
 

1 
 

Extended State Dependent Parameter Modelling with a Data-Based 
Mechanistic Approach to Nonlinear Model Structure Identification 

David A. Mindham, Wlodzimierz Tych*, Nick A. Chappell  
Lancaster Environment Centre, Lancaster University 
Corresponding author: w.tych@lancaster.ac.uk 

Abstract 

A unified approach to Multiple and single State Dependent Parameter modelling, termed Extended 
State Dependent Parameters (ESDP) modelling, of nonlinear dynamic systems described by time-
varying dynamic models applied to ARX or transfer-function model structures. Crucially, the 
approach proposes an effective model structure identification method using a novel Information 
Criterion (IC) taking into account model complexity in terms of the number of states involved. In 
ESDP, model structure involves not only the model orders, but also selection of the states driving the 
parameters, which effectively prevents the use of most current IC. This leads to a powerful 
methodology for investigating nonlinear systems building on the Data-Based Mechanistic (DBM) 
philosophy of Young and expanding the applications of the existing DBM methods.  The 
methodologies presented are tested and demonstrated on both simulated data and on high 
frequency hydrological observations, showing how structure identification leads to discovery of 
dynamic relationships between system variables. 
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1.0 Introduction 

The Data-Based Mechanistic methodology (DBM, Young, 1999a) is built on the premise that the 
model structure and parameters are to be determined through statistical analysis of observed data 
(‘data-based’) which then, along with model metrics leads to a physical interpretation of the model 
(‘mechanistic’). 

The presented approach completes the nonlinear DBM modelling process by adding an objective 
identification stage to the nonlinear model selection. Multiple and single State Dependent 
Parameter (MSDP and SDP) modelling follows the DBM methodology by not parameterising the 
individual nonlinearities, however the selection of the model structure, including that of the 
nonlinear drivers, is the key element missing from the current method. 

While MSDP employs a very different numerical engine to SDP, conceptually and in terms of the 
outcome, it is a multi-variable extension of the original SDP and thus, a generalisation of SDP that is 
not confined to one state dependency. However, both in SDP and then MSDP, the states’ values 
were assumed equidistant, having the same distance in the state-space between each sample, which 
is a simplifying assumption.  The solution introduced in this paper removes this assumption and 
makes the method fully general. 
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The new model structure identification procedure allows for the first time identification of nonlinear 
structural relationships in an objective manner using a robust and tested model form. This is 
demonstrated in the paper using high frequency hydrological observations, where the output 
variable is thought to be affected by more than one nonlinear process. 

The terminology, explanation and clarification for the above are laid out below in a logical and 
methodical manner designed to lead the reader first through existing SDP and MSDP methodologies, 
then through the process of updating and extending these methodologies into one methodology 
described in this paper (ESDP – Extended SDP) with useful output tools.  Finally, through the process 
of producing a generalised Model Structure Identification (MSI) procedure to identify the structure 
from a given data set for the application of ESDP.  The MSI procedure is generalised in that it 
considers - no state dependency for each parameter (linear model) and one or more state 
dependencies for one or more parameters (nonlinear model). 

1.1 Objectives and Structure of this Paper 

This paper presents three key updates and additions to the SDP and MSDP methodologies leading to 
their unification and generalisation (items 1,..,3), and one major development (item 4) for applying 
the DBM approach to model structure identification in this new setting: 

1. Transition to a true state-space for parameter estimation by moving from equidistant states 
to arbitrary-distant states, based on the state values.  The terms and context of ‘state-
space’ and ‘states’ are clarified and discussed in section 1.4 and onwards. (Section 2.0) 

2. Formation of multivariable parameter maps from M-dimensional state dependent 
parameters for the purposes of basic model validation and more importantly, for 
forecasting, scenario investigation and on-line simulation of live events. (Section 2.1) 

3. Use of model validation techniques to not only quantify the ability of the presented 
algorithms in parameter estimation, but also to validate any models identified from the 
model structure identification development step below. (Section 2.2) 

4. Development of a DBM approach for model structure identification (MSI) from a group of 
data sets for a given model type so that the data informs us which measured variables are 
more influential to the observed model output – importantly this methodology also 
considers a linear model, allowing for a ‘pure’ DBM approach. (Section 3.0) 

The whole approach is then applied to a hydrological example using a dynamic model of streamflow 
generation, thus forming objective 5. (Section 4.0) 

1.2 Applications 

The methodologies presented are general and can be applied to any system as long as time-series 
data for all the required variables (including inputs, outputs and additional states) are available. In 
terms of specific environmental applications, we have evaluated the approach for data in the two 
applications below, and present the former in this paper: 

• Flood scenarios – how the flood response of a stream may be strongly affected by more than 
multiple nonlinear process, not solely the nonlinear effects of varying catchment wetness 
(Chappell et al., 2017). 
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• Water quality dynamics – how the dynamics of one output water quality variable (e.g., 
Dissolved Organic Carbon concentration) may be affected by more than one nonlinear 
process, related to separate effects of e.g., rainfall, soil temperature and solar radiation 
(Jones et al., 2014). 

For clarity and in order to introduce the notation, this paper also briefly covers the progression from 
Transfer Function (TF) to SDP TF (for a more detailed account see Young, 2000) and MSDP TF, with 
the novel generalisation elements introduced. Significantly, the development of the structural 
identification methodology for this wide class of nonlinear models is then covered. 

1.3 Background to SDP 

There is extensive work on modelling input-output dynamic time-series data using Transfer 
Functions (TF or equivalent Auto-Regressive with eXogenous inputs, or ARX models) where linear or 
approximated linear relationships are used (Ockenden and Chappell, 2011; Tych et al, 2014; Ampadu 
et al, 2015; Chappell et al., 2017) as well as extensions into Time Varying Parameter (TVP) TF (Gou, 
1990) and further extensions into State Dependent Parameter (SDP) TF (Young et al, 2001) with 
latter approaches using nonlinear functional relationships between states of the system and the ARX 
or TF parameters.  

SDP modelling assumes that the system is truly nonlinear in that the TF parameters are time varying; 
importantly, the rate of change of the parameters is at a rate related to the rate of change within 
the state variables. This is unlike the more commonly seen time varying parameter TF models, where 
the parameters change smoothly.  Here, the parameters are functions of the input or other states of 
the system under study.  SDP, as originally published by Young (2000) bears the assumption that 
each parameter is a function of one variable only, and has been successfully applied to many 
nonlinear systems (e.g. Young et al, 2007a; Taylor et al., 2009; McIntyre et al., 2011).  However, 
many systems, particularly in the natural environment, are complex dynamic systems with many 
variables that have interlinking relationships, e.g. water quality (Jones et al., 2014), atmospheric 
chemistry (Seinfeld and Pandis, 2016), and climate change (Ashkenazy et al., 2003; Young and 
Garnier, 2006).  The parameters of models describing these environmental systems, or even just 
their specific aspects, could be functions of more than one variable and hence the need to generalise 
SDP modelling into the of Multiple State Dependent Parameter (MSDP) modelling.  

1.4 ARX - Transfer Function (TF) – Time Invariant and Time Varying Parameter (TVP) Issues 

We begin with a simple linear discrete time dynamic model with time varying parameters (ARX or 
equivalent TF structure (Young, 1999b)) that relates a single input variable (ut) to an output variable 
(yt) and can be written as a difference equation (1).  Due to the time-varying character of parameters 
the standard backward shift TF models are not applicable.   

𝑦" = −𝑎&,"𝑦"(& − ⋯− 𝑎*,"𝑦"(* + 𝑏-,"𝑢"(/ + 𝑏&,"𝑢"(/(& + ⋯+ 𝑏0,"𝑢"(/(0 + 𝑒"      (1) 

where δ is a pure time delay (measured at this stage in sampling intervals), 𝑒" is a zero mean, serially 
uncorrelated input with variance σ2 and Gaussian amplitude distribution. The latter (Normality) 
assumption is usual, but not required for the Kalman Filter to function (Kalman, 1960 – the 
distribution needs to be finite and symmetric).   
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Expressing (1) as a vector equation we obtain the TVP observation equation: 

𝑦" = 𝒛"3𝒑" + 𝑒"     (2) 

where,  

𝒛"3 = [−𝑦"(&		−𝑦"(7 	⋯	−𝑦"(*	𝑢"(/ 	⋯	𝑢"(/(0] 

𝒑" = 9𝑎&,"	𝑎7," 	⋯	𝑎*,"	𝑏-," 	⋯	𝑏0,":
3

 

 

When 𝒑" changes slowly/smoothly there are methods to estimate these changes taking advantage 
of the smoothness assumption (see for example Dynamic Transfer Function or DARX models – 
Young, 2011).  

However, many environmental systems can be described as complex and nonlinear, where the rates 
of change of the parameters vary at a rate commensurate to that of other, exogenous variables.  
This means the changes in 𝒑" are too rapid to apply the smoothness assumption (slow parametric 
changes) and so other estimation methods are required.  If the parameters are varying at a rate 
similar to that of the rate of another system variable, then that system variable must be 
incorporated into the model in some form.  This leads to SDP modelling where it is assumed that 
each parameter is dependent on a system variable.  For complex systems the number of variables 
could be large, for example in a streamflow generation (rainfall-runoff) system there is more to 
consider than just rainfall and streamflow -  solar radiation (controlling evaporation), soil saturation 
or water table depth within a deep underlying rock aquifer, may also affect the processes in 
nonlinear ways (e.g., Ockenden and Chappell, 2011; Deutscher et al., 2016).   

1.5 State Dependent Parameter (SDP) Input-Output models 

In (2) each of the parameters 𝒑" can be further defined as a function of identified, but in general 
arbitrarily chosen, independent variables treated as states 𝒔" of the same system, hence the name 
State Dependent Parameters. This is done in the SDP approach (Young, 2000) for a single 
independent state variable. 

Following Young (2000) and then Tych et al (2012), we describe the time varying model parameters 
(pt) using stochastic dynamic system definition, where the ith parameter (-ai for i≤n, bi-(n+1) if i>n) 
can be defined as a Generalised Random Walk process. Then, in the specific case of Integrated 
Random Walk every parameter is defined by a two-dimensional stochastic state vector xi,t = [li,t di,t]T, 
where li,t and di,t are, respectively, the changing level and slope of the associated time varying 
parameter (Young, 2011) model. Note that the state vector x in this context is used to formulate the 
estimation procedure and is not the same as the SDP vector s of states driving the parameters. These 
are states within different spaces – x is the state used to model and estimate the parametric change 
as a stochastic process, and s is a part of the SDP model.  

In the time series model the time-varying parameter estimation is conducted in temporal order 
(t=1:N).  With State Dependent Parameters we estimate these parameters within a different space, a 
state space domain defined by the state variables driving the parameters. There the parameters are 
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estimated in an arbitrary order (k=1:N) along a trajectory K within that state space (not the time 
sequence t).  For a parameter driven by a single independent state variable (as in Young, 2000), 
typically the order is based upon the ascending order of the independent state. 

These parameters can be then estimated recursively using a Kalman Filter (KF, Kalman 1960) and 
Fixed-Interval Smoothing (FIS) combination along the trajectory K resulting in the stochastic state 
space equation for the ith parameter (3), i = 1,…, n+m. 

Variation along the trajectory in the state-space (SS) of each parameter i of the n+m model 
parameters is modelled as a stochastic state space model: 

𝒙=> = 𝐹𝒙=(&> + 𝐺𝜂=(&>     (3) 

with: 

𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡1 1 &
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⋯
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⋮ ⋱ ⋮
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where, 𝐻>,=3 is a 1xn observation matrix (input variable corresponding to the ith parameter), 𝜂=(&is a 
(in general) q+1 dimensional vector of system disturbance, with q = 0,1,2… referring to 
respectively; random walk, integrated random walk, double integrated random walk, etc.  

For the n+m parameter model this becomes a block-diagonal SS model of higher dimension. The 
observation equation for this SS is Equation 2 with parameters vector p being a subset of the above 
state vector x as in the original SDP approach (see e.g. Young, 2000).  

The individual variance terms of 𝜂>  form the state covariance matrix Q (diagonal in this case). With 
the univariate observation series the variance of the observation disturbance ratio of σi

2  is a scalar 
used to standardise the KF variance parameters (as in Young, 2011).  The resulting Noise Variance 
Ratio (NVR) matrix – the meta-parameter of the filtering and smoothing process becomes: 

𝑁𝑉𝑅 =
𝑄
𝜎7

 

An example of a simple SDP is illustrated with a Nonlinear ARX (NARX) structure and is a forced 
logistic growth equation (4) similar to that found in Young (2000).  In (4) and further on, s is defined 
as a vector variable that the parameter is dependent on, known as ‘state variable’ or ‘state’ vector. 

𝑦" = 𝑎(𝒔𝒕)". 𝑦"(& + 𝑏(1)". 𝑢" + 𝑒"     (4) 

where, 𝑎(𝒔𝒕)" = 2 − 2𝑦"(&, 𝐵" = 1, so that a is a SDP that is a function of 𝑦"(& (the value of which is 
the state s which drives the parameter, in this case a past system output – an available observation) 
and b is a constant coefficient. In this simulation example,  𝑢"  is a sequence of random numbers 
between -0.2 and 0.2 and 𝑒" is a serially uncorrelated Gaussian observation disturbance with 
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standard deviations of approx. 5% of standard deviation of 𝑦".  The SDP function from the Captain 
Toolbox (Young et al., 2007b) was used to estimate the parameters for this model (Figure 1). 

 

 

Figure 1. Illustration of a simple SDP.  Left hand plot, estimation of a, which is a function of yt-1.  Right 
hand plot, estimation of b, which is a constant of 1.  Light grey shows the actual values, black - the 

estimated values. 

To avoid any confusion in the sequel, which would be due to the estimation technique using state-
space approach of the state-dependent parameters, we use 𝒔" reordered from the temporal 
sequence into  𝒔= along the trajectory K to denote the exogenous, independent variables affecting 
the input-output model parameters, and 𝒙= - the estimates of parameters sequence 𝒑= tracked by 
the variable step KF/FIS algorithm based on (3). 

As already mentioned the SDP approach only considers one state per parameter and in more 
complex nonlinear systems it is likely that more than one state will influence each parameter.  This 
leads to the extension into Multiple SDP (MSDP). 

1.6 Multiple State Dependent Parameter Models 

The approach taken in SDP applies to MSDP with two exceptions; ordering along trajectory K based 
on multiple states 𝒔=, and for robustness, 𝑥= is averaged over the closest points along its trajectory 
in the multi-dimensional state space (Tych et al., 2012).  

The arbitrary order (k=1,..,N) of parameter estimation is based in our study on the ordering of 
multiple states, as an ascending sequence of Euclidean norms of the original n-dimensional states 
driving 𝒑> , normalised, so that they lie within an n-dimensional unit hyper-cube, and ordered 
according to distance from an arbitrarily chosen starting point. In this study the bottom left of the 
hyper-cube (Figure 2) is set as the origin for the sequence. 
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Figure 2.  Illustration of a simulated sequence within the hyper-cube for 2-dimensions also 
showing the predecessors and successors sequence.  When k=35, upwards-pointing 

triangles are the closest four predecessors (23,26,31,32) and downwards-pointing triangles 
are the closest four successors (38,39,42,44). 

Parameter estimates (𝒑>,=) are no longer based on x1:(k-1) in filtering or x1:N-k  in smoothing but on the 
average of estimates from the nearest preceding states or succeeding states within the multi-

dimensional space (Figure 2), _∑ _𝑥(&:=bc)de&:f e /𝑗 or _∑ _𝑥(&:i(=)de&:f e /𝑗, where j = number of 

closest states to xk. 

A simple example, similar to that found in Tych et al., 2010, is illustrated in Figure 3 with similar 
structure and variables to (4) but with the A parameter being a function of two states (5)  

𝑦" = 𝑎(𝒔𝒕)". 𝑦"(& + 𝑏(1)". 𝑢" + 𝑒"     (5) 

where, 𝑎(𝑠")" = 0.5 × tan(&(𝒚"(7 × 𝒖"(&), with yt-2 and ut-1 being the states 
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Figure 3. Illustration of a MSDP.  Left hand side, simulated a parameter (offset for clarity).  Right 
hand side, estimated a parameter. 

 

2.0 Arbitrary Sampling within the State Space (OBJECTIVE 1) 

For TVP the distance between each parameter value ∆ is based on the temporal distance between 
each sample and is typically uniform where ∆"=1.  For both MSDP and SDP, despite the shift from 
temporal ordering to arbitrary ordering in the state-space, this is still the case and 𝒑>,= is still 
estimated with ∆==1.  It should be apparent that this is incorrect and ∆= should in fact vary 
depending on the changing distances between the ordered state values. 

This leads to two key changes in the (M)SDP methodology, the first is the calculation of ∆>,= for 𝒑>,= 
and the second a modification to the random walk models (3) that incorporate a changing ∆. 

Going back to the equations in (3) focusing on single parameter estimation and defining 𝑎 as 𝒑&,=: if 
𝑎s(𝒔=) is the vth derivative of 𝑎(𝒔=), and the form of the function a(.) is not specified, a data point 
distant from 𝒔= provides very little information about 𝑎(𝒔=) (Sadeghi, 2006).  Using the local 
polynomial modelling reasoning (e.g. Fan and Gijbels, 1996) only the local data points in the vicinity 
of 𝒔= are used.  Assuming 𝑎(𝒔=) has derivative of order (q+1) at the point 𝒔=, then following Taylor’s 
expansion for 𝒔 in the local neighbourhood of 𝒔= we have: 

𝑎(𝒔) = 𝑎(𝒔=) + 𝑎t(𝒔=)(𝒔 − 𝒔=) +
uvv(𝒔w)
7!

(𝒔 − 𝒔=)7 +⋯+ ux(𝒔w)
G!

(𝒔 − 𝒔=)G       (6) 
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If the value of parameter a and its derivatives with respect to its driving state s are known at the kth 
point as 𝒙𝒌= [a(ςk)  a’(ςk)  a’’(ςk)  ⋯  a (q)(ςk)]T and the highest derivative of a(s) with respect to s with  
sk = ςk : a(q+1)(ςk) = 𝜂= , where 𝜂=~𝒩|0, 𝜎}7~ and ςk is the approximation point (knot) at sample k, then 
Taylor’s expansion (6) can be applied in the local neighbourhood of ςk for all derivatives of a resulting 
in the GRW model with equations: 

𝒙=> = 𝐹=>𝒙=(&> + 𝐺=> 𝜂=(&>  (7) 

𝐹= =
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1 ∆=
∆=7
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0 1 ∆=
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G(&

(𝑞 − 1)!
… ∆=�

3

 

Where, ∆== ‖ς= − ς=(&‖ is the Euclidean distance between the points ς= and ς=(&. 

With this generalisation, we now have extended the State Dependent Parameter methodology and 
to demonstrate the improvement of the addition of arbitrary distance RW algorithm the previous 
two examples (Figure 1 and 3) are used as comparisons (Figure 4 and 5).  We refer to, R2 as the 
coefficient of determination for a linear regression, or proportion of variance explained by the 
model.  

 

Figure 4.  Comparing equidistant SDP with the arbitrary distance ESDP.  Left hand side, equidistant 
SDP (𝑅7 of 0.9985) from Figure 1.  Right hand side, arbitrary distance ESDP (𝑅7 of 1.000).  Light grey 

shows the actual values, black - the estimated ones. 



 

10 
 

 

Figure 5.  Comparing A parameter estimates of equidistant MSDP with arbitrary distance ESDP.  Left 
hand side, equidistant MSDP (𝑅7 of 0.9775) from Figure 3 (offset for clarity).  Right hand side, 

arbitrary distance ESDP (𝑅7 of 0.9810). 

Generally, the introduction of arbitrary distance algorithm improves the parameter estimates but 
with a sizable improvement in the periphery estimates from single states (noticeable from Figure 4) 
and a reasonable improvement in densely populated estimates from multiple states (reduction of 
poor estimation in the middle of the saddle shapes from Figure 5). 

2.1 Parameter Mapping (OBJECTIVE 2) 

Once an ESDP model has been estimated, the surface formed with its driving states can be 
interpolated to form a parameter map where using a different data-set of the driving states as the 
coordinates of the parameters on the map can be used to find a suitably interpolated value of the 
state-dependent parameter.  For SDP this had been done before (Ratto et al., 2007), however it had 
not been done for MSDP.  For example, one of our validation procedures consisted of estimating the 
MSDP 𝑎�(𝒔&,, 𝒔7) for the training (estimation) subset of temporal samples te=1,..,500 and finding the 
interpolant to form the parameter map 𝑎�(𝒔&, 𝒔7)  followed by using the validation subset samples 
tv=501,..,1000 to find the interpolated values of 𝑎s(𝒔&,"�, 𝒔7,"�) from coordinates 𝒔&,"�, 𝒔7,"�. 

This not only provides a method of validation; in this case answering the question whether the 
estimated model parameter maps work for different data sets. These maps also provide a tool for 
studying different scenarios as well as on-line simulation of live events. They place this extension of 
the MSDP technique within the paradigm of the more general DBM methodology. 
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To demonstrate this model validation and data visualisation tool, the model from (5) was used to 
simulate data for n=2000 where the first half (te=1,..,1000) was used to estimate 𝑎�(𝒔&,"�, 𝒔7,"�) and 
then interpolated to find map 𝐴�(𝒔&, 𝒔7).  The second half of the data (tv=1001,..,2000) was then used 
to interpolate 𝑎s(𝒔&,"�, 𝒔7,"�) (Figure 6) and combined with the estimated B parameter from the first 
half of the data; these two methods of validation can be used to fully validate the ESDP procedure. 

 

Figure 6.  Interpolated a parameter for the second half of the data.  Left hand side, simulated A 
(offset for clarity).  Right hand side, interpolated a (𝑅7 of 0.9787). 

2.2 Model Validation (OBJECTIVE 3) 

There are four levels of testing that can be applied to validate the performance of these types of 
models at the stage of their development. The first two support the DBM model development 
phase, where the suitability of the model structure becomes apparent, while the third and fourth 
levels constitutes the final validation steps. 

1. Within-sample model fit – 𝑅7 of: model output, estimated A parameter and estimated B 
parameter (the latter two – for simulated models). 

2. One-step ahead prediction model fit 𝑅7 – where the simulation output (yt) is recalculated 
using the estimated parameters instead of the function of states to form the estimated 
output (𝑦�") with the regressor values (yt-1, ut-1) still used as above. 

3. Full input-output model simulation fit (𝑅"7	)– again where (yt) is calculated but not only using 
the estimated parameters but importantly, the estimated past output		𝑦�"(& such that 

𝑦�" = 𝑎". 𝑦�"(& + 𝑏". 𝑢"  
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4. Monte Carlo simulations of the full-simulated model using the estimated parameter 
standard errors with normally distributed parametric variation – generating error bands for 
the full input-output model simulation to check model sensitivity and uncertainty. 

The first of these tests has been done with the 𝑅7 of the estimated parameter for each model 
supplied within the relevant figure caption and the overall model fit 𝑅7was 0.9943 for (Figure 4) and 
0.9959 for (Figure 5).  The middle two tests were implemented first for the first half of the data and 
then secondly for the second half of the data from the previous section; first half, one-step ahead 
and full model simulation produced 𝑅7 of 0.9973 and 𝑅"7	of 0.9950 respectively. Second half, one-
step ahead and the full model simulation produced 𝑅7 of 0.9908 and 𝑅"7	of 0.9869 respectively. 

The MC simulations were also implemented on both halves of the data and shows the model 
stability (Figure 7). 

 

Figure 7. Uncertainty of the full model simulation, validation on the second half of data: 95% 
percentile band of MC simulations using the estimated parameter standard error with normally 

distributed parametric variation (zoomed-in for visibility). Rt
2 for the first half of the data (training 

set) was 0.995. 

It should be noted that, in the realm of true nonlinear and non-stationary systems, such as those 
found in the natural environment, that performing full model simulation on different time periods 
(estimation and validation) may not be practical.  The inherent nonlinearity can result in two time 
periods never behaving similar enough for this type of validation across different time periods to be 
a test of model validity. 
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The identification process for estimation period takes into account the prevailing conditions (such as 
soil saturation), and if they do not change, they are made constant (not an SDP) in the model. These 
same conditions may be different during the validation period. Enlarging the model would be 
needed for covering both periods, but this is prohibited by the efficient identification process 
selecting the parsimonious model for the estimation period.  

2.3 Extended State Dependent Parameter (ESDP) Methodology 

With updating the variable state-space distancing, addition of multiple dimensional parameter maps 
and introduction of the latter 2 steps of model validation, the MSDP and SDP methodologies have 
been updated to perform better (in terms of parameter estimation and model fit) and extended to 
include more tools for system analysis.  This, with the observation that MSDP is a generalisation of 
SDP to include more than one state, leads to term what is presented here as Extended State 
Dependent Parameters (ESDP) methodology. 

With the inclusion of the following model structure identification procedure, ESDP will have all the 
tools necessary for analysis of nonlinear dynamic systems in a complete DBM setting. 

3.0 Model Structure Identification (MSI) for ESDP (OBJECTIVE 4) 

It has to be stated at this point, that the work presented in this section is, by its very nature, a step 
towards the general structure identification for a very general class of models. Therefore, it should 
be treated as a pragmatic study, providing constructive directions and effective solutions for a 
specific class of models, but not the ‘final’ and general answer to the question.  

Since the general MSI algorithms for linear TF models are such a useful tool in investigating system 
dynamics, it is logical to assume MSI for nonlinear SDP models would be just as useful. Historically, 
SDP has been employed to study specific interactions where the main model structure is pre-
selected by the researcher, and the nonlinearity was the main subject of identification.  

However, within the realm of nonlinear systems, identification of model structure is not as clearly 
defined as within the class of LTI (Linear Time-Invariant) models and no well-defined general 
approach has been developed so far. While model selection within the Nonlinear ARX class (1) is 
slightly better defined due to the constraints on the TF models, in general model structure 
identification largely remains an open topic for nonlinear systems.   

Most existing approaches to tackling nonlinear structure identification involve assuming some 
aspect of linearity (Haber and Unbehauen, 1990): 

• Breaking a nonlinear system into parallel subsystems with different degrees of nonlinearity 
(usually static) with at least one dynamic linear subsystem. 

• Box models containing static nonlinear and dynamical linear terms such as simple 
Hammerstein or Wiener models. 

• Cascade models with single-valued static (no memory) nonlinear terms, such as the Wiener-
Hammerstein cascade model. 

• A nonlinear process that can be described by a semi-linear system with signal-dependent 
parameters where a static polynomial function is assumed for the parameters. 

• Nonlinear dynamic models, which are difference equations linear in the parameters. 
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The simplifying assumptions for these five types of nonlinear systems lead to easier model 
estimation and identification, as the nonlinearities are typically stationary and single-valued (with no 
memory) whereas for general nonlinear systems these assumptions cannot be made. 

For more general nonlinear systems, there are a few structural identification methods: 

• Fuzzy Model approach where a linear model is first identified and then fuzzified (Sugeno and 
Kang, 1988) 

• Neural Networks approach, which involves adjusting the weights of layers of ‘neurons’ (that 
form a network) to identify model structures (Narendra and Parthasarathy, 1990), effectively 
creating a large number of parametric nonlinear regressions. 

• Genetic Algorithms (GA) and Genetic Programming (GP) involves the creation and evolution 
of model structure from a dataset and; in the former, a set of adaptive algorithms (Whitley, 
1994) and in the latter, an existing function library that is chosen by the researcher (Gray, et 
al., 1998), with Evolutionary Algorithms effectively selecting the ‘fittest’ model structure. 
This family of techniques could apply to MSDP and will be evaluated in this context in the 
forthcoming studies. 

The issue with Neural Networks and Fuzzy Models is that due to their complexity, even for simple 
models, they can be unreliable for making model-based predictions because of their high 
parameterisation leading to potentially large parametric uncertainty, not to mention the resulting 
long execution times.  By contrast, the aim of this paper is to study a robust and generally usable 
method with a wide range of applications. 

In general, when identifying the structure of a model an important assumption is made prior to 
choosing the MSI method: is the system linear or nonlinear?  If the system is assumed to be linear, 
then any possible nonlinear aspect of that system will be ignored, and likewise if the system is 
assumed to be nonlinear, then the dominance of its linear modes may be overlooked, and an overly 
complex structure may be assumed.  The methodology presented here considers both linearity and 
nonlinearity when identifying the structure of a system.  This is particularly important when 
investigating state dependencies as the proposed MSI has the flexibility to consider the case of no-
state dependency, i.e. a linear system, for a particular dataset.  In addition, the methodology 
presented here considers true nonlinearity, in that the system is nonstationary / time variable. 

In general, the TF model MSI algorithms find the statistically optimal model structure from the 
available time-series data by evaluating each possible model through the following process (Young, 
2011): 

• Estimate the parameters and output of a model candidate. 
• Calculate an identification index value that statistically represents the likelihood that this 

model is the correct one for this data set, or a different model quality index. 
• Repeat the above steps for all possible structure combinations. 
• The highest or lowest, depending on type of identification index used, is considered the 

statistical optimum model structure for this data set. 

For linear TF models the number of possible models depends on the maximum model polynomial 
orders (POmax), the number of inputs and the maximum time-delay (δmax) with MSI only needing to 
find the statistically optimum model polynomial orders and time-delay.  
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For nonlinear ESDP models the number of possible candidate models depends, in addition to the 
above, on the maximum number of potential states which could drive each of the parameters (S), 
and on the maximum number of dimensions (Mmax), with MSI required to find the statistically 
optimum model polynomial orders and time delay, as well as how many, and which, states drive 
each parameter. 

This additional complexity of model selection creates a non-trivial identification problem, potentially 
generating numbers of models which would be unrealistic to evaluate in finite time. This is why the 
polynomial orders are kept pragmatically low as not to introduce headaches and over-complicated 
models.  

3.1 Number of Candidate Model Structures (NCM) to Evaluate 

Before an algorithm can be developed for MSI, an understanding of how many models are possible 
(in the sequel termed number of candidate models (NCM) for more clarity) from a given configuration 
of hyper-parameters is required; number of regressors (R), S, Mmax and δmax.  Note, to avoid over-
complication the number of n+m parameters from differing polynomial orders is restrained to n=m. 
In full implementation this need not be the case.  This means R gives the number of parameters to 
estimate (1 parameter per regressor).  If polynomial orders were not restrained to n=m, POmax 
would also be a hyper-parameter to determine the n+m parameters per model. 

The total number of candidate models for a given set of hyper-parameters is given by (8) and Table 1 
illustrates just how quickly the complexity of MSI becomes, as more state variables and higher 
polynomial orders are considered. 

𝑁�� = 𝛿0u� × _𝑆 + 1 + ∑ �(𝑆 + 1 − 𝑖) × (�(>)
7
�����(&

>�& e
�

   (8) 

 

Table 1. Showing how the number of candidate models (𝑁��) varies depending on the maximum 
dimensional space and the number of possible state variables.  Polynomial orders are restrained to 
n=m and δmax=1 

  𝑁�� 

Mmax S 1st Order 2nd Order 3rd Order 

1 3 16 256 4,096 

1 5 36 1,296 46,656 

2 3 49 2,401 11,7649 

2 5 256 65,536 16,777,216 

3 3 64 4,096 262,144 

3 5 484 234,256 113,379,904 
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However, to create an algorithm to explore each candidate model, other equations are required; 
their number and form dependent upon R and Mmax:   

Number of basic models (𝑁��) = (𝑀0u� + 1)�  

For the class of models with NARX structure (4), where 𝐴(. ) and 𝐵(. ) are either functions of a 
number of states (SDP/MSDP) or are constants (coefficients). 

𝑦" = 𝑎(. )"(/. 𝑦"(/ + 𝑏(. )"(/. 𝑢"(/      (9) 

When Mmax=1 (as in SDP), NBM=4: (numbers in brackets in the lists below are the number of states 
influencing that parameter, for example A(0) would mean just a constant parameter, while A(1) 
would mean A dependent on one state): 

1. 𝑦" = 𝑎(0)"(/𝑦"(/ + 𝑏(0)"(/𝑢"(/  
2. 𝑦" = 𝑎(0)"(/𝑦"(/ + 𝑏(1)"(/𝑢"(/  
3. 𝑦" = 𝑎(1)"(/𝑦"(/ + 𝑏(0)"(/𝑢"(/  
4. 𝑦" = 𝑎(1)"(/𝑦"(/ + 𝑏(1)"(/𝑢"(/  

When Mmax=2, nBM=9, the 4 from above and the following: 

5. 𝑦" = 𝑎(0)"(/𝑦"(/ + 𝑏(2)"(/𝑢"(/  
6. 𝑦" = 𝑎(2)"(/𝑦"(/ + 𝑏(0)"(/𝑢"(/  
7. 𝑦" = 𝑎(1)"(/𝑦"(/ + 𝑏(2)"(/𝑢"(/  
8. 𝑦" = 𝑎(2)"(/𝑦"(/ + 𝑏(1)"(/𝑢"(/  
9. 𝑦" = 𝑎(2)"(/𝑦"(/ + 𝑏(2)"(/𝑢"(/  

When Mmax=3, nBM=16, the 9 from above and the following: 

10. 𝑦" = 𝑎(0)"(/𝑦"(/ + 𝑏(3)"(/𝑢"(/  
11. 𝑦" = 𝑎(3)"(/𝑦"(/ + 𝑏(0)"(/𝑢"(/  
12. 𝑦" = 𝑎(1)"(/𝑦"(/ + 𝑏(3)"(/𝑢"(/  
13. 𝑦" = 𝑎(3)"(/𝑦"(/ + 𝑏(1)"(/𝑢"(/  
14. 𝑦" = 𝑎(2)"(/𝑦"(/ + 𝑏(3)"(/𝑢"(/  
15. 𝑦" = 𝑎(3)"(/𝑦"(/ + 𝑏(2)"(/𝑢"(/  
16. 𝑦" = 𝑎(3)"(/𝑦"(/ + 𝑏(3)"(/𝑢"(/  

The basic models above may be repeated for different combinations of dependent states, depending 
on how many are available, for example when Mmax=2 and S=2, basic models number 2,3,7,8 are 
repeated twice and the basic model 4 is repeated four times.  The formula for the number of 
possible combinations depends on the basic model (see Appendix A, Table 1 for each formula per 
basic model). 

One aspect that is not taken into consideration here is the possibility of different time-delays for 
each regressor and each state as that would dramatically increase 𝑁��, which is already 
considerable (Table 1).  Additionally, time delay might well be state-dependent, as may happen with 
catchment routing models (Li et al, 2013) and that too would significantly increase 𝑁�� and the 
overall model complexity. 
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One thing that needs to be pointed out is the number of calculations involved in a single model 
evaluation.  For linear MSI the parameters are constant and so only the order of n+m calculations 
are made.  However, for nonlinear MSI the parameters are not fixed and so the order of N×n+m 
calculations are made. With long series of high frequency data, where the application of nonlinear 
models would be useful, hundreds of thousands of samples are often used. This requires either long 
computational times or the utilisation of parallel computation.  

However, limiting the model orders, including prior identification of the system’s dominant modes 
using linear or simply time varying analysis techniques (Young, 1999a) should allow for a pragmatic 
two-stage procedure. Additionally, the search process is highly ‘parallelizable’, which is not difficult 
to implement using contemporary multi-processor computers and tools such as Matlab’s Parallel 
Toolbox.  

3.2 Evaluation of each Candidate Model: Noise Variance Ratio (NVR) vs. effective 
parameterisation level (number of degrees of freedom) 

An information value needs to be calculated for each model evaluated in order to determine the 
optimum model structure; typically, this value is called Information Criterion (IC) and can be 
formulated in a number of ways (Akaike 1972; Sakamoto, et al., 1986; Young, 2011). 

For the MSI methodology presented here the likelihood function (LF) was initially used and 
compared with Akaike IC (AIC): 

𝐴𝐼𝐶 = 2 × 𝑛 u¡ − 2 log 𝐿𝐹     (10) 

where LF is the likelihood function (calculated as part of the ESDP procedure) and the effective 
number of parameters (npar), similar in concept to the number of degrees of freedom, is equivalent 
to a single time varying model coefficient is found from: 

𝑑𝑡 = 0.5 × _&¨-©
iª�

e
-.7©

								 	𝑛 u¡ =
i

«"(7
       (11) 

dt can be interpreted as a subsampling ratio (when dt=2 every second sample is taken with the 
accompanying loss of temporal resolution – filtering/smoothing) (Ng and Young, 1990), and it 
reflects the time-scale of variability of the parameter. Naturally, npar is calculated for each of the TVP 
(Eq. 10) separately, so the AIC value would be calculated using the total of these values for all the TV 
parameters.  

Normally ESDP optimises the NVR during parameter estimation convergence, however for the 
proposed MSI methodology the parameters for each candidate model are estimated once with a 
fixed NVR.  This greatly reduces computational time and would render (11) irrelevant as the NVR 
never changes, thus AIC and LF preformed identically in terms of model identification.   

However, through extensive simulation testing using a broad range of both NVR values and 
nonlinearities within the NARX class of models, it was found that the total number of dependent 
states had a stronger influence over which model was selected than the effective number of 
parameters npar, i.e. models with higher numbers of states were being chosen over models with 
fewer states, resulting in misidentification.  This required the introduction of a heuristic weighting 
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value (12) to offset this bias which was obtained empirically from a review of a broad range of NARX 
model structures using simulated data to warrant reproducibility.  

𝑤 = 0.5 × log&-(1 + 𝑁�)      (12) 

where, NS is the total number of states used in the candidate model and then the overall IC equation 
becomes: 

𝐼𝐶 = 𝐿𝐹 + 0.5 × log&-(1 + 𝑁�)     (13) 

The IC of all evaluated models is sorted and the highest value corresponds to the model structure 
considered to be statistically optimal. 

3.3 Sensitivity of NVR vs. Smoothness of Data vs. Complexity of the Model Sought 

Through a search of a broad range of NVR values for several scenarios (such as the simulated 
examples above, and a complex nonlinear industrial benchmark), it was found that the proposed IC 
was robust enough to identify the correct model structure for a wide range of NVRs (10-10:10-2).  
However, for hydrological data (such as that found in Section 4), it was found that higher NVRs 
resulted in a different model structure being identified to lower NVRs, e.g. for the example in 
Section 4, NVRs between 10-10:10-4 identified one model structure and NVRs >10-4 identified a 
different model structure. 

This is logical as simulated examples are typically simple and built to have one timescale whereas 
hydrological data is composed from a number of cycles and system dynamics meaning applying 
different timescales results in different models.  Selecting an NVR is similar to selecting a timescale 
as low NVRs only enable identification of the broader picture and high NVRs provide all the 
temporal detail seen in frequently sampled data. 

3.4 The Need for Parsimonious Models 

As is clearly shown in Table 1, the number of models becomes prohibitively large if too complex 
models are specified. This is for fixed, pre-selected NVR values. The problem would be compounded 
if optimising NVR values. This is due to the fact that for each model NVR is optimised (Maximum 
Likelihood), and the ML objective function response surfaces become very flat for over-
parameterised (mis-specified) model structures, which makes the optimisation much slower.   This 
reinforces the need for parsimonious modelling approach (Young, 2011), not unique to the realm of 
nonlinear models, but particularly critical in this area.  

3.5 Simulated Example 

A model of NARX structure similar to (4) was simulated: 

𝑦" = 𝑎(𝒔𝟑,𝒕, 𝒔7,")". 𝑦"(& + 𝑏(1)". 𝑢"(&								𝑡 = 1, . . , 𝑁      (14) 

where, 𝑎(𝒔𝟑,𝒕, 𝒔7,")" = 𝑒(𝒔®,¯bc° (𝒔°,¯bc°
 and 𝑏(1)" = 1, with a 5% noise level by standard deviation. 

All the variables were supplied to the MSI algorithm; 𝑦", 𝑢"(&, 𝒔&, 𝒔7, 𝒔± and 𝒔² along with hyper-
parameters δmax=4 and NVR=1e-2.  States 𝒔&, 𝒔7, 𝒔± and 𝒔²  are simulated as uncorrelated Gaussian 
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sequences with zero mean and unit variance.  484 models were evaluated and formed the IC values 
(Figure 8) that correctly identified model structure number 35 with a time-delay of 1. 

 

Figure 8.  Information Criterion values from the proposed MSI methodology.  Highest peak is for 
model structure number 29 with a time-delay of 1, which corresponds to the model structure in (14). 

The key observation (Figure 8) is the sensitivity to time-delay, making identifying the time-delay the 
easiest part of MSI.  The four other peaks correspond to candidate models with the same state 
configuration for a but with b being a single SDP driving by 𝒔&, 𝒔7, 𝒔± and 𝒔² respectively. 

After identifying the structure, the model was then estimated using ESDP producing a fit a R2 of 
0.999 and estimated the a parameter (Figure 9) and constant b of 1. 
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Figure 9. Illustration of the a parameter.  Left hand side, simulated a parameter (offset for clarity).  
Right hand side, estimated a parameter. 

4.0 Streamflow Generation Example (Objective 5) 
 
A commonly used hydrological model in flood simulation is 𝑄 = ℱ(𝑅), where R is rainfall within a 
catchment, Q is the streamflow per unit basin area (or ‘channel runoff’) and f is a functional 
representing the dynamic processes involved in translating rainfall into runoff.  This model may be 
described by the equations (1 or 2) in atypical catchment systems where a linear relationship is 
observed (Ockenden and Chappell, 2011).  Rainfall-runoff is however, often a nonlinear process 
(McIntyre and Al-Qurashi 2009; Beven, 2012), so an SDP methodology may be applied to capture this 
nonlinearity.  Since it is not always clear whether nonlinearity in rainfall-runoff response is caused 
solely by temporal variations in the moisture state of the whole active hydrological system including 
rock aquifers, rather than a combination of nonlinear hydrological processes also related to differing 
rainstorm characteristics (Rodríguez-Iturbe et al., 1982; Chappell et al., 2017), changes in wet-
canopy evaporation during storms (Love et al., 2010), diurnal solar radiation effects on soil moisture 
via transpiration dynamics (Deutscher et al., 2016) or temperature effects on snow melt (Loheide et 
al., 2009; Mutzner et al., 2015). There is therefore an intrinsic value in applying an ESDP 
methodology to discover the dominant mechanism active in the current data set -  strictly following 
the DBM philosophy. 

Similar to equation (9) we have the following nonlinear rainfall-runoff model: 

𝑄" = 𝑎(. )"(/&𝑄"(& + 𝑏(. )"(/7𝑅"(/±    (15) 
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where a(.) and b(.) are defined as in (9), with SDP coefficients. The base-line of the flow series is 
estimated at the same time, in this case as a constant, within the same estimation process. The aim 
here is to use MSI to identify the most statistically likely state variables, if any, driving parameters a 
and b and then to apply ESDP to optimise these parameters and finally investigate the parameter-
state surfaces for any meaningful physical interpretation of the rainfall-runoff processes. 

Even though δ1, δ2 and δ3 could theoretically be different values, for these examples they will all 
have the same value, determined by MSI and so similar to the commonly used Nash rainfall-runoff 
model (Nash, 1957).  This is done to reduce the number of models MSI needs to evaluate to in order 
to minimise model complexity and to reduce runtime. 

The examples that follow are using 15-minute interval data collected from the 0.76 km2 Nant-y-
Craflwyn catchment in upland Wales, UK (Jones and Chappell, 2014; Jones et al., 2014).  The 
available variables are: rainfall, streamflow per unit basin area (‘channel runoff’), air temperature, 
stream temperature and solar radiation (Figure 10). Rainfall, air temperature and solar radiation 
were measured at an automatic weather station while stream temperature and streamflow were 
measured at water quality station and flume, respectively (Fig 1 in Jones and Chappell, 2014). 

This means the number of candidate models to evaluate is 768 (nCM=256 and assuming one time-
delay with δmax=3).  By contrast if each time-delay was to be different then nCM=6912. 

   

Figure 10.  Available variables over a 25-day period starting 28/03/2012 in 15-minute interval steps. 

One possible feature in streamflow time-series are diurnal (or diel) cycles, even though these may be 
visible only between storms in the absence of rainfall. These cycles may be caused by diurnal cycles 



 

22 
 

in snow melt or ice melt (Mutzner et al., 2015) or diurnal cycles in transpiration (Deutscher et al., 
2016), driven primarily by the diurnal cycle in solar radiation inputs.  Within the 15-minute 
streamflow data for the Nant-y-Craflwyn catchment there is a visible diurnal cycle that corresponds 
to the solar radiation data (Figure 11).  The MSI approach is evaluated to see if solar radiation can be 
combined with rainfall data to derive a more complete DBM model of the drivers of streamflow 
response at this location. 

 

Figure 11.  Showing the diurnal-modulated nature of the streamflow records for the Nant-y-Craflwyn 
stream as compared to that found in the solar radiation (both have been standardised for easy of 

comparison). This is picked-up by the state dependency estimate of the a parameter.  

Hourly sampling rate has been chosen for this model to avoid oversampling. The 15-minute data was 
converted into hourly data, where the rainfall was totalled over the hour and the other variables 
were pre-processed using an Integrated Random Walk (IRW) smoothing and decimation algorithm 
from the Captain Toolbox to limit their spectrum to avoid bias (Young et al., 2007). 

MSI identified a structure with the decay coefficient dependent on solar radiation and rainfall with 
time-delays of 1 hour.  ESDP produced an optimised model with an R2 of 0.998, estimated A 
parameter with range 0.95-1.06 (dimensionless) and constant b (referred to as ‘effective rainfall 
coefficient’ in Young 2003) of 2.3x10-3 with units consistent with observations of discharge. 

The outliers for the 2D parameter estimates made visualisation of the parameter surface difficult, 
probably due to observation disturbance in measurements of all the variables in the model.  
Smoothing the 2-D parameter estimate using Smoothing Splines ANOVA (SS ANOVA; Gu, 2013) 
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allows a useful representation of the surface (Figure 12) and its subsequent parameterisation for 
simulation purposes, conveniently including a measure of uncertainty of the smoothed surface. 

  

 Figure 12. Decay coefficient and its two dependent states. Left: 3D visualisation of the decay 
coefficient and the states.  Right: projection plots of each state/decay coefficient vs the other 

state/decay coefficient. 

Another way to visualise the 2-D parameters is to compare their changing value with the values of 
their two potentially explanatory states (Figure 13) as time series, this not only shows how the 
diurnal cycle in the solar radiation has been captured by the a parameter on the shorter time scale, 
but also how it is superseded by the effect of rainfall on the longer time scale.  The a parameter is 
generally lower than one and can be interpreted as a momentary decay coefficient, with values 
higher than one meaning momentary ‘growth’ or ‘production’.   
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Figure 13.  Comparing the decay coefficient estimates to its driving states.  Top, comparing the 
standardised values of the decay coefficient and radiation.  Bottom, comparing the standardised 

values of the decay coefficient and rainfall. 

It is worth noting that this interpretation of the a coefficient is not the same as for Linear Time 
Invariant systems (LTI) where the value larger than one means the system is unstable, and the values 
lower than one relate to the recession process of the autonomous (no input) solution. This does not 
hold for nonlinear (time varying) systems, which are analysed here. Such values of similar SDP 
parameters have been seen in previous publications (Young, 2000; Young, 2003), while Ratto et al 
(2007) have limited the a coefficient to not go above one, based on their specific application. In this 
case leaving a to track unconstrained is a part of the DBM identification process; any physical 
constraints can be included at the final application stage. 

As noted earlier, the apparent diurnal cycle in streamflow may be caused by diurnal cycles in 
transpiration losses from the subsurface pathways generating streamflow (Graham et al., 2013; 
Deutscher et al., 2016) or diurnal cycles in air temperature affecting the production of snowmelt 
(Loheide et al., 2009), but may also be caused by residual thermal artefacts in the pressure 
transmitter output (Liu and Higgins, 2015; Moore et al., 2016). For the diurnal cycles in the Nant-y-
Craflwyn time-series, in-situ field tests show that all of the cyclical behaviour may be explained by 
residual thermal artefacts. The modelling approach would, however, have been able to quantify the 
diurnal component of response if it had been caused by transpiration or snowmelt effects, as seen 
within other catchments. 

4.1 Validation 

The validation processes described in section 2.2 were applied to the above hydrological data and 
showed good model validity (Figure 14) with the one-step ahead and full model simulation having R2 
of 0.9900 and Rt

2 of 0.9883 respectively. 
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Figure 14. One-step ahead and full model simulation with uncertainty: 95% percentile band of MC 
simulations using the estimated parameter standard error with normally distributed parametric 

variation. 

5.0 Conclusions 

The paper unified and improved upon the SDP and MSDP methodologies to form a Generalised State 
Dependent Parameter methodology.  In addition, this paper introduced a generalised Model 
Structure Identification methodology that allows for a closer following of the DBM approach to 
investigating nonlinear system dynamics. The introduction of the arbitrary RW not only generalised 
the methodology but also improved the parameter estimates. 

The MSI approach to identification of this class of nonlinear systems allows researchers to 
statistically explore interactions between system variables for a specific process and to give insights 
into which variables are more important to that process.  It also enhances the DBM nature of ESDP 
by more rigorously determining the model structure, not relying on the researcher’s preconceptions.  
The ‘brute force’ nature of the algorithm could lead to computational runtime limitations if dealing 
with many variables and very long data sets, but this is a minor limitation given the ever-increasing 
power of computers and the option of parallel computation.  

The parameter map allows the outputs of ESDP to be quickly utilised for scenario analysis and on-
line simulation of live events. 

The approach was evaluated and validated in several ways, including the use of separate data sets, 
regressive, one step-ahead and full simulation model fit.  
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5.1 Further Developments 

Two groups of developments aimed at improving the usability and applicability of the MSI/MSDP 
methods may be identified at this stage. 

1. Generalisation of the MSI methodology: 
• Removal of the constraint of n=m on polynomial orders – greatly increasing the 

number of models to evaluate but allowing closer following of the DBM approach.  
• To other models (multiple inputs, ARMA structures etc.), with the possibility of 

leading to the future development of an algorithm that chooses the model type as 
well as the structure. 

 
2. Numerical effort is a serious consideration in this case. Applicability of the method, which 

naturally involves a structure search and optimisation based estimation, is limited in the 
current implementation by the time taken by the algorithm, mainly the structural 
identification search. Thus:   

• Only single-input-single-output models were demonstrated but the extension into 
multiple input and even multiple output is possible – it would drastically increase 
the number of models to evaluate as seen from Table 1. 

• Currently time-delays are fixed, in that all time-delays have the same value.  
Allowing MSI to evaluated models with several different time-delays would enhance 
the exploration of nonlinear dynamics – it would dramatically increase the number 
of models to evaluate. 

• For some systems time-delay can be state dependent and so introducing state 
dependent time-delay would benefit the modelling of those systems – it would also 
heavily increase the number of models to evaluate. 

 

5.2 Software Availability  

Matlab ESDP library is available from the corresponding author upon request, after further testing it 
will be incorporated in the CAPTAIN Toolbox. It is recommended to use the current version of the 
CAPTAIN toolbox for initial transfer function and basic, single state dependency SDP analysis.  
CAPTAIN Toolbox is available from Lancaster University at the link below: 
http://www.lancaster.ac.uk/staff/taylorcj/tdc/download.php 
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Appendix A – Additional MSI Information 

Table 1. Formula for the number of model combinations when R=2, Mmax=2. S is the number of 
possible driving states. 

Basic Model 
(from 3.1) 

Formula for number of 
combinations 

Examples 

             S=2                                   S=3 

1 = 1 1 1 

2 = 𝑆 2 3 

3 = 𝑆 2 3 

4 = 𝑆�  4 9 

5 = 0.5𝑆7 − 0.5𝑆 1 3 

6 = 0.5𝑆7 − 0.5𝑆 1 3 

7 = 0.5𝑆± − 0.5𝑆7 2 9 

8 = 0.5𝑆± − 0.5𝑆7 2 9 

9 = 0.25𝑆² − 0.5𝑆± + 0.25𝑆7 1 9 

 𝑛´� = 16 49 

 


