
1 
 

Title: Unraveling the role of transient starch in the response of Arabidopsis to elevated 1 

CO2 under long-day conditions  2 

 3 

Authors: Ivan Jauregui1,2#, Javier Pozueta-Romero2, Javier Córdoba3, Jean-Christophe 4 

Avice4, Pedro Mª Aparicio-Tejo1, Edurne Baroja-Fernández2, Iker Aranjuelo 2* 5 

 6 

Address: 7 
1 Dpto. Ciencias del Medio Natural, Universidad Pública de Navarra, Campus de 8 

Arrosadía, E-31192-Mutilva Baja, Spain. 9 
2 Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-Consejo 10 

Superior de Investigaciones Científicas-Gobierno de Navarra, Avda. Pamplona 123, 11 

31192 Mutilva, Navarra. 12 
3 Instituto de Recursos Naturales y Agrobiología de Salamanca, IRNASA-Consejo 13 

Superior de Investigaciones Científicas, Cordel de Merinas 40, E-37008 Salamanca, 14 

Spain 15 
4 UMR INRA/UCN 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, 16 

Université de Caen Normandie, UFR des Sciences, SFR Normandie Végétale, Esplanade 17 

de la Paix, F-14032, Caen, France 18 

 19 
# Present address: Lancaster Environment Centre, Lancaster University, Lancaster, LA1 20 

4YQ, United Kingdom 21 

22 



2 
 

Running title: The role of starch in the response of LD-grown plants to elevated CO2  23 

Number of tables: 0 24 

Number of figures: 4 25 

Supplemental data: 4 26 

Keywords: starch, elevated CO2, photosynthesis, growth, photosynthetic acclimation 27 

 28 

 29 
*Corresponding author: 30 

Name: Iker Aranjuelo  31 

Address: Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-32 

Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Avda. Pamplona 33 

123, 31192 Mutilva, Navarra. 34 

E-mail address: iker.aranjuelo@csic.es 35 



3 
 

ABSTRACT:  1 

Previous studies on Arabidopsis under long-term exposure to elevated CO2 have been 2 

conducted using starch synthesis and breakdown mutants cultured under short day 3 

conditions. These studies showed that starch synthesis can ameliorate the photosynthetic 4 

reduction caused by soluble sugar-mediated feedback regulation. In this work we 5 

characterized the effect of long-term exposure to elevated CO2 (800 ppm) on growth, 6 

photosynthesis and content of primary photosynthates in long-day grown wild type plants 7 

as well as the near starch-less (aps1) and the starch-excess (gwd) mutants. Notably, 8 

elevated CO2 promoted growth of both wild type and aps1 plants but had no effect on 9 

gwd plants. Growth promotion by elevated CO2 was accompanied by an increased net 10 

photosynthesis in WT and aps1 plants. However, the plants with the highest starch content 11 

(wild type at elevated CO2, gwd at ambient CO2, and gwd at elevated CO2) were the ones 12 

that suffered decreased in in vivo maximum carboxylation rate of Rubisco, and therefore, 13 

photosynthetic down-regulation. Further, the photosynthetic rates of wild type at elevated 14 

CO2 and gwd at elevated CO2 were acclimated to elevated CO2. Notably, elevated CO2 15 

promoted the accumulation of stress-responsive and senescence-associated amino acid 16 

markers in gwd plants. The results presented in this work provide evidence that under 17 

long-day conditions, temporary storage of overflow photosynthate as starch negatively 18 

affect Rubisco performance. These data are consistent with earlier hypothesis that 19 

photosynthetic acclimation can be caused by accelerated senescence and hindrance of 20 

CO2 diffusion to the stroma due to accumulation of large starch granules. 21 
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INTRODUCTION: 1 

The concentration of atmospheric CO2 has risen from pre-industrial revolution levels of 2 

ca. 280 ppm to the present level of ca. 400 ppm, and is estimated to reach 500-1200 ppm  3 

by 2100 (IPCC 2013)). As the substrate for photosynthesis, the elevated atmospheric CO2 4 

has a profound impact on plant growth. Numerous studies have shown that elevated CO2 5 

increases the rates of carboxylation and decreases the rates of oxygenation Ribulose-1,5-6 

bisphosphate carboxylase/oxygenase (Rubisco) in C3 plants (Ainsworth et al., 2007; 7 

Leakey et al., 2009). Although this would in principle result in a higher net rate of CO2 8 

fixation (An) and better plant growth, an “inbalance” between CO2 fixation and 9 

photosynthate utilization under long-term elevated CO2 conditions has been described as 10 

causing a reduction in leaf Rubisco content and consequently a decline in the in vivo 11 

maximum rate of in vivo maximum carboxylation rate of Rubisco (Vcmax) (Moore et al., 12 

1999; Ainsworth et al., 2004). This phenomenon, known as photosynthetic acclimation, 13 

has been ascribed to sugar-mediated reduction of photosynthetic gene expression through 14 

a hexokinase-controlled signaling pathway (Cheng et al., 1998; Moore et al., 1999; 15 

Ainsworth et al., 2004; Aranjuelo et al., 2013). To buffer the overload of soluble sugars 16 

driving photosynthetic down-regulation in response to elevated CO2, plants form new 17 

tissues, enhance respiration and/or accumulate non-structural carbohydrates such as 18 

starch (Long et al., 2004; Aranjuelo et al., 2011; 2013; Markelz et al., 2013). Therefore, 19 

many species with strong sinks do not show photosynthetic acclimation (Sage et al., 1989; 20 

Yelle et al., 1989; Ainsworth et al., 2007). There are alternative explanations for the 21 

decline in photosynthesis in response to elevated CO2. Miller et al. (1997) and Ludewig 22 

and Sonnewald (2000) proposed that high CO2-mediated down-regulation of 23 

photosynthetic gene expression is caused by accelerated leaf senescence rather than sugar 24 

accumulation. Also, it has been suggested that acclimation to elevated CO2 is the 25 

consequence of hindrance of CO2 diffusion from the intracellular space to the stroma in 26 

chloroplasts, which is caused by the accumulation of large starch granules (Makino and 27 

Mae, 1999; Sawada et al., 2001).  28 

 In leaves, up to 50% of the photosynthetically fixed carbon is retained within the 29 

chloroplasts during the day in the form of starch (Rao and Terry, 1995). It is widely 30 

assumed that this reserve polysaccharide is the end product of a metabolic pathway 31 

exclusive to the illuminated chloroplast that involves metabolization of fructose-6-32 

phosphate from the Calvin-Benson cycle (CBC) by the stepwise reactions of plastidic 33 
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phosphoglucose isomerase (PGI1), phosphoglucomutase (PGM1), ADP-glucose 34 

pyrophosphorylase (AGP) and starch synthase (SS). Recent studies have provided 35 

evidence that, in addition to the CBC-PGI1-PGM1-AGP-SS, Arabidopsis plants possess 36 

important alternative/additional starch biosynthetic pathways involving the cytosolic and 37 

chloroplastic compartments (Bahaji et al., 2014; 2015; Sánchez-López et al., 2016; 38 

Baslam et al., 2017). Starch breakdown in leaves requires the coordinated actions of a 39 

suite of enzymes including glucan, water dikinase (GWD), phosphoglucan, water 40 

dikinase, β-amylases, α-amylases, debranching enzymes and disproportionating enzymes 41 

(Streb and Zeeman, 2012; Santelia et al. 2015). These enzymes degrade starch to maltose 42 

and glucose, which are transported to the cytosol via the maltose transporter, MEX1 and 43 

the glucose transporter pGlcT, respectively (Cho et al., 2011; Baslam et al., 2017). 44 

 Starch metabolism is an important determinant of plant growth in a diurnal cycle. 45 

In Arabidopsis, genetic evidence demonstrating the relevance of starch metabolism in 46 

growth has been obtained from the characterization of “near-starchless” pgm1 and agp 47 

mutants impaired in PGM1 and AGP, respectively. When cultured under 12h light and 48 

12h dark conditions, these mutants exhibit retarded growth that is likely a consequence 49 

of nighttime sugar starvation and soluble sugar-mediated down-regulation of growth- and 50 

photosynthesis-related genes (Carspar et al. 1985; Sun et al., 2002; Gibon et al., 2004; 51 

Ragel et al., 2013; Bahaji et al., 2015). Further evidence showing the relevance of starch 52 

metabolism in Arabidopsis growth has been obtained from “high starch” gwd, mex1 and 53 

mex1/pglcT starch breakdown mutants. These mutants exhibit low growth (Caspar et al., 54 

1991; Cho et al., 2011; Baslam et al., 2017) likely as a consequence of continuous sugar 55 

starvation (Baslam et al., 2017). The overall information obtained using starch synthesis 56 

and breakdown mutants indicates that it is not the starch content itself, but the ability to 57 

sustain a steady supply of soluble sugar that is crucial for plant growth. Thus, although 58 

elevated CO2 exerts a positive effect on growth of WT plants, no such effect occurs in 59 

agp, pgm and gwd plants (Sun et al., 2002; Rasse and Tocquen, 2006). Also, whereas the 60 

An of elevated CO2-grown WT plants is higher than in ambient CO2-grown WT plants, 61 

no such differences are observed in agp plants (Sun et al., 1999).  62 

 Previous studies on the role of starch in the response of Arabidopsis to long-term 63 

exposure to elevated CO2 have been mainly focused on growth, Rubisco activity, An and 64 

soluble sugar content in WT and agp plants (Sun et al., 1999; 2002; Gibson et al., 2011). 65 

In addition, Rasse and Tocquen (2006) compared the growth of WT, pgm1 and gwd plants 66 
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cultured under ambient or elevated CO2 conditions. Although Arabidopsis is a facultative 67 

long day (LD) plant, these studies were conducted using plants cultured under neutral day 68 

conditions. Therefore, we lack knowledge on the role of transient starch in the response 69 

of Arabidopsis to long-term elevated CO2 exposure under LD conditions. To address this 70 

question, we assessed responses in LD-grown WT plants and mutants impaired in AGP 71 

and GWD cultured under elevated CO2 conditions. Our hypothesis is that under LD 72 

conditions, elevated CO2 will differentially influence the C metabolism and 73 

photosynthetic performance of the different Arabidopsis lines, bearing to (i) the impact 74 

of altered sink/source balance on photosynthetic activity; either (ii) the reduced capacity 75 

of agp mutant to store photoassimilates in the form of starch or (iii) the impossibility of 76 

gwd mutants to use photoassimilates stored in the form of starch. 77 

 78 
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MATERIALS AND METHODS: 1 

Plant material and growth conditions 2 

The study was carried out using Arabidopsis thaliana WT (ecotype Col-0), and the gwd 3 

(SALK_077211) and AGP-lacking aps1 (SALK_040155) mutants (Ventriglia et al., 2008; Li 4 

et al., 2012). The experiment has been repeated in two consecutive years (2014 and 2015). The 5 

second year, the assay was performed to confirm the results of the first year. Biomass and N 6 

content analyses carried out in both experiments did not significantly differ. Seeds were placed 7 

at -80ºC in a freezer for 2 hours to improve the germination rates. Then the seeds were 8 

germinated on 0.65% agar using the Araponics (Araponics SA, Liege, Belgium) seed holders 9 

system to support the experiment under hydroponic conditions. The seed holders were placed 10 

in a germination chamber under continuous darkness for 48 h at 25ºC, with saturated humidity 11 

conditions and distilled water. Subsequently the plants were cultured in chambers at 22/18ºC 12 

(day/night) with a LD photoperiod of 16 hours of 200 μmol m-2 s-1 photosynthetic photon flux 13 

density (PPFD) and a relative humidity of 70/80 % (day/night). The distilled water was 14 

replaced every 3-4 days. Plants were transferred to 8 L containers filled with Rigaud and Puppo 15 

solution with modifications as detailed by Jauregui et al. (2016). The solution was replaced 16 

every 3-4 days. Plants were cultured in two different environment-controlled chambers 17 

(Heraeus-Votsch hps-500, Norrkoping, Sweden) under above described growth conditions and 18 

at two different atmospheric CO2 concentrations: 400 parts per million (ppm) (actual [CO2]) 19 

and 800 ppm (elevated [CO2]). CO2 bottles were provided by Praxair (Pamplona, Spain). The 20 

air entering in the cabinets was previously filtered (coarse-5 µm and 1 µm Ø particle and 0.01 21 

µm Ø particle physical filters and a charcoal chemical filter) to prevent the entrance of 22 

anomalous components to the chambers. The air were taken from outside the building Cabinets 23 

were equipped with an infrared CO2 analyser (polytron-IRGA, Dragäer, Lübeck, Germany) 24 

connected to a microprocessor located inside the cabinet. [CO2] was analyzed and controlled 25 

every second.  26 

All determinations were conducted 4 weeks after initiation of the CO2 treatment, prior 27 

to when the first flower buds were visible at the 3.6 growth stage of the ontological scale 28 

described by Boyes et al. (2001). The harvesting was carry on 3h after the dawn, in 1 h.  29 

 30 

Gas exchange determinations 31 

Gas exchange measurements in the last fully expanded leaf per plant were carried out 32 

using a LI-COR 6400 XT portable photosynthesis gas exchange system (Li-COR, 33 

Nebraska, USA). Net photosynthesis (An) and stomatal conductance (gs) were recorded 34 
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at 400 and 800 µmol mol-1 CO2, depending on the growth conditions. The photosynthetic 35 

responsiveness to elevated CO2 was evaluated by measuring the response of light-36 

saturated photosynthesis to changes in the ambient [CO2]. For each plant and treatment 37 

combination 3-5 A/Ci curves were conducted, under saturated light conditions (1000 38 

µmol m-2 s-1 irradiance), 300 µmol s-1 air flow rate, 25°C, 60 % relative humidity, and the 39 

corresponding [CO2] during growth.. The A/Ci curves started at 400 ppm, then reduce to 40 

250, and 99, to up to 250, 400, 600, 800, 1000, 1200 ppm. Estimations of in vivo 41 

maximum Rubisco carboxylation rates (Vcmax) and the maximum electron transport rate 42 

contributing to RuBP regeneration (Jmax) were performed according to McMurtrie and 43 

Wang. (1993). The Rd was measured during the night period, using a fluorescence 44 

chamber (LFC 6400- 40) coupled to the LI-COR 6400 XT system. 45 

 46 

Biochemical analysis 47 

Carbohydrate content: Frozen plant tissue (0.1 g) ground in a mortar using nitrogen liquid 48 

was homogenized in 1 ml of 80% ethanol. The homogenate was collected in an Eppendorf 49 

tube, sonicated for 25 min at 30ºC using an ultrasonic bath (Selecta, Barcelona, Spain) 50 

and centrifuged at 16000 x g. The supernatant thus obtained was collected in a glass tube, 51 

and the solid phase was dried at 70ºC. Starch in the solid phase was measured 52 

spectrophotometrically using an amyloglucosidase–based test kit (Boehringer, 53 

Mannheim, Germany). The supernatant was evaporated using forced air in a turbovap 54 

(Zymark, Carmel, USA) and 1.5 ml of distilled water was added. The soluble sugars in 55 

the aqueous fraction (sucrose, glucose, and fructose) were determined using a capillary 56 

electrophoresis system (Beckman instruments, Fullerton, USA). The equipment used a 57 

fused silica capillary of 50 µm internal diameter and a length of 31.4-38.4 cm. The 58 

equipment used a buffer that consisted of a solution of 10 mM benzoic acid and 0.5 mM 59 

myristyltrimethylammonium bromide (MTAB), pH 12 (adjusted with 1M NaOH). The 60 

method of analysis was performed at a voltage of -15 kV, 20°C and the detections were 61 

carried out indirectly at a wavelength of 225 nm. Fucose was used as the internal standard 62 

at a final concentration of 0.5 mM.  63 

 Amino acid contents: Frozen plant tissue (0.1 g) was ground in liquid nitrogen and 64 

homogenized with 1 ml 1M HCl. The extract was centrifuged at 16000 x g and 4ºC for 65 

10 min. Then the supernatant was collected in an Eppendorf tube and neutralized with 66 

NaOH to a pH of 7. Amino acids were derivatized at room temperature between 12-16 h 67 

with fluorescein isothiocyanate dissolved in 20 mM acetone/borate (pH 10). The amino 68 
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acid contents were determined with high-performance capillary electrophoresis using a 69 

Beckman Coulter PA-800 apparatus (Beckman Coulter, California, USA). The method 70 

applied a potential of −20 kV. The equipment used a buffer of 80 mM borax and 45 mM 71 

α-cyclodextrine, at pH 9.2. The method cannot separate glycine and serine. 72 

 73 

Rubisco content: Frozen plant tissue (0.1 g) was ground with nitrogen liquid and 74 

homogenized with 1 ml of 50 mM TRIS-HCl pH 8, 1 mM EDTA, 10 mM 2-75 

mercaptoethanol, 5 mM DTT, 10 mM MgSO4, 1 mM cysteine, 0.5% 76 

polyvinylpolypyrrolidone and 1mM phenylmethanesulfonyl fluoride. The homogenate 77 

was centrifuged at 16000 x g and 4 ºC for 10 min. Five µl of soluble protein was mixed 78 

and denatured with the following loading buffer: 62 mM TRIS-HCl, pH 6.8, 50% 79 

glycerol, 5% 2-mercaptoethanol, 2.3% sodium dodecyl sulfate (SDS) and 0.1% 80 

bromophenol blue. Then the extract was boiled at 100ºC for 5 min. Protein samples were 81 

loaded onto acrylamide gels (12.5%) and run at 125 V for 1 hour with the following 82 

running buffer: 25 mM TRIS, 192 mM glycine, and 0.1 mM SDS. Gels were then stained 83 

with GelCode Blue Stain Reagent (Pierce Biotechnology, Rockford, USA) and were 84 

scanned and quantified with the “quant 1” software in a Geldoc 2000 (Bio-Rad, Watford, 85 

UK) for the determination of abundance of the Rubisco large subunit (RbcL). Gel data 86 

were normalized to standards and recorded as a percentage, taking the content obtained 87 

in the 400 ppm [CO2] treatment as a reference. 88 

Mineral determinations: Nitrogen and carbon concentration was determined in the 89 

dry material with a CNS 2500 elemental analyzer (CE Instruments, Milan, Italy). The 90 

C/N ratio was calculated as a ratio dividing carbon and nitrogen concentration value. 91 

 92 

Statistical analysis 93 

Statistical analysis was performed by one factor ANOVA (SPSS v.12.0; SPSS 94 

Inc., Chicago, USA). Differences between treatments were determined by using the 95 

Tukey-b test. The results were accepted as significant at a P value  0.05.  96 
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RESULTS 1 

Growth  2 

LD-grown aps1 and gwd plants cultured under ambient CO2 conditions showed lower 3 

biomass values than WT plants (Figure 1, Supplementary Figure 1). Long-term 4 

exposure to elevated CO2 promoted growth of WT plants, but not the growth of gwd 5 

plants (Figure 1). Notably, elevated CO2 exerted a positive effect on the growth of aps1 6 

plants, with a value of fresh weight (FW) comparable to that of WT plants cultured under 7 

elevated CO2 conditions (Figure 1).  8 

Photosynthesis 9 

An values in aps1 and gwd plants were lower than in WT plants under ambient CO2 10 

(Figure 2). The An in gwd plants cultured under elevated CO2 was comparable to ambient 11 

CO2-grown plants. It is noteworthy that under elevated CO2 the An of WT plants was 12 

higher than under ambient CO2, and that this was also the case in aps1 plants. 13 

Furthermore, the An of aps1 plants was comparable to that of WT plants when cultured 14 

under elevated CO2 conditions (Figure 2). Regardless of analyzed genotype, plants 15 

grown under 800 ppm showed lower stomatal conductance (gs; Supplemental Table 2). 16 

The lowest gs values were detected in gwd plants exposed to elevated CO2.  17 

Under ambient CO2 the Vcmax in WT plants was higher than in aps1 and gwd plants 18 

(Figure 2). Elevated CO2 exerted a negative effect on Vcmax in WT and gwd plants, but 19 

not in aps1 plants (Figure 2). Under both ambient and elevated CO2, the Jmax of WT was 20 

comparable to that of aps1 plants, and higher than that of gwd plants (Figure 2). No 21 

growth CO2 linked significant differences on dark respiration rates (Rd) were detected on 22 

the different genotypes (Supplemental Table 1). 23 

Exposure to elevated CO2 promoted a significant reduction in leaf Rubisco large 24 

subunit and N content in WT and gwd plants, but not in aps1 plants (Figure 2 and 25 

Supplemental Figure 1 respectively).  26 

Primary photosynthate content 27 

The starch content in leaves of WT plants cultured under elevated CO2 conditions was ca. 28 

3-fold higher than under ambient CO2 conditions (Figure 3). No differences in starch 29 

content could be found between ambient and elevated CO2 conditions in aps1 and gwd 30 

plants (Figure 3). Under ambient CO2 conditions aps1 leaves accumulated nearly WT 31 

levels of sucrose, and ca. 2-fold more glucose and fructose than WT leaves. Leaves of 32 

WT plants cultured under elevated CO2 conditions accumulated 2-3-fold more glucose, 33 

fructose and sucrose than under ambient CO2 conditions (Figure 3). Under the same 34 
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conditions, aps1 leaves accumulated WT levels of fructose, and 1.5-fold and 4-fold more 35 

sucrose and glucose than WT leaves, respectively (Figure 3). Soluble sugar (sucrose, 36 

glucose and fructose) content in gwd leaves was higher than in WT plants under ambient 37 

CO2 (Figure 3), which is consistent with Caspar et al. (1991). Leaf fructose and glucose 38 

contents in gwd plants cultured under ambient CO2 were comparable to those of plants 39 

cultured under elevated CO2 conditions, while the leaf sucrose content was higher (Figure 40 

3). 41 

 No differences in leaf total free amino acid content (TFAC) could be found 42 

between the three genotypes cultured under ambient CO2 conditions (Supplemental 43 

Figure 3). Elevated CO2 did not greatly alter the TFAC in either WT or aps1 plants. In 44 

clear contrast, the leaf TFAC of gwd plants cultured under elevated CO2 was ca. 30% 45 

higher than in leaves of ambient CO2-grown gwd plants. The high leaf TFAC in gwd 46 

plants cultured under elevated CO2 was largely the consequence of enhanced levels of 47 

asparagine and, to a lesser extent, pyruvate-derived alanine, valine and leucine (Figure 48 

4, Supplemental Figure 3).  49 

 50 
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DISCUSSION 1 

Starch granule formation is an important determinant of photosynthetic 2 

acclimation to elevated CO2 3 

Long-term exposure to elevated CO2 usually leads to leaf carbohydrate build-up and the 4 

consequent decreases in Rubisco content and thereby Vcmax, which is thought to represent 5 

the acclimation of photosynthesis to elevated CO2 (Stitt and Krapp, 1999). In this work 6 

we have shown that long-term exposure to elevated CO2 results in reductions in Vcmax and 7 

Rubisco content in WT and gwd plants cultured under a 16 h light/8 h dark photoregime. 8 

This indicates that the photosynthesis of WT and gwd plants acclimates to elevated CO2 9 

when these genotypes are grown under LD conditions. In clear contrast, values of Vcmax 10 

and Rubisco content in the near-starchless aps1 plants cultured under ambient CO2 were 11 

comparable to those of aps1 plants cultured under elevated CO2 indicating that this 12 

genotype does not exhibit photosynthetic acclimation to elevated CO2. Starch content has 13 

been traditionally associated with leaf C sink/source imbalance causing photosynthetic 14 

down-regulation (Long et al., 2004). This study showed that the plants with the highest 15 

starch content (WT800, gwd400 and gwd800), where the ones in which photosynthetic 16 

down-regulation was more severe. This would indicate, in principle, that starch granule 17 

formation is an important determinant of photosynthetic acclimation to elevated CO2. 18 

 Evidence has been provided that starch over-accumulation hinders CO2 diffusion 19 

in the chloroplast (Nafziger and Koller, 1976; Nakano et al., 2000; Sawada et al., 2001). 20 

Thus, it has been suggested that during the acclimation to CO2 enrichment, accumulation 21 

of starch causes a lowering of Vcmax due to hindrance of CO2 diffusion from the 22 

intracellular space to the stroma in the chloroplasts (Makino and Mae, 1999; Sawada et 23 

al., 2001; Singsaas et al., 2004). According to Kitao and coworkers (2015) leaf cell wall 24 

thickness, together with leaf the starch accumulation detected under elevated CO2 25 

conditions would contribute to diminish CO2 diffusion within the chloroplast. Within this 26 

context, the lower stomatal opening values detected in plants grown at 800 ppm CO2 27 

would support the potential implication of that starch accumulation on CO2 diffusion and 28 

the consequent responsiveness of photosynthetic apparatus to elevated CO2 condition 29 

(Makino and Mae, 1999; Sawada et al., 2001)  30 

 31 

Long-term exposure to elevated CO2 promotes growth and photosynthesis of aps1 32 

plants  33 
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Previous studies have shown that elevated CO2 exposure does not enhance the growth 34 

and photosynthesis of neutral day grown Arabidopsis plants impaired in starch synthesis 35 

and breakdown, indicating that starch metabolism is an important determinant of 36 

Arabidopsis responsiveness to elevated CO2 (Sun et al., 1999; 2002; Rasse and Tocquin, 37 

2006, Gibson et al., 2011). Nevertheless, in the current study we have shown that elevated 38 

CO2 enhances growth and photosynthesis of LD-grown aps1 plants, indicating that under 39 

LD conditions starch granule formation is not an important determinant of promotion of 40 

growth and photosynthesis by elevated CO2. Gibon et al. (2004) showed that under 12 h 41 

light/12 h dark conditions, expression levels of hundreds of growth- and photosynthesis-42 

related genes in the near-starchless pgm1 mutant are lower than in WT plants at the end 43 

of the night. The same authors showed that when the night is extended 4-6 hours, global 44 

gene expression in WT leaves resembles that in pgm1 at the end of the night. According 45 

to these results, a transient period of acute carbohydrate deficiency occurring during the 46 

night triggers a wide-ranging inhibition of biosynthesis and growth. It is therefore 47 

conceivable that pgm1 and aps1 plants cultured under the neutral day conditions 48 

employed by Sun et al. (1999; 2002), Rasse and Tocquin (2006) and Gibson et al. (2011) 49 

responded poorly to elevated CO2 because growth and photosynthesis-related genes are 50 

down-regulated at the end of the dark period. As the photoperiod conditions employed in 51 

the present study involved a short dark period (and thus a lack of acute sugar starvation), 52 

it is also conceivable that aps1 plants were capable of responding to elevated CO2 because 53 

photosynthesis- and growth-related genes were not down-regulated at the end of the night 54 

time.  55 

 An increase in leaf carbohydrates has long been associated with an inhibition of 56 

photosynthesis, and carbohydrates are known to modulate the expression of many 57 

photosynthesis- and growth-related genes (Jang and Sheen, 1994; Moore et al., 2003). In 58 

this work we found that, under elevated CO2 conditions, illuminated leaves of LD-grown 59 

aps1 plants accumulate WT-levels of fructose, and 1.5-fold and 4-fold more sucrose and 60 

glucose than WT leaves, respectively. This moderate increase in soluble sugars in aps1 61 

plants contrasts with the work of Sun et al. (2002) who showed that leaves of plants grown 62 

under neutral day impaired in AGP and cultured under CO2 conditions accumulate ca. 5-63 

fold more glucose, fructose and sucrose than WT leaves during illumination. Therefore, 64 

the differences between our results and those reported by Sun et al. (1999; 2002), Rasse 65 

and Tocquin (2006) and Gibson et al. (2011) could be due to the fact that under neutral 66 

day, but not under the LD conditions (employed in this work), pgm1 and agp plants 67 
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accumulate levels of soluble sugars that exert an inhibitory effect on the expression of 68 

photosynthesis- and growth-related genes during illumination. 69 

 70 

Long-term exposure to elevated CO2 does not promote growth of gwd plants 71 

A remarkable feature of the high starch gwd mutant is that, unlike WT and aps1 plants, 72 

growth and An are not enhanced by elevated CO2. This would indicate that either starch 73 

degradation and/or accumulation of large starch granules are major determinants of 74 

Arabidopsis responsiveness to elevated CO2. As to the possible reason(s) for the non-75 

responsiveness of gwd to elevated CO2 it is worth noting that the Jmax of gwd plants was 76 

lower than in the WT under both ambient and elevated CO2 conditions. It has been 77 

suggested that excessive accumulation of starch may negatively affect the internal 78 

organization of chloroplasts, disturbing the configuration of granal stacks, distorting the 79 

thylakoids and thus negatively affecting electron transport (Yelle et al. 1989; Pritchard et 80 

al., 1997). Thus, it is conceivable that the reduced size of gwd and the non-responsiveness 81 

of this mutant to elevated CO2 is the consequence of reduced electron transport due to 82 

thylakoid distortion, which in turn results in reduced An and growth under both ambient 83 

and elevated CO2 conditions.  84 

 85 

Photosynthetic acclimation to elevated CO2 in gwd plants: a case of accelerated 86 

senescence?  87 

The photosynthetic acclimation to elevated CO2 has long been ascribed to sugar-mediated 88 

reduction of photosynthetic gene expression (Cheng et al., 1998; Moore et al., 1999; 89 

Ainsworth et al., 2004; Aranjuelo et al., 2013). However, in this work we could not find 90 

a clear link between the soluble sugar contents, Rubisco content and net photosynthesis 91 

in LD-grown aps1 and gwd plants cultured under ambient and elevated CO2 conditions. 92 

Obtained data would indicate that, under LD conditions, sugar-mediated regulation of 93 

photosynthetic gene expression does not play an important role in acclimation of 94 

Arabidopsis plants to elevated CO2, at least in aps1 and gwd plants. The case of gwd 95 

plants was particularly enlightening: although levels of soluble sugars in leaves of 96 

ambient CO2-grown gwd plants were comparable to those of plants cultured under 97 

elevated CO2 conditions, Rubisco content and Vcmax decreased under elevated CO2 98 

conditions. 99 

The N status reduction is a usual response under elevated CO2 (Stitt & Krapp, 100 

1999; (Bloom et al., 2010; Aranjuelo et al., 2011; 2013; Markelz et al., 2013; Jauregui, 101 
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2016, 2017). In our study, N content significantly decreased in WT and gwd plants 102 

exposed to elevated 800 ppm Sun and coworkers (2002). The progressive degradation of 103 

leaf protein content under elevated CO2 has been previously associated with an 104 

acceleration in leaf protein degradation processes linked with the advanced phenologic 105 

status of plants (Miller et al. 1997; Ludewig and Sonnewald 2000). Within this context, 106 

the progressive depletion of Rubisco under elevated [CO2] conditions detected in under 107 

elevated CO2 could be linked with a situation of advanced lead senescence of those plants. 108 

As phenology gets closer to the senescence period, N assimilation pathways are altered 109 

and the expression of proteases increases (Masclaux-Daubresse et al. 2008). As a 110 

consequence of the protease activity and the consequent protein hydrolysis, the resulting 111 

N compounds (mostly amino acids) in leaves are released. Within this context, one 112 

remarkable feature of this mutant is that elevated CO2 promotes the accumulation of high 113 

levels of asparagine (up to 25% of the total amino acid content). Elevated CO2 also 114 

promoted the accumulation of alanine, leucine and valine. Because gwd plants have a 115 

poor capacity to accumulate and degrade starch in a diurnal cycle (Caspar et al. 1991), 116 

amino acid accumulation could be interpreted as an alternate mechanism for storing 117 

photosynthate in a metabolizable form. Alanine is a well-known stress-responsive amino 118 

acid (Wallace et al. 1984, Rocha et al. 2010). Furthermore, asparagine, leucine and valine 119 

are known to accumulate during senescence (Lea et al. 2007; Watanabe et al. 2013; Avila-120 

Ospina et al. 2015). It is thus likely that photosynthetic acclimation of gwd to elevated 121 

CO2 is caused by accelerated leaf senescence rather than sugar accumulation. Further, the 122 

fact that Rubisco content was significantly lower in gwd than in the WT, together with 123 

the large accumulation of high levels of TFAC in gwd leaves suggests that Rubisco 124 

protein catabolism was associated with amino acid increase and leaf senescence 125 

(Huffaker, 1990) in gwd plants. Moreover, because excessive accumulation of starch may 126 

negatively affect the internal organization of chloroplasts (see above), it is conceivable 127 

that gwd acclimates to elevated CO2 to prevent the formation of critically large starch 128 

granules that otherwise would compromise chloroplast functionality and the viability of 129 

the plant.  130 

 131 

Conclusion and perspectives 132 

The present work revealed the profound impact of elevated CO2 on starch metabolism 133 

that conditioned plant performance. While in wild type and aps1 plants exposure to 800 134 

ppm increased plant growth, in gwd doubling CO2 availability was not reflected in a larger 135 
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biomass. Moreover, in plants with the highest starch content, such as wild type grown at 136 

elevated CO2 and gwd (at both CO2 conditions), Rubisco maximum carboxylation activity 137 

and photosynthetic apparatus were impaired. Such impairment was explained by the 138 

accelerated senescence and hindrance of CO2 diffusion that was associated with the 139 

accumulation of large starch granules rather than sugar accumulation. In summary, our 140 

study showed that excessive accumulation of starch negatively affect chloroplast 141 

organization and, therefore photosynthesis and growth, in gwd.  142 

Studies carried out during the last decades with crops such as wheat, alfalfa, rice, 143 

soybean, tobacco, etc. exposed to elevated CO2 condition have shown that, in many cases, 144 

plants that suffer photosynthetic acclimation also have high leaf starch content values. 145 

Within this context, our results remark the fact that the overflow of starch photosynthate 146 

storage negatively affects photosynthetic machinery of Arabidopsis plants. Leaf 147 

carbohydrate accumulation probed to be a target factor conditioning plant performance 148 

under elevated CO2 conditions. In agreement with previous studies, our data show that 149 

plants with a small sink size will acclimate to high CO2 by decreasing photosynthetic 150 

capacity. Therefore, plants with a large sink size (i.e. large ears in the case of cereals) will 151 

benefit more from CO2 enrichment than those with a small sink size like the plants limited 152 

storage organs or the ones that do not have it. The use of near starch-less (aps1) and the 153 

starch-excess (gwd) mutants in this study provided more information on the processes 154 

that explain the down regulation of photosynthetic machinery under elevated CO2 155 

conditions. However, we recognize that additional research is needed to discern if it is the 156 

accelerated senescence and/or the carbon starvation enhanced under elevated CO2 of 157 

plants. Furthermore, while the use of Arabidopsis as a model organism has enabled 158 

advances in understanding plant growth and development, those studies shall be extended 159 

to other plants and crops so to better understand how plants will perform under near future 160 

environments.  161 

 162 

 163 
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Figure 1. Effect of elevated [CO2] (800 versus 400 ppm) in Arabidopsis thaliana (wild 169 

type WT, starchless aps1, and starchexcess gwd) on leaf biomass (dry weight biomass per 170 
plant). Bars are means ± SD of 10 replicates, with different letters indicating significant (P< 171 
0.05) differences according to Tukey’s test.  172 
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Figure 2. Effect of elevated [CO2] (800 versus 400 ppm) in Arabidopsis thaliana (wild 175 

type WT, starchless aps1, and starchexcess gwd) on net photosynthetic rates (An), maximum 176 
carboxylation rate (Vcmax), maximum electron transport rate contributing to RuBP regeneration 177 
(Jmax) and Rubisco Large Subunit (RbcL). Bars are means ± SD of 5 replicates, with different 178 
letters indicating significant (P< 0.05) differences according to Tukey’s test. 179 
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Figure 3. Effect of elevated [CO2] (800 versus 400 ppm) in Arabidopsis thaliana (wild 182 

type wt, starchless aps-1, and starchexcess gdw) on starch content (µmol glucose g-1 DW) and 183 
sugars (fructose, glucose, sucrose; µmol g-1 DW) in leaves. Bars are means ± SD of 3 replicates 184 
for sugars and 6 for starch, with different letters indicating significant (P< 0.05) differences 185 
according to a Tukey test. 186 
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Figure 4. Effect of elevated [CO2] (800 versus 400 ppm) in Arabidopsis thaliana (wild 189 

type WT, starchless aps1, and starchexcess gwd) on selected individual amino acid contents in 190 
leaves. Bars are means ± SD of 4 replicates, with different letters indicating significant (P< 191 
0.05) differences according to Tukey’s test. 192 
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