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ABSTRACT 

Carbon capture and storage (CCS) in the oil and water industries is becoming common and a 

significant consumer of energy typically requiring 150―450 oC and or several hundred bar 

pressure [1] particularly in geological deposition. A biological carbon capture and conversion 

has been considered in conventional anaerobic digestion processes. The process has been utilised 

in biological mixed culture, where acetoclastic bacteria and hydrogenophilic methanogens play 

a major key role in the utilisation of carbon dioxide. However, the bio catalytic microorganisms, 

hydrogenophilic methanogens are reported to be unstable with acetoclastic bacteria. In this work 

the biochemical thermodynamic efficiency was investigated for the stabilisation of the microbial 

process in carbon capture and utilisation. The authors observed that a thermodynamic efficiency 

of biological carbon capture and utilisation (BCCU) had 32% of overall reduction in yield of 

carbon dioxide with complimentary increase of 30% in yield of methane, while the process was 

overall endothermic. Total consumption of energy (≈0.33 MJ l–1) was estimated for the carbonate 

solubility (0.1 mole l–1) in batched BCCU. This has a major influence on microbial composition 

in the bioreactor. This thermodynamic study is an essential tool to aid the understanding of the 

interactions between operating parameters and the mixed microbial culture.  

KEYWORDS  

Carbon Capture and Storage; Utilisation; Electrochemical Thermodynamics, Anaerobic 

Digestion;  

1. INTRODUCTION 

The UK emission of greenhouse gases has been slowly decreasing year by year; was estimated to 

be 569.9 million tonnes carbon dioxide equivalent (MtCO2e) annually [2] in 2013 whereas it 

was 777.12 MtCO2e [2] in 1990. The UK strategy of the greenhouse gas emissions seems to be 

almost achievable, which will reach by at least 80% reduction (from the 1990 baseline) by 2050 

[3]. However the UK water and waste industry has produced approximately 6 MtCO2e [4] 

annually; of which 56% is in the result of wastewater treatment processes including sludge 

management: in particular activated sludge process [5]. In case of the Thames Water Plc. in 

London consumes 7.7 TWh [6] (≈ 2.5 MtCO2e by conversion factor of industrial coal) for 

wastewater treatment annually, which is approximately 2–5% of the whole UK national 
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consumption of primary fuel. This is a disappointing result regardless of high efficiency of ‘low-

carbon’ technologies to compete internationally and generate economic growth.  

As a direct in-door capture followed by storage technology, such as geological carbon capture 

and storage (CCS) or oceanic reservoirs, has been widely introduced for the UK water industry 

but it still has many difficulties to adapt the technology: long term operating and monitoring 

costs [7], significant risk of site-leaking [8], effective carbon capture and transport [9] from 

conventional activated sludge process. A biological carbon capture and conversion has been 

considered in existing and conventional anaerobic digestion process in water industry. Fernandez, 

et. al. [10] utilised anaerobic batched digestion process to observe maximum BCCU capacity and 

limitation/inhibition in range of the process capacity, which overall CO2 reductions are 3–34% in 

anaerobic batched digestion process and CH4 yields are increased in range of 13–138%. 

Salomoni et. al. [11] also observed an extra 25–30% of methane (CH4) yield in continuous two-

stage anaerobic digestion of sewage sludge. These results seem to be a promising technology in 

CH4 conversion from biological carbon capture and utilisation whilst, Oh et. al. [6] reported very 

low energy efficiency (5–15%) of anaerobic digestion process itself and the biogas yield is less 

than 50% of carbonaceous feedstocks [6, 12] in heterogeneous domestic or municipal wastes. 

Moreover, Alimahmoodi and Mulligan [13] reported a 69–86% efficiency of only aqueous CO2 

uptake in an upflow anaerobic sludge blanket (UASB) reactor of food wastes. These 

observations directly tell us that biological carbon capture and utilisation (BCCU) is strongly 

limited by hydrogenophilic methanogens with a range of CO2 solubility, which is less than 1300 

mg l–1 of CO2 in diluted aqueous solution. 

Biological CO2 capture is dependent on reversible or backward reaction by acetoclastic bacteria 

[14] under strong dissociation of CO2, meanwhile the utilisation relies on the microbial activity 

of hydrogenophilic methanogens. The two simultaneous reactions, both are thermodynamically 

spontaneous, competitive and exothermic, but rely on ‘H2 partial pressure’. Moreover the 

utilisation is indirectly correlated to microbial relationship between acetoclastic methanogens 

and syntrophic acetogenic bacteria followed by fermentative bacteria. Oh and Martin [15] 

reported that the activity of acetoclastic methanogens is thermodynamically spontaneous 

( G <0) but entirely endothermic process. The syntrophic acetogenic bacteria converting 

fermentation products into acetate and ‘molecular H2’ are not generally thermodynamically 

feasible biological reactions ( G >>0), only becoming feasible at very low ‘H2 partial pressure’ 
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[16] in absence of acetoclastic conversions. The metabolic efficiency and the growth yield of the 

syntrophic acetogenic bacteria, depend strongly on the removal rate of the ‘molecular H2’ by a 

consuming species [17, 18].  

Practically the ‘molecular hydrogen’ having very low solubility (Henry’s law coefficient 8.58 × 

10−4
 mol atm-1 l–1) is spontaneously transferred into ‘gas phase’ and the ‘partial pressure’ is 

maintained in very low range of values (i.e. 10−6< H2 (atm) <10−4) [17, 18]. The hydrogen 

transport between functional anaerobic microorganisms is almost impossible as a result of the 

hydrogen diffusion coefficient (4.50 × 10−9 m2 s−1) [16], while ‘transport of electrons and 

protons’ has a feasibility to link metabolic pathway between functional anaerobic 

microorganisms. In case of anaerobic biofloc, microbial oxidising bacteria are continuously 

producing electrons and protons while microbial reductive bacteria are consuming them through 

hydrogen bonding structure in water [15, 16]. In intrinsic distance between functional 

microorganisms such as fixed biofilm, the microorganisms produce biochemical mediators (i.e. 

NAD+/NADH) for electrochemical salt bridge between functional microorganisms to electrical 

conduction of electrons and protons. This suggests that the electron/proton transport between 

functional microorganisms can occur independently of the conventional biochemical carriers but 

the success of the biological carbon capture and utilisation (BCCU) might be attributable to the 

efficiency of the proton/electron transport in microbial processes.  

On this basis this work established the catabolic reactions completely linked between the 

microorganisms through proton/electron pairs, in terms of a couple of inter cellular mediator 

(NAD+/NADH). The overall process was thus assumed to be at the electrochemical equilibrium 

state whilst there is a quasi-steady state of microbial growth. The authors thermodynamically 

investigated the efficiency and the limitation of the BCCU in anaerobic digestion process. The 

resulting model is used to only investigate a magnitude of the thermodynamic driving force (i.e. 

G , H  and S ) but overcome thermodynamic limitations leading to practical operation of 

biological carbon capture and utilisation (BCCU). 

 

2. MODEL DEVELOPMENT 

The biological carbon capture and utilisation (BCCU) is modelled and simulated in an isothermal 

and isobaric condition (298.15 K and 1 atm) of anaerobic batch digester. The anaerobic digester 
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is assumed to contain a ‘fully acclimatised’ fermentative bacteria, syntrophic acetogenic 

bacteria, acetoclastic bacteria and methanogenic consortium with anaerobic ammonium 

oxidising bacteria. A two-phase digester is assumed: gas and solution.  

In this case, the authors propose the addition of carbon dioxide into the two-phase digester for a 

BCCU and then an intensive biogas. The initial substrate is the aqueous form of carbon dioxide 

(aqueous CO2) in the constant moles of glucose (0.1, 1 and 10 mmoles). Initial moles (10 

mmole) of glycerol (C3H8O3) and ethanol (C2H6O) are also constantly injected, where 10 mmole 

of aqueous ammonia (NH3) is assumed in approximately range 10-250 mmole l–1 as mixed 

sewage sludge [19, 20]. 1 mmole of NADH is considered as a biochemical hydrogen mediator to 

trade-off hydrogen molecule between micro-organisms. The authors consequently investigate 

sensitive changes (ΔE, ΔH and ΔS) in electrochemical equilibrium state (ΔG=zero) at conserved 

system mass (one kilogram). As the initial mole fraction of aqueous carbon dioxide 

( x /CO2
(

2 2 3H O CO NH  2 6C H O 6 12 6C H O  TNADH )) is increased, the moles of 

solvent water ( OH2
) is reduced. This is based on the mass conservation of system (one 

kilogram). In regarding different conditions (i.e. feeding concentration of CO2), it is also 

investigated how the deviation has an influence on the sensitive changes (ΔE, ΔH and ΔS) and 

then how they can affect BCCU. Although the authors theoretically investigate in the whole 

range of initial 
2CO  mole fraction (0< x <0.93) in the conserved mass (1kg of three phased batch 

reactor), where the high range of initial 
2CO  mole fraction ( x >0.0005) has practically been 

operated [10, 11]. Furthermore, the low range of initial 
2CO  mole fraction ( x  <0.0005) is also 

included in the case of an sequencing injection as a solid or gaseous forms of 
2CO . 

The thermodynamic model comprises three parts of equilibrium state (phase transition, 

dissociation and electrochemical reaction) on quasi steady state of growth rate in 

microorganisms. The first includes equilibrium expressions that relate the relative aqueous 

activities and vapour fugacities of all chemical species in the two-phased digestion process. The 

second consists of the dissociation/association that quantifies the relationships between cation 

activity and anion activity in the liquid phase. The third consists of the reduction and oxidation 

state that based on the electrochemical potential (V) through NAD+/NADH ratio. The completed 

model consists of a set of highly non-linear simultaneous equations which was solved using 

Newton-Raphson Algorithm [15] based on the Jacobian matrix.  
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2.1 Stoichiometric relationships of carbon capture and utilisation  

The stoichiometric expressions are established in the common manner to quantify the feasible 

relationships between the initial substrate and the products and the intermediates. Table 1 shows 

the stoichiometric relationship for BCCU in anaerobic sludge digestion. The stoichiometric 

relationships are categorised by three equilibrium relationships which are electrochemical 

reaction, two-phase transition and electrolyte ionisation reaction.  

<TABLE 1> 

2.2 Equilibrium relationships of carbon capture and utilisation 

This model from the stoichiometric foundations is developed using the fundamental definition of 

thermodynamic chemical equilibrium. 

0 iiv         (1) 

where iv  is stoichiometric coefficient of component i and the chemical potential i  is expressed 

as the standard chemical potential 
i  and activity ia  of component i. 

iii aRT ln        (2) 

where R  is universal gas constant and T  is absolute temperature.  

2.2.1 Vapour and Liquid Equilibria 

Vapour and liquid equilibria relevant to the BCCU are developed in conventional anaerobic 

sludge digestion process. Butanol, propanol, glycerol and ethanol are considered as non-volatile 

due to the very low Henry’s coefficients. Butyric, propionic and acetic acids are also non-volatile 

and therefore only nitrogen, hydrogen, ammonia, carbon dioxide, methane and water are able to 

exist in gaseous phase. Henry’s law coefficients relevant to the anaerobic batch digester are 

shown in Oh and Martin [15]. Table 2 shows the stoichiometric foundations and their chemical 

equilibrium constants and their numerical relationships are governed by Equation (1). 

<TABLE 2>[21-24] 
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2.2.2 Electrolyte Ionisation Equilibrium  

Carbonates are highly dissociated and structured with other ionic chemical species in the liquid 

aqueous phase, that is strongly depended on the equilibrium concentration of protons [H+]; pH 

value. The authors modelled the ionic structure of the carbonates linked to the vapour phase 

equilibrium, which affects to the chemical potential i  of the chemical component i . 

  kkjjii vvv       (3) 
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Substituting Equation (2) into Equation (3) yields the ionisation relationship, where equilibrium 

constant corresponds to dissociation constants aK  of the carbonates in anaerobic sludge 

digesters. Table 3 shows the stoichiometric foundations and their chemical equilibrium constants 

and mathematic relationships which are based on Equation (4). In this research, it is a key player 

that carbonates react with existing ammonium ions; then they are solidificated into ammonium 

salts ((NH4)HCO3, (NH4)2CO3, C2H3O2(NH4), C3H5O2(NH4), C4H7O2(NH4) and NH4NO3) in the BCCU in 

anaerobic sludge digestion process. 

<TABLE 3> 

2.2.3 Electrochemical Equilibrium between Microorganisms 

Biological electrochemical equilibrium is, in particular, described in the form of coupled half 

electrochemical reactions linked through the biological mediator (NAD+/NADH). The half 

electrochemical reactions occur by coupled oxidation and reduction (redox), so that the electron 

released by one reactant is accepted by another. Here, the authors assumed that reduction and 

oxidation potentials are reached very fast to the ‘equilibrium state’ of BCCU. The half reactions 

and equilibrium relationships relevant to acetoclastic methanogens and syntrophic acetogenic 

bacteria were developed in Oh and Martin [15, 16, 25, 26]. The half reactions and equilibrium 

relationships relevant to fermentative bacteria, hydrogenophilic methanogens and anaerobic 

ammonium oxidising bacteria were developed in Oh and Martin [16] and are used here without 

modification. An example of hydrogenophilic methanogens is given by 
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Oxidation NADH + H+  
 NAD+ + 2H+ + 2e e–    0  nev

k

kk
 

Reduction CO2(aq)+ 8H+ + 8e–  = CH4(aq)+2H2O(l)       0j j

j

v ne     

Leading to the overall redox reaction,  
CO2(aq)+ 4NADH + 4H+    = 4NAD+ + CH4(aq)+2H2O(l)       0

j

jj

k

kk vv   

 
Acetoclastic bacteria is given by 
Oxidation C2H4O2(aq)  + 2H2O(l)   = 2CO2(aq)+ 8H+ + 8e–     0  nev

k

kk
 

Reduction 2H+ + 2e– + NAD+  = NADH + H+       0  nev
l

ll   

Leading to the overall redox reaction,  
C2H4O2(aq)  + 4NAD+ + 2H2O(l)  = 2CO2(aq)+ 4NADH +4 H+     0

l

ll

k

kk vv   

 
Anaerobic ammonium oxidising bacteria is given by 
Oxidation 2NH3(aq) = N2(aq)+ 6H+ + 6e–       0  nev

k

kk
 

Reduction 2H+ + 2e– + NAD+  = NADH + H+       0  nev
l

ll   

Leading to the overall redox reaction,  
2NH3(aq) + 3NAD+  = 3NADH + 3H+  + N2(aq)     0

l

ll

k

kk vv   

 
Fermentative bacteria is given by 
Oxidation  NADH + H+  

 NAD+ + 2H+ + 2e–     0  nev
i

ii  

Reduction C6H12O6 (aq)+ 4H+ + 4e–  = C4H8O2 (aq) + C2H4O2 (aq) + 2H2O 0  nev
j

jj  

Leading to the overall redox reaction,  
C6H12O6 (aq)+ 2NADH + 2H+    = 2NAD+ + C4H8O2 (aq) + C2H4O2 (aq) + 2H2O 0

j

jj

i

ii vv   

where, the pair of half reactions should be in a state of equilibrium, the equilibrium relation is 

defined by the equality of the pairs of the electrochemical potentials )(VE .  

)(VnFEv iii         (5) 

Where, F  is the Faraday’s constant and n  is the numbers of electrons transferred. The 

relationship between the chemical activity ia  and electrochemical potential E(V) for the i th half 

reaction is shown in Equation (6): 

  iiiii avRTvnFE ln     (6) 
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Thus, the electrochemical equilibrium is established by the equality of electrochemical potentials 

and it is corresponding to the equilibria on the pairs of half REDOX reactions.  

 lkji EEEE      (7) 

This electrochemical equilibrium relationship (Equation 7) allows to couple of transportation 

energy between functional micro-organisms in BCCU. This directly represents a synthesis of 

organic carbons from the injected inorganic carbonates and is able to identify an elongation of 

carbon-chain numbers. Table 4 shows the half reactions representing microbial reactions of 

BCCU.  

<TABLE 4>[21] 

2.3 Relationship of activity and fugacity with concentration and partial pressure 

2.3.1 Aqueous phase 

Activity ia  and observable concentration im  is related by an activity coefficient i  [27]. In a 

non-diluted solution in range of a mole fraction of carbonates ( x  >0.0005), there are three types 

of model for the description of the activity coefficients that can be considered: Ideal model; 

Debye-Hückel model and Pitzer model. These models are equivalent to the ‘conventional 

equations of state’ used to quantify the analogous relationships in the gas phase and have limited 

ranges of applicability related to the ionic strength of the aqueous phase. These limitations 

together with their respective models for activity coefficients are discussed in Oh and Martin [15, 

16]. Their parameter values are re-used in this work. 

iii ma        (8) 

2.3.2 Gaseous phase 

Fugacity if  is related to observable partial pressure Pyi , in a manner analogous, to activity and 

concentration in solution phase through the fugacity coefficient, i . 

Pyf iii        (9) 
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Where, fugacity coefficient i  can be derived from a suitable equation of state (EoS). Oh and 

Martin [15] used the Nakamura et al. EoS [28] to describe the mixture of non-polar and polar 

gases found in BCCU. This work uses the same EoS, thus ensuring consistency between the 

results.  

2.4 Overall phase and mass balances 

The equilibrium model requires a strict mass balance condition. The components of overall 

balances were constituted for the i) vapour phase, ii) solute and iii) pure water from the 

stoichiometric model. 

2

Re( )
18.02Re( ) 1000 ( )

55.494
i W i i W i

i i H O

W
N y M m M W g



      (10) 

Where the N  is total mole of vapour phase in the digestion system. The
 iWM  is the molecular 

weight of chemical species i. The )Re(W  is the moles numbers of water in solution, which the 

total mass of system is conserved to one kilogram. Strict element material balances: carbon, 

hydrogen, oxygen and nitrogen, are also considered. 

The vapour balance, liquid balance and charge balance are considered at the state of equilibrium. 

1
i

iy       (11) 

1
i

ix       (12) 

zeromz
i

ii       (13) 

where ix  and iy  are the mole fractions of ith component in liquid and vapour phase respectively. 

iz  is the number of charge in liquid phase.  

 

3. RESULTS AND DISCUSSION 
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3.1 Enthalpy and entropy analysis in biogas formation 

For quantifying the overall process performance, biogas production is quantitatively measured. 

Figure 1a shows a plot of biogas production versus CO2 mole fraction, x , whereas x  is 

increased the gas phase increases and symmetrically reduces liquid phase. This is due to the 

conservation of mass in 1 kg of system. This implies that x  of a digester feed should be 

maximised within operating constraints such as pumpability or carbonaceous inorganic loading 

rate. Practically this limits x  to values higher than 0.0005 which is equivalent nominal CO2 feed 

of 0.035 mole l–1 (aqueous CO2 solubility). This work also shows the results of a set of high 

concentration cases (0.0005 < x <0.98) in which the water is progressively consumed until it is 

completely exhausted. In the high concentration of x , organic carbons are almost completely 

converted into CO2 and CH4, and then vaporised.  

<FIGURE 1> 

In thermodynamic point of view, Oh and Martin [15, 16] reported that individual glucose 

fermentation is spontaneous to forward direction ( G  < 0, H  < 0), but individual ethanol 

fermentation and syntrophic acetogenesis are nonspontaneous ( G  > 0, H  > 0) requiring 

thermal energy to forward direction. Independent acetoclastic methanogenesis is also entirely 

endothermic due to the vaporisation of 
4CH  and 

2CO . The whole glucose-ethanol mixed sludge 

digestion is able to proceed when the nonspontaneous ethanol fermentation is metabolically 

coupled with the glucose fermentation by NAD+/NADH [16]. Figure 1b shows a plot of enthalpy 

changes H  of whole process versus CO2 mole fraction, x . In low range of x (<0.0005) H  

has constantly negative small amount of value, which indicates exothermic process until CO2 is 

fully saturated in aqueous phase. The negative value also indicates us that the ‘glucose-ethanol 

fermentation’ is able to produce great heat energy more than the following methanogenic process. 

The result is corresponding to the work of Oh and Martin [16], which reported that  fermentative 

bacteria play a key role in anaerobic sludge digestion. In particular high range of x , as the x  is 

increased, overall H  becomes zero at x  (≈0.005) and then it is continuously increased to 

relatively higher endothermic. The results tell us that the CO2 solubility is increased in one order 

of magnitude from aqueous solubility ( x ≈0.0005) to mixture solubility ( x ≈0.005) as CO2 is 

dissociated in anaerobic digestion process. This is attributed to the equation of state (EoS) 

relationship between pH value and partial pressure of carbon dioxide. In thermodynamic basis, it 
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implies that the amount of CO2 captured cannot be greater than 0.1 mole l–1 (i.e. 2.24 l of CO2 

gas) of batch digestion liquor at 1atm and 298 K. Practically Alimahmoodi and Mulligan [13] 

achieved 69–86% of aqueous CO2 uptake in an upflow anaerobic sludge blanket (UASB) reactor 

of food wastes, the BCCU can be theoretically achieved in range of 3000–3500 mg l–1 in which 

strongly limited by the solubility. This is a significant result in comparison with CO2 aqueous 

solubility; 1540 mg l–1. The process is anticipated to produce a various salts of carbonates. It is 

directly related to the pH inhibition and the limitation of ammonium oxidation which will be 

explained in next sections. 

In entropy analysis, S  has the same tendency as the change in H  at equilibrium state 

( G =zero). The BCCU in digestion process exhibits constantly negative small value of S  in 

low range of x  (<0.005). This result tells us that a dissociation of inorganic carbon (CO2) may 

be a major driving force for the reduction of molecule disorder, but thermodynamically 

nonspontaneous. In high range of x  (>0.005), as x  is increased, the entropy change is 

continuously increased to positive value in the range of higher concentrations from the saturated 

CO2 concentration. In process control point of view, the thermodynamic study tells us that a high 

concentration of CO2 feedstock is initially dissociated as long as consuming thermal energy and 

then the BCCU is increased as much as the reduction of vapour phase, which would be based on 

the zero-order kinetics. In a long term batch operation, the overall process becomes 

thermodynamically unfavourable and instantly stops once the CO2 is unsaturated in the liquor, 

approximately x ≈0.005 (0.1 mole l–1).  

3.2 Biosynthesis of volatile fatty acids  

Residual glucose has numerically very small values. The intermediates, volatile fatty acids 

(butyric, propionic and acetic acids) and primary alcohols (ethanol, propanol, glycerol and 

butanol), are produced from the BCCU. The intermediates also have very small values in 

magnitude throughout the whole range of initial mole fraction ( x ) of carbon dioxide investigated. 

This means that in the presence of acetoclastic methanogens an accumulation of acetic acid is 

not favourable over a wide range of carbonate concentrations x . However dual-carbon 

(equilibrium concentration of acetate + ethanol) is consistently shown in the highest organic 

concentration in the digested liquor. Figure 2a shows that as x  is increased, a yield of dual-

carbon (C2) decreases from various values of glucose feedstocks and become a constant value at 
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x =0.005. In high range of x (>0.005) as x  is increased, the C2 yield continuously decreases. 

This result shows us that, regardless of acetoclastic methanogenesis, acetoclastic oxidation by 

acetolcastic bacteria is against Le Chatelier's principle, which is attributed to the methanogenic 

activity of hydrogenophilic methanogens promoting an acetoclastic oxidation by acetoclastic 

bacteria. The model result is in good agreement with Kim’s observations [29, 30]. Their first 

observation was that the utilisation of acetate increased as the pCO2 (partial pressure) was 

slightly increased (0.5-0.6 atm) [30]. They also showed a reduction in methane production rate 

with an increase of pCO2 (>0.7 atm). The results of this modelling work support a 

thermodynamic explanation of Kim and Noike’s, and Kim and Lee’s observations. Their 

observed inhibition of methane formation can be correlated to a change in the position of 

chemical equilibrium, which results from the depletion of the proton arising from the solubility 

of CO2 in the liquor. However in this model of glucose digestion, the pH value is almost constant 

in low range of x  as shown in figure 3c and the C2 yield is almost a plat in the same ranged area 

of low range of x (<0.005). This tells us that regardless of favourable fermentation process, 

syntrophic acetogenic process decomposing ferment products compensate acetate and proton 

from the overall depletion in overall process. This can be also attributable to the association of 

ammonium ion with carbonate resulting in product-inhibition of acetoclastic oxidation and it will 

be clearly explained in ammonium oxidation section. In the same ranged area of low range of 

x (<0.005), figure 2a also shows that a vertical deviation from 0.1 mmole glucose feedstock at 

constant x , represents a difference of molecular composite from the initial glucose feedstock. 

The deviation approximates one orders of magnitude corresponding to around 0.5 mg l–1 as 

acetate. In the high range of x (>0.005) the vertical deviation is vanished at x = 0.005. It show us 

that a glucose utilisation to acetate in low range of x , is against Le Chatelier's principle. It was 

also explained in previous section. This interaction of microbial consortia will be clearly 

explained with proton concentration (equilibrium pH) in next section.  

<FIGURE 2> 

Here the authors are interested in a yield of mono-carbon by comparing with a yield of dual 

carbons. Figure 2b shows that a yield of mono-carbon (CH4 + CO2) increases from various 

values of glucose feedstocks to one as x  is increased. The yield (=1) represents that total 

numbers of carbons in feedstock completely is degraded into mono-carbons, whilst, in low range 

of x  (<0.005), a lower yield (<1) represents that long chain carbons can be produced in aqueous 
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phase. The deviation from one is vertically maximised up to 3×10-7 [mole mole–1] corresponding 

to around 3 mg kg –1 of molecular carbon, which is almost symmetrically consistent with the C2 

yield of molecular carbons. This is also consistent with the negative entropy changes shown in 

figure 1b. In a long term operation of the BCCU, the thermodynamic basis shows us that a 

BCCU converting carbonates to acetate is strongly favourable in low range of x , while the 

product seems to be degraded through acetoclastic methanogenesis and then the overall 

concentration is consistently very low.  

3.3 pH, solubility and partial pressure 

Overall performance of BCCU can be estimated by a quantitative analysis of biogas i.e. CH4 

partial pressures. Figure 3a shows a plot of partial pressures of 
4CH  and 

2CO  (i.e. pCH4 and 

pCO2) in the gas phase. As x  is increased, pCH4 is continuously decreased from various 

equilibrium values of glucose feedstocks, meanwhile pCO2 is symmetrically increased in the 

whole range of x . In low range of x (<0.001) the pCH4 always higher than pCO2 due to the very 

high relative solubility of 
2CO . Figure 3b also shows a mole distribution of 

2CO  between the 

phases. As x  is increased, the mole distribution tends to the gas phase, due to the pH 

dependency of 
2CO  solubility. These results are consistent with the overall phase distribution 

(biogas production) shown in figure 1a. Figure 3b also shows that the 
2CO  distribution has 

constant values in the low range of x  (<0.0005) and then as x  is increased it is linearly 

increased from x (>0.005) through the mid-range of x  (0.0005< x <0.005). This is mainly 

attributable to the ‘unbalanced proton concentration (i.e. equilibrium pH value)’ between 

microbial consortiums. 

<FIGURE 3> 

Figure 3c shows a plot of equilibrium pH values against CO2 mole fractions ( x ) of feedstock in 

BCCU. As x  is increased, the equilibrium pH value has almost constant values in low range of 

x (>0.0005) and then it has a trend decreasing from various constant equilibrium pH values of 

glucose feedstocks to the constant pH value (≈pH 5.2) until the aqueous phase is vanished. In 

overall process, it tells us that, as x  is increased, nonspontaneous acetoclastic oxidation process 

(∆G>0 and ∆H>0) decomposing acetate are loosely coupled with spontaneous hydrogenophilic 

methanogenesis (∆G<0 and ∆H<0) requiring protons and the process are slowly linked to 
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spontaneous fermentative process requiring protons then the pH value is slowly decreased. Once 

ammonium oxidising process is also coupled to the fermentative process, the pH value is 

dramatically decreased from x  > 0.005 in high range of x . The result is consistent with methane 

yield shown in figure 3d. Figure 3c also shows that a vertical difference of the equilibrium pH 

values from 0.1 mmole of glucose feedstocks represents the great production of protons at 

constant x , while in high range of x (>0.005), the equilibrium pH value has a constant value 

with the equilibrium pH value of 0.1 mmole of glucose digestion. This tells us that regardless of 

methanogenic processes, the fermentative process requiring protons coupled with the 

nonspontaneous syntrophic acetogenic process (∆G>0 and ∆H>0), is polygamous relationship to 

acetoclastic oxidation process (∆G>0 and ∆H>0) having a strong relationship with spontaneous 

hydrogenophilic methanogenesis (∆G<0 and ∆H<0)  in low range of x . This is supported by C2 

yield shown in figure 2a. Even though ammonium oxidising process is also coupled to the 

fermentative process, the pH also becomes constant value in the low range of x  < 0.005.  

Here the authors are very interested in the yields of methane to integrate between the microbial 

activities. Figure 3d shows a proportional plot of 
4CH  yield over 

2CO  yield versus 
2CO mole 

fraction of feedstock. As x  is increased, the proportion (
4CH :

2CO ) decreases from various 

relative high values corresponding to the molecular carbon oxidation in the redox state, to 1 at 

x =0.0005 and then it is continuously decreased. The proportion (=1) represents that acetoclastic 

methanogens equally produce methane and carbonate (1:1). In the same ranged area of low range 

of x  (<0.0005), the greater proportions (>1) represent that a metabolic pathway is consistent 

with that of microbial consortium at the proportion (=1), but hydrogenophilic methanogens 

utilising carbon dioxide, protons and electrons, contribute to increase the great proportion 

(
4CH :

2CO ). In the high range of x  (>0.0005), the relative low proportions (
4CH :

2CO ) are 

attributed to the over saturated CO2 in the solution. It tells us that the oversaturation readily 

inhibit acetoclastic oxidation and then release the hydrogenophilic methanogens from the 

microbial consortium, while the anaerobic ammonium oxidising bacteria are strongly linked to 

fermentative bacterial consortium due to the highly decrease the pH value shown in figure 3c.  

3.4 Anaerobic ammonium oxidation 

Partial pressure of ammonia (pNH3) has very low value as low as empirically unobservable [31], 

which is due to that ammonium ion (NH4
+) is thermodynamically favourable in the neutral range 
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of pH value (5<pH<7) shown in figure 3c. Figure 4a shows a partial pressure of nitrogen (pN2) 

which is also very low in overall process. It tells us that both pCO2 and pCH4 are strongly 

favourable rather than pN2 and or pNH3 in the neutral range of pH (5< pH <7) as shown in figure 

3a. As x  is increased, the pN2 decreases from various value of feedstock to constant value 

(3×10–3 [atm]) at x  =0.005 and then continuously decreases up to almost zero. It tells us that a 

mechanism of ammonium oxidation in the overall BCCU process seems to be shifted between 

low and high range of x , at x  =0.005. 

<FIGURE 4> 

Figure 4b shows an anaerobic ammonium oxidation of BCCU. As x  is increased in low range of 

x (<0.001), ammonium oxidation slightly decreased, which is due to the pH inhibition. This 

result is also consistent with the negative change of entropy (ΔS) shown in figure 1b. Figure 1b 

also showed that as x  is continuously increased, the entropy (ΔS) becomes zero at x =0.005, the 

metabolism is shifted to positive entropy (ΔS). This result is consistent with the work of Oh and 

Martin [31]. In the same ranged area of high range x (>0.005), figure 4b shows that, as x  is 

increased, anaerobic ammonium oxidation is dramatically increased, meanwhile the equilibrium 

of pH value is decreased in the same ranged area shown in figure 3c. This result is partially 

consistent with the work of Oh and Martin [26] that hydrogenophilic methanogenesis has readily 

consorted with anaerobic ammonium oxidising bacterial consortium to produce methane. This 

appears in the whole process but it is clearly observed in case of low range of x . Thus, it implies 

us that, nonspontaneous ammonium oxidation is metabolically coupled with spontaneous 

fermentative reduction according as the carbonate inhibition of hydrogenophilic methanogenesis 

in the high range of x . Alternatively this observation can be explained by accumulation of 

ammonium salt (NH4HCO3) with bicarbonate ion. The accumulation of ammonium bicarbonate 

has not only an negative influence on cell wall [32] but also makes entirely inhomogeneous 

process in low range of x . Figure 4c shows that a concentration of ammonium bicarbonate of 

BCCU in anaerobic digestion process is slightly increased as x  is increase, but it dramatically 

decreases unless the pCH4 is greater than pCO2 in high x  (>0.001). It tells us that the production 

of ammonium bicarbonate can be considerably related to the pCO2 rather than pNH3. However, 

figure 4d shows that the accumulation of ammonium salt (NH4HCO3) is limited by a decrease of 

water activity. It tells us that a production of ammonium bicarbonate adjusts amount of 

ammonium oxidation but water activity increase the accumulation. In operating point of view, 
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ammonium ion resulting from degradation of proteins or meat processing can be easily converted 

to nitrogen once water activity is lower than 1, while it can be limited in approximately mix. 

10% of ammonium oxidation, it is due to the presence of NH4HCO3 in water activity, 1. 

In microbiological point of view, fermentative bacteria loosely coexist with syntrophic 

acetogenic bacteria in where the acetoclastic methanogens are strongly linked. In particular low 

range of x (<0.005), the spontaneous hydrogenophilic methanogens strongly collaborate with 

acetoclastic bacteria for the production of methane, and then the nonspontaneous acetoclastic 

bacteria is driven to the forward direction producing proton and electron. The hydrogenophilic 

methanogens also collaborate with anaerobic ammonium oxidising bacteria for the same purpose 

of methane production. This result is supported by the previous work of Oh and Martin [26] that 

bacterial consortium of anaerobic ammonia oxidising bacteria and hydrogenophilic 

methanogens is coexisting in absence of fermentative bacteria. However the carbonates 

concentration is over saturated in solution phase, such as high range of x (>0.005), an product-

inhibition of acetoclastic bacteria drive that the anaerobic ammonium oxidising bacteria change 

their partner from hydrogenophilic methanogens to fermentative bacteria and the methanogenic 

activity of hydrogenophilic methanogens is vanished. Thus the fermentative bacteria have a 

polygamous relationship between syntrophic acetogenic bacteria, acetoclastic bacteria and 

anaerobic ammonium oxidising bacteria. The observation appears to be conventional glycolysis 

pathway in high range of x (>0.005), which is supported by the data in figure 2a, 2b, 3c and 3d. 

Figure 5a and 5b shows the two cases of simple diagrams based on relative enthalpy versus 

reaction coordinates. 

<FIGURE 5> 

3.5 Activity of microbial consortium through electrochemical potential (NAD+/NADH) 

Figure 6a shows three plots of NAD+/NADH proportion versus mole fraction of carbonates of 

feed stocks. The proportional values based on a ratio of molecular composite fed, can allow 

calculating equilibrium of electrochemical potentials ψ and then this can explain us an 

interrelationship between thermodynamic driving forces of individual processes. As x  is 

increased, the proportional values are slowly increased and then they become a constant value 

(8×10–4) at x = 0.005. In following high range of x , they linearly increase up to 1×10–2. These 

results tell us that the NADH fed is strongly oxidised and the products (NAD+ + H+ + e–) can be 
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transferred into ‘reductive bacteria’ requiring the protons and electrons but the activity of the 

reductive bacteria is relatively decreased as x  is increased. In this system, fermentative bacteria 

and hydrogenophilic methanogens are only reductive bacteria, where the fermentative process by 

fermentative bacteria, is observed as very strong reductive bacteria in whole BCCU process. 

Figure 6b shows overall equilibrium of electrochemical potentials resulting from the simple 

faraday calculation of the result in figure 6a. Various electrochemical potentials according to 

glucose mixture feedstocks, have very low values (–240 < ψ < –210 mV as SHE) and have 

almost constant values although x  is increased. At x = 0.005, the potentials ψ become a constant 

value (–170mV as SHE) and linearly increase up to –120mV as SHE as x  is increased. This tells 

us that biological oxidation and reduction is balanced in the low range of x , and then biological 

oxidation is increased from x = 0.0005 in high range of x . This is directly related to the result of 

methane yield shown in figure 3d. 

<FIGURE 6> 

Here the authors investigated major driving force of BCCU between proton transport (i.e. pH) 

and electron transport (V). Figure 6c shows the electrochemical potential (V) versus equilibrium 

pH value, which is compared with equilibrium of ammonia oxidation (red dotted line) and 

equilibrium of hydrogenophilic methanogenesis (blue dotted line). As x  is increased, pH value 

is decreased and the electrochemical potential (V) is almost linearly increased. This means that 

the proton transport between functional organisms has almost linear relationship with electron 

transport. Figure 6c also shows that overall equilibria line of the process is slowly deviated from 

the equilibrium lines as the pH is decreased, which means that thermodynamic driving force does 

not increase only for ammonia oxidation but also for acetate oxidisation. However association of 

ammonium ion with carbonate which may impact the rate of Stickland reaction in proteins [33], 

is strongly favourable in whole range of pH, but it is limited once water activity is reduced. Once 

water activity is significantly decreased in low pH (<5.8), the association of ammonium ion is 

shifted into favourable dissociation of ammonium bicarbonate and the microbial activity of 

anaerobic ammonium oxidising bacteria revives significantly in the same low pH as shown in 

figure 6c. It tells us that the BCCU in a solid fermentation having very low water content may 

avoid the ammonia toxicity or inhibition of cell culture by strong anaerobic ammonium oxidation. 

Empirically the solidification observed in BCCU [10] was explained by the impropriate mixing 

and or nonhomogeneous solid digestion. 
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4. CONCLUSION 

From the thermodynamic results of biological carbon capture and utilisation,  

i) The authors observed that a thermodynamic efficiency of biological carbon capture and 

utilisation (BCCU) had 32% of overall reduction in yield of carbon dioxide with compensation 

of 30% in yield of methane, while the process was overall endothermic. Total energy (≈0.33 MJ 

l–1) was utilised for the carbonate solubility (0.1 mole l–1) in batched BCCU.  

ii) In unsaturation of carbon dioxide (<0.1 mole l–1), the model predicted anaerobic oxidation of 

ammonium ion, which was significantly reduced to 10% of ammonium oxidation in a long term 

operation. This was attributed to association of ammonium (bi)carbonates, which enhanced 

acetoclastic process from acetoclastic bacteria in hydrogenophilic methanolgenesis and then 

increased methane formation. 

iii) In over-saturation of carbon dioxide (>0.1 mole l–1), acetoclastic process was inhibited with 

hydrogenophilic methanogensesis and then the whole microbial reaction became fermentative in 

bio-floc. Therefore, a sequenced batch process or two-staged continuous process is 

thermodynamically suggested in order to improve methane conversion in BCCU.  
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