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Abstract  

Elucidating how cannabinoids affect brain function is instrumental for the development of 

therapeutic tools aiming to mitigate ‘on target’ side effects of cannabinoid based therapies. A 

single treatment with the cannabinoid receptor agonist, WIN 55,212-2, disrupts recognition 

memory in mice. Here we evaluate how prolonged, intermittent (30 days) exposure to WIN 
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55,212-2 (1mg/kg) alters recognition memory and impacts on brain metabolism and functional 

connectivity. We show that chronic, intermittent treatment with WIN 55,212-2 disrupts 

recognition memory (Novel Object Recognition Test) without affecting locomotion and anxiety-

like behaviour (Open Field and Elevated Plus Maze). Through 14C-2-deoxyglucose functional 

brain imaging we show that chronic, intermittent WIN 55,212-2 exposure induces 

hypometabolism in the hippocampal dorsal subiculum and in the mediodorsal nucleus of the 

thalamus, two brain regions directly involved in recognition memory. In addition, WIN 55,212-

2 exposure induces hypometabolism in the habenula with a contrasting hypermetabolism in the 

globus pallidus. Through the application of the Partial Least Squares Regression (PLSR) 

algorithm to the brain imaging data, we observed that prolonged WIN 55,212-2 administration 

alters functional connectivity in brain networks that underlie recognition memory, including that 

between the hippocampus and prefrontal cortex, the thalamus and prefrontal cortex, and 

between the hippocampus and the perirhinal cortex. In addition, our results support disturbed 

lateral habenula and serotonin system functional connectivity following WIN 55,212-2 

exposure. Overall, this study provides new insight into the functional mechanisms underlying 

the impact of chronic cannabinoid exposure on memory and highlights the serotonin system as a 

particularly vulnerable target.  
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Abbreviations  

 

14C-2-DG   14C-2-deoxyglucose  

AcbC  Nucleus Accumbens Core 

AcbSh  Nucleus Accumbens Shell 

AM  Anteromedial Thalamus 

aPrL  Anterior Prelimbic Cortex 

aRT  Reticular Thalamus 

AV  Anteroventral Thalamus 

BLA  Basolateral Amygdala 

C57BL/6   Black-six mice 
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CB1R  Cannabinoid receptor 1 

Cg1  Cingulate Cortex 

ChWin  Chronic WIN 55,212-2  

ChVeh  Chronic VEH  

CoA  Central Amygdala 

DH CA1  Dorsal Hippocampus, CA1 

DH CA2  Dorsal Hippocampus, CA2 

DH DG Dorsal Hippocampus, Dentate Gyrus 

DH Mol Dorsal Hippocampus, Molecular Layer 

DLO  Dorsolateral Orbital Cortex 

DLST  Dorsolateral Striatum 

DMSO   Dimethylsulfoxide 

DR  Dorsal Raphe 

DSub  Dorsal Subiculum 

ENT  Entorhinal Cortex 

EPMT   Elevated plus maze test 

fMRI Functional magnetic resonance imaging 

FRA  Frontal Association Area 

GP  Globus Pallidus 

Hab  Habenula 

HDB Horizontal Limb of Diagonal Band of Broca 

IL  Infralimbic Cortex 

Ins  Insular Cortex 

I.P  Intraperitoneal injection 

LCGU Local cerebral glucose utilization 

LO  Lateral Orbital Cortex 

LS  Lateral Septum 

MB  Mammillary Body 
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MD   Medio Dorsal Thalamus 

MeA  Medial Amygdala 

MG  Medial Geniculate 

MO  Medial Orbital Cortex 

mPrL  Medial Prelimbic Cortex 

MR  Medial Raphe  

MS  Medial Septum 

MTL  Medial temporal lobe 

NORT  Novel object recognition test 

NPI  Novelty preference index 

OFT  Open field test 

Piri  Piriform Cortex 

PD  Post-natal days  

PRh  Perirhinal Cortex 

PLSR  Partial least squares regression 

RSc  Retrosplenial Cortex 

S1  Somatosensory Cortex 

SNC  Substancia Nigra pars Compacta 

SNR  Substancia Nigra pars Reticulata 

UR  Uptake ratio 

VDB Ventral Limb of Diagonal Band of Broca 

VH CA1  Ventral Hippocampus, CA1 

VH CA3  Ventral Hippocampus, CA3 

VH DG Ventral Hippocampus, Dentate Gyrus 

VH LMol Ventral Hippocampus, Molecular Layer 

VL  Ventrolateral Thalamus 

VM  Ventromedial Thalamus 

VMST  Ventrolateral Striatum 
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VTA  Ventral Tegmental Area 

WIN55,212-2 (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-

benzoxazin-6-yl]-1-naphthyl-methanone mesylate;   

Introduction 

 Heavy or regular cannabis abuse, generally defined as daily or almost-daily use over a 

prolonged period of time, has been linked to cognitive dysfunction (Abush and Akirav, 2012) 

and increased risk of developing psychiatric symptoms, including schizophrenia-spectrum 

disorders (Andréasson et al., 1987, Hall and Degenhardt, 2009), acute psychosis and mania 

(Khan and Akella, 2009), and an amotivational syndrome (Tunving, 1987; Fujiwara, 2001; 

Ozaki and Wada, 2001). In addition, cannabis-based medicines are increasingly being used to 

treat several diseases such as epilepsy (Maa and Figi, 2014), chronic pain (Carter et al., 2015), 

multiple sclerosis (Fitzpatrick and Downer, 2016), and neurodegenerative diseases (Fagan and 

Campbell, 2014), but the potential for negative side effects has not been well characterised. 

Understanding the effects of chronic cannabinoid exposure upon brain and synaptic function 

opens a window into the development of therapeutic tools that could counteract the “on target” 

side-effects  associated with chronic use of cannabis and cannabinoid-based medicines 

(Copeland et al., 2013; Lovelace et al., 2015). 

Cannabinoid receptor 1 (CB1R) mediate the characteristic psychoactive effects of 

exogenous cannabinoids and the synaptic actions of endocannabinoids (Kano et al., 2009). One 

immediate consequence of cannabis consumption is an impairment in memory consolidation, 

seen in both humans (Ranganathan and D’Souza, 2006; Borgelt et al., 2013) and laboratory 

animals (Clarke et al., 2008; Kano et al., 2009; Sousa et al., 2011; Mouro et al., 2017). 

Cannabinoid-mediated disruptions in learning and memory may be related to reported 

impairments in long-term potentiation (LTP) at glutamatergic synapses (Terranova et al., 1995; 

Stella et a., 1997; Misner and Sullivan, 1999; Wang et al., 2016; Silva-Cruz et al., 2017), 

detrimental modifications in fast/slow wave oscillations, known to be modulated by GABAergic 

interneurons (Freund et al., 2003), and altered activity in septal-hippocampal monoaminergic 

and cholinergic pathways, known to regulate cortical plasticity and activity (Miller and 

Branconnier, 1983; Gessa et al. 1998; Sulivan 2000; Redmer et al. 2003; Khakpai et al. 2012).  

Studies in humans, using functional magnetic resonance imaging (fMRI), have shown 

that chronic cannabis users display significant alterations in functional connectivity in brain 

networks relevant to self-awareness (Pujol et al. 2014), working memory (Cousijn et al. 2013) 

and recognition memory (Riba et al. 2015) which may be linked with functional differences in 

structures of the medial temporal lobe (MTL) and prefrontal cortex (PFC) (Riba et al. 2015). In 

a recent study, it was also shown that chronic marijuana use leads to increased functional 

connectivity in the orbitofrontal network, as well as higher functional connectivity in tracts that 
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innervate the orbitofrontal cortex (Filbey et al., 2014). However, chronic consumption studies in 

humans can be contaminated by confounding variables, such as lifestyle factors or mixed drug 

use. 

The present work was designed to elucidate the impact of chronic, intermittent 

cannabinoid exposure on brain metabolism, functional brain connectivity and recognition 

memory. We carry out three different analysis: first, we evaluated recognition memory in the 

Novel Object Recognition Test (NORT); secondly, we studied brain metabolic activity in these 

animals using 14-C-2-deoxyglucose (14C-2-DG) functional brain imaging and finally, we 

characterized alterations in brain network functional connectivity through the application of the 

Partial Least Squares Regression (PLSR) algorithm to the 14C-2-DG brain imaging data. We 

found out that adult mice chronically exposed to WIN 55,212-2 displayed impaired recognition 

memory and differences in metabolic brain activity and dysfunctional connectivity in circuits 

that underlie memory processing, thus providing new insights into the functional mechanisms 

that underlie the impact of chronic cannabinoid exposure on memory. 

 

Methods  

Animals 

Adult (8-12 weeks old) male C57BL/6 mice (IMSR Cat# CRL:27, 

RRID:IMSR_CRL:27) (Charles River, Barcelona, Spain) were used. Animals were housed in a 

temperature (22/24ºC) and humidity (45-65%) regulated room with a 14/10-hour light/dark 

cycle (07:00-21:00) with ad libitum access to food and water. Animal behaviour experiments 

were conducted during the light phase at around the same time each day (10:00). All 

experimentation followed the European Community Guidelines (Directive 2010/63/EU) and the 

Portuguese law (DL 113/2013) for Animal Care for Research Purposes, and were approved by 

the “Instituto de Medicina Molecular” Internal Committee and the Portuguese Animal Ethics 

Committee –Direcção Geral de Veterinária). The experimental protocol was not preregistered. 

Animals were habituated to the presence of the investigator and handled for 5-days before 

testing. A total of 40 mice were used, 20 were treated with WIN 55,212-2 and 20 were receiving 

the vehicle only. All animals were used for behaviour analysis, which was performed in two 

series of 10 mice per drug condition, giving a total of 20 mice per condition. For connectivity 

analysis, 10 mice per condition were used. To determine whether an animal would be allocated 

to the control or experimental treatment group a pseudo-randomization procedure was 

employed. Animals were tagged and distributed in groups of 5 animals to each housing cage (8 

cages of 5 animals). Subsequently, four cages were randomly attributed to each treatment 
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condition (either control or chronic WIN 55,212-2). To do so, a number was attributed to each 

cage and randomly drawn. Drawn cage numbers were distributed sequentially to either the 

control or the experimental group (first drawn number allocated to control, the second drawn 

number attributed to experimental group, until all numbers have been drawn).  

Drugs 

WIN 55,212-2 (TOCRIS Bioscience, catalogue number 1038) was suspended in 

dimethylsulfoxide (DMSO, Sigma Aldrich, catalogue number D2650) at stock concentration of 

100mM, and stored at -20ºC.; appropriate dilutions of these solutions were made in saline (NaCl 

0.9%) before injection. The amount of DMSO present in the solutions used for intraperitoneal 

(i.p.) injections was less than 0.6µl per mouse, and control animals were injected with 

equivalent amounts of vehicle (2 ml/kg).  

 

Chronic WIN 55,212-2 Treatment Protocol  

WIN 55,212-2 was administered at a dose of 1mg/kg i.p., a dose known to affect 

recognition memory in the NORT without creating sedative or cataleptic effects that are 

associated with higher doses (Schneider and Koch, 2003; Baek et al. 2009; Mouro et al. 2017), 

over 30 days. Behavioural tests were carried out on the last seven days of treatment. The 

injections were performed around the same hour of the day (18:00 ± 1 hour), while behavioural 

tests were performed during the morning (10:00). Doing so, we avoided withdrawal symptoms 

(Maldonado, 2002; Lichtman and Martin, 2005; Solymosi and Köfalvi 2017), while minimizing 

acute effects of the drug during testing. In order to replicate a pattern of chronic intermittent 

cannabinoid exposure (Lamarque et al, 2001; Schneider and Koch, 2003) animals were treated 

for 5 consecutive days followed by two days without treatment (22 injections over 30 days). 

This protocol was designed to minimize the tolerance to WIN 55,212-2 that may develop during 

chronic continuous administration (see Maldonado, 2002; Hampson et al. 2003; Solymosi and 

Köfalvi 2017). For further detail on the treatment and experimental protocol see Figure 1.  

 

Novel Object Recognition Test (NORT) 

NORT was conducted in a wooden square open field arena (40 x 40 x 40 cm) as 

previously reported (Bailey and Crawley, 2009; Antunes and Biala, 2012). In brief, the test 

involved a habituation period (3 days), a training day and a test day. Before training, animals 

were habituated to the arena in the absence of any stimulus or object, under the same lighting 
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and environmental conditions, for 20 minutes over 3 consecutive days. On the fourth day, after 

habituation, animals were placed inside the arena, facing away from the two identical objects 

(familiar objects) and allowed to freely explore the environment and objects for 5 minutes. After 

a retention interval of 24 hours, to test long-term memory (Clarke et al. 2008; Antunes and 

Biala, 2012), animals were placed inside the arena with one novel and one familiar object (test 

day). Animals were allowed to explore the objects for 5 minutes. The objects used in the 

training and test days were wooden dolls (7 cm height x 6 cm width). The role of the object, as 

either familiar or novel, was randomized as was the location of their presentation. To randomize 

the role of the object a blind experimenter was asked to randomly select one of the objects to be 

the novel object for the first animal. Then, for the following animals, the novel object was 

always permuted, to ensure that both objects were used as the novel object the same number of 

times in both the control and the experimental groups (for instance, if the object A was 

randomly selected for the trial of animal 1, then for animal 2 the novel object would be object B, 

for animal 3 the object would be again object A, and so on). Between every trial the arena and 

the objects were cleaned with 30% ethanol to erase any olfactory clues. The objects were 

secured to the bottom of the arena with Velcro, which could not be seen or touched by the 

animals, and were placed in opposite corners of the arena. Activity was recorded using the 

video-tracking software – SMART® (RRID:SCR_002852). To refine the results obtained by 

software measures, a post-analysis was conducted. In the post-analysis, the investigator was 

blind to the experimental condition. Exploratory behaviour was quantified as the amount of time 

(seconds) animals spent investigating each object (only direct approaches were considered; ≤ 1 

cm distance). The number of approaches that included sniffing the object, rearing towards the 

object or touching the object, were counted (Ennaceur and Delacour, 1988; Ennaceur, 2010; 

Antunes and Biala, 2012). Exploration of each object was quantified as the novelty preference 

index (NPI) - calculated as (B-A) / (B+A), where B corresponds to the time spent exploring the 

novel object and A the time spent exploring the familiar object, during the test phase of NORT. 

This index ranges from -1 to 1 (-1 = exclusive exploration of the familiar object; 0 = absence of 

discrimination between novel and familiar objects, i.e. equal time exploring both objects, and 1 

= exploration of the novel object only).We defined full immobility during the test stage of 

NORT as an a priori exclusion criterion, by which no animals were excluded from analysis. 

However, data from one animal on the control group was eliminated by post-analysis since it 

corresponded to a significant outlier (p < 0.05).   
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Open field test (OFT) and Elevated Plus Maze (EPM) 

 Anxiety-like and locomotor behaviour were analysed in the OFT and EPM. Behaviour 

in the OFT was analysed before the NORT. The OFT was used to assess individual behaviour 

when animals were placed in a novel environment (Wilson et al., 1976), as well as anxiety 

(Careau et al., 2012). Since locomotor activity can impact exploratory drive (Broadhurst, 1957, 

1958; Stanford, 2007), it was important to ascertain that animals did not display significant 

differences in locomotor activity. The OFT took place in the same arena as that used for the 

NORT (square open field arena: 40 x 40 x 40 cm) and activity was recorded during the first time 

that animals had contact with the environment, i.e., on the first 5 minutes of the first day of 

NOR habituation phase (see schematics on figure 1). To quantify behaviour, the percentage of 

time spent in the central zone of the arena was used as an indicator of anxiety, as previously 

described (Mouro et al. 2017). Mean velocity and distance moved were quantified to compare 

locomotor abilities between the experimental groups. Activity was recorded and analysed using 

the video-tracking software – SMART® (RRID:SCR_002852). The reference point used by the 

software to determine the position of the animal was the center of the mouse dorsum, as done 

previously in our Institute (Batalha et al. 2013, Coelho et al. 2014, Mouro et al 2017). 

Environmental conditions and animal manipulation procedures were kept as similar as possible 

between animals. 

Anxiety-like behaviour was also assessed in the EPM. Immediately after being tested in 

the NORT during the test day (see schematics on figure 1), animals were placed in a maze 

shaped like a plus sign composed by two open arms with no walls (5 x 29 cm) and two closed 

arms (5 x 29 x 15 cm) arranged perpendicularly and elevated 50 cm above the floor (Mouro et 

al. 2017). Animals were placed on the center of the maze, facing an open arm, and allowed to 

freely explore the maze during 5 minutes. The total time spent in open arms was used as a 

measure of anxiety-like behaviour (Pellow et al. 1985, Coelho et al., 2014, Mouro et al. 2017).  

 

14C-2-D-deoxyglucose functional brain imaging 

Local cerebral glucose utilization (LCGU) was determined after the final WIN 55,212-2 

(or vehicle) treatment (n=10 per group, at day 31 for half of the controls and half of the test 

animals, at day 32 for the remaining animals), in accordance with previously published 

protocols (Dawson et al., 2012; 2015). In brief, mice were injected i.p. with 4.625 MBq/Kg of 

2-deoxy-D-[14C]glucose diluted in physiological saline (American Radiolabeled Chemicals Inc., 

USA, catalogue number ARC 0111A, dose volume of 2.5 ml/kg). After the injection animals 

were returned to their home cages. Forty-five minutes after isotope injection, animals were 
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sacrificed by cervical dislocation and subsequently decapitated. A terminal blood sample was 

collected from the neck by torso inversion, to determine circulating glucose levels (Accu-Chek 

Aviva Blood Glucose Monitor). The brain was dissected out and immediately frozen in 

isopentane (-40ºC) and stored at -80ºC until sectioning. Blood samples were centrifuged to 

separate the plasma for determination of plasma 2-deoxy-D-[14C]glucose concentration by 

liquid scintillation analysis (supplemental material, Table S1).  

Brains were coronally sectioned in a cryostat (-20ºC) at 20 µm. Three consecutive 

sections were retained from every 60 µm and dried rapidly onto slide covers on a hot plate 

(70ºC). Autoradiograms were obtained by placing these sections, along with pre-calibrated 14C-

standards (39-1069 nCi/g tissue equivalents; American Radiolabelled Chemicals Inc. USA, 

catalogue number ARC 0146R) to high resolution autoradiographic film (Carestream Kodak 

Biomax MR, Sigma-Aldrich, UK, catalogue number Z358460-50EA) for 7 days, after which 

they were developed in accordance with the manufacturer’s instructions. Autoradiographic 

images were analysed by computer-based images analysis (MCID/M5) (RRID:SCR_014278). 

The local isotope concentration for each brain region of interest (RoI) was obtained directly 

from the optical density of autoradiographic images relative to that of co-exposed 14C-standards. 

Forty-nine anatomically distinct RoI were measured with reference to a stereotactic mouse brain 

atlas (Paxinos and Franklin, 2001) (RRID:SCR_007127). LCGU in each RoI was obtained by 

comparing the ratio of 14C in each RoI to the 14C concentration in the whole brain of the same 

animal, referred to as the 14C-2-DG uptake ratio (14C-2-DG UR). The whole brain average 14C 

concentration was determined as the average 14C concentration across all sections in which a 

RoI was measured. No animals were excluded from this data set. 

 

Functional Brain Connectivity  

Regional functional connectivity was analysed in control (saline-treated) and WIN 

55,212-2-treated mice. To elucidate the impact of chronic WIN 55,212-2 exposure on regional 

functional connectivity we applied the Partial Least Squares Regression (PLSR) algorithm (pls 

package in R, https://CRAN.R-project.org/package=pls, Mevik & Wehrens, 2007), to 

characterize statistically significant differences in the functional connectivity of defined “seed 

regions” to all the other RoI’s analysed. In our analysis these seed regions were chosen on the 

basis of the overt differences in LCGU seen following chronic WIN 55,212-2 treatment (Figure 

4). Thus, the chosen seed brain regions in our analysis were the dorsal subiculum of the ventral 

hippocampus (DSub), the mediodorsal thalamic nucleus (MD), the habenula (Hab) and the 

globus pallidus (GP). The application of the PLSR algorithm to functional 14C-2-DG imaging 

data was undertaken as previously reported (Dawson et al., 2012; 2015). In brief, functional 
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connectivity between each seed RoI and all other RoI measured was defined by the variable 

importance to the projection (VIP) statistic gained from PLSR analysis. A significant functional 

connection between brain regions was considered to exist if the 95% confidence interval (CI) of 

the VIP statistic exceeded 0.8, denoting a considerable contribution of the explanatory variable 

(RoI) to the dependent variable (seed region) in PLSR analysis. The SD and CI of the VIP 

statistic were estimated by jack-knifing. The significance of WIN 55,212-2 induced alterations 

in the VIP statistic were determined by t-test with post-hoc Bonferroni correction for multiple 

comparisons. WIN 55,212-2 induced alterations in functional connectivity on this basis were 

thus defined as being significant increases or reductions in functional connectivity (where the 

value of the VIP statistic is significantly altered between the groups but the 95% CI of the VIP 

statistic exceeds the 0.8 threshold in both experimental groups), or significantly lost or newly 

gained functional connectivity (WIN 55,212-2-treated animals significantly different from 

controls and the 95% CI of the VIP statistic exceeds the 0.8 threshold in only one of the 

experimental groups) .  

 

Statistical Analysis  

Data are expressed as means ± SEM. All data sets were tested for normality and 

analysed in Graphpad Prism 6 software (RRID:SCR_002798) or R (version 3.4.4, 

http://www.r-project.org, RRID: SCR_001905). A test for outliers was performed using the 

Graphpad Outlier Calculator. NORT data were analysed using two-tailed, paired or unpaired 

Student’s t tests, as appropriate for each condition and as indicated in the figure legends. Overt 

alterations in LCGU were statistically analysed by Student’s t test, with discrete RoI treated as 

independent variables, as previously justified (Kelly and McCulloch, 1985). Significance was 

set at p<0.05 throughout.  

 

Results 

Chronic, intermittent WIN-55,212-2 administration disrupts recognition memory 

Chronic, intermittent exposure to the cannabinoid agonist WIN 55,212-2 disrupted 

recognition memory evaluated in the NORT. In the training phase, control animals (vehicle 

treated) and animals treated chronically with WIN 55,212-2 explored the two identical objects 

for a similar amount of time (Figure 2, panel A). However, on the test day, while control 

animals showed a significant preference for the novel as compared to the familiar object 

(P<0.001, n=19), WIN 22,515-2 treated animals did not (P>0.05, n = 20). A similar effect was 
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seen when analysing the novelty preference index (NPI) with control animals showing a 

significant preference for the novel object during the test phase (P < 0.05, n =19), while WIN 

55,212-2 treated animals did not (Figure 2, panel B). Importantly, we found that there was no 

significant difference in the total time of object exploration between control or WIN 55,212-2 

treated mice, during either the training or test phase (Figure 2, panels C and D). 

The NPI scores obtained in the present work were not significantly different from zero, 

being similar to those previously reported by us using the same NORT paradigm in mice of the 

same age during acute WIN 55,212-2 administration (Mouro et al., 2017). This indicates that the 

treatment schedule used in the present work does not result in tolerance with regards to 

recognition memory. Once confirmed this was then taken as a positive control to proceed for the 

assessment of the influence of WIN 55,212-2 upon brain metabolism and functional brain 

connectivity, to elucidated the functional changes underlying this deficit.  

 

Chronic, intermittent WIN-55,212-2 administration does not alter locomotor behaviour or 

anxiety-like behaviour 

Anxiety-like behaviour and locomotor abilities were measured before, after and during 

the memory test, using respectively, the OF test, the EPM and by measuring the total time of 

object exploration during the test phase of the NORT. We found no evidence to suggest that 

chronic WIN 55,212-2 administration significantly impacted on locomotor activity or anxiety 

like behaviour (Figure 2, panel C and D, Figure 3).  

 

Chronic, intermittent WIN 55,212-2 administration alters LCGU  

Chronic, intermittent WIN 55,212-2 administration induced both increases and 

decreases in LCGU on a brain region dependent basis. WIN 55,212-2 treated mice showed 

marked hypometabolism in the dorsal subiculum of the ventral hippocampus (DSub), the 

thalamic mediodorsal nucleus (MD) and in the habenula (Hab) (P < 0.05, n = 10). By contrast, 

WIN 55,212-2 treated animals showed significant hypermetabolism in only one of the brain 

regions analysed, the Globus Pallidus (GP) (P < 0.05, n = 10). These results support altered 

function in the basal ganglia-thalamic-hippocampal circuits (Figure 4). Interestingly, when 

measuring LCGU on three different amygdala regions, there were no statistically significant 

differences between control and experimental groups. Thus, this data supports the results 

obtained in the behaviour tests which showed no significant differences in anxiety-like 

behaviour (Figure 3) following chronic WIN 55,212-2 administration. Full 14C-2-deoxyglucose 
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brain imaging data are shown in the supplemental material (Table S2). Blood glucose and level 

of 14C-2-DG in the plasma were not significantly altered in control and WIN 55,212-2 treated 

animals (Table S1).  

 

Regional Functional Connectivity 

We analysed the functional connectivity of four “seed” regions, defined as those where 

we had identified a significant impact of WIN 55,212-2 treatment on LCGU (DSub, MD, Hab, 

GP). Analysis by means of PLSR algorithm, revealed significant modifications in functional 

connectivity in the mice that had received WIN 55,212-2 (Figure 5).  

For the DSub of the ventral hippocampus, in control animals this region was 

significantly connected to multiple subfields of the PFC, selected other ventral hippocampal 

subfields, and to the serotonergic raphé (dorsal raphé, DR; median raphé, MR; supplemental 

Table S3). In animals treated with WIN 55,212-2, functional connectivity of the DSub was 

significantly altered. Specifically, significant decreases (anterior prelimbic, aPrL; medial orbital 

MO; and medial prelimbic, mPrL), and lost (infralimbic, IL) connectivity with multiple PFC 

regions was seen in animals treated chronically with WIN 55,212-2. By contrast, chronic WIN 

55,212-2 administration resulted in new abnormal functional connectivity between the DSub of 

the ventral hippocampus and subfields of the dorsal hippocampus (CA1, CA2. In addition, 

functional connectivity of the DSub to other subfields in the ventral hippocampus was 

significantly enhanced (Mol, CA3) or gained (DG) in WIN 55,212-2 treated animals. This 

suggests that the local connectivity of the ventral hippocampus DSub to other hippocampal 

subfields was significantly increased as a result of chronic WIN 55,212-2 administration. In 

addition, functional connectivity of the DSub to the perirhinal (PRh) cortex was abnormally 

gained in response to chronic WIN 55,212-2 treatment. Furthermore, the DSub gained new 

functional connectivity to discrete thalamic nuclei (anteroventral, AV; mediodorsal, MD) and to 

the serotonergic MR following chronic WIN-55,212-2 administration.  

 

 In control animals the Hab was functionally connected with several PFC subfields and 

several striatal, hippocampal and amygdala regions (supplemental Table S4). Following chronic 

WIN 55,212-2 treatment the functional connectivity of the Hab was significantly altered. On 

one hand, the Hab lost functional connectivity with multiple PFC subfields (FRA; dorsolateral 

orbital cortex, DLO; lateral orbital cortex, LO and IL) and showed significantly lost (substantia 

nigra pars compacta, SNC) and decreased connectivity (dorsolateral striatum, DLST; GP and 

substantia nigra pars reticulata, SNR) to several regions of the basal ganglia. By contrast, WIN 
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55,212-2 treatment provoked abnormal gains in connectivity between the Hab and subfields of 

the nucleus accumbens (core, AcbC; shell, AcbSh), with the serotonergic system (dorsal raphé, 

DR).    

In control animals the MD thalamic nucleus was significantly functionally connected to 

multiple subfields of the prefrontal cortex (PFC), other cortical regions and other thalamic 

nuclei (supplemental material, Table S5). The functional connectivity of the MD was 

significantly altered in mice treated chronically with WIN 55,212-2. This included significantly 

lost (anteroventral nucleus, AV) or decreased (anteromedial nucleus, AM; anterior reticular 

thalamus, aRT) connectivity to other thalamic nuclei, and cortical regions (frontal association 

cortex, FRA; insular cortex, Ins). By contrast, chronic WIN 55,212-2 treatment resulted in new, 

abnormal functional connectivity between the MD and multiple subfields of the 

septum/diagonal band of Broca (medial septum, MS; lateral septum, LS; ventral limb of the 

diagonal band of broca, VDB). 

 Finally, in control animals the GP was functionally connected to numerous regions of 

the septum/diagonal band of Broca, and to striatal and cortical regions (supplemental Table S6). 

As a consequence of chronic WIN 55,212-2 treatment the functional connectivity of the GP was 

significantly modified. The GP significantly lost functional connectivity with several regions of 

the septum/diagonal band of Broca (medial septum, MS; ventral limb diagonal band of Broca, 

VDB; horizontal limb diagonal band of Broca, HDB) and to the striatum (DLST and VMST). 

By contrast, the GP gained abnormal new connectivity with PFC (DLO, mPrl and cingulate 

cortex, Cg1) and to the serotonergic raphe (MR and DR) following chronic, intermittent WIN 

55,212-2 treatment.      

 

 

Discussion 

In this work we demonstrated that mice chronically exposed to the non-selective 

cannabinoid receptor agonist, WIN 55,212-2, displayed disrupted cerebral metabolism and 

abnormal functional connectivity in the cortico-thalamic-hippocampal circuits that underlie 

recognition memory. This includes compromised perirhinal-hippocampus-prefrontal cortex and 

thalamo-prefrontal functional connectivity. In parallel, we observed deficits in recognition 

memory as a consequence of chronic WIN 55,212-2 administration without signs of altered 

motor abilities and anxiety-like behaviour.  
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CB1Rs on synapses inhibit glutamatergic and GABAergic transmission, modulate 

different forms of synaptic plasticity, and control neural oscillations that support behaviour and 

diverse cognitive functions, including learning and memory (Hajos et al. 2000; Piomelli et al., 

2003, Albayram et al. 2016; Kano et al., 2009; Araque et al., 2017; Lupica et al., 2017). 

Altogether, previous data also suggest that endo- and exo- cannabinoids may induce the 

functional reconfiguration of neuronal and brain networks to impact on memory processing, and 

we now specifically addressed this possibility.  

Object recognition learning and memory is a process involving multiple items, the 

contextual clues surrounding them and the temporal order in each they are presented. Effective 

recognition memory depends on functional interactions within a circuit comprised by the 

perirhinal cortex (Bussey et al. 2000; Warburton and Brown, 2010), the hippocampus (Brown 

and Aggleton, 2001; Barker and Warburton 2011), the medial prefrontal cortex (O’Neil et al. 

2012) and the mediodorsal nucleus of the thalamus (Mitchell et al. 2005; Warburton and Brown, 

2015). In this work we report deficits on recognition memory following chronic, intermittent 

WIN 55,212-2 treatment as assessed by the NORT. Data from the behavioural test served as a 

positive confirmation for the results obtained from the brain imaging and functional 

connectivity experiments , discussed below. We found that chronic, intermittent WIN 55-212-2 

administration significantly impacts on the function and connectivity of the hippocampal dorsal 

subiculum (DSub, Figure 5), in line with previous suggestions that the subiculum is involved in 

recognition memory (Chang and Huerta, 2012). The subiculum is a primary output structure of 

the hippocampus and receives direct projections from other brain regions critical for recognition 

memory, including the perirhinal cortex (Amaral et al., 2007). Monosynaptic and reciprocal 

connections  between the subiculum and the perirhinal and the postrhinal cortices exist (Witter 

et al., 2000), implicating the subiculum in a short functional loop with cortical areas known to 

be crucial for recognition memory (Warburton and Brown, 2010). Our study revealed that 

chronic, intermittent WIN 55,212-2 treatment induced a pattern of irregular and dysfunctional 

connectivity between the dorsal subiculum and virtually every other subfield of the 

hippocampus (CA1, CA2, CA3, ML and DG; Figure 5). Furthermore, chronic, intermittent WIN 

55,212-2 treatment impaired connectivity between the dorsal subiculum and several subfields of 

the prefrontal cortex, another structure directly implicated in recognition memory (Riba et al. 

2015).  

We also found widespread evidence for functional dysconnectivity of the mediodorsal 

(MD) thalamic nuclei as a consequence of WIN 55,212-2 administration, which could also 

contribute to the deficits in recognition memory seen in these animals. Indeed, there is building 

evidence supporting a cortico-thalamic-hippocampal network, including the MD, that underlies 

recognition memory, in part due to the ability of the mediodorsal thalamic nuclei to act as a 
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relay between the perirhinal and the medial prefrontal cortex (Parker and Gaffan, 1998; 

Warburton and Brown, 2015). The mediodorsal thalamic nucleus directly projects to the 

hippocampus and to the prefrontal cortex. Lesions in this thalamic nucleus result in recognition 

memory deficits (Parker et al., 1997), replicating deficits related with lesions of the medial 

temporal lobe (Warburton and Brown, 2015). In addition, it has been previously shown that 

disconnection of the mediodorsal thalamic nucleus from the medial temporal cortex impairs 

object-in-place and temporal order performance (Cross et al., 2012).  

The habenula is an important anatomical hub involved in a diverse range of behaviours 

including reward processing, reward prediction error, memory and the stress response 

(Naamboodiri et al., 2016). The habenula receives direct projections from the prefrontal cortex 

and the basal ganglia (globus pallidus, Hikosaka, et al., 2008), regions that show reduced 

functional connectivity to the habenula after chronic, intermittent WIN 55,212-2 administration 

(Figure 4). The habenula also sends direct projections to dopamine rich brain regions including 

the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC, Hikosaka, et al., 

2008). Remarkably, the functional connectivity of the habenula to these regions is also lost in 

animals treated chronically with WIN 55,212-2. Moreover, the functional connectivity of the 

habenula to other components of the mesolimbic system, including the nucleus accumbens, is 

also significantly altered by chronic WIN 55,212-2 treated animals. These effects may relate to 

the amotivation syndrome (Tunving et al., 1987) and reward processing deficits (Fujiwara, 

2001; Friemel et al., 2014) seen as a result of cannabinoid exposure. By contrast, the functional 

connectivity of the habenula to the serotonergic raphe, to which the habenula directly projects, 

is abnormally enhanced by chronic WIN 55,212-2 administration. This suggests that chronic 

cannabinoid exposure may impact both dopaminergic and serotonergic system function by 

impacting, in part, on the functional connectivity of the habenula.  

Altered serotonin system function as a result of chronic, intermittent WIN 55,212-2 

administration, is also supported by broader evidence of altered raphé nuclei functional 

connectivity, being evident to each of the seed brain regions analysed. A number of previous 

studies have found that chronic cannabinoid exposure alters the functioning of the serotonin 

system, including the induction of altered serotonin levels (Sagredo et al., 2006) and serotonin 

receptor activity (Esteban & Garcia-Sevilla, 2011; Darmani et al., 2001; Hill et al., 2006; 

Frankin et al., 2013; Moranta et al., 2009). Moreover, the role of the serotonin system in 

recognition memory is firmly established (Zhang et al., 2013; 2015) suggesting that the 

disruption of serotonin system connectivity may be one of the key mechanisms by which 

chronic, intermittent WIN 55,212-2 exposure impairs recognition memory. This possibility 

warrants, however, further systematic investigation. If found to be correct, targeting the 
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serotonin system may represent a therapeutic strategy to restore memory deficits as a 

consequence of chronic cannabinoid exposure. 

Cannabinoid intake induces more severe behavioural deficits in pubertal rats than in 

mature animals (Schneider and Koch 2002; Schneider et al., 2008). Indeed, short-term 

recognition memory impairments (30 min retention time in NORT) can persist beyond 

cannabinoid exposure if the exposure occurs during the pubertal period (Schneider and Koch 

2002; Schneider et al., 2008), but not if the exposure occurs only during adulthood (Schneider 

and Koch, 2003) or even if it occurs only during the pre-pubertal period (Schneider et al., 2005). 

However, as we herein show, cannabinoid exposure in adulthood does induce alterations in 

brain metabolism and connectivity, and these alterations are accompanied by significant 

recognition memory impairments over longer retention intervals (24 hours). In addition, the 

present evidence showing that functional connectivity between the thalamus and prefrontal 

cortex is affected by cannabinoid exposure is in line with previous findings that cannabinoids 

can exacerbate deficits induced by prefrontal cortex lesions (Schneider and Koch 2005; 2007). 

The exact pharmacological identification of the receptor influenced by the cannabinoid 

compound used in the present work is outside its objective. However, there is evidence that 

supports the possibility of the presently described actions of WIN 55,212-2 being mediated 

through CB1R. WIN 55-212,2 is one of the most commonly used cannabinomimetics to study 

the role of the CB1R and the CB2R (Solymosi and Köfalvi, 2017), showing similar preference 

for activating both receptors (Pertwee et al. 2010). On the other hand, evidence has consistently 

shown that WIN 55,212-2 has no effect upon G protein-coupled receptor 55 (GPR55) (Johns et 

al. 2007; Ryberg et al. 2007; Pertwee et al. 2010; Solymosi and Köfalvi, 2017). We previously 

showed that the CB1R selective antagonist (AM 251) abolished the impact of acute WIN 

55,212-2 administration on recognition memory, which was evaluated with the same NORT 

paradigm and using mice of the same age as used in this study (Mouro et al., 2017), supporting  

involvement of CB1R. There is, in fact, a broad range of evidence supporting the involvement of 

CB1R in memory deficits (Clarke et al 2008, Suenaga and Ichitani, 2008, Wise et al. 2010), 

while CB2R agonists do not seem to affect recognition memory (Clarke et al. 2008). Regarding 

modifications of brain metabolism following cannabinoid administration, evidence shows that 

CB1R agonists lead to decreases in glucose uptake (Duarte et al. 2012; Miederer et al 2017) and 

mitochondrial respiration (Bernard et al. 2012).  

In conclusion, we herein demonstrated that prolonged, intermittent exposure of adult 

mice to the non-selective cannabinoid receptor agonist WIN 55,212-2, induces alterations in 

metabolic brain activity in selected brain regions, alters their functional connectivity, and 

impairs recognition memory. Connectivity modifications were seen in circuits known to be 
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directly involved in recognition memory, and for the habenula and raphé nuclei. These data give 

new insight into the mechanisms by which chronic cannabinoid exposure impacts on behaviour 

and cognition, and highlight the value of considering cannabinoid actions at the systems-level 

perspective.  
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Figures 

Figure 1. Scheme depicting the treatment schedule and overall experimental protocol. 

Over 30 consecutive days mice were treated with 22 intraperitoneal (i.p.) injections with WIN 

55,212-2 or vehicle control. Behavioural tests were performed between day 22 and 26; as 

indicated in the inset. The habituation phase of NORT was initiated on day 22, simultaneously 

with the OFT. The habituation continued on the days 23 and 24. The training phase of NORT 

was performed on day 25. On day 26 the test phase of NORT was performed. Immediately after 

the NORT animals were placed in the EPM to assess anxiety-like behaviour. Subsequently, 24 

hours after the final WIN 55,212-2 treatment, animals underwent the 14C-2-deoxyglucose brain 

imaging protocol. From the initial 40 animals, one animal of the control group was excluded by 

post-analysis (outlier, P<0.05); thus 19 control and 20 WIN 55,212-2 treated mice were used in 

the behavioural assays and 10 control and 10 WIN 55,212-2 treated mice were used in the 14C-

2-deoxyglucose brain imaging study.  

 

Figure 2. Chronic, intermittent WIN 55, 212-2 treatment impairs recognition memory in 

the NORT. Panel A. Data is represented as % of exploration time. A denotes familiar object 1, 

A’ denotes familiar object 2, B denotes the novel object. – On the training day the % of time 

spent exploring each of the familiar objects did not differ between control and WIN 55,212-2 

treated animals (P > 0.05, paired Student’s T test). On the test day, control animals explored the 

novel object significantly more than the familiar object (****P < 0.0001, paired Student’s T 

test). However, animals treated chronically with WIN 55,212-2 spent a similar amount of time 

exploring both the familiar and novel object, (P > 0.05, paired Student’s T test, comparing the % 
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of time spent with A and B).  Panel B – The Novelty Preference Index (NPI) is significantly 

decreased in WIN 55-212-2 treated animals as compared to controls (**P < 0.01, unpaired 

Student’s T test). A novelty index of zero represents absence of discrimination between objects 

(see Methods for details). The NPI of WIN55,212-2 treated mice was not significantly different 

from zero (P > 0.05, unpaired Student’s t test), whereas in control mice the NPI was 

significantly different (P < 0.0001) from zero. Panels C and D – Total time of object 

exploration (TTE) during the training and test phase of NORT was not significantly different 

between VEH and WIN treated animals (P > 0.05, unpaired Student’s T test). An a posteriori 

Power Analysis for NORT data was performed using G*power 3.1 software; considering a 

mean of 0.201 of preference for the novelty in control and 0.050 for drug treated animals 

(pooled sd (0.15), there is a 87.5% correct chance of correctly rejecting the null hypothesis (no 

differences on the T test), using 19 animals in the control group and 20 animals in the 

experimental group from a total of 39 animals. 

 

Figure 3. | Chronic, Intermittent WIN55, 212-2 treatment does not impact on locomotor 

activity or anxiety-like behaviour. Panel A and B – Locomotor abilities were assessed in the 

open field test (OFT) (panels A and B), performed during the first habituation day of the NORT. 

Chronic WIN, 55,212-2 treatment did not significantly alter the total distance travelled (panel 

A) or velocity (panel B) in comparison to vehicle-treated controls (P > 0.05, unpaired Student’s 

T test). Panels C and D –Anxiety-like behaviour was assessed at two time-points: before the 

NORT in the OFT, by evaluating the percentage of time spent in the central zone (panel C), and 

after NORT test, in the EPM test (panel D) by evaluating the percentage of time spent in the 

open arms of the maze. In both tests, there were no significant differences between WIN 

55,212-2 treated animals and saline-treated controls (P > 0.05, unpaired Student’s t test).  

 

Figure 4. | Chronic, intermittent WIN 55,212-2 administration induces localised increases 

and decreases in local cerebral glucose utilisation.  Panel A – Chronic, intermittent WIN 

55,212-2 administration induced significantly decreased cerebral metabolism in the dorsal 

subiculum (DS), Mediodorsal thalamus (MD), and Habenula (Hab) and increased metabolism in 

the Globus Pallidus (GP). By contrast, cerebral metabolism in the amygdala nuclei (Basolateral, 

BLA; Central, CeA; Medial, MeA) was not significantly altered in WIN 55,212 treated animals. 

| Data shown as the 14C-2-DG uptake ratio obtained for each RoI. *denotes P<0.05 significant 

difference from control (unpaired Student’s t-test). Panel B – representative false colour 

autoradiograms at the level of the dorsal and ventral hippocampus showing altered cerebral 

metabolism in WIN 55,212-2 treated animals. Higher rates of metabolism are indicated by 
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warmer colours (red/orange) and lower rates of metabolism by cooler colours (blue/green). Full 

data are shown in the supplemental table S2. 

 

Figure 5. | Chronic, intermittent WIN 55,212 treatment alters functional connectivity in 

neural circuits underpinning recognition memory. Panel A | Heatmap showing how chronic, 

intermittent treatment with WIN 55,212-2 induced modifications in the functional connectivity 

of “seed” brain regions (DSub, MD, Hab and GP). Dark red denotes significantly gained 

connectivity while light red represents significantly increased connectivity. Dark blue represents 

significantly lost connectivity whereas light blue denotes significantly decreased connectivity. 

Significant gains, losses, increases and decreases in connectivity were determined by statistical 

comparison of the VIP statistic (unpaired Student’s T test with Bonferroni post-hoc correction) 

determined PSLR, with significance level set at P < 0.05. Full data for each 'seed' region are 

shown in the Supplementary Tables S3–S6. Panel B | Brain images showing the anatomical 

localization of brain regions with significant increased/gained connectivity to the “seed” regions 

(DSub, Hab, MD and GP). Yellow represents the anatomical localization of the “seed” brain 

region. Brain section figures are modified from the Allen mouse brain atlas (mouse.brain-

map.org/static/atlas). 
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