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1. Introduction T
 Joule heating is controlled by the frictional interactions of charge carriers (plasma) and o w1 S T
neutrals in the high latitude thermosphere Lo
* Ground based radar network, SuperDARN, can tell us about the plasma. The SCANDI Fabry- A0 X | -
Perot interferometer tells us about the neutrals via auroral airglow emission. S EERRE
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« Examples of 2D, high spatio-temporal resolution Joule heating images have been created by
finding events with high amounts of overlapping SuperDARN and SCANDI data
« SCANDI is located on Svalbard and most commonly operates in a 61 zone configuration, %3
obtaining a maximum of up to 61 neutral wind vectors using fitting techniques from Conde & I%vigkvibae_rj
Smith [1998]. i . ,
 Two SuperDARN radars overlook Svalbard, Hankasalmi in Finland and Pykkvibaer in Iceland. '
These provide the fitted plasma velocities. o) Dogg] | PerpARN focations adapted from

2. Coverage

« SCANDI has been in operation since
2007, allowing 10 years of winter-time Peak at 57 vectors corresponding to
data Feb 17t — 25t 2014

 There are not always direct SuperDARN
velocity measurements in the SCANDI
FOV, but but we use the SuperDARN
“map potential® technique to intelligently
interpolate over areas without data R

[RUOhOniemi & Baker, 1 998]. Number of4SDD ve?t?urs inG%CAN;?FOVBD -

+ After filtering SCANDI data for clear - model [Rich et al., 1987] and auroral model
igure 2. The number of measured

. . ,
skies and goodness of fit (0.5<x°<1.5), SuperDARN plasma vectors within the [Hardy et a_l" 1_96_37]'

the number of SuperDARN plasma  scanp Fov for a filtered dataset. There is a Joule heating Is increased the stronger the
vectors in the SCANDI FOV is shown in peak labelled which corresponds to 8 difference between the neutral and plasma

figure 2. consecutive days of excellent data coverage velocities are.
for both SuperDARN and SCANDI.

3. Calculation

Qs =YXpE*+2Y E - (V, xB)+ X,(V,y x B)?

2Q; - Height Integrated Joule heating

E - Electric field from SuperDARN: E = —VxB
V, - Neutral winds from SCANDI
B - Magnetic field from IGRF model

[Thébault et al., 2015]
X, - Pedersen conductivity from Solar zenith

4. February 21st, 2014 Event — Neutral flow switch 5. December 7th, 2013 Event —
uT: 1713 Ceutrore 1914 lon drag in action
1 400 m/s 12 400 m/s
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as a result,
Joule heating
drastically
decreases.

 The decrease in Joule heating indicates neutrals pulled into direction of plasma via
ion-drag — (a), (c) in Figure 3.

 The sudden change of neutral direction increases Joule heating, especially at lower
latitudes — (b) in Figure 3.

 This indicates some stronger control over neutrals than ion-neutral drag, such as
Coriolis forces or solar pressure gradients driving the neutrals from the plasma N -
configuration and increasing Joule heating. This is significant because lon-neutral SR s 10

Height Integrated Joule Heating (mW/m?)

drag is often seen as the dominant force affecting neutrals. &=
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