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Abstract: Explosion of complexity and undesirable transient response of systems, are two major 

problems that conventional backstepping methods suffer from it. Furthermore, lack of information about 

the system and undesirable external disturbances are other problems that have been addressed in this 

paper. Therefore, an adaptive neural controller is designed to consider the proposed problems in this 

paper. The presented controller is constructed for the class of single-input, single-output (SISO) non-

affine strict feedback systems with unknown gain signs and a neural network is employed to approximate 

unknown functions. By applying dynamic surface control (DSC) and prescribed performance functions, 

two major problems of an explosion in terms and the transient response of the system will be solved, 

respectively. Nussbaum functions are also utilized to address the problem of unknown gain signs. The 

proposed controller guarantees that all the closed-loop signals are semi-globally, uniformly ultimately 

bounded (SGUUB). Finally, in order to show the feasibility of this approach, a simulation example is 

provided. 

Keywords: neuro-adaptive control; dynamic surface control; Nussbaum-type function; prescribed 

performance; non-affine nonlinear systems 
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1. INTRODUCTION 

In the past decades, adaptive control of nonlinear systems 

with matched and mismatched uncertainties has attracted 

many attentions (Marino and Tomei, 1995). The main cause 

of mismatched uncertainties are the unmodeled dynamics, 

unknown disturbances and time-varying delays (Chen, Li and 

Miao, 2010; Zhang, Tong and Li, 2014). One of the common 

and systematic approach to deal with these uncertainties is 

utilizing backstepping methods for strict-feedback and pure-

feedback systems. In this method, unlike to the feedback 

linearization, the controller is designed without canceling 

useful terms, but the backstepping technique has a 

shortcoming named “explosion of complexity”. This problem 

stems from repeating the virtual control differentiations, 

specifically in the large order systems. Dynamic surface 

control (DSC) is introduced in (Swaroop et al., 2000) to solve 

this problem by introducing the first order filter and passing 

through the virtual controller.  

 By owing to the universal function approximators, many 

unknown uncertainties are approximated by these functions 

such as fuzzy logic and neural networks (Ramezani et al., 

2016). Many works have been done to utilize Nussbaum type 

functions for addressing the problem of unknown gain signs 

(Ge and Wang, 2002; Chen and Zhang, 2010). In (Wang, Ge 

and Hong, 2010) time-varying delays are added to these 

aforementioned schemes. 

Recent years have witnessed many attentions into the control 

of non-affine systems. For example, in (Theodoridis, Boutalis 

and Christodoulou, 2010) an indirect adaptive control with 

fuzzy approximator for multi-input, multi-output (MIMO) 

systems is proposed. In (Ramezani et al., 2016) neuro-

backstepping controller is designed for SISO non-affine 

systems with unknown gain signs. All of the aforementioned 

methods which contain fuzzy or neural network 

approximators suffer from updating many parameters of 

hidden nodes in neural network or adaptive weights in fuzzy 

methods. In (Arefi, Ramezani and Jahed-Motlagh, 2014) 

observer-based adaptive robust control has been proposed by 

using the norm of parameters instead all of them. 

It should be mentioned that the practical problems often 

require satisfying performance indices such as overshoot, 

transient response and prescribed steady-state response in a 

finite time. Many noticeable approaches have been done to 

control the behavior of the systems or satisfy the imposed 

constraints (Tee et al., 2009). Barrier Lyapunov function 

(BLF) technique (Tee et al., 2009; Tang, Tee and He, 2013) 

is one of the common approaches, but a piecewise smooth 

BLF is needed to establish the stability of the closed-loop 

system (Han and Lee, 2014). Therefore, the prescribed 

performance function is introduced by utilizing a 

transformation function (Bechlioulis et al., 2008; Bechlioulis 

and Rovithakis, 2010). 

Inspired by the preceding discussion, there are few papers 

that consider the DSC and prescribed performance for non-

affine systems with unknown gain signs together. The main 

contributions of this paper can be summarized as: (I) using a 

prescribed performance in order to control the transient and 

steady-state behavior of the system, by introducing 

performance functions and transformation errors. As a result, 
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all of the surface errors evolve strictly within prescribed 

bounds. Although the stability analysis shows the bound for 

the closed-loop signals, the proposed method can define these 

bounds, and this is a superiority of combining these 

approaches together; (II) by using just one parameter instead 

of vector of adaptive parameters can reduce computational 

burden in the proposed method; (III) by utilizing Nussbaum 

type functions, the prior knowledge of gain signs is not 

needed. Furthermore, unlike (Ramezani et al., 2016) DSC 

method can avoid form “explosion in terms”; (IV) upper 

bound of disturbances or control direction is not required in 

adaptation laws or control input. However, the upper bounds 

of disturbances are used just in the stability analysis. 

Although uncertainties in these approaches lead to the 

SGUUB stability, prescribed performance technique can 

bring the satisfactory performance indices to the system such 

as overshoot, undershoot and a prescribed transient and 

steady-state performance in a finite time. 

2. SYSTEM DESCRIPTIONS AND PRELIMINARIES 

2.1 System descriptions and assumptions 

Consider an uncertain non-affine SISO nonlinear system as 
follows: 
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(1) 

where 
1

[ , ..., ]
T i

i i
x x x R  ; 

1
[ , ..., ]

T n

n
x x x R  , u R , 

y R and ( ), 1, ..., ;
i

d t i n  are the state variables, the 

control input, the system output and the external disturbance, 

respectively.   ( . )
i

f , ( . ), 1, ..., 1
i

g i n  and ( . )f   are 

unknown smooth functions. The main goal is to design a 
controller to ensure  

1. The output of the system eventually tracks the desired 

trajectory 
d

y  , while all the closed-loop signals are semi-

globally, uniformly and ultimately bounded. 
     2. The steady and transient responses of the system are 
bounded and evolved by the performance functions. 

Assumption 1. Functions ( . ), 1, ..., 1
i

g i n   are non-zero 

functions, and their signs are unknown, and constants 
i

g  and 

i
g  exist, which satisfiy 0 ( . )

i i i
g g g   . 

Assumption 2. Assume ( ), 1, ...,
i

d t i n  are bounded as 

( ) ,
i i

d t d  where , 1, ...,
i

d i n  are positive unknown 

constants. 

Definition 1. A function ( )N   is called Nussbaum function, 

if it satisfies the following properties (Nussbaum, 1983) 
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In this paper, Nussbaum functions ( ), 1, ...,
i i

N i n   are 

implemented, in order to address the problem of unknown 

signs ( . ), 1, ...,
i

g i n . Some common Nussbaum functions 

are 2
cos  , 

2
sin   and 

2

cos( )
2

e
 

 . In this paper, 

2
cos  is employed as an even Nussbaum function. 

Lemma 1. (Xudong and Jingping, 1998) Let ( ) 0V t   and 

( )t  are smooth functions on the interval [0, )
f

t , and ( )N   

is an even Nussbaum type function. If the following inequality 
holds 

 1 1

0

0

( ) ( ( )) ( ) 1 ,

t

c t c

n
V t c e g x N e d
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where 0 ,
f

t t   
1

c  is a positive constant, and 
0

c  represents 

some suitable constants, and ( . )
n

g  is a positive non-zero 

time-varying parameters, then ( )V t , ( )t  and 

 
0

( ( )) ( )

t

n
g x N d    must be bounded on [0, )

f
t . 

By applying mean value theorem (Apostol, 1974) into 

( ( ), ( ))
n

f x t u t , it can be rewritten as 

( , ) ( , 0) ( ) ( ) ,
n n

f
f x u f x u f x g x u
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
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(5) 

where ( ) ( , 0)
n

f x f x , ( ) 0
n

f
g x

uu 


 


 and 

(0, )u   . Therefore, the above equation is utilized to 

transform non-affine system (1) into the affine one. 
 

2.2 Prescribed performance 

According to (Bechlioulis and Rovithakis, 2010), the 
prescribed performance is achieved by bounding the response 
of the system arbitrary and ensure that each error 

( ), 1, ...,
i

s t i n evolves within predefined bounds, which are 

applied by performance functions ( ), 1, ...,
i

h t i n  as 

( ) ( ) ( ), (0) 0,

( ) ( ) ( ), (0) 0,
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(6) 

where 0 1
i

  , and ( )
i

h t  satisfies following properties,     

1) ( )
i

h t   is a smooth, positive and decreasing function, 

2) 
,

lim ( ) ( ) 0
i i

t

h t h t




  . 

For example, 
,0 , ,

( ) ( ) , 1, ...,in t

i i i i
h t h h e h i n



 
     

possess all aforementioned property and can be used as a 

performance function, where
,0i

h , 
,i

h


and 
i

n  are positive 

constants. 

In order to transform nonlinear system (1) with the 

constrained in the sense of (6) error behavior into an 

unconstraint form, the transformed error is introduced as 

( ), 1, ..., ,
i

i i

i

s
i n

h
    

(7) 

where 
i

 , 
i

s and 
i

h are transformed errors, errors and 

performance functions, respectively. Furthermore, 
i

 are 
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strictly positive, smooth functions which have some 

properties detailed and defined completely in (Bechlioulis 

and Rovithakis, 2010). 

As (Zhang, Tong and Li, 2014), dynamic errors are obtained 

as 
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2.3 RBF neural approximator for unknown functions 

Neural networks as nonlinear approximators are widely used 

where unknown functions exist, and Gaussian RBF neural 

networks are employed (Gupta et al., 1994) in this article to 

approximate continuous function ( ) :
m

f Z R R  as follows: 

ˆ
( ) ( ),f Z Z  

(10) 

where 
m

Z R  is the input vector, 
1

[ , ..., ]
k

k
R     is the 

vector of adjustable parameters where k  is the number of 

nodes, and 1

1
( ) [ ( ), ..., ( )]

T K

k
Z Z Z R  


   is a Gaussian 

basis function vector, which is defined as 

2
( ) exp( ), 1, ...,

i

i

i

Z
Z i k







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(11) 

where 
1

[ , ..., ]
m

i i im
R     and 

i
 , 1, ...,i k are centers 

and width of Gaussian function. By choosing the sufficiently 

large number of nodes, the neural network can approximate 

( )f Z with desired precision as 

 *
( ) ( )f Z Z        (12) 

where   is the approximation error,   is an upper bound of 

error and the optimal parameter 
*

 is defined as 

  * ˆ
arg m in sup ( ) ( ) .f Z f Z    

 
(13) 

 

3. ADAPTIVE NEURAL BACKSTEPPING CONTROL 

DESIGN AND STABILITY ANALYSIS 

The following transformations are defined as 

1
,

, 2, ..., ,

d

i i i

s y y

s x q i n

 

  
 

 
(14) 

where 
i

s  is an error surface, 
i

q  is a state variable, which is 

defined as 

  
1 1 1

, 1, ..., 1
i i i i

q q i n 
  

     (15) 

where 
i

  is a positive design constant. The Above equations 

show that 
i

q  is obtained through the first order filter on the 

virtual control
i

 , and the output error of the first order filter 

1i
X


 is also defined as  

  
1 1

, 1, ..., 1.
i i i

X q i n
 
     (16) 

Design the virtual controls and adjustable parameters as 
follows: 
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where 
i

a , 
i

 and 
i

 , 1, ...,i n  are positive design 

constants, and ( )
i

N  represents Nussbaum type functions, 

and ˆ
i

  is an adjustable parameter which is defined later. 

Theorem 1. Under Assumptions (1-2), consider the closed-

loop system consisting of the nonlinear system (1). If the 

control law (20), virtual controls (17) with the adaptive laws 

(18-20) are applied, then all the closed-loop signals are 

SGUUB. Furthermore, the transient performance of the 

system is under control of the prescribed functions defined as 

(6) at all times. 

Step 1: The time derivative of 
1

s  along with (14) and using 

2 2 2 1
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Choose the Lyapunov candidate of the first step as 
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where 
1
  is a positive design constant and *

1 1 1
ˆ     is 

adjustable parameter. The time derivative of 
1
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(21) is 
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By using Assumption 2, we have 
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where 
1

  is a positive constant. By applying Young’s 

inequality, we can get 
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where 
1

c  is a positive constant. Let 1

1 1 1 1

1

( )
d

h
f f x y s

h
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2

1 1 1 1 1 1

1

2
s g c s   , and by utilizing RBF neural network (12), 

unknown function 
1
( )f Z is approximated as 

*

1 1 1 1 1 1 1 1
( ) ( ) , ,f Z Z        (26) 

where 
1 1 1 1

[ , , , ]
T

d
Z s y h h and 

1
0   is an upper bound of 

network error. By using the fact that 
1 1 1 1
( ) ( ) 1

T
Z Z   , 

substituting (26) into (25), using Young’s inequality and 

considering 
2

*

1 1
*   for convenience and simplicity, we 

have 
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let 
1 2

1

1
1

2
c


  . Now, by substituting (17-19), we can get 
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Step k ( 2 1k n    ): Similar to the step 1, the time 

derivative of 
k

s  along with (14) is 
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where 
k

  is a positive design constant and *
ˆ

k k k
     is 

an adjustable parameter. Similar to the step 1, by getting time 

derivative from (30), we have 
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where 
k

  and 
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c   are positive constants, approximate 
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a

  



  

 


 





 

 
     

 

    

    

 

 
 
 
 
(33) 

By substituting (17-19) into (33), we have 

2 2

2

1

1 1 1

21

2 2

2 2 2

1
1

2

( ( ) 1)
2
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k

k i i i

i i

k k k

i

i i i i i i

i i ii

k k k

i

i i i i

i i i i

V s c

g N

X
X H s X





   







  



  

 
    

 

    

   



  

  

 

 
 
 
(34) 

where 
2 2 *2 2 21 1 1

0.
2 2 2 2

k

k k k k k k

k

a d


  


                        

 Step n : In this final step, control input will be obtained. 

Similar to the previous steps, the time derivative of 
n

s  

according to (14-16) is 

( ).
n k

n n n n n n

kn

h X
s f g u d s

h



      

 
(35) 

Consider the final Lyapunov candidate as 

2 2

1

1 1 1
,

2 2 2
n n n n n n

n

V V s X 



     

 
(36) 

where 
n

 is a positive constant. By getting time derivative of  

n
V , one can write 

1

1

2 2

1 2

2

2 2

[

1
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1

2

1 1
,

2

n n n n n n n

n n n
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n n nn

n n n n n n n n n n

n

n n n n
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n n n
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X h X
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h
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  



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  







    

    

 
      

 

   

 

 
 
 
(37) 
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where 
1 1 1 1 1

( , , , )
n n n n n n

H s    
    

   and 
n

  is a positive 

constant. RBF neural network is also used in this final stage to 

approximate 
n

f  as *
( ) ,

n n n n n n n
f Z       , where 

n

n n n n n n

n

h
f f s c s

h


 
   

  

. By using the fact that  

2
* *

n n
  and substituting (18-20) into (37), and assuming 

, 1, ...,
i i

H M i n   , where 
i

M  is a positive constant, we 

have 
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(38) 

let
2 2

1 1
1

2
i

i i

c
 

   , 
2

1
1

2

i

i

M


  2, ...,i n , and 

1 2

1

1
1

2
c


  , Rewrite (38) as 

1
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n
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where
1

0

n

i

i 

    , and 
2 2

1 1
min( , 2( 1 ),

2
i i

i i

C c
 

     

21
2( 1 )), 2, ...,

i

i

M i n


   . Multiplying both sides of (39) 

by 
Ct

e


, then by integrating (39) over [0, ]t , we have 

 0
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t n
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V t c e g x N e d
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 (40) 

where 
0

( (0) )
C t

n
c V e

C C

 
   . By applying Lemma 1, it 

can be concluded that ( ), ( )
n

V t t  and 

 
10

( ) ( ) 1

t n

i i i i

i

g x N d  


 must be bounded and SGUUB 

on [0, ]t , so it can be shown that all of the closed-loop 

signals are bounded on [0, ]t .  

4. SIMULATION STUDY 

In this section, the following example is given to show the 
feasibility of this proposed approach. Consider the following 
second-order non-affine SISO nonlinear system, with 
unknown external disturbances as 

1

1
1 1 2 1

2 1 2 1 2 2

1

1
(2 sin ) ( ),

1

(2 sin( )) ( ) ,

0.1

,

x

x

e
x x x d t

e

u
x x x x x d t

u

y x





 
   





   







 

 
 
(41) 

Where
1
( ) 0.5 cosd t t  , 

2
( ) 0.2 sind t t  and the desired 

trajectory is defined as sin cos(0.5 )
d

y t t  . The 

Performance functions 
1
( )h t  and 

2
( )h t  are chosen as  

,0 , ,
( ) ( ) , 1, 2 ,in t

i i i i
h t h h e h i



 
     (42) 

with the parameters given in Table.1. The design parameters 

are selected as 
1

0.5a  ,
2

0.5a  , 
1

20  , 
2

40  , 
1

0.1   

and 
2

0.1  . The initial values are chosen as 
1
(0) 0.5x  , 

2
(0) 0.2x   , 

1
(0) 0.01  , 

2
(0) 0.01  , 

1
(0) 1.9   and 

2
(0) 10  . The tracking performance of the proposed 

controller is depicted in Fig. 1.  
 

Table. 1  Performance function parameters values 

1,0
h  

2 ,
h


 

1,0
h  

2 ,
h


 1

n   
2

n   
1

   
2

  

2 0.2 3 0.2 1 0.5 0.9 0.9 
 

As can be seen in Fig.1, it can be concluded that the system 

tracks reference signal 
d

y  properly. 

 

 
Fig. 1. System output y and reference signal yd  versus time 

 

Figs. 2-3 depict surface errors and prescribed bounds, which 

show the effectiveness of the proposed method. 

 

 
Fig .2. Variation of 

1
s  and performance bounds versus time. 

 

 
Fig. 3. Variation of 

2
s  and performance bounds versus time. 
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As can be seen in Figs. 2-3, the error surfaces 
1

s  and 
2

s   

evolve strictly within the prescribed performance bounds. 
Finally, the control input u  is illustrated in Fig.4. From this 

figure, the control signal is bounded and feasible for 
implementation.  
 

 
Fig.4 Control input versus time 

 
 

5. CONCLUSIONS 

In this paper, an adaptive neuro-backstepping controller with 
prescribed performance was designed for a class of SISO non-
affine systems with unknown disturbances. In order to avoid 
complexity in terms caused by derivatives of the virtual 
controller in each step, DSC method was utilized by using the 
first order filter. Unknown terms of the system were 
approximated by RBF neural network, and the prescribed 
performance was achieved by using the proper performance 
functions. It was shown that all the closed-loop signals are 
bounded and the dynamic surface errors converge to the 
neighborhood of the origin with the prescribed decaying 
bounds. Finally, the simulation results demonstrated the 
effectiveness of the proposed method to tackle with unknown 
disturbances and uncertainties in the non-affine systems. 
Future research will extend the results of this control approach 
for a system with an unknown dead-zone nonlinearity and 
time-varying delays. 
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