations are thus key to understanding the impetus and 

constraints of RADE networks, as the networks both supply energy to points of end use, 

and require some of this energy to be reinvested in obtaining future resource flows. 

Specifically, the first law of thermodynamics states that energy is conserved during 

conversions between forms, whilst the second states that entropy cannot decrease within 

a closed system (Kleidon, 2016). This implies that the many energy transformations that 

occur within a system, such as those described above, produce both useful work and 

entropy. For example, in a human’s metabolic network, energy conversions both 

perform useful work in transporting and digesting the energy in food, and generate 

entropy in the form of heat, which is lost to the air. In closed systems, this entropy 

production would entail that the overall state of the system is one of increasing entropy, 

progressing toward a state of thermodynamic equilibrium. In thermodynamically-open 

systems, however, such as the body of a human, the system is able to move energy and 

mass across its boundaries, thus maintaining a state far from thermodynamic 

equilibrium by exporting the entropy that is produced by these energy transformations. 

This also allows for larger-scale open systems, such as the earth system and the many 

nested ecosystems within it, to maintain an ordered state that is able to support life.  

In all RADE networks, both natural and human-engineered, the first law of 

thermodynamics constrains the quantity of energy within the overarching system, both 

through energetic resources supplied by the networks to points of end use, and energetic 

costs of building, maintaining, and moving resources along these networks. As energy 

is conserved in each transformation, the energy that leaves a RADE network, either 

through consumption at the point of end use, or as entropy due to frictional losses 

incurred during transportation, is the same quantity as the energy that originally entered 

the network. The entropy generated, however, as dictated by the second law, cannot be 

expended as useful work. Therefore, the net useful energy gain at the points of end use 

is the total energy input at the points of resource supply, minus the energy required for 

transportation.  

Although perhaps apparent upon examination, the entropy production imperative of the 

second law also clarifies the importance of consistent and explicit consideration of 

spatial dimension of the RADE network in question: the energy required to transport 

resources increases with the distance travelled (Jarvis et. al., 2015), as more energy is 
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necessary to overcome the increased friction associated with moving resource flows 

across larger distances. Along with producing useful work in transporting resources, the 

increased energy transformation occurring along larger networks also necessarily 

increases the entropy production. The spatial size of the network thus determines 

energetic cost and entropic production, which constrains the net energy throughput of 

the network within the bounds set by the first law, as described above. Any model of 

physical RADE networks, therefore, must consistently account for these size-related 

losses in order to accurately portray the diminishing return to scale caused by network 

expansion, due to the increased energetic expenditure in transportation, despite the 

introduction of new resource flows into the system. 

As physical growth increases the distance resources must be transported, hence the 

energetic cost of transport, expanding networks are under constant pressure to increase 

the efficiency and throughput of their RADE efforts. It has been argued that natural 

selection favours systems that are able to capture the maximum free energy, or energy 

available to do work, for their own purposes, and use this free energy to increase their 

organisation, structure, and therefore distance from thermodynamic equilibrium 

(Boltzmann, 1886; Lotka, 1922; Schrödinger, 1992). Furthermore, the frequency of 

structures suggested to be optimal in minimising energy required for transporting 

materials (West et. al., 1997) would suggest that maximising energetic consumption is 

achieved in part by minimising the energetic cost of transportation.  For this reason, 

many models of RADE networks in ecology are expressed as an optimisation (Ward et. 

al., 2000), wherein the energy-gatherer makes ‘optimal’ decisions based on a certain 

currency, such as maximising energetic efficiency, or rate of energy consumption, with 

efficiency used as a proxy for maximising consumption and minimising associated 

energetic cost. Empirical evidence to the same shows that many species follow optimal 

foraging patterns of Lévy flights (Reynolds et. al., 2007), a random walk structure in 

which the distribution of path lengths is heavy-tailed such that shorter paths are more 

frequent than longer moves. It is argued that permanent physical RADE networks 

follow the same directive to maximise their resource consumption and minimise their 

energetic costs, and the prevalence of highly efficient resource distribution structures 

such as hierarchical branching networks (Banavar et. al., 1999), in both natural and 

human-engineered systems, would suggest that this is indeed the case. 
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1.3 Biological and Ecological Systems 

In order to be consistent with the entropy production mandate of the second law of 

thermodynamics, while maintaining a living state with a high degree of order, a biotic 

system such as an organism or ecosystem must constantly receive inputs of external 

energy. These inputs are then coupled with other processes that increase or maintain 

order, such that the net effect of the process is still one of increased entropy creation 

and export, despite the local minimisation of entropy within the system (Kleidon, 2016). 

This imperative to collect and use or store energy is the underlying basis for the ubiquity 

of RADE networks in living systems, and the aforementioned minimisation of losses is 

theorised to cause their remarkably similar structures across such systems (West et. al., 

1997), although to date that has not been explored explicitly from a thermodynamic 

view. These networks take the form of both internal resource distribution networks, as 

occurring within the body or structure of an organism, and external acquisition and 

distribution efforts of organisms and groups. Although these networks are closely linked 

and nested, research typically focusses on one or the other as a boundary of the system 

under question, or on subnetworks within these. 

A considerable body of work focusses on the metabolic networks of individual 

organisms, which has given rise to the so-called Metabolic Theory of Ecology, positing 

that the metabolic rate of organisms acts as a governing rate of most observed ecological 

patterns (Brown et. al., 2004). This work began with the discovery by Kleiber (1932) of 

the sublinear scaling between mass and metabolism, which he later found persists across 

organisms covering twenty-one orders of magnitude (Kleiber, 1947). The basis for this 

sublinear metabolic scaling was further explored by West et. al. (1997) and Savage et. 

al. (2004, 2008), who determined that the observed scaling exponent between mass and 

metabolism could be caused by the self-similar hierarchical branching, or fractal 

structures, which comprise the vascular systems of both animals and plants. The value 

of the scaling exponent takes the form of D/(D+1), where D is the dimensionality of the 

space filled by the network, hence the observed ¾ exponent in three-dimensional 

organisms. West et. al. (1997) used the same mathematical argument to predict scaling 

exponents with multiples of ¼ in other organismal characteristics, including heart rate, 

respiratory rate, lifespan, and the size of different vascular network structures. 

Furthermore, Brown et. al. (2004) has successfully applied this quarter-power exponent 
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to predict population-level characteristics, including population growth and density, and 

species distribution. Later work by Banavar et. al. (2010) showed that the same D/(D+1) 

scaling exponent could be achieved in both fractal and non-fractal networks by scaling 

the velocity of the flow through them. The demonstrated predictive power of this scaling 

exponent shows that the structure and/or flows within inter- and intra-organism 

metabolic networks are key drivers and constraints on the properties and state of the 

system in question. As the uptake and distribution of required resources is a rate-

limiting factor in the maintenance and growth for all systems (e.g. Sebens, 1982; Sterner 

& Elser, 2002; Garrett, 2011), it is unsurprising that the structures and flows of the 

networks facilitating these uptake and distribution processes would be such a strong 

predictor of so many system characteristics. 

The importance and impact of RADE networks on the functioning of the entire system, 

and neighbouring systems, is perhaps demonstrated most clearly in situations of 

heterogenous resource supply, due to failure of the network, or excess or lack of 

available resource supply in the surrounding environment. In the case of resource 

limitation, this constraint feeds back into the distribution network, leading to a wide 

expression of adaptation in the system in question. For example, it has been theoretically 

proven that mismatches between resource supply and demand can lead to deviations 

from the aforementioned ¾ scaling between mass and metabolism (Banavar et. al., 

1999). This has been empirically demonstrated in several cases, such as that of 

phytoplankton exposed to growth-limiting irradiance (Finkel et. al., 2004). Similarly, 

an abundance of resources can cause an organism to adapt its RADE network and 

therefore overall structure to better take advantage of the supply: the morphological and 

physiological plasticity of tree roots is an example of such (e.g. Hutchings & Kroon, 

1994; Hodge 2004; Ostonen et. al., 2017). These systemic changes, resulting from 

adaptations of RADE network structures and flows in response to resource supply, 

represent a fundamental shift in the dynamics of the internal resource distribution and 

allocation of the organism in question, as it adapts to the constraints on its performance, 

and re-partitions the resources it can access accordingly. These feedbacks between 

resource supply and RADE network structure and flow further underscore the 

importance of accurate modelling, as it will allow for better quantification of network 

state and therefore system state under different conditions. Although more complete 

biological and ecological models do consider the impact of resource supply, it is usually 
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within an interactional model such as a food web (Jørgensen, 2008), as opposed to an 

explicitly spatial one, though the latter is arguably better equipped to calculate and 

represent structural network changes, and the energetic costs and constraints related 

specifically to heterogenous spatial distribution of resources.  

These organismal-level RADE networks are nested in larger networks of which the 

given organism is but a part. The dynamics and structures of networks on each trophic 

level play a driving and constraining role on one another, and on neighbouring networks 

within the same trophic level. For example, the earthworm C. elegans has been shown 

to follow a maximally informative search strategy while foraging, making decisions 

based on previous knowledge of typical food distribution in its environment, thus 

adapting its search behaviour to optimise resource acquisition in a heterogenous 

environment (Calhoun et. al., 2014), mirroring the previously discussed adaptations of 

internal distribution networks. These earthworm foraging networks, in turn, have been 

shown to affect plant root foraging and plant growth (Jouquet et. al., 2006; Cameron et. 

al., 2014), an increase of which leads to increased carbon in the soil (Blagodatskaya et. 

al., 2014). Changes in soil stoichiometry cause microbial communities to adapt their 

carbon use efficiency, with implications for soil carbon sequestration, atmospheric CO2
 

release, and flows of carbon throughout the entire ecosystem (Sinsabaugh et. al., 2013; 

Manzoni et. al., 2017). These and similar patterns of interaction between RADE 

networks across different trophic levels increase their complexity, but also the 

importance of accurate model development, as changes within one part of the network 

can have non-localised impacts on a range of spatial and temporal scales. 

In many instances, these RADE networks can be represented in physical or temporal 

space, and numerous studies have been undertaken focussing on the latter, examining 

resource-oriented behaviours such as gathering building materials, hunting, and 

foraging, in a range of species spanning from earthworms and bees, to large predators 

(e.g. Hansell, 1984; Scheel & Packer, 1991; Kunkel & Pletscher, 2001; Leonhardt & 

Bluthgen, 2012; Simard et. al., 2015). The infrastructure comprising these networks are 

the bodies of the organisms in question, and their paths through space and time to locate 

and transport resources. Although not always as visible or permanent as vascular 

systems in animals and plants, these spatiotemporal structures equally represent energy-

driven efforts to move resources from points of acquisition to end use, and are thus 
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subject to the same selective pressure to maximise consumption and minimise energetic 

cost. As with physically permanent RADE networks, the spatial scale and topology of 

these structures is a necessary consideration in calculating the energetic cost of 

traversing them, but most previous work has focussed on the temporal dimension 

exclusively (e.g. Sinervo, 1997; Ward et. al., 2000). Studying the dynamics, differences, 

and similarities of these energetic costs to which different types of RADE networks are 

subject, and the adaptations expressed to minimise them, will improve understanding 

of how they support their constituent organisms and impact one another, and predict 

how they will respond under different conditions. 

1.4  Human-engineered Systems 

Arguably more so than any organism, humans are voracious consumers of energy and 

physical resources, as evidenced by our vast and complex distribution networks of the 

same. The interconnection of these networks makes them especially prone to cascade 

effects from targeted attacks and accidental failures (Wang & Rong, 2009; Buldyrev et. 

al., 2010), and their necessity for societal functioning as we know it is demonstrated by 

the widespread pandemonium caused by such disruptions (Kinney et. al., 2005). Some 

of the most obvious, and hence widely studied, of these networks are those for 

distributing energy, including the electrical grid, natural gas transmission system, and 

other distributed systems (e.g. Driesen & Katiraei, 2008; Dalgaard & Strulik, 2011; 

Nasr & Conner, 2016). As now nearly half of the energy that comes through human-

engineered RADE networks is used simply to move resources through the network 

(Jarvis et. al., 2015), the optimal design and functioning of these energy distribution 

networks is paramount to the regular functioning of industrial society and the global 

economy, even before considering expansion efforts. Moreover, the same D/(D+1) 

scaling exponent between mass and metabolism in organismal metabolic networks has 

been observed in these global-scale primary energy flows (Jarvis et. al., 2015), 

suggesting that industrial society not only behaves like a superorganism (Campbell & 

Stock, 2002), but is also built like one, as the decreasing efficiency of distribution across 

the ever-expanding network drives efficiency improvements in other areas (Jarvis, 

2018), leading to the development of the same fractal branching networks observed in 

organismal metabolic networks. The frequency of this structure would suggest a level 

of robustness to its optimality, given the diversity of the systems in which it emerges, 
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but whether it is optimal for the diverse expression of energetic costs and constraints 

experienced by different systems, or optimal for a subset of these costs that are 

experienced by all systems, requires further study.  

Closely linked and often interconnected with these primary energy RADE networks is 

the vast transportation infrastructure of roads, railways, canals, and flight paths, all of 

which work together to transport energy, people, and other materials (e.g. Bell & Iida, 

1997; Guimera et. al., 2005; Samaniego & Moses, 2008). Despite the heterogeneity of 

flows along these networks, and the terrain through which they pass, they are all subject 

to same size-related energetic penalties, as the energy required to maintain and traverse 

them increases with their size (Jarvis et. al., 2015). Careful consideration to the 

topology, dimension, and size of the space occupied by the network is therefore 

necessary to accurately quantify these energetic costs and understand the evolutionary 

constraints. These transportation networks have also been shown to follow the same 

scaling dynamics between size and flow as the primary energy networks discussed 

above and in the metabolic networks of organisms (Banavar et. al., 1999), further 

suggesting that these dynamics may be driven by a common imperative. The robustness 

of this phenomena across diverse networks has been further evidenced by recent 

successful uses of slime mould P. polycephalum to model national transportation 

networks of countries around the world (Adamatsky, 2012), an outcome that only makes 

sense under the framework of seemingly dissimilar networks expressing a similar 

response to minimising energetic costs, while connecting a heterogenous distribution of 

resources and points of end use. 

The dynamics and flows of these man-made distribution networks, and therefore 

necessarily the spatial distribution of the resources and people that they transport, have 

also been linked to scaling dynamics in characteristics of the cities and communities 

they support (Kühnert et. al., 2006; Bettencourt et. al., 2007; Bettencourt, 2013). The 

physical and influential reach of these networks, as well as their considerable impact on 

the surrounding and supplying environment (Alberti et. al., 2003), merits the importance 

of understanding and modelling them accurately. Multi-vector energy systems analysis 

(e.g. Carradore & Turri, 2009; Devlin et. al., 2017), which incorporates multiple, 

diverse energy sources, and coupled socio-ecological systems analysis (Polhill et. al., 

2015), which attempts to account for impacts from both natural and human-engineered 
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dimensions of systems, are two areas that are especially attracting attention recently, as 

the interconnection of the many levels of RADE networks in these systems entails 

necessary transfer of energy and materials across the boundaries typically drawn around 

each by their respective disciplines. 

1.5 Modelling RADE Networks 

In order to better understand the structures and flows of RADE networks, quantify their 

energetic costs and environmental impact, and improve their resilience, sustainability, 

and equity, the ability to model them comprehensively and accurately is essential. 

Models of RADE networks or aspects of them abound in the literature, from systems of 

equations describing electrical power or water flow (e.g. von Meier, 2006; Yazdani & 

Jeffrey, 2011), to the aforementioned foraging energetics models. While each has 

insight to offer, many are lacking in one or more features that could be offset by 

combining elements of models from different disciplines, to create a more 

comprehensive depiction of the system under analysis, and a generalisable model of 

resource distribution dynamics.  

Models of RADE networks in ecology and biology are often in the form of 

mathematical, interaction-based models without explicit consideration or representation 

of the effect of spatial size or distance between points of resource supply and demand. 

Most ecological network analysis focusses on producer-consumer interactions and 

analyses using the resultant adjacency matrix of relationships and rates of production 

and consumption, and is hence more temporal and relational than spatial (Jørgensen, 

2008; Sibly et. al. 2013). Although these interactions are a key aspect of resource 

networks, they are but a part, representing the ‘end points’ of the network. Explicit 

inclusion of spatially-driven energetic costs incurred en route would improve the 

accuracy of calculation of production and consumption rates, and resulting overall 

energetics. Similarly, in biological systems, network analysis usually focusses on the 

relationships and interactions between genes, cells, or proteins (e.g. Barabási & Oltvai, 

2004; Zhu et. al., 2007; Ma’ayan, 2011), wherein regulatory signals, substrates, and 

products are the resources transported between reactions. The predominance of graph 

theory techniques and concepts in analysing these networks means that most of them 

calculate distance using path length, or count of unit-length links, as opposed to a 
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precise spatial distance. The interactional basis of these network models mean that this 

is an accurate and useful metric, but accompanying spatially-focussed analysis is 

lacking.  

One exception to the predominantly non-spatial network analysis in ecology and 

biology is that of foraging models, which often involve some form of spatial 

measurement in order to quantify the energetic costs of foraging (e.g. Bernstein et. al., 

1988, 1991; Ward et. al., 2000). Even these, however, sometimes rely on time as a proxy 

for energetic cost (Sinervo, 1997), which may not be a reasonable assumption 

depending on the heterogeneity of the landscape (Grünbaum, 1998). Furthermore, most 

of these models are based on Optimal Foraging Theory, which focusses on a single 

species or predator-prey pairing, and makes significant assumptions about distributions 

and probabilities of resources (Kacelnik et. al., 1992), limiting their wider applicability 

in modelling the holistic dynamics of an ecological or coupled socio-ecological system. 

Finally, some fail to explicitly consider conservation laws of mass and/or energy, which 

prevents them from accurately depicting the dynamics of energy and matter flow within 

ecosystems, as discussed by Lindeman (1942).  

A relatively newer technique in ecological modelling that addresses some of these 

limitations, known as Circuit Theory, applies concepts from electrical circuit analysis 

to characterise the likelihood of flows between two nodes. It has been applied 

successfully to assess habitat connectivity, gene flow, and relative habitat resistance to 

organisms’ movements (Gimona et. al., 2012). The end measurement is usually one of 

‘resistance distance,’ which quantifies the inverse of the ease with which a flow occurs 

between two nodes, taking into account the reduction of resistance from a flow 

occurring across multiple possible pathways. Although useful for calculating likelihood 

of flows between different nodes, such as habitat patches or genetic pools, and accurate 

in its spatial explicitness and conservation of flow, Circuit Theory calculates flows in a 

pairwise manner, making it difficult to analyse an entire system of nodes 

simultaneously. It has also been predominately utilised in the domain of habitat 

conservation and population genetics (McRae, 2006), and received minimal attention 

in literature on energetic costs and dynamics of resource flow in ecological and socio-

ecological systems, despite that the underlying importance of the connectivity that it 

analyses is fundamentally linked to resource distribution (Taylor et. al., 1993). 
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Both Optimal Foraging Theory and Circuit Theory models base their descriptions of 

energetics and movements on the organism in question making optimal decisions, in 

order to maximise energetic consumption and/or minimise energetic expenditure. This 

is predicated on natural selection favouring individuals and species that are able to 

capture more free energy and/or use energy more efficiently, as discussed previously. 

Over time, therefore, energetically optimal behavioural and movement patterns should 

emerge. Similarly, the construction and maintenance costs, and the energetic cost of 

transportation, acts as selective pressure on human-engineered RADE systems, and the 

emergence of the same network topologies and scaling patterns (e.g. Dalgaard & 

Strulik, 2011; Jarvis et. al., 2015) would indicate that these networks are also moving 

toward increasing levels of optimisation. Although modelling RADE networks as fully 

optimised is a simplification, as the networks are progressing toward a state of 

optimality with the system constantly self-adjusting and self-selecting in response to 

environmental changes, it is important to include the influence of selective pressure and 

progression toward optimisation in modelling networks, especially mature ones. 

Along with the electrical circuit analysis from where Circuit Theory derives its 

equations, spatially-explicit network modelling methods are more common in human-

engineered systems, perhaps because the economic cost of spatial coverage is more 

acutely felt. Modelling efforts of human-engineered RADE networks are typically 

focussed on the optimisation of one or more aspects of the system under study, such as 

minimisation of construction and maintenance cost and/or maximisation of reliability 

and robustness (Cain et. al., 2012). Other models are used to compare the performance 

of a set system under different operating conditions, to improve predictions of future 

performance (Herrán-González et. al., 2009). Many of the techniques used to model 

these networks could prove highly instructive in application to other types of RADE 

networks, but the interdisciplinary use of these methods is limited. While discussions 

using terminology previously constrained to the physical sciences, such as free energy, 

entropy, and power, are becoming increasingly common in ecological and earth 

sciences literature (see review in Kleidon et. al., 2010), and the rise of complex systems 

science and notions of self-organisation and complex adaptive systems engage with 

issues of energy and mass transfer through and across ecological and socio-ecological 

system boundaries (Levin, 1998; Parrott, 2010), these schools of thought have yet to 

widely adopt the methodology and techniques used to model similar phenomena in 
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human-engineered systems. As such, a consistent, general modelling framework for 

RADE networks has not yet been identified. 

It should be noted that studies done on stylised networks such as random or scale-free 

networks, although verifiably similar in properties to their real counterparts (Albert & 

Barabási, 2002), generally model the spatial aspect of the network through degree 

distribution or path length (Callaway et. al., 2000; Gao et. al., 2011). As such, they do 

not always consistently take into account constraints and costs associated with spatial 

distance between components, or nodes, which are applicable to all physical networks. 

While it is often the common purpose, namely the transportation of resources from 

points of acquisition to end use, that is credited with the remarkable similarity in 

structure and properties of the diverse expressions of RADE networks, thermodynamic 

laws play a vital role in directing and constraining the development and flows of all 

such networks. For this reason, any attempt to model or analyse these networks must 

account for these laws. Although some of the models discussed above include 

consideration of one or both of these laws, it is usually sporadic and inconsistently 

applied, limiting the realism of the model, and its ability to be combined with similar 

models to predict larger-scale energy flows within natural and human-engineered 

systems, such as the ecological and socio-ecological systems in view here. 

While the stylised networks allow for very neat proofs-of-concept, and can provide 

many useful insights on the dynamics of general networks, it would be instructive to 

further validate generalised models such as these by parameterising them to reflect real 

systems. Even when such parameters are approximate or averages, such as often used 

in foraging models (e.g. Ward et. al., 2000; Baveco et. al., 2016), the results still provide 

important overall information on the system under study, that is more generalisable to 

similar systems, or the same system under different conditions. As these general models 

‘sacrifice precision to realism and generality’ (Levins, 1966), they provide insight 

through simplification, such as overall patterns and directions that would be instructive 

for further study. Moreover, they provide feedback on the performance of the model, 

such as whether it can predict qualitative or large-scale features of the networks it was 

parameterised to reflect, or whether there are clear flaws in the logic or development 

that prevent its application to real systems. This is similar to the validation method of 
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populating an ontology with instances, as put forward by Polhill and Salt (2017), to 

ensure logical consistency in relationships between components in a model.  

In contrast to these interactional and stylised models, one subset of RADE networks for 

which models are especially explicit in their consideration of spatial size and its effects, 

and the conservation imperative of the first law of thermodynamics, are those of 

electrical power grids. Using a system of equations that solves for the voltage and 

current at each node in the network, taking into account the distance-related resistance 

across the links, engineers are able to calculate the power input, loss, and consumption 

at points of end use (von Meier, 2006; Glover et. al., 2012). This method, called load 

flow analysis, is similar to the methods used in Circuit Theory and electrical nodal 

analysis, as it is based on the same underlying equations, but load flow analysis allows 

for the calculation of voltage and current simultaneously for all nodes and branches in 

the network. Despite the potential for these methods to be applied to analysis of flows 

through other types of networks, the precedent for doing so is minimal: a remarkably 

similar technique to those used in load flow analysis is used for analysing flows in 

economic networks, known as Leontief Matrix Inversion (Leontief, 1951, 1986), but to 

date no one has directly compared the two. Furthermore, in addition to the Circuit 

Theory examples above, other studies have used equations similar to those in load flow 

analysis to model information flow in cellular networks (Kim et. al., 2011), but not 

energetic resource flows. Even though the use of electrical analogues in ecological 

modelling was pioneered by H.T. Odum in the 1950s (Kangas, 1995), it was applied 

strictly to performing conservation-based analysis of transfers between and within 

trophic levels, as opposed to a spatial network analysis such as done in load flow studies. 

By identifying the analogous voltage, or force, and current, or flux, in ecological and 

coupled socio-ecological networks, and utilising the advances in computational 

modelling available today, it is possible to apply the neatly thermodynamically-

consistent and explicitly spatial equations of power flow to simulations of full RADE 

networks of a diversity of types. 
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1.6 Project Aims 

The aims of this thesis are to: 

1. Develop a spatially explicit, thermodynamically-consistent framework for 

modelling generalised RADE networks, 

2. Apply an optimisation algorithm to this framework, in order to simulate the 

selective pressure exerted on RADE networks to maximise energetic capture 

and minimise energetic costs, and 

3. Use the nectar foraging networks of the European honey bee, Apis mellifera, as 

a proof-of-concept to assess and evaluate the network modelling and 

optimisation. 
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2.  Model Framework 

2.1  Operationalising Thermodynamic Laws 

In order to accurately model the constraints and influences of the thermodynamic laws 

discussed above, the laws had to be operationalised to allow for their consistent 

implementation across both generalised and domain-specific RADE networks. Creating 

a consistent framework for quantifying the energetic cost of acquisition and/or 

distribution, or other forms of loss, and including that in calculations of the resource 

flow produced and consumed in a network, is done in some models (e.g. Huey & Pianka, 

1981; Shirmohammadi & Hong, 1989; Wallis DeVries, 1996). This loss term could be 

used to represent the entropy generation occurring during the energy transformations in 

RADE processes, such as energy consumption during transportation, or frictional losses 

occurring as a result of flows of resources along network infrastructure. As discussed 

above, this entropy generation is required for the model to realistically represent a 

system involving energy transformations, as the second law of thermodynamics 

necessitates that these lead to an increase in entropy. Furthermore, as this entropy 

represents energy that cannot be consumed as useful work, or power, the model must 

also include this loss to calculate the flows of energy in the network in a way that is 

energy conserving, as imposed by the first law of thermodynamics. As such, the total 

flows into the system must be accounted for either as loss due to entropy, or as 

consumed at the point of end use, with at least some of the energy lost as entropy. 

Methods have been put forth to calculate flows via least-cost paths or all paths in 

stylised networks (Carmi et. al., 2008), but neither are suitable for calculating resource 

flows. Resource flows in both natural and human-engineered systems can occur via 

multiple pathways, some indirect (Ulanowicz, 2001), necessitating calculation of flow 

via more than just the least-cost or shortest path. While calculations via all-paths 

methods are more accurate in this regard, the computational expense is significant for 

large networks, and the algorithms unwieldly (Migliore et. al., 1990). This would be 

further aggravated if the network was disconnected, such that the larger network was 

made up of entirely disjoint subnetworks for which the flows would have to be 

calculated separately. An alternative formulation is therefore necessary to determine 

energy-conserving resource flows, along all paths, in a way that accurately accounts for 

size-related losses. 
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2.1.1 Load flow analysis 

As introduced previously, the methods used by engineers to calculate the voltage and 

current at each bus and line in a power grid, known as load flow analysis (von Meier, 

2006; Glover et. al., 2012), or similarly, the pressure and friction at each head and pipe 

in a water network, provide an energy- and mass-flow conserving model to calculate 

the size-related energy and pressure losses across a network. These methods are 

grounded in the constitutive equations governing the flows of electrical current, a flow 

of charged particles, and fluid, respectively. These equations are a subset of the 

phenomenological linear flow laws relating a flux to its conjugate force, where the 

constant of proportionality between the two, such as resistance or permeability, is a 

characteristic of the material through which the flow occurs (Plawsky, 2014). These 

phenomenological laws are all analogous, such that a generalised form of these 

equations, as based on the second law of thermodynamics, can be used to model any 

linear physical transport process (Kjelstrup et. al., 2010).  

2.1.1.1 Traditional Methodology 

Traditionally, the equations used by electrical engineers to quantify the steady-state 

operation of the power grid are for alternating current (AC) power flow, wherein the 

electrical charge changes directions periodically, such that the electrical potentials, or 

voltages, reverse and the flow of current changes directions (Glover et. al., 2012). The 

equations include terms for both voltage angle and magnitude, and real and reactive 

power. Although adaptations have been proposed to calculate direct current (DC) power 

flow, these include significant assumptions, such as lossless lines (Overbye et. al., 

2004), making them inappropriate for use when the resistance-driven line losses would 

be analogous to the size-related energy losses. The methodology for calculating the AC 

power flow can be adapted more directly to generalised flows, however, by modifying 

the equations to reflect directed flows, while still including the loss term due to 

resistance. This is similar to the methods used in modified nodal analysis for calculating 

the currents and voltages around a closed circuit (Ho et. al., 1975). Unlike modified 

nodal analysis, however, both load flow analysis and the generalised resource flow 

methodology presented later on do not require writing out an equation for each node 

individually, choosing a node to act as ‘ground,’ or eliminating voltage sources, and 

returns all branch currents.  
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Both modified nodal analysis and load flow analysis rely on Kirchhoff’s current law 

and Ohm’s law to determine the current and voltage of the nodes and branches within 

the system. In the model presented later on, a generalised form of these laws is used to 

operationalise the conservation and entropy generation of the first and second laws of 

thermodynamics. Although Ohm’s law was developed deductively (Ohm, 1827), and 

Kirchhoff’s laws as a generalisation of it based on the principles of conservation of 

charge and energy, later work by Joule (1850) connected Ohm’s law more explicitly to 

the second law of thermodynamics via the heat, therefore entropy, produced by an 

electrical current. As such, Kirchhoff’s and Ohm’s laws can be used to represent the 

underlying thermodynamic laws of conservation of energy and entropy generation, 

respectively. Specifically, Kirchhoff’s first law states that the current flowing into a 

junction must be equal to the current flowing out of it, due to the conservation of 

electrical charge (Paul, 2001): 

1

0
n

k

k

I
=

=
 .  (1) 

Here, k is the number of links in the junction, and I is the current on the given link. This 

conservation of the flow of current can be clearly linked to the first law of 

thermodynamics, which requires the conservation of energy within a closed system, 

such as the circuit junctions the equation describes, or a closed circuit as a whole. The 

current in the equation is related to the voltage of the connected nodes via resistance, a 

constant of proportionality that describes the difficulty presented to an electrical charge 

by the conductor through which it flows (Paul, 2001). This relationship is described by 

Ohm’s law, which states that the change in voltage across a resistive link is equal to the 

current times the resistance, R (Paul, 2001): 

V IR = .                   (2) 

This ‘voltage drop’ and the resulting power loss between the origin and destination of 

current flow, represents the loss of energy that could be used to perform work, and 

hence the increase of entropy, within the circuit. As used in load flow analysis, 

equations derived from Ohm’s and Kirchhoff’s laws allow the engineer to determine 

the voltage magnitude and phase angle for each power generating (generator) or 

receiving (load) bus, and the current along each link (branch) in the network (Glover et. 
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al., 2012). It is assumed that the voltage magnitude and power generation at generator 

buses, and the real and reactive power demands at the load buses, are known. 

Additionally, one generator bus is chosen as the slack bus, for which voltage magnitude 

and angle are known, and is used to generate any mismatch in power demand and supply 

within the system. This allows the engineer to develop a system of equations to solve 

for the unknown voltage magnitude and angle at the load buses, and voltage angle at 

the generator buses. A full overview of load flow analysis is provided by Glover et. al. 

(2012), but is summarised here to clarify the origin of the modifications used in the 

generalised model presented later, which uses similar equations to calculate the force 

and flow of resources in a generalised RADE network.  

Load flow analysis begins by constructing an admittance matrix for the network, which 

specifies the admittance between each bus, with the diagonal elements of the matrix 

containing the self-admittance, or a negative of the sum of all admittances for that bus. 

Admittance, Y, is the inverse of impedance, a complex number which takes into account 

both the resistance, opposition to a steady flow of current, and the reactance, opposition 

to a change in current. As such, admittance represents the ease with which alternating 

current can pass through a resistor, 

Y G jB= + ,           (3) 

where G is the conductance term, and B is the susceptance. j is the imaginary term, 

where 
2 1j = − . After constructing the admittance matrix, initial estimates are made for 

the unknown variables listed above at each bus. The mismatch between the known 

values listed above, and their calculations based on these initial estimates, is determined 

using the power flow equations. The power flow equations calculate real and reactive 

power through application of Ohm’s law: 

1
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P V V G B 
=

= +  ,              (4a)

1
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k

Q V V G B 
=

= −  ,              (4b) 

where iP is the real power at bus i, iQ  is the reactive power, iV and kV  are the voltage 

magnitudes at buses i and k, and ik is the voltage phase angle difference between buses 

i and k. 
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There are two main methods to solve for these equations at each bus: the Gauss-Siedel 

method, and the Newton-Raphson method, the latter of which is more commonly used 

today. In the traditional Newton-Raphson method, the mismatches between known and 

estimated values for real and reactive power at each bus, as calculated by Eq. (4a) and 

(4b) above, are used with a four-part Jacobian matrix of partial derivatives of both real 

and reactive power, each with respect to voltage magnitude and angle, to form a system 

of equations expressed as: 

1 P
J

V Q
 −   = −

     
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



  
  
 

=  
  
   

 .     (5) 

The system is then solved to produce  and V , which are used to update the initial 

estimates for voltage magnitude and angle at the load buses, and voltage angle at the 

generator buses. The mismatch is calculated again, and the process of solving the system 

of equations and updating the estimates is repeated until the mismatch is within a pre-

defined error tolerance threshold. After this convergence, the final estimates of voltage 

magnitudes and angles are used to calculate the total real and reactive power generated, 

consumed, and lost in the network. 

2.1.1.2 Modified Resource Flow Methodology 

In order to modify the traditional load flow analysis method, the force and flux have to 

be identified for a system, proxied as voltage and current, and the resource node supply 

and consumer node demand have to be specified. The known variables thus become the 

voltage, or force, at the resources, and the current, or flow demand, at the consumer 

nodes, called agents. The equations are equivalent to the ones from the traditional load 

flow method above, since both are based on Kirchhoff’s and Ohm’s laws, and the 

underlying thermodynamic laws. As the generalised resource flow is assumed to be 

directed, however, the modified equations are updated to remove aspects associated 

with reactive power, and the equations changed to solve for voltage and current, such 

that power can be calculated after convergence, rather than solving for voltage angle 

and phase, and calculating power while solving the system of equations.  
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In RADE networks, the voltages represent the force at which the resources and agents 

operate. Specifically, at the resources this denotes the potential at which energy is 

produced prior to being transported through the network to the agents, for example 

water pressure, electrochemical potential, or the calorific value of food. The voltage at 

the agents must therefore be lower than that at the resources, as resource flows move 

down potential gradients, as will be discussed in depth later. The size of this voltage 

gradient between the resources and agents is co-determined by the resource flow and 

the resistance along the links, as shown in Eq. (2). In the modified resource flow 

methodology, current is used to proxy this resource flow, and represents the flow of the 

energy type that is produced by the resources, such as water, charged ions, or food, of 

which each agent in the system has a set demand, such as litres or calories per day. The 

agent voltage then represents its operating potential, or how much useful work or power 

it can generate with this current flow. Finally, the resistance along the links of the 

network is therefore the ‘friction’ encountered by this flow as it is moved through the 

network, incurring energetic losses in the form of heat production, or entropy. In RADE 

networks, these losses could take the form of water pressure losses due to friction in 

pipes, or energy losses through heat production caused by the metabolism of organisms, 

as they expend energy in order to overcome the resistance of the environments through 

which they move while hunting or foraging (McCrae, 2006). Based on the known 

potential at each resource, and the known resource flow demand at each agent, the 

power, or effective operating state at each agent and resource, can be calculated. 

In the modified resource flow methodology, first the values in the admittance matrix, 

from Equation (3) are replaced with those for conductance, the inverse of resistance, or 

equivalently, the ease with which a steady flow of directed current can pass through a 

line: 

1
G

R
=  .                   (6) 

To solve for the unknowns, which in this case are the current drawn from each resource 

node, and the voltage of each agent node, initial estimates are made for each, and the 

values for the flow of current at each agent based on these estimates are calculated using 

a modification of Equation (2) in place of Equation (4a). This equation takes into 

account both the flows of current into the agent, and the flows of current through the 
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agents to other nodes, but only includes the former terminal flows in the demand 

consumption calculation: 

1

N

i ik ik

k

I G V
=

=   ,                  (7) 

where ikG  is the conductance between nodes i and k, as calculated in Eq. (6) above, and 

ikV  is the voltage difference between the nodes. As the flow is taken to be analogous 

to directed current without associated phase angle, voltage is always a simple magnitude 

in these equations. As this sum is across all in-links, not just the shortest path to a single 

resource, or paths directly from a resource to agent, it accounts for both direct and 

indirect flows of current, hence meeting the criterion of including indirect resource 

flows introduced previously. 

The mismatch between calculated and demanded current is determined for each agent, 

and the updated voltages for each node is calculated using the modified Jacobian, in this 

case a matrix of partial derivatives of current with respect to voltage, rather than power 

with respect to voltage as above. As this partial derivative is equal to the inverse of 

resistance, which is conductance, the conductance matrix constructed previously (Eq. 

6) can be reused to solve the system of equations as follows, modified from Eq. (5): 

   1V J I− = −   , 
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V

−
= =


 .           (8) 

The current at each agent is then recalculated using the updated voltages. Unlike the 

traditional Newton-Raphson method, which requires repeated iterations to converge on 

a solution due to the nonlinearities of AC power flow, the linearity of the equations for 

direct current in the modified version allow for it to be solved in a single iteration, as is 

the case in nodal analysis (Paul, 2001). After the correct current and voltage are 

determined for each node in this way, the power generated by the resources, used by the 

agents, and lost due to resistance, and therefore the overall system efficiency, can all be 

calculated.  

2.1.2 Trial runs 

In order to test the modified resource flow methodology, four stylised configurations of 

resources and agents were developed, with the current demand specified at the agents, 
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and the voltage specified at the resources (Fig. 1). The resistance of the links was set at 

1 Ω per unit distance. The four configurations represented each combination of one or 

many agents and resources. These parameters were not reflective of a specific system, 

but rather were used to test the conservation of flow and the realism of the size-related 

voltage drops, ergo power losses, within the networks. In each solved network, the total 

current produced by the resources was equal to the total current demanded, and hence 

consumed, at the agents, with the current along each link proportional to the voltage 

difference between nodes at each end of the link, and equal to the product of this 

difference and the resistance of the link. This shows that the modified resource flow 

methodology is capable of solving the voltages and currents in both simple and complex 

networks in a way that is conserving of resource flow and representative of spatially-

driven energetic costs. It can thus be applied to analyse both generalised and domain-

specific RADE networks, for which analogues of voltage, current, and resistance can 

be identified. 
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Figure 1. Test networks solved by the modified resource flow methodology. The red squares 

represent resource supply points, and the yellow tetrahedrons are consumer nodes, or 

agents. The current demand at agents and current flow along each link (in amps, A), 

voltage supply at resources (in volts, V), and link resistance (in ohms, Ω), are equal for 

the agents, resources, and links within the same network, unless specified. The arrows 

show the direction of current flow, from points of higher to lower voltage. 
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2.2 Genetic Algorithms 

2.2.1 Introduction and Rationale 

As previously introduced, both ecological and socio-ecological systems are under 

selective pressure to maximise their consumption of free energy, while minimising the 

associated energetic costs with its acquisition and distribution. RADE networks of each 

can therefore be considered to be progressing toward an optimal state. To replicate that 

phenomenon in the model here, the generalised, flow-conserving RADE networks 

developed using the methodology above were optimised using a genetic algorithm 

(GA). GAs are a subset of evolutionary algorithms, which work by evaluating a 

population of possible solutions, or ‘chromosomes,’ for their ability at solving a given 

optimisation problem (Holland, 1975; Goldberg, 1989). The best chromosomes are then 

used to create the next generation of the population, via so-called genetic operators: 

computer functions that mimic recombination and mutation. In this way, GAs use 

Darwinian principles to search for global optima, by improving the population of 

solutions over time via selective pressure, with the best solutions more likely to 

propagate their characteristics, or genes, to the next generation.  

GAs have been and are still widely used for similar applications in modelling and 

optimising spatial networks in engineering problems (e.g. Savic & Walters, 1997; 

Montesinos et. al., 1999; Bakirtzis et. al., 2002; Gen et. al., 2008; Tomoiagă et. al., 

2013), optimising parameterisation of spatial models (Polhill & Gimona, 2014), and for 

some analysis of social networks (Hajeer et. al., 2012), but this work represents one of 

the first attempts at using them to generate and optimise explicitly spatial networks in 

ecological and socio-ecological systems, with the end goal of analysing the dynamics 

and characteristics of those networks. GAs are well-suited for problems necessitating a 

global search strategy over a high-dimensionality solution space, with the possibility of 

combinatorial explosion (Klamt & Stelling, 2002), such as the network optimisation 

done here. They are also highly customisable and can handle optimisations with one or 

multiple criteria. 

Although GAs are powerful optimisers, they are not without their limitations. A 

common misconception, especially when applied to biological or ecological modelling, 

is that their evolutionary metaphor, and use of genetic analogues, means that they 
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accurately portray the process of natural selection via evolution (Hamblin, 2013). GAs 

are not a faithful replica of the process of this type of natural selection-driven 

development, however, even if and when the results accurately portray natural systems. 

For this reason, they should be treated as an optimisation tool only, with intermediate 

phases in the optimisation not necessarily representing intermediate phases of 

development as would occur in natural systems. For example, intermediate stages of 

network optimisation could produce structures that real networks would not evolve 

toward, even temporarily. Other optimisers, namely genetic programming (Koza, 

1994), are better suited for optimising processes, via evolving programs and rules. The 

work presented here was not attempting to model optimal RADE networks by recreating 

the process of natural selection and incremental construction as applied to them, 

however. Instead, the aim was to recreate its outcomes via a more general optimisation 

process, which preferentially selected for and evolved toward outcomes shown to be 

favourable in ecological and socio-ecological systems.  

Another potential pitfall of the GA is that it works by optimising at the systems level, 

as opposed to the level of individual components. This allows for the modelling of 

systems-level phenomena, but makes it more difficult to determine the specific role of 

individuals in the overall pattern. Individual- or agent-based modelling is a popular tool 

for analysing the latter (Gilbert, 2008), and future work combining it with a GA for 

RADE network analysis could prove instructive. The argued optimality of distribution 

networks presented previously occurs at a system-wide level, however, whether that 

system is the body of an organism (West et. al., 1997) or the global primary energy 

distribution network (Jarvis et. al., 2015), so optimising the whole network, as opposed 

to each link or node individually, is accurate. 

Finally, one of the most commonly cited arguments against GAs in the technical 

literature is the number of parameters they require, and the difficulty of identifying the 

best combination of parameters (De Jong, 1975). Although GAs are quite robust to 

different parameterisations of some parts of the algorithm (Xu et. al., 2009; Pinel et. al., 

2012; Hamblin, 2013), they are extremely sensitive to the specification of the criteria to 

be optimised, and how that criteria are calculated, as this drives the direction of the 

optimisation as a whole (Goldberg, 1989). As such, they can prove difficult to program 

when the exact optimisation criteria are not known a priori. While testing different 
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combinations or specifications of criteria is time- and resource-intensive, it is often the 

only method to determine this aspect of customisation when it is not explicitly known 

beforehand. For many optimisations in engineering and mathematics, the exact criteria 

are known, such as the minimisation of total cost or travel distance, or a maximisation 

of a mathematical function, and the calculation of that criteria are relatively 

straightforward. In RADE network optimisation, however, depending on the network 

in question, it can be more difficult to determine what the ‘costs’ are that the system is 

trying to minimise. To overcome this limitation, four cost functions are tested and 

discussed in the proof-of-concept outlined in Section 3.2.3. 

2.2.2 Code Flow 

The algorithm begins by setting all necessary parameters of functions and creating an 

initial population of chromosomes. This can be a seed population of known viable 

solutions, or a random population, as in the network optimisation presented here, called 

NetGA. These chromosomes are representations of possible solutions, typically 

encoded as bit strings (Goldberg, 1989), or as customised data structures. The different 

parts of the encoding, which are altered by the algorithm over the course of the 

optimisation, are called ‘genes.’ In NetGA, the chromosome (Fig. 2), is a customised 

data structure representing the network, which holds the locations of agents and 

resources, which are fixed, and the evolvable genes: locations of mobile branch points, 

which are non-demand junctions between links that allow the GA to explore different 

network configurations; the resource flow demand for the agents, proxied as current; 

and the matrix of connections between all the nodes in the network.  

 

Figure 2. Network chromosome. A chromosome in a GA represents a single solution to the 

optimisation problem: in this case, a network, with the coordinates of resource-

consuming agent nodes, resource supply nodes, and branch points allowing for 

exploration of different network structures, as well as the matrix of connections between 

each of these nodes, and the demand of current, a proxy for resource flow. Each of these 

individual components is called a ‘gene’. 



 

 

28 

 

After initialisation, the algorithm executes its main loop (Fig. 3), which consists of 

iteratively evaluating and improving the solutions, until a specified termination criterion 

is met. The evaluation portion of the algorithm is known as the cost function, if the 

criteria for optimisation are meant to be minimised, or the fitness function, if 

maximised. In this function, the algorithm evaluates each chromosome for its ability to 

minimise or maximise each criterion. For conciseness, cost/fitness functions are 

referred to hereon as cost functions, regardless of the goals of optimisation. Details of 

the cost functions tested in the proof of concept for NetGA are discussed in Section 

3.2.3. 

  

Figure 3. Code flow of a genetic algorithm. After initialisation, the main loop involves 

iteratively evaluating and producing new generations of solutions. After each 

generation is produced, the algorithm tests whether it has reached pre-specified 

termination criteria. If so, it ends the optimisation and reports the best solution(s) found, 

otherwise it continues repeating the main loop. The evaluation is done in the cost 

function, while the ranking of the population by performance, selection of best 

individuals, and application of genetic operators to produce the next generation all occur 

in the breeder function. 
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Following this evaluation, the population is then ranked by cost, and the next generation 

created or bred from a selected subset of the current population, the breeding population, 

by applying so-called ‘genetic operators,’ or functions designed to imitate genetic 

recombination and mutation. In NetGA, ranking is done based on population-

normalised performance on each of the criterion in the cost function. If there is more 

than one criterion in the cost function, the ranking is determined by how many networks 

a given solution is Pareto-dominated by, with Pareto-domination defined as one 

network performing equally or better on each criterion than the compared network 

(Fonseca & Fleming, 1993). If a network performs better on some criteria but worse on 

others than the compared network, the two networks are incomparable. This 

comparability can be conceptualised most easily for a two- or three-criteria cost 

function as there being a positive gradient between the two networks when the solution 

trade-off space is plotted using Cartesian coordinates (Fig. 4). The fewer networks that 

a given network is dominated by, the higher it is in the ranking. Ties are broken in 

ranking by how many networks a given network dominates, with the more dominating 

networks ranked higher. If there was only one criterion in the cost function, then ranking 

is simply an ordering based on performance on that criterion.  

The highest-ranked networks from each generation are then automatically added to the 

next generation, an optimisation strategy known as elitism (De Jong, 1975), and the 

lowest-ranked networks are removed from the current population, known as truncation, 

before being replaced with a copy of the best networks (Montesinos et. al., 1999).  For 

multi-criteria cost functions, the population is further pruned by dividing it into niches 

of a set capacity (Horn et. al., 1994), with each niche comprised of networks within a 

certain threshold similarity of performance on all of the cost criteria. Additional 

networks beyond the capacity of the appropriate niche are removed from the population 

(Pétrowski, 1996), encouraging diversity across the Pareto front and avoiding premature 

convergence on local optima.  
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Figure 4. Pareto dominance, shown for a two-criteria cost function. In this example, the 

blue circles represent solutions, such as network chromosomes in NetGA, plotted 

according to their performance on each criterion, with lower cost being preferable. 

Solutions A, B, and C are all incomparable, as there is a negative gradient between 

them. These solutions make up the non-dominated Pareto front, as there are no solutions 

that perform better than them. Solutions E and D are both dominated by B, and D is 

dominated by A. As B dominates two solutions, and A one, B would be placed higher 

in the ranking, such that the final ranking of these five networks would be B, A, C, E, 

D. Other incomparable dominance links between A and E, C and D, and C and E, are 

omitted for clarity. 
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In GAs, selection is typically done in one of three ways: via tournament, where the 

chromosomes are compared in a pairwise manner, with the less costly of the two chosen 

as the winner; truncation, where a set number of chromosomes are eliminated before 

breeding; or through fitness-proportionate selection, where the probability of a 

chromosome being selected for breeding is proportional to its fitness, or inverse cost, 

relative to the total fitness of the population (Goldberg & Deb, 1991). Within fitness-

proportionate selection, there is roulette-wheel selection (Fig. 5a), which generates a 

cumulative probability distribution of population fitness and selects individuals from it 

randomly (Goldberg, 1989), and stochastic universal sampling (Fig. 5b), utilised in 

NetGA, which samples the cumulative probability distribution at evenly spaced 

intervals (Baker, 1987). The latter is considered a superior implementation, as it is less 

likely to be biased to only select members of the population with comparatively high 

fitness. Preserving some of the genetic material, or solution characteristics, of poorer 

performing solutions is necessary for encouraging global search and not allowing the 

algorithm to converge prematurely on local optima. It is often the combination of some 

of these genes with those of other solutions that allow the GA to find the global optima.  

 

Figure 5. Fitness proportionate selection methods applied to a population of ten 

chromosomes of varying fitness.  The size of the block reflects the fitness of the 

chromosome, or its performance on the given optimisation problem, as a percentage of 

the total population fitness. The percentage is also shown for each chromosome. a. 

Roulette wheel selection of six pointers (black triangles). Pointer placement is done via 

repeated random sample, which can be with or without replacement. b. Stochastic 

universal sampling of same population, which samples at evenly-spaced intervals 

across the cumulative probability distribution of fitness for the population.  
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During crossover in NetGA, two networks are chosen as parents from the breeding 

population. The genes of each network are exchanged uniformly such that each 

offspring receives a given gene with equal probability from each parent (Fig. 6a) (De 

Jong & Spears, 1992). This is in contrast to single- and multi-point crossover (Fig. 6b 

and c), which are less disruptive of the solution, but also provide less coverage of the 

solution space.  

a.  

b.  

c.  

Figure 6. Variations of crossover operations. The two bars are the two offspring solutions, 

represented here using network chromosomes (Fig. 2), resulting from a crossover 

operation, where two parent chromosomes are recombined. The shading denotes the 

different types of genes encoding the parts of the network, and the colour represents 

from which parent network the genes originated. Note that the first two blocks of genes, 

agent and resource locations, are the same for all members of the population and fixed 

for the duration of the optimisation, so are not exchanged. The black arrows indicate 

the crossover points. a. Uniform crossover, where the offspring chromosomes receive 

the genetic material from one parent or the other with equal likelihood at each gene, 

such that on average, each offspring is made up of half of each parents’ genetic material. 

b. Single-point crossover (not used in NetGA), where each offspring receives the 

genetic material from one parent for a portion of their chromosome, and the material 

from the other parent for the other portion. c. Multi-point crossover (not used in 

NetGA), where each offspring receives multiple portions of genetic material from each 

parent.   
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After crossover, each offspring undergoes perturbation with a certain probability (Fig. 

7). In perturbation, each branch point location, the strength or weight of each 

connection, and the current demand for the agents, is altered to a new value within a 

given variance from its current value, with each alteration happening with the same 

overall perturbation probability. Perturbation is not a genetic operator typical to GAs 

but is useful for exploring the local neighbourhood of the solution space around the 

results of the crossover, by acting as a hill-climbing operator without disrupting too 

much of the solution. If the new networks are not created through crossover and 

perturbation, the parent networks are cloned, and each of the clones undergoes mutation, 

where each gene is mutated with a certain probability, to a new value drawn from a 

uniform distribution within the permitted range (Goldberg, 1989). This process of 

crossover and perturbation, or mutation, is repeated to fill the next generation of the 

population.  

 

Figure 7. Genetic operator code flow. The inset represents the flow of operators occurring 

within the breeder function, as located within the overall code flow on the left (see Fig. 

3). The diamonds represent decision points, with the red line showing increased 

probability of crossover-generated networks, and the blue dashed lines showing the 

decreased probabilities of perturbation after crossover. The specific values of these 

parameters, and the increasing or annealing schedule of each, is different for each 

optimisation, depending on the complexity of the problem. 
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Although many GAs perform both crossover and mutation to generate each new 

solution, here the two operators are separated based on their effect. While crossover and 

perturbation operate more as local search operators to exploit promising areas in the 

solution space (Srinivas & Patnaik, 1994; Smith & Fogarty, 1997), mutation acts as a 

global search operator, to explore new areas of the solution space throughout the 

optimisation, and to avoid premature convergence. Over the course of the optimisation, 

the overall probability of new network generation via crossover and perturbation 

increases, which effectively also decreases the probability of mutation of an entire 

network, and the probability of perturbation for these crossover-generated networks 

decreases. This selective annealing of some probabilities and increasing of others 

encourages a wider exploration of the solution space initially, when the performance of 

each network is poorer across the three criteria, and allows the optimisation to explore 

the possibility of improved performance by combining the qualities of high-performing 

networks later in the optimisation, reducing the likelihood and amount that good 

solutions are be disrupted. 

The process of evaluating and generating new populations of network chromosomes is 

repeated until set termination criteria are reached, at which point the best network, for 

single criterion cost functions, or Pareto front of networks, for multi-criteria cost 

functions, are returned. In NetGA, this termination criterion is a pre-specified number 

of generations, determined through testing different values and choosing one that is long 

enough to allow for convergence, while remaining within a reasonable runtime, as 

discussed in Section 3.2.4. An alternative criterion utilised in some GAs is a threshold 

number of generations during which significant change is not seen in the best ranked 

solution(s) (Safe et. al., 2004), but thresholds for both the number of generations and 

the significance of change are difficult to quantify, which can lead to premature 

termination if the GA were to settle temporarily on a local optimum. Specifying a high 

number of total generations as the termination criterion allows the GA to fully explore 

the solution space, and keeping the best network(s) found in each generation ensures 

that the historical optimum achieved will not be lost at any point of the optimisation. 
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3. Test Case: Nectar Foraging Networks of the 
European Honey Bee, Apis mellifera 

3.1 Rationale 

In order to test the ability of NetGA to model real-world RADE networks, a proof-of-

concept was developed around the nectar foraging networks of the European honey bee, 

Apis mellifera. A. mellifera is the most widespread honey bee species, found on every 

continent except Antarctica, mostly as a result of human transportation and introduction 

efforts (Meixner, 2010). Their role as pollinators makes them vital to ecological and 

socio-ecological systems, through maintaining and facilitating plant biodiversity, 

ecosystem stability, agricultural production, and food security (Potts et. al., 2010). For 

this reason, they are widely studied, providing a solid dataset with which to parameterise 

the GA and qualitatively evaluate the resulting optimised networks. Furthermore, they 

are known central-place foragers (Kacelnik et. al., 1986), gathering nectar from 

distributed sources but always returning directly to the hive, which led to a simple, 

constrained proof-of-concept, representing the hive as a single, fixed-location point of 

resource demand, and the floral resources as fixed-location points of resource supply.  

Studying nectar foraging networks in this way was also an interesting test case in its 

own right, as it modelled a distributed network from a whole-systems perspective. A 

colony of honey bees has been compared to a ‘superorganism,’ utilising the information 

gathering and sharing activities of each forager bee to orchestrate a highly coordinated 

yet entirely decentralised foraging effort (Gillooly et. al., 2010). This allows the colony 

as a whole to operate as effectively as if each bee had complete information about all 

nectar sources available (Seeley, 1995), which justifies modelling the foraging 

dynamics as optimal at a colony level, as opposed to the level of an individual forager. 

Further research on the explicitly spatial aspect of colony-wide nectar foraging efforts 

would allow for a better understanding of the energetic costs of foraging in different 

spatial distributions of resources, and therefore more accurate calculation of land-use 

impact on nectar foraging and pollination (Becher et. al., 2014). Similar optimisation 

could also be applied to the placement of hives in commercial bee-keeping set-ups, 

which has only been studied to a limited extent with mathematical programming 

(Esteves et. al., 2010; Tamboan et. al., 2011; Gavina et. al., 2014), and could facilitate 
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greater pollination coverage, prediction of honey quality and composition, and 

improved colony health through access to a diversity of pollen and nectar nutrients. 

3.2 Parameterisation 

The parameters used for the modelling and optimisation of any type of network using 

NetGA are those required for construction of the topology filled by the network, 

construction of the population of networks for each generation, and the design and 

parameters of the breeder and cost functions to fit the specific optimisation criteria. For 

the nectar foraging network optimisation, called HiveNetGA, this was done to 

approximate known foraging conditions and dynamics of A. mellifera as reported in the 

literature. While the overall code flow of NetGA was maintained, the specific 

parameterisation guided HiveNetGA to optimise networks consistent with the 

approximate conditions and theorised constraints of nectar foraging networks. This 

parameterisation was not meant to be an exact replica of the foraging conditions 

experienced by A. mellifera, as those are highly heterogenous for each colony, 

depending on its geographic location and the time of year, and even the time of day, as 

flowers vary considerably in nectar production and sugar concentration over the course 

of a twenty-four-hour period (Adgaba et. al., 2017). Instead, the parameterisation was a 

realistic, data-driven approximation, for the purposes of developing and testing the 

generalised model of spatially-explicit RADE networks. Similar approximations have 

been used in other models of foraging patterns (e.g. Wallis DeVries, 1996; Ward et. al., 

2000; Baveco et. al., 2016), when it is the overall dynamics of the system in question, 

as opposed to the realism of input parameters, that is being tested (Levins, 1966). 

3.2.1 Topology 

To design the overall environment for the nectar foraging networks, the topology 

parameterisation required identifying a reasonable analogue for nectar resource 

‘voltage’ and bee colony ‘current’ demand for use in the modified resource flow 

calculations, and creating distribution maps of the resources that were realistic enough 

to approximate honey bee foraging habitats.  

As discussed earlier, current is a measure of the rate of flow of charged particles, 

measured in amps (coulombs sec-1) in electrical networks, and represents the flow of 
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the energy type that is produced by the resources, of which the consumers in the system 

have a set demand. The analogous element in nectar foraging networks would therefore 

be the rate of flow of nectar from flowers back to the hive, as carried by the forager 

bees. Calculations of average colony foraging efforts (from Harrison & Fewell (2002), 

unless otherwise noted) were used to derive a realistic approximation of this nectar flow 

to the hive: 

Table 1. Calculations of nectar in-flow to a mature hive.  

Size of mature colony 30000 bees  (Seeley, 1995) 

Percent of colony that forages 15 % 

Nectar load of a single forager 30 mg 

Number of foraging trips 10 trips/forager/day 

Total nectar delivery to hive (calculated) 15.625 mg sec-1 

 

Similarly, the analogue for voltage in these foraging networks would be the energetic 

potential, or charge, of the nectar itself, which can be measured as the nectar sugar 

concentration. While bees require both pollen and nectar, the former is mostly a source 

of protein (Donkersley et. al., 2014), while the latter provides the essential 

carbohydrates for the foraging, nestmaking, and brood-rearing activities of a colony 

(Seeley, 1995), hence it is the energy resource in focus here. Honey bees prefer nectar 

sugar concentrations close to 50 % (Seeley, 1995), but the nectar from the flowers and 

trees from which they gather varies in sugar concentration across and even within 

species, for different seasons and times of day. Although temporal variation was not 

considered within this simulation, as each optimised network represented a fixed 

moment in time, the heterogeneity of nectar resources was represented by modelling the 

resource points as different species frequented by A. mellifera, with each species having 

a unique level of sugar concentration reflective of the average for that species. The 

‘voltage’, then, at each resource point was calculated as:  

V uC=            (9) 

where u  is 17.2 J mg-1, the energetic value of sugar in nectar (Seeley, 1989), and C  is 

the nectar sugar concentration of that species, in mg mg-1, so that V is measured in J 

mg-1.  The nectar flow to the hive above was calculated in mg sec-1 averaged over the 
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course of a 24-hour period, so that the final energy transfer measure at the hive would 

be consistent with the SI unit for power (W, or J sec-1).  

Along with the voltage and current, the analogous element for resistance in the foraging 

networks had to be identified. As the networks are made up of forager flight paths, the 

resistive losses are due to distance travelled, as this increases the foragers’ energy 

expenditure in transporting the nectar. In order to simplify the proof of concept 

presented here, variability in losses due to effects of weather conditions, such as wind 

drag and temperature, were assumed to be equal per unit length, such that the resistance 

was calculated as simply the length of the links between the resources and hive.  

As introduced previously, the energetic losses caused by flow along these resistive links 

determine the gradient between the voltage at the resources and hive (Fig. 8a). It would 

seem that the hive, with its 20 kg of nectar stored in the form of honey for consumption 

over the winter, and another 70 kg of nectar consumed over the summer to provide food 

for foraging, nestmaking, and brood-rearing (Seeley, 1995), would be of considerably 

higher ‘potential’ than the delicate flowers from where the bees collect nectar. Instead, 

however, it can be conceptualised as operating at a lower potential, due to the 

expenditure of energy in overcoming the energetic costs of nectar transportation efforts, 

as the foragers refuel with stored nectar before beginning their next journey (Seeley, 

1995). In the modified resource flow methodology, the voltage drop acts as a proxy for 

the consumption of some of the previously-gathered energy, to allow for the 

transportation of new resource flows (Fig. 8b). This is akin to the process of active 

transport across cell membranes, when the coupling of energy flows allows for 

molecules to move up concentration gradients (Lodish et. al., 2000): this seemingly 

‘upgradient’ process is actually downgradient, as with all energetic flows, when system 

boundaries are drawn appropriately in time and space to include all relevant energy 

flows into the process under study. In the case of foraging networks, the upgradient 

paradox is resolved by increasing the timescale slightly to include the exchange of 

nectar at the hive between foragers and hive bees, as the former both deposit and receive 

energy flows.  

After fuelling foraging, the remainder of these flows are invested in infrastructure (Fig. 

8c), defined here to mean the embodiment of energy in materials (Jarvis, 2018). In the 

foraging networks, this infrastructure is in the form of honey, forager bees, and the hive 
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itself, representing long-term energy stores, and energy collection and storage 

infrastructures, respectively. In contrast with the short-term energy storage of nectar, 

which is almost immediately remobilised as a flow of energy for another forager or hive 

bee, the energy embodied in infrastructure can only be remobilised through decay. Both 

the process of remobilising flows to be expended in future foraging efforts, and the 

embodiment of energy in infrastructure are energy transformations or phase changes 

that occur primarily in time, as opposed to the predominately spatial phase change that 

occurs when the energy flows are brought back to the hive (Fig. 8a). 

The expenditure of energy through foraging and as embodied in infrastructure can thus 

both be conceptualised as energy ‘sinks,’ even though they are not losses per se. As the 

final infrastructure creation and decay process is not modelled here, however, the 

voltage at the hive measured by the resource flow methodology is a combination of that 

which is used for infrastructure creation and lost through decay.  
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a.  

b.   

c.   
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Figure 8. Energy flow in nectar foraging networks.  a. The voltage (V), current (I), resistance 

(R), and power (P) are represented for the different elements of a nectar foraging 

network. The flow of nectar energy into the hive is partitioned into energy that will be 

expended in foraging (PF), and energy that will be embodied in infrastructure creation 

and maintenance (Pc). The phase changes denote energy transformations, across space 

from resources to hive, and across time in the partitioning between energy used in 

foraging or embodied in infrastructure. Note that current, I, is conserved through the 

network, representing the conservation of resource flow. b. The flow of energy 

expended in foraging. The energy into the system, PF, is the total energy into the hive, 

times a partitioning coefficient, α, which determines how much energy of the total in-

flow is used for foraging. In bees, this is approximately 30 % (Harrison and Fewell, 

2002). This in-flow is offset by the decay rate of the current stock of energy, -κE, which 

represents energy used to offset the resistive losses experienced by foragers, i.e. their 

metabolism, which is a function of the number of bees that are foragers, and the weather 

conditions that affect their flights and the nectar flows. These are combined and proxied 

by voltage drop in the networks modelled by the modified resource flow methodology. 

The net in-flow after this consumption, Δe, is then transformed into the total stock of 

short-term energy stores, E. c. The flow of energy embodied in infrastructure, which is 

the total energy minus the partition used for foraging. The net flow of energy into 

infrastructure, Δχ, is the total flow minus losses due to decay of long-term energy stores 

over the winter, and death and damage to physical infrastructure: the bees and hive. The 

total stock of infrastructure is represented by X. The physical infrastructure decay is a 

function of the current stock of infrastructure, and the season, as bee lifespans and hive 

decay are both affected by the season (Seeley, 1995). The long-term energy stores 

decay, or honey loss, is a function of the total bees consuming it, and the temperature, 

as this decay happens almost exclusively during winter when it is too cold for plants to 

produce nectar. The symbols used for consumption (PF), storage (PC), switch (H), and 

source (N) are adapted from the ‘Energy Systems Language’, developed by H.T. Odum 

(1971, 1983). 
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In order to generate realistic resource distributions for the genetic algorithm to explore 

in network optimisation, a dataset for UK floral abundance was used, which quantified 

the frequency and distributions of common British plant species for a range of habitat 

types in the greater Bristol area, as part of a study linking land use change and pollinator 

population health indicators (Baude et. al., 2015). The nectar sugar concentration was 

identified for 25 of these species across different habitats, using the nectar sugar 

concentration of a closely related species if data was not available for the exact species 

in question, and the voltage at each nectar resource was calculated using Equation (9) 

above.  

The selected resources were then partitioned into five major habitat groups – grassland, 

grassland farmland, grassland park, grassland woodland, and woodland, and the 

percentage of vegetative area covered by each species within the given habitat was used 

to determine how many resource points representing that species to place on the 

resource distribution map. The locations for each species were plotted based on the area 

covered by that habitat in each resource map, with each species distributed within its 

assigned habitat area in the resource map. For example, survey data showed the 

buttercup, R. bulbosus, as occurring in both grassland farmland and grassland park 

habitats, with a vegetative area covering approximately 0.87 % and 2.04 % of the two 

habitats, respectively. As such, one was placed in the grassland farmland resource 

distribution map, and two in the grassland park resource distribution map. A complete 

listing of the species used in each habitat, their nectar sugar concentration, and the 

calculated voltage, is included in Appendix A. 

The overall spatial topology of each resource distribution map was a three-dimensional 

plane, with maximum coordinates 28 x 28 x 0.035, and a hive placed relatively 

centrally, with fixed coordinates for resources and hive throughout the duration of the 

optimisation. This sizing was chosen as bees have been shown to typically forage within 

a 784 km2 area around the hive, and most foraging flights are within 6 km (Seeley, 

1995). The heights of the resources and of the hive were taken into account in their 

distribution, with tree species represented as 2 – 3.5 m in height, and flower and shrub 

species as 0 – 1 m in height. 
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3.2.2 Network Construction 

As in the general NetGA, the network chromosome in HiveNetGA also contained the 

coordinates of branch points, the non-demand junctions between links. HiveNetGA 

could disconnect branch points or move them directly beneath the hive to shorten their 

link length to functionally zero. Therefore, it was not constrained by using them, and 

they did not influence power consumption beyond their impact on link length. As bees 

have been shown to navigate by using landmarks (Menzel et. al., 2005), inclusion of 

these branch points allows for possible representation of this in the resulting network 

structure. Five branch points were included in each network chromosome, as this 

number allowed for potential exploration of meaningfully different structures within the 

spatial topology provided, without considerably adding to the computational burden of 

a larger possible solution space. During initialisation, the branch points were placed 

randomly at points drawn from a uniform distribution bounded by the maximum 

coordinates of the topology. 

The final element of the network chromosome was the matrix of connections between 

the different nodes that comprised the network: resources, branch points, and the hive. 

In some optimisations, link strength, such as the width of a road or pipe, would be 

included in this matrix to weight the connection appropriately, but link strength was not 

included in HiveNetGA. The reasons for this were two-fold: Primarily, as the links in a 

foraging network are simply the flight paths of bees as they traverse the airspace 

between the nectar resources and hive, it can be argued that these links all have the same 

carrying capacity, equal to one bee’s worth. The amount of current drawn down the link 

then represents the number of bees traversing it to bring nectar in from the resource it 

connects back to the hive, such that the ‘resistance’ of that link, resulting in energy lost 

in traversing it, is directly proportional to its length, since each bee experiences this 

resistance approximately equally. Closer resources, which have lower resistance links 

to them, would naturally be exploited by more bees, replicated here by higher current 

flow. Secondly, as GAs typically perform best with a limited number of variables to 

optimise, link strength was excluded to limit the degrees of freedom in this small proof-

of-concept. Future work is planned to investigate the effect of link strength in other case 

studies, but for the purposes herein, the matrix gene was binary: a link either existed 

between two nodes, or it did not. Nodes were allowed to connect to one another freely, 

with the exception of resources, which could only connect to the hive or a branch point. 
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This was designed to approximate the flower-constancy of honey bees, who only gather 

nectar from one species per foraging trip (Aristotle, cited in Grant, 1950). As the voltage 

was equal for all nectar resources of a given type, and current only flows down voltage 

gradients, there would be no flow between resources of the same type, rendering 

intraspecies connections useless.  

During the first round of testing HiveNetGA, the mutation operator in the breeder 

function could remove links with the probability of one minus the initial connection 

probability. As such, the initial connection probability was set at 0.9 to keep the rate of 

disconnection slow. After testing this with the two single criterion optimisations in the 

first round, as presented in Section 3.4.1, the mutation operator was changed so that it 

did not disconnect links. Instead, the only way that a network would have more 

disconnected links than either parent was if it had disconnections from both parents 

expressed in its connections matrix. This slowed the rate at which HiveNetGA explored 

disconnected networks, thus increasing the selective pressure to minimise resistance-

driven losses by optimising existing links. After changing this, the initial connection 

probability was decreased to 0.75 for the single criterion cost functions. Initial 

connection probabilities of both 0.75 and 0.5 were tested for the multi-criteria cost 

functions, to further assess the behaviour of the algorithm with different levels of 

connectivity. 

3.2.3 Cost functions 

As the cost function is the ultimate driver of the optimisation, since it defines the criteria 

of optimality that each solution is assessed with respect to, its specification is vital to 

the performance of the GA. In ecological modelling, the costs experienced by a system 

are sometimes obvious, such as the ubiquitous energetic cost of movement, and by 

extension, transportation of resources. Other costs, however, may not be so visible or 

easy to quantify. The prevalence of homeostatic control (Cannon, 1929) and similar 

mechanisms alleviate some of these complexities, by presenting a more homogenous 

response at a systems level, but it is still difficult to accurately determine the process or 

costs incurred by observing the product or end state of the system (Bascompte, 2007). 

To try to navigate this dilemma in HiveNetGA, four cost functions of varying levels of 

complexity were tested for the optimisation, and each assessed as to the possible validity 

of networks produced. These are described in detail below and summarised in Table 2. 
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It should be noted that although some of these functions were maximising a quantity, 

and therefore technically fitness functions, the term ‘cost function’ is still used 

throughout to maintain consistency. 

3.2.3.1 Single Criterion Cost Functions 

The first cost function, called Maximum Efficiency Cost Function (MECF), attempted 

to maximise the efficiency of the network, defined as the ratio of power consumed at 

the hive to power produced at the resources. Power is defined as the product of voltage 

and current: 

P IV=            (10) 

As such, the power at a resource point was the nectar sugar concentration, or voltage, 

at that resource, times the flow, or current, drawn from it, and can be conceptualised as 

the total energetic input of the resource to the foraging network, as demanded by the 

hive through connections to the resource. The power at the hive was then the specified 

nectar flow demand proxied as current, times the voltage at the hive, which was 

calculated by the modified resource flow methodology based on the resistances of the 

links between the hive and resources, along which the nectar flow occurs. While models 

of some species maximise the rate of energy intake while foraging (e.g. Stephens & 

Krebs, 1986; Ward et. al., 2000), assuming that the individuals attempt to collect the 

maximum energy per unit of time, honey bees have been shown to attempt to maximise 

energetic efficiency, as their lifespans are dictated by energy expenditure more than 

time (Seeley, 1995). 

Although a simple, single criterion cost function, attempting to maximise the energetic 

efficiency of a network should optimise the links so as to lose minimal power due to 

resistance. As discussed above, resistance is directly proportional to link length in this 

optimisation, so to minimise resistance-based losses, link length should be minimised. 

This single cost should then encompass the foragers’ goals of maximising energy 

gathered per unit of energy expended, by maximising power consumption through 

minimising power loss.  

Along with the proven imperative to maximise energetic efficiency, some sources posit 

that this is equivalent to maximising overall consumption at the hive, in terms of a 
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quantity of nectar collected as opposed to a ratio of collection to total afforded by the 

resources (Seeley, 1995). As a high efficiency simply denotes a high rate of retention 

of energy flow, regardless of the actual final quantity of energy, it could be argued that 

the overall colony objective would be to maximise total consumption through 

maximising individual efficiency. As the optimisation operates at the network level, and 

was parameterised to represent the foraging of an entire colony as opposed to a single 

forager, it could be more accurate to attempt to optimise this total quantity of 

consumption instead of efficiency. As such, another cost function was designed, similar 

to the one above, called Maximum Power Cost Function (MPCF), which tried to 

maximise the energy consumption, modelled as power, at the hive. Although subtle, the 

difference between maximising the efficiency and the consumption of a network proved 

to have considerable effects on the resulting structure, as presented in the Section 3.4.1. 

3.2.3.2 Multi-criteria Cost Functions 

The third and fourth cost functions tested were multi-criteria, with the additional criteria 

used to further assess the characteristics of networks produced under selective pressure 

from multiple, potentially conflicting imperatives; and provide additional insight on 

network modelling and optimisation with GAs. Although multi-criteria optimisation 

uses all the criteria to evaluate each possible solution and direct the optimisation, the 

final solutions are Pareto optimal in that they may be the best performing in one 

criterion, but not in all criteria. The use of multiple criteria therefore directs and 

constrains the optimisation as a whole, but the criteria can only constrain one another 

to a limited extent. 

The third cost function, Maximum Power Minimum Links (MPML) incorporated 

maximising power via MPCF above, while simultaneously minimising total link length. 

This was designed in response to the characteristics of the networks produced by the 

single criterion cost functions, presented in Section 3.4.1, which seemed to favour 

maximising the lengths of some links, in order to minimise the current per link. This 

can be explained by a simple derivation from the laws presented in Section 2.1.1. By 

using Ohm’s law (Eq. 2) to define the voltage at the hive as the voltage at a resource, 

minus the product of current and resistance along the links between the hive and the 

resource, and including the conservation of current as defined by Kirchhoff’s current 
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law (Eq. 1) such that current is conserved between the hive and resources, the power at 

the hive can be calculated by:  

2 2( )H H R R RP IV I V IR IV I R P I R= = − = − = −
      (11) 

The loss term in this equation, 2
I R , is the power lost due to Joule heating between the 

power at the resource, RP , and at the hive, HP . In foraging networks, this represents the 

heat produced by the forager bees’ metabolisms, and the displacement of air molecules 

as they fly. As the current term in the power loss calculation is squared, the power loss 

along a link is much more influenced by the quantity of current along that link, than its 

inherent resistance. In any optimisation based on power loss, therefore, HiveNetGA will 

attempt to minimise this loss by minimising the link lengths, or resistances, for most of 

the links, but may also include much longer links to decrease the amount of current 

flowing down each shorter, lower resistance link. While this phenomenon was displayed 

more prominently in MECF (Fig. 11a), the criterion to minimise total link length is valid 

for MPCF as well, as maximising power consumption similarly necessitates minimising 

loss. As such, this criterion was combined with MPCF, since MPCF was more likely to 

be accurate in the context of an explicitly system- or colony-level optimisation. 

For MPML, the total link length around the network was calculated as the sum of the 

length l of all links i = 1..nLinks in the network: 

1

nLinks

T ii
L l

=
=            (12) 

In order to simplify the Pareto dominance calculation in HiveNetGA, as discussed 

previously for NetGA optimisations in general, MPML attempted to minimise both the 

inverse of power consumption, and the total link length, as opposed to maximising 

power consumption and minimising link length. This technique of minimising an 

inverse quality has been used successfully to simplify other network optimisations 

(Gandomkar et. al., 2005), especially when they combine multiple criteria, with some 

criteria to maximise and some to minimise.  

The minimisations of inverse power consumption and link length were also included in 

the fourth and final cost function, Maximum Power Minimum Resource Disconnection 

(MPMR), which added a third criterion to minimise the number of resource types to 
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which the hive was not connected, either directly or via a branch point. This constraint 

was to encourage HiveNetGA to explore networks that attempted to connect to the 

maximum number of resources, in order to maximise power and minimise disconnected 

resource types, but in a way that minimised link cost. A. mellifera require a diversity of 

nectar sources, as these provide a range of essential amino acids, as well as 

carbohydrates (Nicolson, 2011). Furthermore, this gives the colony greater flexibility 

should a given resource patch become unusable or decrease in nectar yield. As such, it 

would be logical for a bee-optimal network to favour connecting to a range of resources, 

even if this somewhat increases the energetic cost of foraging: a necessary trade-off to 

increase the resilience of the colony.  

To calculate the disconnected resources, HiveNetGA used the connections matrix to 

create a mapping of all first-level, or direct connections between all nodes: resources, 

branch points, and the hive. These connections were then traversed recursively to build 

up a list of all indirect connections, defined as nodes that were connected via links to 

one or more intermediate nodes. When combined, the resulting all-connections matrix 

thus showed all nodes reachable from a given node. Using this, it could be determined 

which resources connected directly or indirectly to the hive. If no resource points of a 

given type were connected to the hive, it was added to the disconnected list, the length 

of which was used as the cost that HiveNetGA attempted to minimise.  
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Table 2. Cost functions tested in HiveNetGA.  

 

Name Criteria 
Equation(s) for 

calculating criteria 

Maximum Efficiency 

Cost Function (MECF) 

1. Maximises energetic 

efficiency, or ratio of power 

consumption at the hive to 

power drawn from the 

resources 

1.    

H H H

R R R

P I V

P I V
 = =

    

Maximum Power Cost 

Function (MPCF) 

1. Maximises power 

consumption at the hive 1.   H HP IV=   

Maximum Power 

Minimum Links 

(MPML) 

1. Minimises inverse of 

power (hence maximising 

power) 

 

2. Minimises total link length 

1.   

1

H

InvP
P

=

  

2.   1

nLinks

T ii
L l

=
=  

Maximum Power 

Minimum Resource 

Disconnection 

(MPMR) 

1. Minimises inverse of 

power  

 

2. Minimises total link length  

 

3. Minimises number of types 

of resources for which none 

of that type are connected to 

the hive (denoted as r) 

1.   

1

H

InvP
P

=

  

2.   1

nLinks

T ii
L l

=
=  

3.   
R r=   
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3.2.4 Breeder and Overall Algorithm Parameterisation 

The parameterisation of the breeder function involved designing the overall flow of 

operators, and defining the probability of each, while overall algorithm parameterisation 

involved determining the number of networks evaluated in each generation, and the 

termination criteria. The choice of values for each of these was informed by existing 

literature on the topic, as well as testing and performance evaluation. Despite requiring 

a significant quantity of parameters, especially for the breeder, GAs are quite robust in 

their sensitivity to the values of these parameters as discussed previously, and this one 

was no exception. Instead, its performance was much more a result of the criteria in the 

cost function, which directed the search and evolutionary preference of the algorithm.  

The two parameters required for the overall GA operation, which have been shown to 

have a more significant impact on performance (Xu et. al., 2009; Pinel et. al., 2012), are 

the population size, or the number of possible networks generated and evaluated each 

generation, and the termination criteria, which here was a set number of generations. 

For HiveNetGA, the population size was set to 1000 networks for the single criterion 

optimisation, and 1500 for the multi-criteria optimisations. These were higher than the 

suggested populations for similar problems in the literature (Dandy et. al., 1996), due 

to the possible modality of the solution space for the optimisation, and the additional 

criteria in the multi-criteria cost functions. Increasing the population size from 1200 to 

1500 nearly doubled the computational memory use, so increasing past this was 

determined to be infeasible. The population was evolved over 8000 generations for all 

optimisations, which balanced reasonable runtime, with thorough exploration of the 

Pareto front for the multi-criteria optimisations, as visualised by plotting the three 

criteria in the cost function against one another (Fig. 9); and convergence of network 

structure for both multi-criteria and single criterion cost functions, as measured by the 

decrease in change of link length for single criterion, and for multi-criteria, the 

convergence of minimum and maximum link length around the average link length for 

all networks on the Pareto front for a given generation (Fig. 10). 
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Figure 9. Pareto front for final multi-criteria breeder parameterisation. The three costs are 

plotted against one another on normalised axes. Compared to the other breeder 

parameterisations tested, this set showed the most coverage of the three criteria and 

contained the most networks. The seemingly more limited coverage of the Total Link 

Length cost is due to the outliers skewing the normalisation slightly.  
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a.     

b.     

Figure 10. Link length plotted over generations for final breeder parameterisation of single 

criterion (a) and multi-criteria (b) cost functions. The link length shown for each 

generation of the single criterion optimisation is the link length of the one best network 

in that generation. The three link lengths shown for each generation of the multi-criteria 

optimisation represent the average, maximum, and minimum link length of the best 

networks found in that generation alone, i.e. the Pareto front from that generation.  
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The overall structure of the breeder function was a combination of several key features: 

sorting by dominance for multi-criteria optimisation (Fonseca & Fleming, 1993; Deb 

et. al., 2002), elitism (Goldberg, 1989) and truncation of lowest-fitness population 

members before selection of the breeding population (Montesinos et. al., 1999), clearing 

within fitness niches (Pétrowski, 1996), stochastic universal sampling (Baker, 1987), 

and transitioning from global to local search through annealing of genetic operator 

probabilities (Srinivas et. al., 1994; Smith & Fogarty, 1997). Each of these features had 

substantial evidence in technical GA literature and/or application-specific literature 

utilising GAs for network optimisation, showing its superior performance relative to the 

classical GA. These design choices reflect less the science behind a given domain-

specific RADE network, but are rather general decisions reflecting the best 

methodology for single- and multi-criteria optimisations of complex problems, such as 

network optimisation, using GAs.  

While much of the overall breeder code structure and genetic operator dynamics for 

single- and multi-criteria versions of NetGA (see Section 2.2.2) was retained for 

HiveNetGA, the specific probabilities of crossover, perturbation, and mutation, as well 

as the niche radius and capacity for the breeder in the multi-criteria optimisations, were 

adapted to fit the optimisation at hand.  

Table 3. Final parameterisation of the breeder function.  

Parameter Value 

Total generations evaluated 8000 

Population size 1000 (single criterion), 

1500 (multi-criteria) 

Crossover type Uniform 

Probability of local search via crossover and perturbation 0.2, increased to 1.0 

Probability of perturbation after crossover, and for each gene 1.0, decreased to 0.01 

Perturbation variance 1.0 

Probability of mutation for entire network, and of each gene 0.2 

Number of best networks kept before creating breeding population 12 

Number of worst networks removed before creating breeding 

population 

12 

Niche radius (multi-criteria only) 0.2 

Niche capacity (multi-criteria only) 20 
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For both single criterion and multi-criteria optimisations, the initial value for the 

probability of employing local search, via crossover and perturbation, was lower than 

that found in the literature (Goldberg, 1989), at 0.2, as it increased over the course of 

the optimisation. The final probability of local search was 1.0, such that almost all 

networks in the later generations were produced via crossover and perturbation. The 

probability of perturbation after crossover was set at 1.0 initially, so that all crossover-

produced solutions in early generations would be altered slightly, but this decreased 

slowly to preserve more of the good characteristics of later crossover solutions, so that 

the final probability of perturbation was 0.01. The perturbation variance was set to be 

approximately 3.5 % of the range of values for branch point locations, so that it was a 

small alteration when applied. This variance remained constant throughout the course 

of the optimisation. For networks in the breeding population that were not used in 

crossover, the probability of mutation of the network as a whole, and of each gene 

within it, was 0.2, but as the probability of crossover increased over the course of the 

optimisation, the likelihood of producing a network through mutation effectively 

decreased (Fig. 7). The number of best networks moved automatically to the next 

generation and the number of worst networks removed before creating the breeding 

population were 12 each, close to 1 % of the population for each multi-criteria and 

single criterion optimisations.  

For multi-criteria optimisations, which included the niche-clearing mechanism 

described in Section 2.2.2, additional parameters for the niche radius and capacity were 

required. The niching radius was set as 0.2, which was about 12.5% distance between 

each normalised criterion for MPMR, and 15 % distance between each normalised 

criterion for MPML on average. The capacity of each niche was 20, or just over 1 % of 

the population, encouraging diversity in the breeding population. Initial estimates for 

these values were determined by scaling up the values of similar tests in the literature 

(Sareni & Krahenbuhl, 1998; Montesinos et. al., 1999) to reflect the larger population 

size and solution space modality. The niche radius and capacity, as with the probabilities 

of the other operators and the perturbation variance, were each tested individually over 

different values, with other parameters held constant, to determine final values.  

The breeder parameterisation testing for the single and multi-criteria optimisations is 

summarised in Appendix B. The single criterion parameterisations were tested using 
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MPCF, while the multi-criteria parameterisations were tested with an early version of 

MPMR, each over the grassland resource distribution map. Calculation of the 

disconnected resources cost in MPMR was changed slightly after parameterisation of 

the breeder, but this would not affect which was the best breeder parameterisation. 

Although the multi-criteria optimisation showed greater sensitivity to the 

parameterisation, most of the parameterisations tested covered roughly the same Pareto 

front. As it would not have been feasible to examine every network generated, since 

most Pareto fronts returned contained thousands of networks, and it could not be 

determined a priori if there were network structures to actually fill each space along the 

Pareto front, it was more important to ensure that the Pareto front covered a range of 

values for each criterion in the cost function, than whether it covered the space 

completely. Furthermore, as this proof of concept was designed to evaluate the use of 

GAs for ecological and socio-ecological network modelling as a whole, as opposed to 

perfectly optimise the provided test case, the validity of the networks produced was of 

more concern than perfecting the performance of the algorithm, as long as the 

algorithm’s performance was adequate to explore the solution space and return a range 

of potential solutions. The final parameterisations for single and multi-criteria cost 

functions were thus chosen to maximise performance and Pareto front coverage, 

respectively, within the overall aims of the optimisation. 

3.3 Assumptions 

“Essentially, all models are wrong, but some are useful.” (Box, 1979) 

As with any model, the model of RADE networks presented here, comprised of 

generalised resource flow calculation and optimisation of a population of randomly 

generated networks, contains several assumptions that must be considered before 

testing and analysis. These include both model-level and parameter-level assumptions, 

with the scale of the assumption key to assessing its impact on the model performance. 

Model-level assumptions are those that are embedded in the overall design of the 

generalised RADE network model. For NetGA, these are linearity, optimality, and 

unlimited resources. In contrast, parameter-level assumptions are added when the model 

is parameterised to reflect a specific RADE network, such as HiveNetGA has been for 

nectar foraging networks.  
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The model-level assumptions are arguably the more important of the two, as they have 

a wider impact on the applicability and generalisability of the model as a whole. In this 

case, however, the model was designed to be a general model (Levins, 1966) and 

represent an ‘economical description of natural phenomena’ (Box, 1976), such that the 

assumptions represent simplifications that do not constrain its overall usefulness, if 

accounted for properly. The first is the assumption of linearity between inputs and 

outputs, as encoded in the resource flow calculations. In the networks presented here, 

this means that the agents, resources, and links in the network behave in such a way that 

the production, consumption, and loss are linear functions of the voltage and current 

inputs along each link and node. Moreover, the model rests on the ability to specify 

analogues for voltage, current, and resistance for the given system. For all RADE 

networks, however, there must be an analogue for the energetic charge or potential of 

the resource distributed, a measure of the flow of resource, and a quantification of the 

energetic cost of moving that resource through the medium of transport, such as pipes, 

veins, roads, or in this case, flight paths. These measures must follow principles of 

conservation and entropy generation, as discussed, and show how the system is 

downgradient as a whole, when all relevant energy flows are included. Finding 

analogues for the representative electrical components is therefore not only possible, 

but can also be highly instructive in its own right. Furthermore, modelling of even non-

linear systems has been achieved successfully using similar methods to those presented 

here, when the system in question was broken down into linear components, analysed, 

and then recombined at larger scales using circuit equivalence theorems (Wang et. al., 

2012). Other systems of known non-linear components show more linear behaviour at 

larger scales, allowing for simple models to accurately recreate their dynamics 

(Savenije & Hrachowitz, 2017). As with homeostasis and similar phenomena of self-

regulation, discussed earlier, this emergent linearity validates the use of linear models 

even for complex systems, when either the macro-level dynamics of the system are 

linear, or the system can be broken into linear sub-systems.  

In addition to its linearity, the resource flow methodology developed here does not 

allow for the quantity of current at the resources to be specified or fixed across networks, 

as the current drawn from each resource is dependent on the resistances and voltages of 

the links and nodes connected to it. Instead, the methodology represents heterogeneity 

in the system through different voltages at different types of resources, and at each 
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agent. In the generalised RADE networks modelled here, therefore, the power provided 

by a resource to the system is variant on how much the system draws from that resource, 

as opposed to being a property of the resource itself. In an idealised system, however, 

this is not entirely unrealistic, because as a system grows it will naturally draw more 

flow from its resources to sustain itself, and to compensate for growth-related transport 

penalties (Jarvis et. al., 2015), increasing the total power consumption of the system. 

Ecological theory dictates that given degrees of freedom in available resources, a system 

will progress toward states of higher utilisation of this free energy, via mechanisms of 

growth and development (Jørgensen, 2006). Similar trajectories of energy consumption 

of industrial society, most notably Jevon’s paradox (Jevons, 1865), would suggest that 

human-engineered systems follow the same pattern. This would indicate that up to the 

limit of what they can produce, the power of resources is indeed based on what is drawn 

from them, resulting from a combination of their inherent potential, their location and 

ease with which the resource can be extracted and transported, and the flow drawn from 

them, modelled here as voltage, resistance, and current, respectively.  

The demand-driven resource flow effectively also means that resources are unlimited, 

and agents always receive the amount of current that they demand. This is again due to 

the necessity of having the same number of equations as unknowns for the modified 

resource flow methodology. Although future work examining the dynamics and 

energetics of generalised RADE networks under constrained resources would be 

instructive, for the purposes herein the model operates under the assumption of 

representing fixed moments in time, such that the resource flow calculated is that which 

is occurring in the moment represented by the network, as opposed to sustained over 

time. Including a criterion in the cost function that encourages connection to multiple 

resource nodes, such as done in MPMR, helps guide the optimisation toward selecting 

structures that use current more equitably between resource points, and therefore rely 

less on the unlimited nature of the resources. 

The other main model component, the GA, also introduces a model-level assumption in 

the form of optimality. As discussed, there is a considerable number of theoretical and 

empirical arguments as to the progressive optimisation of RADE networks (e.g. West 

et. al., 1997; Banavar et. al., 2010; Jarvis et. al., 2015), due to the selective pressure 

placed upon them, hence the decision to include optimisation of the networks in the 
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model to represent this phenomenon. Modelling the end state of a system in this way 

can provide insight into its potential trajectory, however, and any differences between 

characteristics, both qualitative and quantitative, of known networks, and the modelled, 

optimised versions, could be used to hypothesise about the degrees of freedom that a 

system has to achieve optimality, or the lags between feedback from the environment 

and systemic adaptation. Furthermore, as will be shown, the appearance of patterns in 

the explicitly optimised networks here that correspond to known networks in natural 

systems provides further evidence that the latter are indeed optimised to a certain level 

at a given moment in time, within the constraints and pressures applied to them, despite 

their incremental evolution.  

Finally, there are also parameter-level assumptions introduced into the model by 

parameterising the nectar foraging network-specific HiveNetGA. These include the 

number, voltage, and distribution of the resources, the number and inclusion of branch 

points, the criteria in the cost functions, and the rules defining what types of nodes can 

be connected to one another. As discussed, the HiveNetGA proof-of-concept was 

developed as a loose parameterisation, however, using bees as a generic focal species 

(Watts et. al., 2010) to test the model performance overall, as opposed to the realism of 

the input parameters. The resulting networks, therefore, should not be taken as exact 

replicas of nectar foraging networks of A. mellifera, just as the parameters are not exact 

replicas of the foraging conditions experienced by a given colony. Instead, the produced 

networks will be evaluated as to their potential realism for nectar foraging network 

structures, and optimality with respect to the specified cost function criteria. 

3.4 Results 

To evaluate the performance of HiveNetGA, the four cost functions were run over each 

of the five resource distribution maps. The two single criterion cost functions were each 

run with the two versions of the mutation operator, and the two multi-criteria cost 

functions were each run with 0.5 and 0.75 initial probability of connection. The 

resulting best networks were evaluated to assess their similarity to known foraging 

dynamics of A. mellifera, and the overall range of network structures produced. To 

validate the results, the single criterion cost functions were run again with the second 

version of the mutation operator, and the multi-criteria cost functions were run again 
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with each initial probability of connection. These validation runs were then compared 

to the original test runs, through visualisation and/or quantitative analysis as appropriate 

to the cost function. The visualisations were generated using the R packages rgl version 

0.99.9 (Adler & Murdoch, 2018) and RColorBrewer version 1.1-2 (Neuwirth, 2014), 

and the graphs of the quantitative analyses were produced with the R package plot.ly 

version 4.7.1 (Sievert et. al., 2017).  

3.4.1 Single Criterion Cost Functions 

The networks produced by the first two cost functions, MECF and MPCF, which 

maximised efficiency and power, respectively, are shown below (Fig. 11). By drawing 

the branch points to directly underneath the hive and nearby resources, and 

disconnecting many of the links to further resources, the link length and therefore 

resistance-driven losses have been reduced considerably. The networks adhered to a 

mostly radial burst pattern centred on the hive, and the two cost functions produced very 

similar networks for the five resource distribution maps. The results are shown in detail 

in Table 4. Overall, the average efficiency across all resource distribution maps for 

MECF was 0.776 (± 0.029 SE) for the five resource distribution maps tested, compared 

to an average efficiency of 0.750 (± 0.023 SE) for MPCF, and the average link length 

for MECF was 786.795 km (± 146.670 km SE) compared to 865.734 km (± 137.589 

km SE) for MPCF. Power was not measured for MECF, but the average was 122.34 (± 

5.11 SE) for MPCF. 

Table 4. Results for first round of testing MECF and MPCF cost functions.  

Cost Function 
Resource Distribution 

Map 

Power  

(J sec-1) 
Efficiency 

Link Length 

(km) 

MECF Grassland NA 0.835 532.781 

MECF Grassland farmland NA 0.791 760.823 

MECF Grassland park NA 0.839 570.609 

MECF Grassland woodland NA 0.753 645.795 

MECF Woodland NA 0.661 1423.966 

MPCF Grassland 139.925 0.691 463.422 

MPCF Grassland farmland 119.260 0.753 1175.869 

MPCF Grassland park 130.317 0.781 1057.849 

MPCF Grassland woodland 114.157 0.830 1110.149 

MPCF Woodland 108.042 0.700 521.379 
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Figure 11. Networks produced by first round of testing MECF (a) and MPCF (b) cost 

functions. The hive is the orange tetrahedron located close to the centre of each 

network, branch points are black spheres, and resources are coloured squares. The 

colour of the resource denotes its type, as appropriate for the listed habitat, and the size 

denotes its comparative nectar sugar concentration. 

a. b. 
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As the mutation operator in the breeder was causing HiveNetGA to disconnect links 

with a high frequency throughout the optimisation, in order to reduce resistance, it was 

changed as described previously in Section 3.2.2. This encouraged exploration of 

reducing resistance by optimising existing links, as opposed to removing them. The 

results of maximising power and efficiency with the changed mutation operator are 

shown in Fig. 12. While maximising power tended to produce networks close to a radial 

burst pattern, maximising efficiency resulted in the network spreading its branch points 

over the maximum distance across the topology, potential reasons for which were 

explained previously in Section 3.2.3.2. The runs were performed twice for each cost 

function, with the second round acting as a validation of results of the first round. The 

similarity of visualised networks (Fig. 12) and qualitative results (Table 5) between the 

test and validation runs suggest the robustness of the outcomes. Overall, for the test 

runs, MECF produced networks operating at an average of 0.469 (± 0.034 SE) 

efficiency with an average total link length of 2516.804 km (± 81.594 km SE), while 

MPCF produced networks with an average of 0.332 (± 0.046 SE) efficiency, 98.637 J 

sec-1 (± 0.046 J sec-1 SE) power, and 1844.025 km (± 71.863 km SE) link length.  
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b. a. 

 

Figure 12. Networks produced by second round of testing MECF (a) and MPCF (b) cost 

functions. Each cost function was tested over the five resource maps (grassland, 

grassland farmland, grassland park, grassland woodland, and woodland), each of which 

contains resource points that reflect the species that a bee is likely to encounter in that 

habitat.  

a. b. 
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3.4.2 Multi-Criteria Cost Functions 

The first multi-criteria cost function, MPML, attempted to maximise power 

consumption by minimising its inverse, and minimise total link length. This was tested 

over each resource distribution map, with initial probabilities of 0.5 and 0.75 for a link 

to occur between any two nodes, and the same mutation operator as the second round 

of the single criterion cost functions, which did not remove links. A qualitative analysis 

was performed by plotting the Pareto fronts of each test, identifying a selection of 

networks at approximately evenly distributed points along the Pareto front, and 

visualising the placement of the resource, hive, and branch point nodes, and the links 

between them. A sampling of these network visualisations for each of the five resource 

distribution maps is shown in Fig. 13. For 0.75 initial probability of connection, the 

majority of the networks visualised (210 of 259, 81.081 %) across all five resource 

distribution maps closely resembled a radial burst pattern, with most if not all of the 

resources connected, and the branch points clustered on or near the centre of the 

resource distribution map (Fig. 13a). For the grassland and woodland maps, the hive 

was located centrally in the space, so many of the branch points were directly beneath 

it. In the other non-centred maps, the branch points clustering near the centre acted to 

create a radial burst pattern. Although there were some more branched networks in the 

optimisations where there was only a 0.5 initial probability of connection, 120 of the 

161 (74.534 %) visualised networks across all distribution maps still displayed 

something close to a radial burst pattern (Fig. 13b).  



 

 

65 

 

a.    
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b.   

Figure 13. Network visualisations for MPML cost function. Shown with initial probability 

of connection of 0.75 (a) and 0.5 (b). Each connection probability was tested over the 

five resource maps (grassland, grassland farmland, grassland park, grassland woodland, 

and woodland), which contained resource points parameterised to reflect the species 

that a bee is likely to encounter in that habitat. 
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The final cost function, MPMR, which maximised power consumption by minimising 

its inverse, and minimised both link cost and the number of resource types to which the 

hive was not connected, was also tested over each resource distribution map for initial 

link connection probabilities of 0.5 and 0.75. As with MPML above, the networks with 

a 0.75 connection probability produced more radial burst patterns centred on the hive, 

or on a clump of branch points in the centre of the resource distribution map, if the hive 

was off-centred (Fig. 14a). The networks were highly connected, with only one or two 

resource points disconnected. These were usually resources of types where there were 

multiple points of the same type from which the hive could choose to connect, in order 

to avoid incurring a large resource disconnection cost. In the networks with 0.5 initial 

probability of connection, branching patterns were much more common, as the network 

utilised branch points to connect more distant resources to the hive with less links (Fig. 

14b). While the resource distribution maps with the hive centred tended toward more 

radial burst networks still, but with less connection overall, the optimisations with off-

centred distribution maps produced networks with a diversity of branching structures.  
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a.    
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b.    

Figure 14. Network visualisations for MPMR cost function. Shown with initial probability 

of connection of 0.75 (a) and 0.5 (b). Each connection probability was tested over the 

five resource maps (grassland, grassland farmland, grassland park, grassland woodland, 

and woodland), which contained resource points parameterised to reflect the species 

that a bee is likely to encounter in that habitat. 
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To quantify the degree to which a multi-criteria network was branching, defined as the 

branch points being distributed apart from one another and the hive in space, the mean 

of the Euclidean distances was calculated between each branch point and each other 

branch point, and each branch point and the hive, for each network on the Pareto front. 

This also allowed for a form of structural analysis for each network on the Pareto front, 

as it was not feasible to visualise every network. Plots of this branching spread measure 

for each resource distribution map and level of connectivity for the two multi-criteria 

cost functions are shown in Fig. 15. The distribution of the measures of spread is slightly 

closer and more overlapping in the higher connectivity networks, indicating a higher 

frequency of similar structures across the Pareto fronts for the two cost functions. In the 

networks with only 0.5 initial probability of connection between any two nodes, 

however, MPMR shows higher branching spread measures for the resource distribution 

maps where the hive was off-centred, with medians 5.267 (IQR 5.015 – 6.018, grassland 

farmland), 5.241 (IQR 4.934 – 6.431, grassland park), 5.762 (IQR 4.418 – 5.962, 

grassland woodland) as compared to those for MPML: 1.667 (IQR 1.483 – 2.197, 

grassland farmland), 3.156 (IQR 1.971 – 3.478, grassland park), 0.168 (IQR 0.009 – 

2.110, grassland woodland).  
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a.     

b.     

Figure 15. Branching spread measures for Pareto fronts. The branching spread measure, 

defined as the mean Euclidean distance between each branch point, or non-demand 

node, and the hive, and each pair of branch points, was used to represent the overall 

‘spread’ of the network, since visualising each of potentially thousands of networks 

along the Pareto fronts was not feasible. Shown here is the distribution of branching 

spread measures along the Pareto front for each multi-criteria cost function tested (a) 

and as compared to the validation runs (b). 
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To validate the performance of HiveNetGA on MPML and MPMR, all simulations 

combining each combination of cost function, connectivity, and resource distribution 

map were repeated. To compare the test and validation runs, the same branching spread 

measure was plotted for all validation runs as well (Fig. 15b). This acted as a proxy for 

comparing the structures of the networks returned by each run, without visualising each 

network along the Pareto fronts. The optimisations with an initial probability of 

connection of 0.75, have fewer degrees of freedom to explore due to a slower rate of 

disconnection through crossover. As such, more of these are fully connected radial burst 

networks, making it easier for HiveNetGA to locate the same optimal networks in each 

run. In contrast, the optimisations with a lower initial probability of connection of 0.5 

can explore more disconnected, branching structures, which are harder to replicate 

precisely, hence the larger difference between the test and validation runs. The 

similarity of overall range of branching spread that each Pareto front returns, however, 

indicates that HiveNetGA identifies a similar range of structures, even if not at the same 

frequency. Overall, the similarity of the range of network structures between the test 

and validation runs, despite the many combinations of possible branch point locations 

and link configurations, demonstrates the robustness and consistency of the 

optimisation. 

Additionally, there were positive and mostly high correlations for all of the multi-

criteria optimisation runs between link length and power consumption across the Pareto 

front, as shown in Table 6, indicating that radial burst networks with longer total link 

lengths produced higher overall power transfer than networks with more branching 

structures. The less connected networks, as produced by the lower initial probability of 

connection, showed a very similar or weaker relationship between power and link length 

in all but one instance (MPML woodland). As shown in Fig. 17, this cost 

function/resource distribution map pairing shows a visually very similar relationship 

between total link length and power consumption, but the Pareto front for an initial 

connection probability of 0.5 contained 704 networks, as opposed to the Pareto front 

for an initial connection probability of 0.75, which contained only 242 networks due to 

the fewer degrees of freedom for more connected networks. This difference in Pareto 

front size likely affected the correlation.  
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Table 6. Correlation between power and link length for multi-criteria cost functions.  

 

 

 

 

 

 

 

Initial Probability 

of Connection 

Cost 

Function 

Resource 

Distribution Map 

Power/Link Length 

Correlation 

0.75 MPML Grassland 0.614 

Grassland farmland 0.974 

Grassland park 0.923 

Grassland woodland 0.859 

Woodland 0.790 

MPMR Grassland 0.936 

Grassland farmland 0.866 

Grassland park 0.914 

Grassland woodland 0.604 

Woodland 0.845 

0.5 MPML Grassland 0.667 

Grassland farmland 0.939 

Grassland park 0.758 

Grassland woodland 0.731 

Woodland 0.949 

MPMR Grassland 0.688 

Grassland farmland 0.813 

Grassland park 0.283 

Grassland woodland 0.688 

Woodland 0.749 
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Figure 16. Power consumption (J sec-1) against total link length (km) for MPML and 

MPMR. The power consumption (W, or J sec-1) against link length for all members of 

the Pareto front, for both multi-criteria cost functions. As it would not have been 

feasible to visualise all networks along the Pareto front individually, this allowed for an 

overview of the positive correlation between length and power consumption, for all 

resource distribution maps. 
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4.  Discussion 

4.1 Interpretation of Results 

The network structures and frequencies of each that were produced by the four cost 

functions demonstrate both the ability of HiveNetGA to model and optimise networks 

to meet a variety of criteria defining optimality, and the similarity of the structures that 

are optimal for the different criteria. Including the perhaps initially surprising results 

generated in the second round of testing MECF (Fig. 12a), which Section 3.2.3.2 and 

below demonstrate is both explicable and even predictable in retrospect, the overall 

optimisation performed as expected, mostly shortening and/or removing links to 

maximise consumption while minimising resistive losses. In order to further evaluate 

the results, they are compared here to known characteristics of foraging networks. 

Foraging routes themselves are not usually mapped explicitly, due to the inherent 

difficulty in following individual bees over potentially long distances. A great deal is 

known about the resource utilisation and energetics of foraging and pollination by A. 

mellifera, however (Seeley, 1995), making it possible to qualitatively assess whether a 

given network could be a realistic representation of spatially-mapped foraging efforts 

for a colony. 

The first round of testing the two single criterion cost functions, MECF and MPCF, and 

the multi-criteria cost functions when run with the lower initial probability of 

connection, each showed high levels of disconnection in the optimised networks. This 

is not necessarily unrealistic for foraging networks, however. At any given point, a 

forager bee is only gathering nectar from one patch, and relies on the waggle dances of 

other foragers and scouts to navigate to another patch (Seeley, 1995), should hers 

become energetically unprofitable in supply or quality (Rivera et. al., 2015). As such, 

the colony may only exploit a limited supply of the available floral resources available 

to them at a certain time, favouring those that are most energetically profitable (Visscher 

& Seeley, 1982). Therefore, only connecting to the most energetically profitable 

resources, as measured by quality of the resource and energetic cost of acquisition, is 

likely a realistic attribute of a foraging network. In terms of the model itself, both the 

higher rate of disconnection, and initially lower probability of connection, produced 

similar results, but the lower initial probability of connection likely converged more 
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quickly on optimal structures, as the algorithm was not continually reducing the number 

of links with which to create those structures.  

The second round of the single criterion cost functions (Fig. 12) produced both typical 

radial burst patterns and the radial burst with extended branch points. As discussed in 

Section 3.2.3.2, this is due to the optimisation attempting to reduce the effect of current-

driven voltage drop when it could not otherwise change the inherent resistance of the 

links, such as through increasing strength. Adding links in this way to decrease the 

concentration of current per link is similar to building a bypass to alleviate traffic 

bottlenecks on a busy road. The resistance-based losses experienced by foraging honey 

bees, however, are more a function of distance travelled than quantity of nectar carried, 

as A. mellifera have developed behavioural adaptations to avoid energetic losses caused 

by carrying heavy weights, such as only filling their crop, or ‘honey stomach,’ partially 

(Kacelnik et. al., 1986). This is a tactic that is more common for shorter flights, while 

longer flights tend to elicit fuller crops. In the networks produced here, this would be 

represented by the longer links having more current flowing down them, despite higher 

length-based resistance, such that all links would carry relatively similar currents for a 

single bee. As most foraging flights are within 1-2 km of the hive, and almost all within 

6 km of the hive (Seeley, 1995), however, at the colony-wide level, there would still be 

higher flow from the shorter links, as modelled here. Due to these weight-restricting 

adaptations, the networks with extended branch points are likely not realistic 

representations of nectar foraging networks. The addition and extension of links is an 

explicable and realistic phenomenon, though, based on the equations governing 

physical flows that were used in modelling, and the constraints on degrees of freedom 

the network had to reduce resistance. 

In contrast, the radial burst networks (Fig. 12 - 14) produced by the optimisation, as 

could be expected given the centrally- or nearly centrally-located hive, is more likely 

optimal for A. mellifera, as each forager only gathers nectar from a single species of 

floral resource per trip as noted previously, and would likely attempt to fly as directly 

as possible between the nectar sources and hive. Radial burst networks, with a unique 

link between each resource and the hive, would appear costlier than path-reusing 

branching networks. For foraging networks with minimal to no ‘construction cost,’ 

however, it would be more energetically efficient to fly directly between the hive and 
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the target resource. The navigation costs of finding a new resource, which are in this 

case the closest analogue to construction costs, are mostly felt by the forager or scout 

discovering the patch. She then provides directions to foragers who come after her 

(Seeley, 1995), hence limiting the energetic impact of this initial stage. Furthermore, 

the links between the resources and hive do not have to be maintained except in 

memory, which further limits the need for path re-use. Links making ‘bee lines’ to 

connect the hive to individual resources directly, are therefore a realistic outcome, and 

the frequency with which HiveNetGA produced something resembling this pattern 

denotes the robustness of its optimality within the provided cost constraints. 

The branching structures displayed in some of the less connected networks optimised 

by the MPMR cost function (Fig. 14b) are reminiscent of scale-free networks (Barabási, 

2016), wherein the hive and branch points act as ‘hubs’ with a high node degree, or 

number of connections, with ‘spokes’ or links to the resources. Over larger distances, 

these also appear as the hierarchical or fractal branching patterns seen in systems as 

diverse as mammalian vascular systems, tree roots and branches, and river networks 

(West et. al., 1997; Rodriguez-Iturbe & Rinaldo, 2001). These networks are an efficient 

means of connecting up distant nodes with a shorter total link length. In this 

optimisation, the lack of link strength meant that these networks suffered higher 

energetic losses, due to the current flow being concentrated onto fewer links. In real-

world networks, however, these links combining current from multiple resources would 

be preferentially strengthened if possible to decrease the resistance along them. To 

revisit the road metaphor used before, this would be akin to widening heavily utilised 

roads to reduce traffic bottleneck. As bees do navigate with landmarks, they potentially 

follow branching structures such as these to navigate to more distant resources. Studies 

on the spatial memory of bees has shown that they are able to recognise the same 

landmark from multiple directions (Menzel et. al., 2005), allowing a shared landmark 

to point them toward multiple sources. Navigation to nectar sources is mostly done via 

following waggle dances (Seeley, 1995), however, making a branching pattern more 

common for route-finding on the way home from an unfamiliar resource, or linking very 

closely co-located points of the same species. Furthermore, many of the networks 

involving branching placed the branch points directly atop different resource points, 

effectively cheating the rule preventing different types of resources from connecting to 

one another. As such, these networks are likely less realistic for nectar foraging 
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networks, but their inclusion along the Pareto front points to both the effectiveness of 

HiveNetGA at identifying and returning network structures known to be optimal given 

the criteria, and further demonstrates the robustness of these structures’ optimality 

under different criteria and connectivity levels. Overall, however, the majority of the 

networks produced by HiveNetGA reflect several likely characteristics of honey bee 

foraging patterns, despite the approximation of its parameterisation.  

4.2 Overall Algorithm Performance 

Although approximately parameterised to replicate nectar foraging conditions for A. 

mellifera, the proof-of-concept also provides several insights into the use of GAs for 

RADE network modelling and optimisation in general. These observations also point 

to some interesting hypotheses about the dynamics of RADE networks and potentially 

fruitful areas for future study. 

Possibly the most important general conclusion that can be drawn from the case study 

presented here is that GAs are extremely powerful optimisers. This was demonstrated 

here by the results of the second round of testing MECF (Fig. 12a), where HiveNetGA 

clearly showed that the optimal result for maximising efficiency of a highly connected 

network was not what might have been expected. Although this was easily enough 

explained in retrospect, HiveNetGA was able to identify this relationship between 

current and voltage drop, as well as the more obvious relationship between resistance 

and voltage drop, and optimised the network to balance minimising both contributions 

to power loss. This was despite the algorithm only truly basing selection and breeding 

decisions on the ratio of power used to power generated, and matching network 

characteristics to different levels of that ratio. GAs seem to be able to deduce more 

complex rulesets from simple cost functions, and return both approximations of real 

systems, and suggestions of how ‘possible, but non-actual, phenomena with a certain 

causal structure will behave’ (Weisberg, 2006) such as branching structures (Fig. 14b). 

This makes them extremely flexible, and potentially able to replicate emergent 

properties of RADE networks resulting from interactions of different cost criteria and 

degrees of freedom, which would be onerous or impossible to work out a priori.  

In the optimisations presented here, these branching networks were Pareto optimal in 

that they had the lowest link costs and disconnection costs, but also lower power 
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consumption. This demonstrates that the ability to decrease resistance by increasing the 

strength of a link or otherwise changing its inherent resistance, offsetting the losses due 

to increased current, is necessary for these branching structures be so prevalent in 

systems theorised to be guided by natural selection for higher energy consumption, 

unless the energetic cost of link addition and maintenance is considerably higher than 

that of resistive loss due to increased current flow. Further work in this area would be 

instructive to evaluate these interactions between cost and constraint via degrees of 

freedom, and the ability of NetGA to optimise within different levels of each.  

The power of algorithmic optimisation via evolutionary algorithms such as GAs is 

almost exclusively dependent on this cost function. This somewhat reduces the 

importance of extensive breeder parameter testing and sensitivity analysis, although 

those are still relevant. More notably, however, it makes it potentially problematic to 

optimise solutions when the costs constraining the production of those solutions are 

difficult to identify or calculate. If an extremely high level of accuracy of results is 

required, it is important that the constraining costs are able to be identified and 

calculated to that same level of precision. As stated above, though, the ability of the 

algorithm to find the optimal solution for a given cost function can provide interesting 

insights into what is optimal, and avenues for further study. Furthermore, for 

generalised RADE networks, approximations within reason are often accurate enough 

to analyse spatial dynamics and overall patterns, and provide estimates of the energetic 

costs of the networks in question. An inductive approach to identifying the costs 

constraining RADE network development could also be used: by using a weighted sum 

of costs to form a single criterion cost function, methodically testing a range of 

weighting combinations, and comparing the dynamics of the resulting networks with 

real-world RADE networks, it may be possible to identify generalised principles 

governing the weights or priorities that different RADE networks assign to different 

costs, such as construction, maintenance, power consumption, and energetic efficiency, 

and the thresholds of weights required for systemic structural change in what is 

considered optimal. This could also allow for further validation, by providing 

weightings that are known to be accurate for a given system, and comparing the 

resulting network with real examples of networks in that system.  
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The cost functions used in the nectar foraging proof of concept rest on the modified 

resource flow methodology, as developed for general RADE network modelling and 

analysis. The development of this methodology allows for easily calculating the 

production, consumption, and loss in a network, in a way that is consistent with the 

energy conservation and entropy production imperatives of the first and second laws of 

thermodynamics, and takes into account the effect of spatial network size and distance 

between components. The evidence of its effectiveness through optimal results, both 

those hypothesised to occur, and those arising from extended derivations of the 

equations used in its calculation, is one of the most important outcomes of the work 

here. As all physical resource flows are subject to these laws of thermodynamics, this 

methodology is applicable to any generalised, conserved physical resource flow, 

provided that force, or voltage; flux, or current; and resistance analogues can be 

identified. Furthermore, the demonstration of the downgradient flow of all energy, 

provided that the boundaries of the system in question are drawn in space and time to 

include all relevant energy inputs, is an important consideration when determining how 

to model RADE networks, and analysing the energetics of the systems that contain 

them.  

Although excellent at modelling these systems-level dynamics at the macro-scale, such 

as foraging outcomes for a whole colony of bees, GAs struggle with modelling the 

emergence of systems-level dynamics from the interactions of individuals or agents, 

due to their parallel, re-combinative search strategy. This may be another reason why 

maximising efficiency, although empirically demonstrated at least at the level of the 

individual bee, shows such odd results when applied at the colony level, as done in 

MECF. These individual-level models are better simulated by an agent-based model, 

which can display systems-level characteristics as emergent properties, if the agents and 

their interactions are parameterised correctly (Gilbert, 2008). Agent-based models are 

also more able to replicate phenomena such as Hebbian learning (Schoenharl, 2005), or 

the selective strengthening of frequently utilised links between nodes, which may make 

them better equipped handle the degrees of freedom associated with the addition of link 

strength. This is in part due to their strategy of incrementally evolving a single solution 

over time, as opposed to the parallelised search of an evolutionary algorithm like the 

GA. As such, it is important to note whether the model of interest involves explicit 

optimisation is of a systems-level characteristic, or simulation of an individual 



 

 

81 

 

characteristic hypothesised to result in a collective optimum, when designing a model. 

GAs are excellent at the former, however, and can provide interesting directions for 

further study to determine what individual-level characteristics and selective pressures 

produce the systems-level optimum that is observed. 

Perhaps one of the most interesting and understudied reasons for the emergence of these 

systems-level dynamics, that allows modelling of a diversity of even distributed or 

decentralised RADE networks such as honey bee nectar foraging from a systems-level 

perspective, is the role of information in these networks. As introduced previously, 

information is a crucial part of all RADE networks, whether it is the resource explicitly 

acquired and/or distributed, embedded in the infrastructure facilitating the acquisition 

and distribution, or as a coupled flow with the resource being transported. Information 

about the spatiotemporal location and availability, use, and quality of a resource is 

critical for the development and improvement of all RADE networks, and measures 

have been put forward for quantifying the information content of the structure of a 

network. More accurate accounting of the energy used and saved due to increasing the 

information flows and content of a network is needed to better quantify the role of 

information in commonly observed RADE network characteristics and dynamics, and 

to assess how changing information dynamics of a network could possibly influence its 

resilience, equity, or sustainability. Furthermore, study in this area could help shape 

efforts to explicitly integrate information stocks and flows in future models of RADE 

networks, increasing their accuracy in modelling current system state.  

Finally, besides the importance of cost function parameterisation and allowed degrees 

of freedom, the case study also provided insight into how necessary modifications and 

extensions to the general NetGA model could allow it to be used for modelling specific 

types of RADE networks. As discussed above, the criteria in the cost function, and if 

applicable, the weighting of these criteria, is likely the most crucial for determining the 

realism of the outcome of the optimisation. While not always necessary for quantitative 

characteristics of the optimised networks, such as power consumption, to replicate those 

of real networks with a high degree of precision, the more precise and comprehensive 

the identification and calculation of costs, the more accurate the optimisation. Beyond 

this, however, for RADE network modelling and optimisation, there are several other 

parameters to consider: at the minimum, this could include the number and mobility of 
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the resource users or agents, the number and mobility of branch points, the topology of 

the resource distribution and underlying space filled by the network, and the analogue 

and quantity for voltage supply and current demand at the resources and agents, 

respectively. Further parameterisation would increase the accuracy and specificity of 

the optimisation, but could lead to overtraining, which would limit the ability of the 

model to represent a range of situations. Whether this generalisability is necessary 

would depend on the research question at hand (Levins, 1966). For the proof-of-concept 

here, a level of generalisability was important to assess the overall performance of the 

network optimiser, so it could be determined whether it would be suitable for other 

types of RADE networks. Its performance suggests that future work applying it to other 

case studies, and more general theoretical work, is indeed merited. 
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5.  Conclusion and Future Work 

This thesis explored the creation and use of a modified resource flow methodology, 

nested within an optimisation algorithm, to model generalised resource flow between 

heterogenous, spatially distributed points of supply and consumption. This was further 

parameterised to reflect approximate foraging conditions experienced by A. mellifera, 

and the resulting networks were evaluated as to their possible realism in representing 

foraging networks. The analysis suggests that this work shows considerable potential in 

the modelling of both generalised and specific RADE networks, for theoretical and 

practical applications. Several key findings from this work include: 

1. The modified resource flow methodology, as adapted from electrical load flow 

analysis, is a spatially-explicit, flow-conserving means by which generalised 

resource flows can be modelled. By identifying an analogue for current, voltage, 

and resistance in the system, and the supply and demand of voltage and current 

at the resource and agent nodes, respectively, the modified system of equations 

can solve for the force, or voltage, and flux, or current, at each node and link. 

This is a new technique for modelling generalised, directed flow between 

complex networks of single or multiple points of resource supply and 

consumption, and conceptualising the necessity of downgradient energy flows 

in all systems, through accurately drawn systems boundaries. The explicit 

incorporation of thermodynamic laws through the equations used makes the 

methodology more realistic for calculating energetic cost of transportation 

through physical networks than other commonly used network metrics. 

2. Genetic algorithms are excellent systems-level optimisers, and therefore are a 

useful technique for optimising resource networks in ecological and socio-

ecological systems. The necessity of specifying a comprehensive, accurate cost 

function raises some difficulty for systems for which the costs are harder to 

identify and/or calculate. The algorithm does show an ability to seemingly 

deduce more complicated rules from simple cost functions, however, which 

allows it to model difficult to predict behaviour, potentially arising from 

interactions of constraints and/or degrees of freedom. 
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3. The inclusion of known resource network structures, such as branching and 

radial burst, in an explicitly optimised system, simultaneously demonstrates the 

optimality of these structures, and the good performance of the optimisation 

algorithm. The frequency of these structures within the Pareto front indicates a 

robustness to their optimality across different cost functions, which is further 

evidenced by their prevalence in a diverse array of natural and human-

engineered networks. 

4. The lower power consumption by the branched networks, and the stretching out 

of branch points in some of the radial burst networks, is due to resistive losses 

caused by concentrating more current down fewer links. The networks being 

optimised had no way to reduce the inherent resistance of the links after 

shortening them, such as by increasing strength, which would have offset these 

losses. This suggests that the ecological and coupled socio-ecological systems 

utilise multiple degrees of freedom to optimise networks to increase energetic 

consumption and/or reduce energetic loss, and that the optimal network as 

guided by natural selection is dependent on the different weights that the system 

associates with the energetic cost of link construction, maintenance, and 

resistance-driven loss.  

Although the work here met the aims of developing and testing a spatially-explicit, 

thermodynamically-accurate methodology for modelling RADE networks, and applied 

it successfully to a proof-of-concept, this raises even more areas for exploration. 

Beyond improvements to the underlying model to incorporate additional degrees of 

freedom, such as link strength, and application of it to other case studies of specific 

RADE networks, there are several areas of future work that would be particularly 

instructive: 

1. Multi-vector analysis: the increasing incorporation of distributed, heterogenous 

energy sources such as renewables, and the interconnection of networks 

involving multiple resource types, demands a methodology of analysing the 

interactions, resilience, and throughputs of these systems, and their impacts on 

the surrounding environment. A consistent one has yet to be applied (Mancarella 

et. al. 2016). The resource flow methodology here could be applied to analyse 
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nested and/or interconnected networks of multiple types of resources, providing 

a framework for better quantifying their energetic costs and capabilities.  

2. Prediction of system complexity and other characteristics: as systems grow and 

incorporate more resources, and those of different types, they also increase in 

complexity. While different measures for spatial and temporal complexity have 

been put forward (Parrott, 2010), there is not yet a set framework for quantifying 

or predicting the complexity of a system. By generating networks with different 

constraints, costs, and underlying distributions of resources, different measures 

for complexity could be applied and evaluated. Possible networks could also be 

generated for known conditions, similar to the A. mellifera case study done here, 

and analysed for complexity, resilience, equity, and sustainability, providing 

insight into the interplay between those characteristics and physical network 

attributes. 

3. Information: as discussed earlier, and clearly demonstrated in the case of bees, 

information creates a ‘soft structure’ between components of a decentralised 

network, allowing it to operate as a unified whole. Developing a methodology 

to explicitly incorporate and quantify the stocks and flows of information within 

networks, along with the information contained within the physical structures, 

would allow for more comprehensive and accurate systems modelling, as well 

as a better understanding of the impact of information within RADE networks. 

4. Principles of generalised resource consumption and distribution: besides the 

seemingly ubiquitous sublinear scaling put forth in MTE, other generalised 

principles for energy consumption and entropy production exist, such as the 

Maximum Entropy Production principle (MEP), which states that systems 

evolve toward states of higher entropy production (Kleidon et. al., 2010). By 

testing these laws in a generalised resource flow network, such as the ones 

initially used to test the modified resource flow methodology, without the 

constraints of specific models, their universality can be more accurately 

determined, along with any conditions that may cause deviations from the 

observed phenomena on which the proposed law is based. 
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The ubiquity of resource acquisition, distribution, and end-use networks, their 

similarities across diverse systems, and their impacts on the systems they support and 

are nested within, make them both important and fascinating to study from theoretical 

and practical angles. As shown here, there is much more to be done in improving and 

applying methodology for their modelling and analysis, but the work presented is a new 

direction in doing so that shows great potential. 
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7.  Appendix A: Nectar Resources 

Table 7. Nectar resources. This table shows the relevant data for the twenty-five melliferous 

species used to generate the five resource distribution maps in the HiveNetGA optimisation. 

The resource distribution maps were grassland (G), grassland farmland (GF), grassland park 

(GP), grassland woodland (GW), and woodland (W), with some species used in multiple maps 

if appropriate (i.e. a species listed in woodland could also appear in the woodland sections of 

the grassland woodland map). If the precise nectar sugar concentration for the species could not 

be found, that of a closely related species was used, as shown by an asterisk (*) in the data 

source column. 

Species 

Scientific 

Name 

Vegetative 

area of 

habitat 

( % ) Habitat 

Nectar sugar 

concentration 

(mg mg-1) 

Voltage 

(J mg-1) 

Nectar sugar 

concentration 

data source 

Apple tree 

M. 

domestica 2.70 W 0.50 8.60 

Scullen & 

Vansell, 1942 

Apple tree 

M. 

domestica 15.14 GF 0.50 8.60 

Scullen & 

Vansell, 1942 

Blue 

bugle A. reptans 0.09 G 0.30 5.16 

Macukanovic-

Jocic et. al., 

2004 

Bluebell 

H. non-

scripta 1.45 G 0.35 6.02 

O'Rourke et. 

al., 2014 

Bluebell 

H. non-

scripta 21.11 GW 0.35 6.02 

O'Rourke et. 

al., 2014 

Buttercup 

R. 

bulbosus 0.87 F 0.15 2.58 

Fornoff et. al., 

2017* 

Buttercup 

R. 

bulbosus 2.04 GP 0.15 2.58 

Fornoff et. al., 

2017* 

Cherry 

tree P. avium 1.60 G 0.30 5.16 

Gyan & 

Woodell, 

1987 

Cherry 

tree P. avium 4.48 W 0.30 5.16 

Gyan & 

Woodell, 

1987 

Common 

dogwood 

C. 

sanguinea 1.52 G 0.25 4.30 

Farkas & 

Zajacz, 2007 

Common 

groundsel S. vulgaris 0.15 G 0.47 8.08 

Vanparys et. 

al., 2011* 

(Continued) 
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Species 

Scientific 

Name 

Vegetative 

area of 

habitat 

( % ) Habitat 

Nectar sugar 

concentration 

(mg mg-1) 

Voltage 

(J mg-1) 

Nectar sugar 

concentration 

data source 

Common 

groundsel S. vulgaris 0.96 GP 0.47 8.08 

Vanparys et. 

al., 2011* 

Creeping 

Thistle C. arvense 5.09 G 0.56 9.63 

Tartaglia & 

Handel, 2014 

Creeping 

Thistle C. arvense 2.37 W 0.56 9.63 

Tartaglia & 

Handel, 2014 

Dandelion T. agg. 2.15 W 0.20 3.44 

Hicks et. al., 

2016 

Field 

maple A. campestre 3.38 G 0.52 8.94 

Scullen & 

Vansell, 1942 

Field 

mustard S. arvensis 0.80 GP 0.23 3.96 

Masierowska, 

2003 

Geranium G. dissectum 0.85 G 0.36 6.19 

Masierowska, 

2012 

Geranium G. molle 0.68 GP 0.36 6.19 

Masierowska, 

2012 

Geranium G. molle 6.56 GP 0.36 6.19 

Masierowska, 

2012) 

Ground 

ivy G. hederacea 1.27 W 0.20 3.44 

Kulloli et. al., 

2011* 

Hawthorn C. monogyna 7.19 GP 0.50 8.60 

Gyan & 

Woodell, 

1987 

Hawthorn C. monogyna 15.14 GP 0.50 8.60 

Gyan & 

Woodell, 

1987 

Hogweed 

H. 

sphondylium 0.94 G 0.18 3.10 

Fornoff et. al., 

2017 

Horse 

chestnut 

A. 

hippocastanu

m 5.16 G 0.74 12.73 

Percival, 

2013, pg. 89 

Horse 

chestnut 

A. 

hippocastanu

m 3.38 GP 0.74 12.73 

Percival, 

2013, pg. 89 

Iris 

L. 

galeobdolon 3.56 W 0.20 3.44 

Wesselingh & 

Arnold, 1999 

 (Continued) 
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Species 

Scientific 

Name 

Vegetative 

area of 

habitat 

( % ) Habitat 

Nectar sugar 

concentration 

(mg mg-1) 

Voltage 

(J mg-1) 

Nectar sugar 

concentration 

data source 

Lady's 

Smock 

C. 

pratensis 0.23 G 0.50 8.60 

Percival, 

2013, pg. 89* 

Oilseed 

rape B. rapa 1.36 F 0.51 8.69 

Percival, 

2013, pg. 89 

Oilseed 

rape B. rapa 2.02 GW 0.51 8.69 

Percival, 

2013, pg. 89 

Onion A. cepa 1.84 F 0.50 8.60 

Farkas et. al., 

2012 

Spear 

thistle C. vulgare 0.62 GP 0.56 9.63 

Tartaglia & 

Handel, 2014 

Spear 

thistle C. vulgare 0.62 W 0.56 9.63 

Tartaglia & 

Handel, 2014 

Sweet 

chestnut C. sativa 15.14 GW 0.22 3.78 

Gulácsy, 1975 

(cited in 

Farkas & 

Zajacz, 2007) 

Sweet 

chestnut C. sativa 4.48 W 0.22 3.78 

Gulácsy, 1975 

(cited in 

Farkas & 

Zajacz, 2007) 

Sycamore 

maple 

A. 

pseudoplat

anus 10.42 W 0.52 8.94 

Scullen & 

Vansell, 1942 

Wild 

Angelica 

A. 

sylvestris 2.93 G 0.22 3.78 

Stpiczyńska 

et. al., 2015 

Yellow 

archangel 

L. 

galeobdolo

n 2.69 W 0.20 3.44 

Macukanovic-

Jocic et. al., 

2004 
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8.  Appendix B: Breeder Parameterisation Tests 
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9.  Appendix C: Glossary 

Due to the multidisciplinary approach taken in this thesis, the terminology spans 

ecology, physical science, engineering, computer science, network and complexity 

science, and apiology (the study of bees). As some of these terms may not be familiar 

to practitioners of those subjects individually, or may be used in a different context in 

the work presented, they have been defined here with respect to how they are used in 

this thesis. Terms are organised alphabetically within each subject heading. 

Apiology 

Crop: the specialised pouch in the abdomen of honey bees, used for transporting nectar 

from flowers to the hive (Seeley, 1995). 

Melliferous species: A species that secretes nectar used by bees to create honey. Not all 

nectar-secreting plants are melliferous, while others are especially so (Masierowska, 

2003).  

Waggle dance: A pattern of movement that a forager utilises to direct other foragers to 

particularly good nectar sources. By repeating different turning and running 

movements, the forager conveys both distance and direction to onlooking foragers who 

do not have a floral patch that they are currently exploiting (Seeley, 1995). 

Computer Science 

Agent: Typically, an individual unit within a system, which represents a social actor 

with a level of control over themselves and aspects of their environment (Gilbert, 2008). 

In this work, refers to a node in the network that demands and consumes resources, as 

opposed to supplying them.  

Agent-based model: A modelling framework in which individual components are 

modelled as ‘agents’, each with internal rules governing their behaviour and interactions 

with other agents and their environment (Gilbert, 2008). Example: a model of a colony 

of ants, foraging for food and bringing it back to the anthill. 
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Annealing: A process by which parameters are slowly ‘cooled’ or lowered, similar to 

the process of annealing in metalworking, to reduce the likelihood of significant 

changes to a solution or the acceptance of a less-fit solution. Acts to transition the 

optimisation from global to local search. Commonly used in an optimisation algorithm 

called ‘simulated annealing’ (Gandomkar et. al., 2005), but can be used within other 

algorithms too, as was done here. 

Branch point: A node in the network that does not supply or demand resource, but 

instead is a neutral junction between two or more links. Used as an additional degree of 

freedom when exploring different network topologies.  

Chromosome: A possible solution for the optimisation problem being solved by the 

genetic algorithm (Goldberg, 1989). 

Combinatorial explosion: A characteristic of some optimisation problems, where the 

problem involves multiple variables or degrees of freedom that be combined in so many 

possible configurations as to be unsolvable by traditional methods, such as brute-force 

solving and evaluating (Klamt & Stelling, 2002). 

Crossover (single point, multi-point, uniform): A genetic operator used to simulate 

genetic recombination, by combining the genes of two ‘parent’ chromosomes, to 

produce two new ‘offspring’ chromosomes. This combining can occur at a single point 

along the chromosome (single-point crossover), multiple points (multi-point crossover) 

or at each gene with an equal probability (uniform crossover) (De Jong & Spears, 1992). 

Elitism: preserving the best network or networks from one generation to another, 

without applying genetic operators (Goldberg, 1989). 

Evolutionary algorithm: A class of optimisation algorithms that uses operators designed 

around principles of evolution and genetic recombination to improve a set of solutions 

(Holland, 1975). 

Fitness function: a cost function where the objective is to maximise each of the criterion 

as opposed to minimise them (Goldberg, 1989). 
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Gene: A single characteristic or data point of a solution, or chromosome, evaluated by 

the genetic algorithm (Goldberg, 1989). 

Genetic algorithm (GA): An evolutionary optimisation algorithm that uses 

computational operators designed to reflect processes of genetic recombination and 

mutation on a population of solutions, to perform a search of the entire possible solution 

space (Goldberg, 1989). 

Generation: A single iteration of the main loop of a genetic algorithm, involving 

evaluating and ranking a population, and generating a new population for breeding 

(Goldberg, 1989). 

Genetic operator: A computational function applied to a chromosome or pair of 

chromosomes to alter or recombine them in a manner reminiscent of evolutionary 

processes, such as genetic recombination or mutation (Goldberg, 1989). 

Global search: A search strategy by which the whole solution space is searched to 

identify the global optimum, or best possible solution, as opposed to a local optimum, 

or improvement of the current solution (Balaprakash et. al., 2012). 

Local search: A search strategy that focusses on the neighbourhood of a known good 

solution or solutions, via small changes in order to try to improve them. Can also be 

thought of as ‘exploiting’ known promising areas of the solution space (Balaprakash et. 

al., 2012). 

Multi-criteria cost function: An objective guiding the optimisation that each solution is 

tested against for evaluation, that is comprised of multiple, potentially conflicting 

criteria to minimise. Results in a Pareto front of incomparable best solutions, where 

each solution is better performing in some aspect than its neighbours, but worse in 

others. Example: simultaneously minimise cost while minimising disruptions or failures 

(Fonseca & Fleming, 1993). 

Mutation: A genetic operator wherein each gene within the chromosome is mutated to 

a new value within the bounds of all possible values for that gene (Goldberg, 1989). 
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Niching/niche clearing: The process of subdividing a population of chromosomes into 

niches based on similar performance, within a certain threshold or ‘radius’, on each 

criterion in a multi-criteria cost function, then removing the chromosomes from each 

niche that are in excess the set niche ‘capacity’ (Horn et. al., 1994; Pétrowski, 1996). 

Node: Used in this work as a generic term for an element in the network, typically acting 

as a point of supply or demand. This definition is more aligned with the network science 

definition of node (a component in a network (Barabási, 2016)), as opposed to the 

electrical engineering definition of node (a junction between two elements, or branches 

(Glover et. al., 2012)). 

Offspring networks: New networks produced via crossover, mutation, perturbation, 

cloning, or some combination thereof of networks in the previous generation (Goldberg, 

1989). 

Pareto dominance: A solution that performs equally or better than another solution on 

all criteria, and is better than the other solution on at least one criterion (Fonseca & 

Fleming, 1993). 

Parallel search: A search strategy in which multiple possible solutions are explored 

simultaneously (Hamblin, 2013). 

Perturbation: A genetic operator that perturbs each evolvable characteristic or gene 

within a solution or chromosome, within a certain variance of the original value. Not a 

classic genetic algorithm operator found in the literature; developed for the purposes of 

the work presented here. 

Population: The total collection of possible solutions, or chromosomes, being evaluated 

by the genetic algorithm in a given generation, or round (Goldberg, 1989). 

Premature convergence: When an optimisation algorithm converges too quickly on a 

local optimum, as opposed to searching the entire solution space to find the global 

optimum (Goldberg, 1989). 
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Roulette wheel selection: A process of selecting the breeding population, where the 

cumulative distribution function of the fitness of the population is sampled randomly, 

with or without replacement (Goldberg, 1989). 

Single criterion cost function: A single objective or criterion guiding the optimisation 

that each solution is tested against for evaluation, resulting in a single best solution 

identified for each generation (Goldberg, 1989). Example: minimise total travel time. 

Solution space: Also known as feasible region. All points which satisfy the constraining 

conditions of an optimisation (Zhou et. al., 2011). 

Stochastic universal sampling: A method used for selecting individuals from the current 

generation to be used in creating the next generation, via sampling a cumulative 

distribution of the fitness of the current population at equally-spaced intervals (Baker, 

1987). 

Tournament selection: A process of selecting the breeding population to create the next 

generation of possible solutions to an optimisation problem, in which chromosomes are 

compared in a pairwise manner, with the better-performing chromosomes being used to 

create the breeding population and therefore the next generation (Baker, 1987). 

Truncation: Removing the worst network or networks from a generation, before 

selecting the breeding population (Baker, 1987). 

Ecology 

Circuit Theory: A methodology based on nodal analysis (see Engineering: Nodal 

analysis) that is used to evaluate the probabilities and difficulties with which a random 

walker, such as an organism, will pass through a habitat corridor (Gimona et. al., 2012).  

Coupled socio-ecological system: A system comprised of both natural and human or 

human-engineered components, with a high degree of interconnection and 

interdependency (Berkes & Folke, 1998, cited in Polhill et. al., 2015). Examples: natural 

resource extraction, transportation, and use networks, where the resources are mined or 

collected from ecosystems and transported across them, significantly impacting and 

being impacted by those systems. 
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Energetics: The study of energy transformation (Lehninger, 1973), used here to mean 

specifically the energy used in and/or gained from a process, such as resource 

acquisition and distribution. 

Generic focal species: A theoretical species used in modelling to represent a group of 

species of interest for whom complete data is not available. The needs and 

characteristics of the focal species are those likely to be similar to the species that they 

are used to represent (Watts et. al., 2010). 

Interactional/interaction-based model: An ecosystem model that focusses on the 

interactions between species, as opposed to the spatial distances (Jørgensen, 2008). 

Example: a food web. 

Metabolic Theory of Ecology (MTE): A theory centred on Kleiber’s law of allometric 

scaling, which posits that the metabolic rate of organisms is the central rate governing 

all ecological process and pattern (Brown et. al., 2004). 

Optimal Foraging Theory (OFT): A theory used to predict the behaviour of an animal 

while foraging or hunting for food. The theory posits that natural selection favours 

behaviours that maximise energy consumption, such that in foraging, the animal 

chooses a strategy that maximise a certain currency, such as rate or efficiency of energy 

consumption, within the constraints of its environment (Pyke, 1984). 

Superorganism: A collection of organisms whose group function has properties 

analogous to those of individual organisms (Wilson & Sober, 1989). The term has also 

been applied to abiotic systems with constituent subparts that work together to create a 

unified whole with emergent properties (Odum, 1966). Example: eusocial insects, such 

as bees or ants; human society.  

Engineering 

Alternating Current (AC): Current flow which periodically changes direction as a result 

of voltage reversing (Overbye et. al., 2004). 
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Admittance: The ease with which current passes through a link or branch – the 

reciprocal of impedance. Takes into account both conductance and susceptance. 

Applicable only to AC power flow (Glover et. al., 2012). 

Conductance: The inverse of resistance. A measure of the ease with which current 

passes through a conductor. Applicable to both AC and DC power flow (Glover et. al., 

2012). 

Current: A measure of the rate of flow of charged particles. Measured in amps (A, 

coulombs sec-1) (Glover et. al., 2012). 

Direct Current (DC): Unidirectional current flow (Overbye et. al., 2004). 

Electrical analogue: the representative component in an electrical system for a 

component in a non-electrical system, or the entire electrical system made up of 

representative components from a non-electrical system (Odum, 1971). Examples: 

voltage as the electrical analogue of the sugar concentration of a resource, a circuit of 

voltage sources and resistors as the electrical analogue of an ecosystem.  

Ground: A reference point from which other voltages in a circuit are measured (Calahan 

et. al., 1974). 

Impedance: the difficulty presented to a flow of current along a line – the reciprocal of 

admittance. Takes into account both resistance and reactance. Applicable only to AC 

power flow (Glover et. al., 2012). 

Linear circuit: A circuit in which the output is a linear function of the inputs, as the 

inputs and outputs are in the same sinusoidal frequency (Zumbahlen, 2008). 

Load flow analysis: A methodology for calculating the steady-state power flow in an 

AC electric grid (Glover et. al., 2012). 

Lossless lines: An assumption that the losses along branches or lines in a power grid 

due to resistance are negligible enough to be ignored, as the reactance-driven losses are 

much higher. Used when adapting the AC power load flow analysis methodology for 

DC power (Overbye et. al., 2004). 
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(Modified) nodal analysis: A technique for calculating the voltages at each node in a 

circuit. Modified nodal analysis also determines some branch currents (Ho et. al., 1975). 

Newton-Raphson method: A method of solving a system of equations by iteratively 

solving and updating a Jacobian matrix (Glover et. al., 2012). 

Power: A measure of the rate of doing work, or energy transfer per unit time. Measured 

in Watts (W, Joules sec-1) (Glover et. al., 2012). 

Resistance: The measure of the difficulty experienced by a steady-state flow of current 

when passing through a conductor such as a wire. Applicable to both AC and DC power 

flow. Measured in Ohms (Ω). (Glover et. al., 2012). 

Susceptance: The imaginary part of admittance: the ease with which a change of current 

passes through a conductor. Applicable only to AC power flow (Glover et. al., 2012). 

Voltage angle: the difference between the voltage phase angle of a current-sending and 

current-receiving bus. Applicable only to AC power flow (Glover et. al., 2012). 

Voltage (magnitude): the quantity of voltage entering or leaving a node, such as a 

generator or load bus. Applicable to both AC and DC power flow (Glover et. al., 2012). 

Network and Complexity Science 

All paths: A method of identifying all paths between any two nodes in a network (Carmi 

et. al., 2008). 

Complex adaptive system: A system displaying emergent properties, or behaviour that 

is more than the sum of actions by its constituent parts, that is also anticipatory of and 

evolving in response to changes in its surrounding environment (Holland, 1992). 

Complexity: A characteristic of being comprised of multiple components, whose 

interactions cause the system to display emergent properties and behaviours that are not 

displayed by any one of the individuals (Holland, 1992). 

Emergent property: A property of a system or whole that is not contained within any or 

all of its constituent parts, but rather arises from the interaction between them (Holland, 
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1992). Example: branching networks that result from the interaction between balancing 

multiple, conflicting criteria of maximising resource consumption whilst minimising 

energetic cost. 

Fractal/hierarchical branching: A structure that is self-similar, where the whole has the 

shape of one or more of the parts, across several scales (Brown et. al., 2002). Examples: 

snowflake, vascular system, fern. 

Hebbian learning: A process by which the repeated firing of one neuron by another 

causes the second neuron to become more sensitive to the firing of the first through 

stronger links between the two, i.e. the efficiency of the first neuron at firing the second 

is increased (Schoenharl, 2005). 

Information: the values of characteristics of a process’ output, which informs about the 

process and its inputs (Losee, 1997). In the context of RADE networks, the existence 

of the infrastructure is itself information about the process of creating it and the 

materials and/or energy utilised, and information from the process of extracting, 

distributing, and using the resource itself is fed back into the network to improve it. 

Infrastructure: The structures used to comprise a system, as they exist in space and/or 

time. Used mostly to refer to network infrastructure in this work, or the structures that 

form the energy carriers, links, and nodes in the network. Represents the embodiment 

of energy investment in material structures (Jarvis, 2018). Examples: tree branches, 

pipelines, veins, flight paths, bees. 

Least-cost path/shortest path: A method of identifying the path between two nodes in a 

network that is the shortest, or contains the fewest links, and/or path with the least total 

cost, if weighted, between any two nodes (Barabási, 2016). 

Node degree: The number of connections, or links, that are attached to a given node 

(Barabási, 2016).  

Radial burst network: A network topology characterised by a node or cluster located 

centrally, with unique links connecting directly to distributed resources (Banavar et. al., 

2010). 
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Random network: A network where the degrees of the nodes are a uniform distribution 

(Barabási, 2016). 

Scale-free network: A network where the degrees of the nodes are a power-law 

distribution, with some nodes having a very high degree, and most having a very low 

degree (Barabási, 2016). 

Self-organisation: A process of order and structuring within a system arising from 

decentralised interactions of components. A feature of complex adaptive systems 

(Holland, 1992). 

Stylised network: A theoretical network, designed for analysing network properties and 

dynamics, but not necessarily modelled after a real-world network. 

Topology: the layout of nodes and links within a network, or the dimensionality of the 

underlying space that the network fills. Example: radial burst topology, three-

dimensional plane topology. 

Physical Sciences 

(Energetic) efficiency: The ratio of useful energy consumed per unit of energy produced 

(Odum & Pinkerton, 1955). 

Entropy: The number of microscopic configurations of a system that can produce a 

given macroscopic configuration. A highly organised, ordered system has a very low 

entropy, because there are very few microscopic configurations of particles that 

correspond to that macroscopic state. In contrast, there are infinitely more microscopic 

configurations that correspond to a state of thermodynamic equilibrium, or maximum 

entropy (Kleidon, 2016). 

First law of thermodynamics: the conservation law, stating that energy cannot be created 

or destroyed, such that the total energy of a closed system is constant (Kleidon, 2016). 

Free energy: The amount of energy available to a system to perform work, after taking 

into account losses due to entropy (Kleidon, 2016). 
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Second law of thermodynamics: states that entropy in a closed system not yet at 

thermodynamic equilibrium cannot decrease, and entropy increases during energy 

conversions, such that the overall state of the system evolves toward thermodynamic 

equilibrium (Kleidon, 2016). 

Thermodynamic equilibrium: A state of maximum entropy, in which no further net 

energy transformations or exchanges can take place (Kleidon, 2016). 

Thermodynamically open system: A system that is able to exchange energy, entropy, 

and mass across its boundaries (Kleidon, 2016). Examples: the earth system, an 

organism’s body. 

Resource Distribution 

Acquisition: The process of extracting a resource from its original location (Jarvis et. 

al., 2015). Examples: mining, foraging. 

Distribution: The process of moving resources from points of origin to points of demand 

and/or use (Jarvis et. al., 2015). Examples: rail transport of coal, water flowing through 

pipes. 

End use: The process of resources being consumed to produce outputs deemed useful 

(Jarvis et. al., 2015). Examples: natural gas being used to heat a home. 

Multi-vector energy analysis: Analysis of a system of multiple, heterogenous energy 

inputs (Carradore & Turri, 2009). Example: a distributed system of solar panels, wind 

turbines, and hydropower stations.  

Primary energy: Energy as initially extracted from natural sources (De Stercke, 2014). 

Examples: sunlight, crude oil, coal.  

Resource Acquisition, Distribution, and End Use (RADE) network: A network of points 

of resource supply and demand, or end use, linked by resource transportation systems 

such as roads, canals, railways, or forager movements and paths (Jarvis et. al., 2015). 


