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18 Abstract

19 Aim: We present a novel strategy for species distribution models (SDMs) aimed at predicting the 

20 potential distributions of range-expanding invasive non-native species (INNS). The strategy combines 

21 two established perspectives on defining the background region for sampling ‘pseudo-absences’ that 

22 have hitherto only been applied separately. These are the accessible area, which accounts for dispersal 

23 constraints, and the area outside the environmental range of the species and therefore assumed to be 

24 unsuitable for the species. We tested an approach to combine these by fitting SDMs using background 

25 samples (pseudo-absences) from both types of background. 

26 Location: Global

27 Taxon: Invasive non-native plants: Humulus scandens, Lygodium japonicum, Lespedeza cuneata, 

28 Triadica sebifera, Cinnamomum camphora

29 Methods: Presence-background (or presence-only) SDMs were developed for the potential global 

30 distributions of five plant species native to Asia, invasive elsewhere and prioritised for risk assessment 

31 as emerging INNS in Europe. We compared models where the pseudo-absences were selected from the 

32 accessible background, the unsuitable background (defined using biological knowledge of the species’ 

33 key limiting factors) or from both types of background.

34 Results: Combining the unsuitable and accessible backgrounds expanded the range of environments 

35 available for model fitting and caused biological knowledge about ecological unsuitability to influence 

36 the fitted species-environment relationships. This improved the realism and accuracy of distribution 

37 projections globally and, generally, within the species’ ranges. 

38 Main conclusions: Correlative SDMs remain valuable for INNS risk mapping and management, but 

39 are often criticised for a lack of biological underpinning. Our approach partly addresses this concern by 

40 using prior knowledge of species’ requirements or tolerances to define the unsuitable background for 

41 modelling, while also accommodating dispersal constraints through considerations of accessibility. It 

42 can be implemented with current SDM software and results in more accurate and realistic distribution 

43 projections. As such, wider adoption has potential to improve SDMs that support INNS risk assessment. 
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44 Keywords: Biomod; climate envelope; ecological niche model; invasive alien species; Maxent; pest 

45 risk assessment; presence-absence; presence-only; presence-background; pseudo-absence. 

46

47 Introduction

48 Human transport of species beyond their native ranges, leading to biological invasions, is an important 

49 driver of ecological change, impacting biodiversity and ecosystem function (Vilà et al., 2011). Decision 

50 making about the control and management of invasive non-native species (INNS) is often underpinned 

51 by scientific risk assessments, and species distribution models (SDM) are increasingly seen as a 

52 valuable tool for this (Jeschke & Strayer, 2008; Václavík & Meentemeyer, 2009; Jiménez-Valverde et 

53 al., 2011). The purpose of SDMs applied in this context is to generate risk maps that predict the potential 

54 distribution of an INNS as a function of climate and other environmental gradients (Jiménez-Valverde 

55 et al., 2011). Specifically, these represent the relative likelihood of establishment should the species be 

56 introduced or disperse to each location in the modelled landscape (Elith, 2013). Risk maps can be used 

57 for prioritisation of surveillance and management (Peterson & Robins, 2003; Gormley et al., 2011), to 

58 estimate the potential spread of emerging INNS in current and future climates (Jiménez-Valverde et al., 

59 2011; Branquart et al., 2016) and to understand the biological and anthropogenic mechanisms governing 

60 invasions (Broennimann et al., 2007; Chapman et al., 2014, 2017; Storkey et al., 2014). Clearly, there 

61 is a need for robust and accessible SDM tools and methods to ensure the most accurate possible 

62 estimation of the potential distributions of INNS.

63 Species prioritised for risk assessment in one area have typically already established invasive non-native 

64 distributions in other parts of the world (Roy et al., 2014; Branquart et al., 2016; Tanner et al., 2017) 

65 necessitating global-scale models and the pooling of distribution data from native and already-invaded 

66 ranges (Broennimann & Guisan, 2008; Mainali et al., 2015). Unfortunately species’ distributions are 

67 rarely documented comprehensively at the spatial resolutions of SDMs (Boakes et al., 2010). Therefore, 

68 global-scale models are typically developed using statistical algorithms that contrast the environmental 

69 conditions where the species is known to occur with those at ‘pseudo-absence’ locations sampled from 
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70 a background domain specified by the modeller. Such SDMs are often referred to as presence-only 

71 models (Pearce & Boyce, 2006) but we use the term presence-background to differentiate them from 

72 ‘one-case’ or true presence-only models that use only the species presences and not the background 

73 (Guillera-Arroita et al., 2015).  We also differentiate the ‘pseudo-absence’-based presence-background 

74 models that are the focus of this study from point process models for species distributions (Warton & 

75 Shepherd, 2010). Point process models generalise presence-background models on a more formal 

76 statistical basis. However, to our knowledge they are not suitable for grid cell-resolution distribution 

77 data, have not been applied for global-scale modelling of INNS and are far less commonly used than 

78 well-known presence-background models such as Maxent (Phillips et al., 2008) or the regression and 

79 machine learning approaches implemented through software platforms such as Biomod (Thuiller et al., 

80 2009, 2016).

81 One important issue when fitting presence-background models to INNS distribution data is that their 

82 global distributions are by definition in a non-equilibrium state and are structured by both the species’ 

83 environmental tolerances and natural and anthropogenic dispersal constraints (Václavík & 

84 Meentemeyer, 2009; Elith et al., 2010; Gallien et al., 2010; Chapman et al., 2016). As a consequence, 

85 there are suitable but unoccupied regions in which climatic and environmental conditions would permit 

86 establishment by the species, but where invasion has not been realised through dispersal. If such regions 

87 are included in the background domain, then the model will conflate lack of presence of the species due 

88 to dispersal constraints with a lack of presence due to environmental unsuitability, potentially biasing 

89 the species-environment relationships and the prediction of potential distributions. Current approaches 

90 to reduce this bias emphasise restricting the background domain to an ‘accessible area’ within dispersal 

91 range of the occurrences (Elith et al., 2010; Barve et al., 2011; Elith, 2013; Mainali et al., 2015). 

92 Although likely to lessen dispersal biases in presence-background models, we suggest this may be 

93 overly restrictive for modelling aimed at risk mapping. If background samples are only drawn in close 

94 proximity to the occurrences then the range of environmental conditions used to train the model may 

95 be insufficient to fully characterise species-environment relationships, impeding the transfer of 

96 predictions into other regions (Thuiller et al., 2004; Fitzpatrick & Hargrove, 2009).
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97 Here, we propose a biologically-informed approach to improve presence-background models for highly 

98 dispersal-limited species, such as those undergoing invasive range expansion. The goal is to exclude 

99 suitable but unoccupied regions while also maximising the range of environmental conditions used to 

100 train the model as well as prior biological knowledge about niche responses to environmental factors. 

101 The approach is based on combining two familiar types of background domain – an accessible 

102 background in proximity to species’ occurrences (Barve et al., 2011; Mainali et al., 2015) and an 

103 unsuitable background outside the environmental envelope of the species (Thuiller et al., 2004; 

104 Chefaoui & Lobo, 2007; Le Maitre et al., 2008). Those previous studies have tested both types of 

105 background in isolation, but the novel contributions of this study are to combine both types of 

106 background, and to emphasise the definition of the unsuitable background using biological knowledge 

107 of key limiting factors for the species, e.g. places that do not reach minimum growing temperatures or 

108 exceed maximum drought tolerance. By modelling the global distributions of five invasive non-native 

109 plants we demonstrate that this constrains the presence-background models to fit more biologically 

110 plausible response functions and increases the accuracy of distribution projections.

111 Methods

112 Overview

113 Our aim was to compare global-scale presence-background SDMs for INNS developed using 

114 background domains defined as only the accessible region, only the unsuitable region, or through our 

115 proposed new approach of combining accessible and unsuitable background regions (Figure 1-2). 

116 Models were developed to predict the potential distributions of five plant species that are native to 

117 temperate and tropical east Asia, highly invasive in other parts of the world and have been prioritised 

118 for risk assessment as potentially-emerging invasive non-native plant species in Europe (Branquart et 

119 al., 2016; Tanner et al., 2017). The species represent a range of life histories including an annual 

120 climbing vine (Humulus scandens), a perennial climbing fern (Lygodium japonicum), a perennial semi-

121 woody forb (Lespedeza cuneata), a deciduous tree (Triadica sebifera) and an evergreen tree 

122 (Cinnamomum camphora).
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123 Data for modelling

124 Species occurrences were obtained from a range of sources including Global Biodiversity Information 

125 Facility (GBIF), USGS Biodiversity Information Serving Our Nation (BISON), Integrated Digitized 

126 Biocollections (iDigBio), iNaturalist, Early Detection and Distribution Mapping System (EDDMapS) 

127 and from the members of the European and Mediterranean Plant Protection Organisation (EPPO) expert 

128 working groups conducting Pest Risk Analyses for the region. With these experts, we scrutinised 

129 occurrence records and removed any that appeared dubious, casual or cultivated (e.g. botanic gardens) 

130 or where the georeferencing was too imprecise (e.g. country or island centroids). The remaining records 

131 were gridded at a 0.25 x 0.25 degree resolution for global modelling and randomly partitioned into 

132 training and testing datasets comprising 80% and 20% of the grid cells, respectively. As a proxy for 

133 plant recording effort, the total number of vascular plant records (phylum Tracheophyta) per grid cell 

134 was also obtained from GBIF (see Appendix S1 in Supporting Information).

135 Three predictor variables, derived from WorldClim v1.4 (Hijmans et al., 2005), were selected to 

136 represent basic constraints on plant distributions. These were mean temperature of the warmest quarter 

137 (Bio10, °C) reflecting the growing season thermal regime, mean minimum temperature of the coldest 

138 month (Bio6, °C) reflecting exposure to winter cold and the climatic moisture index (CMI, ratio of 

139 annual precipitation, Bio12, to potential evapotranspiration, then ln + 1 transformed) reflecting drought 

140 stress. Potential evapotranspiration was estimated following Zomer et al. (2008).

141 Definition of the background domains

142 Background samples (pseudo-absences) were drawn from two distinct regions – an accessible region 

143 and a region considered to be environmentally unsuitable for the species based on knowledge of its 

144 tolerances or requirements (Figures 1 and 2). Though both types of background represent established 

145 concepts within distribution modelling, to our knowledge, this is the first study to test whether 

146 modelling is improved by combining both types of background domain.

147 The accessible background attempts to cover only the region where the species has had opportunity to 

148 disperse and sample the environment (Thuiller et al., 2004; VanDerWal et al., 2009; Barve et al., 2011; 
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149 Mainali et al., 2015). It has generally been defined as a zone around the occurrence data, which could 

150 be selected statistically or informed by dispersal abilities of the species (Elith, 2013; Senay et al., 2013). 

151 For invasive non-native species, the size of the accessible region will generally be more limited in the 

152 invaded range than the native one, assuming stronger dispersal constraints associated with shorter 

153 residence time (Mainali et al., 2015). In our application, we defined the native accessible areas using a 

154 400 km geodesic buffer around the minimum convex polygon bounding all native occurrences (Figure 

155 1a). In the non-native region, we used a conservative 4-cell neighbourhood around each occurrence grid 

156 cell, equivalent to a ~30 km buffer (Figure 1b). Though somewhat arbitrary, these buffer sizes are 

157 consistent with ones performing well in other presence-background SDM studies (VanDerWal et al., 

158 2009; Mainali et al., 2015) and a sensitivity analysis showed model outputs were not strongly influenced 

159 by the choice of native buffer size (see Appendix S5).

160 The unsuitable background concept originates from existing ideas about sampling pseudo-absences 

161 only outside of the environmental envelope in which species’ presences are found (Thuiller et al., 2004; 

162 Chefaoui & Lobo, 2007; Le Maitre et al., 2008; Senay et al., 2013). The rationale is to produce training 

163 datasets that maximise the distinctiveness of suitable environmental conditions from the background 

164 and therefore boost the model discrimination. However, it may also reduce model accuracy within the 

165 environmental and geographical range of the species (Acevedo et al., 2012). These previous studies 

166 simply screened out the ranges of all environmental variables at presence locations, or used preliminary 

167 modelling to determine unsuitable regions. However, in this study we instead used prior biological 

168 knowledge and expert opinion about the species’ limiting factors to define the unsuitable conditions 

169 (Figures 1 and 2) in the expectation that this biological information would be captured in the fitted 

170 species-environment relationships. Appropriate rules to define unsuitability were determined in 

171 consultation with species experts participating in their EPPO expert working groups. Their expert 

172 judgement informed us on the type of limit deemed to be most important for the species in different 

173 parts of its range (e.g. summer cold, drought), followed by identification of key thresholds from the 

174 literature and comparison with extreme values at the occurrence locations of the species (see Appendix 

175 S2).
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176 Sampling from the background domains

177 We obtained background samples from both the accessible region and from the unsuitable region 

178 outside of the accessible region for each species (Figures 1-2). The effect was therefore to exclude 

179 potentially suitable but inaccessible regions from the combined background sample. For each of the 

180 five species in this study, ten replicate background samples were generated in order to reduce sampling 

181 variation (Barbet-Massin et al., 2012). Presence-background models were developed for each 

182 background sample and then their predictions were averaged.

183 The accessible region was sampled using target group sampling to reduce bias in the observed 

184 distribution due to spatial sampling effort variation (Phillips, 2009; Ranc et al., 2017). This involves 

185 weighting the background sampling by the recording density of a broader taxonomic group, which is 

186 assumed to represent recording bias for the focal species. In our modelling we used the GBIF record 

187 density of vascular plants (Tracheophyta) as a target group to weight background sampling. For 

188 evaluating the models by cross-validation, a randomly selected 20% of the accessible area for each 

189 species was added to its testing dataset and reserved from background sampling for model fitting. From 

190 the remaining accessible area, we drew the same number of background samples as there were 

191 occurrences (Barbet-Massin et al., 2012), weighted by the vascular plant record density as a target 

192 group. This ensured that the accessible area background sample used for model fitting contained the 

193 same degree of recording bias as the occurrence data, assuming the proxy for recording effort was 

194 appropriate.

195 The unsuitable region was sampled with simple random sampling because we considered that recording 

196 bias is not a relevant consideration in environments in which the species cannot occur. In other words, 

197 we were confident of absence in the unsuitable regions. Although we could have nevertheless applied 

198 target group sampling, random sampling has the potential advantage of accumulating background 

199 samples from unsuitable environments where there is little survey effort (e.g. very cold conditions), 

200 resulting in the widest range of environments from which to model species-environment relationships. 

201 For model fitting, 3000 random samples were taken from the unsuitable region. If the unsuitable region 

202 overlapped with the accessible region, accessible parts of the unsuitable region were excluded. A 
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203 sensitivity analysis on the number of unsuitable background samples showed that the number of 

204 sampling points was not critical to model performance (see Appendix S5).

205 Ensemble presence-background modelling

206 For each species, presence-background models were developed using background samples from only 

207 the accessible area, only the unsuitable area or using the combined background samples from both the 

208 accessible and unsuitable areas. In all cases, model performance was evaluated by cross validation, 

209 using model predictions for 20% of the occurrences, accessible area and unsuitable area that were 

210 reserved from model fitting (the testing dataset). 

211 Ensemble models were fitted using BIOMOD (biomod2 R package v3.3-7) (Thuiller et al., 2009, 2016) 

212 using seven statistical algorithms: generalised linear models (GLM) with linear and quadratic terms for 

213 each predictor, generalised additive models (GAM) with a maximum of four degrees of freedom per 

214 variable, multivariate adaptive regression splines (MARS), generalised boosting models (GBM), 

215 random forests (RF), artificial neural networks (ANN) and Maxent (Phillips et al., 2008). These were 

216 combined into an ensemble model by scaling their predictions with a binomial GLM and then averaging 

217 them weighted by predictive AUC scores within the training data (80:20% random split). AUC is 

218 commonly used for ensemble model weighting and is the BIOMOD default option (Thuiller et al., 2009, 

219 2016). Although AUC does not provide an objective measure of model performance for presence-only 

220 models (Lobo, 2008) it is informative about the relative discrimination abilities of different algorithms 

221 evaluated on the same data. It also provides a conservative model weighting scheme, since a perfect 

222 model (AUC=1) will have only twice the weight of a random model (AUC=0.5). Therefore, we ensured 

223 poorly performing algorithms did not disproportionately affect the weighted average by rejecting them 

224 from the ensemble. Rejection was based on modified z-scores for their predictive AUC (Crosby, 1993) 

225 with algorithms with z < -1 being rejected.

226 The importance of each variable to model fitting was estimated through the BIOMOD default procedure 

227 (Thuiller et al., 2009, 2016). Species-environment relationships were examined by constructing 

228 univariate response curves where predictions of the ensemble model were made while fixing the other 
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229 variables at typical suitable values representing the median in the presence grid cells. Global projections 

230 of the ensemble models were restricted to where the environmental predictors lay inside the ranges used 

231 in model training, avoiding model extrapolation (Fitzpatrick & Hargrove, 2009).

232 Models based only on the accessible or the unsuitable background were compared with those based on 

233 the combined accessible and unsuitable background in a standardised cross validation. To do this we 

234 used calculated the AUC for model projections on the 20% of occurrences versus the 20% of the 

235 accessible background that was reserved from model fitting and versus 20% of the accessible and 

236 unsuitable background. This allows comparison of projection accuracy within the range of the species 

237 and globally. As mentioned above, AUC in this context is informative about the relative discrimination 

238 power of different model specifications on the same data.

239 Results

240 Adequate numbers of grid cells with presences were obtained for modelling the five study species (695 

241 for Cinnamomum camphora, 754 for Humulus scandens, 1723 for Lespedeza cuneata, 975 for 

242 Lygodium japonicum and 855 for Triadica sebifera) (see Appendix S2). In most cases, cross-validated 

243 AUC indicated that models trained using samples from the combined accessible and unsuitable 

244 background were more accurate than those trained using only the individual accessible or unsuitable 

245 backgrounds (Table 1 and see Appendix S3). This was most clearly seen for global projections of the 

246 model, where the combined models had the highest AUC values for all five species (Table 1). The 

247 probability of the combined background model having the highest AUC of the three model types for all 

248 five species by chance is P = 0.004. For projections within the accessible range of the species, models 

249 sampling the combined accessible and unsuitable background were equally or marginally more accurate 

250 than models using only the accessible background in four out of five species, and always performed 

251 better than models using only the unsuitable background (Table 1).

252 Models using only the accessible background spanned a narrower range of suitability values and 

253 environmental conditions than the other two background specifications, and therefore their response 

254 curves were only constructed over a narrow range and provided a less clear distinction between high 
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255 and low suitability (Figure 3). Models using only the unsuitable background generated response curves 

256 that essentially discriminated unsuitable from suitable conditions completely, but did not capture 

257 suitability gradients within the range of the species (Figure 3). By contrast, the models based on the 

258 combined accessible and unsuitable background yielded partial response curves intermediate in form to 

259 the two individual background specifications (Figure 3), using information from the accessible 

260 background region to characterise gradients in suitability within the environmentally-suitable range of 

261 the species, and using the unsuitable background to identify conditions in which the species very rarely 

262 occurs. In some cases the models using combined accessible and unsuitable backgrounds yielded 

263 response curves that differed markedly from those of the accessible background models. This was most 

264 clearly seen in the responses of Cinnamomum camphora and Lygodium japonicum to low moisture 

265 (CMI), Lespedeza cuneata to low winter temperature (Bio6) and Cinnamomum camphora to high 

266 summer temperature (Bio10) (Figure 3). 

267 Projections of potential non-native ranges from the models were strongly influenced by the choice of 

268 background specification (Figures 4 and 5, see Appendix S4 for global and native range projections). 

269 As was seen for the response curves, models based only on the accessible background generally made 

270 a gradual delineation between very low and high suitability, while models based on the unsuitable 

271 background made very sharp delineations and predicted larger invadable regions. Projections of models 

272 using the combined accessible and unsuitable backgrounds were intermediate in form, and represented 

273 gradients in suitability within the invaded regions as well as learning from the unsuitable background 

274 to rule out occurrence in those regions. For example, in North America the models using only the 

275 accessible background predicted suitability for Cinnamomum camphora, Triadica sebifera and 

276 Lygodium japonicum invasion in arid parts of south western USA. By contrast, models combining the 

277 accessible and unsuitable backgrounds suggested these regions were unsuitable for invasion (Figure 4). 

278 Similar effects could be seen in Europe, principally in terms of the effects of unsuitability rules about 

279 low winter temperature restricting suitability in central and Eastern Europe and rules about drought 

280 sensitivity restricting occurrence in Iberia (Figure 5). The projections also illustrated that models based 
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281 on only the accessible background were affected by extrapolation issues, resulting in gaps in the 

282 projected risk maps.

283 Discussion

284 Strategies for selecting background samples or pseudo-absences for presence-background species 

285 distribution models have received a great deal of attention (e.g. Thuiller et al., 2004; Chefaoui & Lobo, 

286 2007; VanDerWal et al., 2009; Barve et al., 2011; Barbet-Massin et al., 2012). The novel contribution 

287 of this study is to combine two different perspectives on defining the background region that have 

288 hitherto been considered separately. These perspectives are the accessible area (Barve et al., 2011) and 

289 the area outside the environmental range of the species, and therefore assumed to be unsuitable for the 

290 species (Thuiller et al., 2004). Previous work on modelling invasive non-native species has generally 

291 either emphasised the usefulness of the former for accommodating dispersal constraints (Mainali et al., 

292 2015) or evaluated the latter as a way of boosting the discrimination between suitable and unsuitable 

293 habitat (Le Maitre et al., 2008). To our knowledge, the only previous attempt to jointly consider both 

294 perspectives did so in a more limited way than this study, by excluding parts of the accessible region 

295 that were outside the environmental range of the species (Senay et al., 2013). Here, we tested a new 

296 approach in which separate background samples were obtained from the accessible region, regardless 

297 of environmental values, and from an unsuitable region defined using prior biological knowledge. By 

298 modelling the global distributions of five invasive non-native plant species we conclude that the new 

299 strategy performed better for projection of regional and global potential distributions than when models 

300 were fitted with just the accessible region or just the unsuitable region.

301 This was evidenced by a consistent improvement in cross-validated discrimination power when the 

302 modelling sampled from a background combining accessible and biologically-informed unsuitable 

303 regions. This was most clearly seen in the global projections, where the combined background models 

304 always performed better than models using just the accessible or just the unsuitable background. For 

305 projections within the species' accessible range the combined background models gave consistently 

306 more accurate projections than models based only on the unsuitable background, and generally 
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307 performed as well as or marginally better than models trained only on the accessible background. Our 

308 expectation was that the combined background modelling strategy would not improve discrimination 

309 within the range of a species over models trained on the accessible region. Indeed, previous studies have 

310 found that large geographical background domains increase the power of SDMs to model species’ broad 

311 geographic ranges but decrease their representation of suitability gradients within the range (Thuiller et 

312 al., 2004; VanDerWal et al., 2009). Unlike previous studies, our approach may have resulted in 

313 marginally improved performance for both purposes because we explicitly tried to exclude ‘suitable-

314 but-not-reached’ locations from the larger background region by restricting it to locations considered 

315 environmentally unsuitable. As such, we suggest that biologically-informed specification of a large 

316 modelling domain may reduce the trade-off between prediction of suitability gradients at large and 

317 small spatial scales. Further testing is required to determine whether a similar strategy would also 

318 benefit models for native as well as non-native species distribution models, but in principle our new 

319 strategy should confer similar advantages. 

320 The influence of the accessible and unsuitable backgrounds on species-environment relationships was 

321 clearly seen in the response curves and projections of the different models. The combination of 

322 unsuitable and accessible backgrounds had four clear effects, when compared to the models using only 

323 the accessible background. First, it ‘anchored’ the curves by constraining the models to fit near-zero 

324 suitability where the climate variables exceeded the thresholds of the species, providing a more 

325 pronounced delineation of suitability gradients. Second, the response curves spanned a much wider 

326 range of environmental conditions than were found in the accessible background, which has previously 

327 been shown to be important for accurate spatial and temporal transfer of species distribution models 

328 (Guevara et al., 2017). Sampling unsuitable conditions only from within the accessible part of the 

329 species range would therefore require a greater amount of model extrapolation than our strategy does. 

330 Third, the response curves were less complex or multi-modal than those from models using only the 

331 accessible background (see responses for high CMI), which is more consistent with niche theory 

332 (Austin, 2002). Fourth, the response curves generally reflected prior assumptions about environmental 

333 limitation of the species and as such were more consistent with ecological understanding of the species. 
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334 For instance, combined background models for Cinnamomum camphora, Lygodium japonicum and 

335 Triadica sebifera estimated a strong limitation by low moisture availability (CMI), precluding potential 

336 establishment in arid regions such as south west USA. These responses were not estimated by the model 

337 based only on the accessible background, but are consistent with empirical demonstrations of water 

338 stress reducing growth and survival of these species. For example, shoot growth of C. camphora is 30% 

339 lower at 40% field water capacity than at 80% (Zhao et al., 2006), water restriction suppresses T. 

340 sebifera seedling growth by 30-80% (Barrilleaux & Grace, James, 2000) and its seedlings wilt and die 

341 in arid western USA unless planted in moist micro-habitats such as river banks (Bower et al., 2009). 

342 Similarly, combining the accessible and unsuitable backgrounds led to models that strongly limited 

343 suitability of Lespedeza cuneata by very cold winters, consistent with known frost sensitivity of the 

344 species especially in relation to late spring frosts (Gucker, 2010). The only case where the response 

345 curves did not always follow the rules defining unsuitability was for limitation by extremely high 

346 summer temperature. This may be because of a correlation between high summer and winter 

347 temperatures, the latter being limiting when high summer temperature was not. This suggests our 

348 approach may have sensitivity to collinearity in model predictors that requires further investigation 

349 (Dormann et al., 2012). 

350 Nevertheless, the broader conclusion is that sampling from an unsuitable background, in addition to an 

351 accessible background, forces the statistical models to learn species-environment relationships that 

352 reflect the prior knowledge of the species’ tolerances or niche requirements used to define the unsuitable 

353 domain. As such, our approach offers a simple way of incorporating prior biological knowledge into 

354 correlative species distribution models, and as such can address the common criticism that they lack 

355 strong biological underpinning (Austin, 2002; Dormann et al., 2011; Chapman et al., 2014). While there 

356 are more sophisticated approaches available for doing this using Bayesian models in which prior 

357 estimates of niche parameters can be specified (Talluto et al., 2015), a major advantage of the approach 

358 developed here is that it is implemented by manipulating the input data to standard distribution model 

359 software such as Biomod (Thuiller et al., 2009) or Maxent (Phillips et al., 2008) and all regression and 

360 machine learning methods. As such it is simple to implement with techniques that most modellers are 
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361 already familiar with and can quickly be applied in a standard way across species. This is especially 

362 useful when risk assessments are being performed across large numbers of invasive non-native species 

363 and require consistent judgements about establishment risk (Branquart et al., 2016; Tanner et al., 2017). 

364 Sensitivity analyses suggested that our findings were not overly sensitive to the size of the accessible 

365 region, number of background samples or precise rules for determining unsuitable conditions (see 

366 Appendix S5). We recommend that similar sensitivity analyses are performed when applying our 

367 approach to other species, since previous studies have found these factors can strongly influence 

368 distribution model performance (Barve et al., 2011; Barbet-Massin et al., 2012). However, success of 

369 the modelling approach likely relies on careful selection of the appropriate environmental limits to 

370 define the unsuitable region in the modelling (Le Maitre et al., 2008). A strength of this study is that it 

371 was done in consultation with experts performing risk assessments for invasion of Europe by the 

372 species. These experts were able to provide guidance on the key limiting factors relevant for different 

373 parts of the invaded and native ranges of the species. Some of the species have been well studied in 

374 their other invaded ranges and we were able to draw upon previous experimental studies that had 

375 determined tolerance thresholds for the species (see Appendix S2). Where this information was lacking, 

376 we used upper or lower bounds on the environmental values at the species presences to define thresholds 

377 for modelling. Even where empirical estimates of threshold values were available, we still recommend 

378 checking for consistency with environmental values at the distribution data, since species-environment 

379 relationships are highly scale-dependent (Siefert et al., 2012) and species can occupy broadly unsuitable 

380 regions if suitable micro-habitats are available. Given the reliance on prior studies or expert judgement 

381 about species’ limiting factors or tolerances, our methods are probably most suitable for relatively well 

382 known species and less applicable to species where knowledge of its environmental limits are lacking. 

383 However, regional risk assessments for emerging invasive non-native species generally prioritise 

384 species that behave invasively in other parts of the world (Roy et al., 2014; Branquart et al., 2016; 

385 Tanner et al., 2017) suggesting that our modelling approach might be widely applicable for species of 

386 concern. 
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387 Risk assessment is a critical tool in the management of emerging invasive non-native species and 

388 requires robust prediction of where is vulnerable to ongoing species establishment and spread (Keller 

389 et al., 2007; Jiménez-Valverde et al., 2011). This study shows that defining the model background to 

390 accommodate considerations of accessibility as well as prior biological knowledge of environmental 

391 unsuitability has the potential to improve global-scale presence-background models for emerging 

392 invasive non-native species. The methods developed and tested here are fully implemented by 

393 manipulating the model input data, and as such they can be implemented simply using standard 

394 presence-background modelling software. Furthermore, they result in presence-background models that 

395 are more strongly underpinned by biological knowledge rather than being solely driven by distribution 

396 data, which are often incomplete and biased. As such, wider adoption of these approaches should 

397 improve global-scale modelling of invasive non-native species distributions, contributing to more 

398 accurate risk assessment and better management of their impacts.
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399 Tables

400 Table 1. Cross-validated discrimination performance of ensemble model projections for the potential 

401 global distribution of five plant species developed using different background region specifications (A 

402 = accessible background, U = unsuitable background, A&U = combined accessible and unsuitable 

403 background). Discrimination performance is the cross-validated AUC (Area Under the receiver-

404 operator Curve) and its standard deviation in parentheses for model predictions on 20% of the 

405 occurrences, accessible background and unsuitable background that were reserved from model fitting. 

406 For presence-only data AUC is the probability that a species presence has a higher projected suitability 

407 than a background sample.

Accuracy in the species range 

(AUC in accessible background)

Global accuracy (AUC in the accessible 

and unsuitable backgrounds)

Species

A U A&U A U A&U

Cinnamomum 

camphora

0.664 

(0.019)

0.581 

(0.020)

0.669 

(0.020)

0.857 

(0.008)

0.981 

(0.001)

0.985 (0.001)

Humulus 

scandens

 0.742 

(0.020)

0.669 

(0.017)

0.737 

(0.021)

0.977 

(0.004)

0.979 

(0.001)

0.982 (0.002)

Lespedeza 

cuneata

 0.899 

(0.006)

0.860 

(0.006)

0.899 

(0.006)

0.979 

(0.003)

0.977 

(0.002)

0.983 (0.002)

Lygodium 

japonicum

 0.852 

(0.013)

0.758 

(0.014)

0.852 

(0.013)

0.955 

(0.007)

0.979 

(0.001)

0.987 (0.001)

Triadica 

sebifera

 0.762 

(0.017)

0.673 

(0.016)

0.777 

(0.017) 

0.853 

(0.007)

0.984 

(0.001)

0.989 (0.001)

408
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409 Figures

410 Figure 1. Parts of the regions from which background samples (pseudo-absences) were drawn for 

411 modelling one of the five species, Humulus scandens. Shading shows the accessible background, where 

412 the species is assumed to have had chance to disperse to and sample, and the unsuitable background, 

413 defined using biological information on the key limiting factors of the species (see Appendix S2). 

414 Potentially suitable, but inaccessible locations were excluded from the modelling (a) The Asian native 

415 range of the species, where accessibility was defined with a buffer around the minimum convex polygon 

416 of the occurrences. (b) The North American part of the invaded range, where accessibility was highly 

417 restricted to represent stronger dispersal constraints during the invasive range expansion.

418
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419 Figure 2. Flow chart for implementing the biologically-informed pseudo-absence selection for 

420 presence-background modelling of invasive non-native species.

421
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422 Figure 3. Partial response plots fitted by the ensemble models showing the predicted suitability when 

423 other variables are fixed at suitable values for the species (medians in the presence grid cells). Curves 

424 span the range of the variables in the training data. Curve colour differentiates the models with 

425 background domains based only on the accessible region and those including the unsuitable region. 

426 Variable codes: Bio6 = mean minimum temperature of the coldest month (°C); Bio10 = mean 

427 temperature of the warmest quarter (°C); CMI = climatic moisture index (ln+1 transformed).

428

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

21

429 Figure 4. Potential non-native distributions of five Asian plant species in the USA, where all are already 

430 established invasive non-native species with expanding ranges. Projections are from models where the 

431 background domain is either just the accessible area, just the unsuitable area or the combined accessible 

432 and unsuitable region. Grey points show the species occurrences. Blank land areas are where the model 

433 could not project suitability because one or more predictors was outside the range of the training data.

434
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435 Figure 5. Potential distributions of five Asian plant species in Europe, where the species are currently 

436 absent or emerging invasive non-native species, equivalent to Figure 4.
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596 Data Accessibility

597 A data file containing the 0.25 x 0.25 gridded data on climate, recording effort, species 

598 occurrence, accessibility and unsuitability is included in the Supporting Information.

599 Biosketch

600 The research team focuses on risk assessment for emerging invasive non-native species in Europe. 

601 Among other factors contributing to risk, the team use global-scale species distribution modelling to 

602 identify the suitable conditions for establishment by the focal species and use this to project their 

603 potential distributional range in the risk assessment area.
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Appendix S1 – Proxy for recording effort 

Figure S1.1. The global density of vascular plant (phylum Tracheophyta) records retrieved from the 

Global Biodiversity Information Facility, mapped on a 1x1 degree grid and displayed on a log10 scale. 

Dark grey areas returned no records. 

 

  

 

  



Figure S1.2. The density of vascular plant (phylum Tracheophyta) records retrieved from the Global 

Biodiversity Information Facility at the spatial resolution of the model (0.25 x 0.25 degree grid) for 

Asia. This region spanned the native range of most of the study species and had pronounced recording 

bias. Dark grey areas returned no records. 

 

  

 

  



Appendix S2 – Distributions of the five modelled plant species and definitions of 

environmentally-unsuitable regions 

Figure S2.3. Distribution records of the five species that were modelled, plotted as black points. 

Background shading shows the accessible and unsuitable background domains from which ‘pseudo-

absences’ were drawn. The accessible background is only visible in the native range of the species, as 

it is otherwise masked by the non-native presences. Our approach excludes parts of the world that 

may be environmentally suitable, but are out of dispersal range (unshaded). 

 



Table S2.1. Rules for defining highly unsuitable conditions for establishment by the five study 

species, with respect to three climatic variables. The rules are based on a combination of prior 

biological knowledge about key constraints and the extreme values of the climate variables at the 

species occurrence locations. For CMI and upper limit on Bio10, few direct estimates were used, so 

the 0.5th or 99.5th percentile values at occurrence locations were used as thresholds, respectively. The 

individual rules were combined with an OR statement to generate unsuitable background domains for 

the distribution modelling. 

Species Bio6 (mean minimum 

temperature during coldest 

month) 

Bio10 (mean temperature during 

warmest quarter) 
CMI 

(climatic 

moisture 

index) 
Cinnamomum 

camphora 
<-10 °C; the temperature 

causing frost damage in 

overwintering seedlings (You 

et al., 2008). 

<15 °C; the reported minimum 

annual temperature (Orwa et al., 

2009; CABI, 2018), OR 

>29 °C  

<0.25  

Humulus 

scandens 
>16 °C; overwintering seeds 

require stratification (Balogh 

& Dancza, 2008) and the 

warmest occurrence is at 

15.5 °C. 

<15 °C; approximately 

corresponds to a known 

requirement of ~1300 degree days 

(base 4 °C) for maturation (G. 

Fried, personal communication), 

OR 
>28 °C 

<0.45 

Lespedeza 

cuneata 
<-17 °C; effects of frost are 

uncertain but may contribute 

to mortality (Gucker, 2010) 

and the coldest occurrence is 

at 16.4 °C. 

<13 °C; consistent with minimum 

temperatures for germination (Qiu 

et al., 1995) and seedling growth 

(Hill & Luck, 1991) , OR 

>29 °C; consistent with observed 

reductions in leaf size and height 

when grown above 25 °C 

(Kalburtji et al., 2007) 

<0.45 

 

 

Lygodium 

japonicum 
<-8 °C; consistent with mean 

values of Bio6 in USDA Plant 

Hardiness Zone 6, where the 

species is semi-hardy (Loan, 

2006). 

<16 °C; no information available 

on summer temperature 

requirements, so the 0.5th 

percentile value of occurrences 

was assumed to be a low limit, OR 

>29 °C 

<0.55 

Triadica 

sebifera 
<-9 °C; frost is considered the 

strongest factor limiting 

invasion in the USA (Gan et 

al., 2009) and the coldest 

occurrence is at -8.5 °C. 

< 16 °C; consistent with the 

temperature inhibiting seed 

germination (Nijjer et al., 2002) , 

OR 
>29 °C 

<0.30 

 



Appendix S3 – Model summary tables 

Table S3.2. Details of the ensemble presence-background models for five Asian plant species occurring elsewhere as invasive non-native species. Three 

model specifications were applied, where the background sample was drawn from only an accessible background, only from an unsuitable background or 

from a combined accessible and unsuitable background. Seven individual algorithms were fitted and evaluated based on their AUC, cross-validated within the 

training data. Poorly performing algorithms were rejected, and the remaining ones combined into the ensemble. Variable importances are given as 

percentages for Bio6 (mean minimum temperature of coldest month), Bio10 (mean temperature of warmest quarter) and CMI (ratio of annual precipitation to 

potential evapotranspiration). 

  Accessible background Unsuitable background Accessible and unsuitable background 

Species Algorithm AUC In 

ensemble 

Bio6 Bio10 CMI AUC In 

ensemble 

Bio6 Bio10 CMI AUC In 

ensemble 

Bio6 Bio10 CMI 

Cinnamomum 

camphora 

ANN 0.758 yes 74% 12% 13% 0.998 yes 39% 31% 30% 0.946 yes 50% 24% 26% 

GAM 0.753 yes 93% 4% 3% 0.997 yes 43% 29% 28% 0.941 no 45% 30% 24% 

GBM 0.771 yes 83% 8% 8% 0.992 no 42% 33% 25% 0.952 yes 48% 32% 21% 

GLM 0.750 yes 89% 6% 4% 0.996 yes 43% 29% 28% 0.937 no 51% 26% 24% 

MARS 0.750 yes 91% 3% 6% 0.996 yes 44% 28% 28% 0.948 yes 49% 28% 23% 

Maxent 0.749 yes 77% 9% 14% 0.998 yes 28% 44% 27% 0.952 yes 49% 31% 21% 

RF 0.726 no 52% 23% 24% 0.999 yes 36% 34% 30% 0.948 yes 48% 27% 25% 

Ensemble 0.769  85% 7% 8% 0.999  39% 33% 29% 0.954  49% 28% 23% 

Humulus scandens 

 

 

 

 

 

 

 

 

 

ANN 0.773 yes 55% 20% 25% 0.999 yes 24% 41% 34% 0.955 yes 34% 33% 33% 

GAM 0.773 yes 57% 19% 24% 0.998 yes 23% 44% 33% 0.957 yes 34% 33% 33% 

GBM 0.785 yes 54% 16% 30% 0.999 yes 22% 48% 30% 0.958 yes 37% 27% 36% 

GLM 0.765 yes 46% 26% 28% 0.999 yes 27% 40% 33% 0.953 yes 32% 35% 33% 

MARS 0.771 yes 56% 18% 27% 1.000 yes 22% 45% 33% 0.956 yes 34% 31% 35% 

Maxent 0.762 yes 54% 20% 26% 0.995 no 18% 48% 34% 0.955 yes 40% 27% 32% 

RF 0.762 yes 42% 26% 32% 0.998 yes 22% 44% 34% 0.953 yes 38% 28% 34% 

Ensemble 0.784  52% 21% 27% 1.000  23% 44% 33% 0.959  36% 30% 34% 



  Accessible background Unsuitable background Accessible and unsuitable background 

Species Algorithm AUC In 

ensemble 

Bio6 Bio10 CMI AUC In 

ensemble 

Bio6 Bio10 CMI AUC In 

ensemble 

Bio6 Bio10 CMI 

Lespedeza cuneata ANN 0.912 yes 49% 11% 40% 0.999 yes 33% 30% 37% 0.963 yes 40% 21% 39% 

GAM 0.910 yes 47% 10% 43% 0.999 yes 37% 24% 39% 0.961 yes 41% 20% 38% 

GBM 0.914 yes 59% 6% 34% 0.999 yes 37% 30% 34% 0.964 yes 43% 19% 38% 

GLM 0.893 no 53% 11% 36% 1.000 yes 36% 25% 39% 0.953 no 42% 20% 38% 

MARS 0.907 yes 48% 11% 41% 0.998 yes 36% 25% 39% 0.963 yes 39% 20% 41% 

Maxent 0.904 yes 40% 18% 42% 0.998 yes 18% 44% 38% 0.962 yes 39% 25% 36% 

RF 0.904 yes 41% 20% 39% 0.999 yes 24% 35% 41% 0.961 yes 36% 25% 38% 

Ensemble 0.912  47% 13% 40% 1.000  32% 30% 38% 0.964  40% 22% 38% 

Lygodium 

japonicum 

ANN 0.853 yes 75% 16% 9% 0.998 yes 27% 31% 42% 0.959 yes 41% 26% 33% 

GAM 0.844 yes 89% 9% 2% 0.999 yes 33% 24% 43% 0.958 yes 38% 23% 39% 

GBM 0.857 yes 74% 20% 5% 0.997 yes 34% 31% 35% 0.965 yes 39% 29% 32% 

GLM 0.844 yes 84% 15% 1% 0.999 yes 30% 26% 45% 0.949 no 36% 24% 40% 

MARS 0.850 yes 78% 19% 2% 0.997 yes 28% 28% 44% 0.964 yes 39% 22% 39% 

Maxent 0.841 yes 64% 24% 12% 0.995 no 10% 45% 45% 0.962 yes 39% 30% 31% 

RF 0.838 yes 55% 24% 21% 0.999 yes 20% 36% 44% 0.961 yes 34% 32% 34% 

Ensemble 0.855  74% 18% 8% 0.999  29% 29% 42% 0.966  38% 27% 35% 

Triadica sebifera ANN 0.754 yes 64% 16% 21% 0.999 yes 36% 30% 34% 0.940 yes 44% 24% 32% 

GAM 0.756 yes 78% 13% 9% 1.000 yes 42% 26% 32% 0.933 yes 44% 24% 32% 

GBM 0.768 yes 64% 17% 19% 0.998 yes 40% 30% 30% 0.940 yes 46% 29% 25% 

GLM 0.750 yes 78% 15% 7% 1.000 yes 37% 29% 34% 0.929 no 44% 23% 32% 

MARS 0.750 yes 76% 14% 10% 0.998 yes 39% 29% 31% 0.937 yes 50% 23% 27% 

Maxent 0.755 yes 69% 16% 15% 0.991 no 16% 50% 34% 0.937 yes 45% 31% 24% 

RF 0.719 no 45% 28% 27% 0.998 yes 26% 40% 35% 0.931 no 42% 28% 29% 

Ensemble 0.766  71% 15% 14% 1.000  37% 31% 33% 0.941  46% 26% 28% 



Appendix S4 – Native range and global projections for five modelled plant species 

Figure S4.4. Projections of suitability for the five study species in Asia, which includes their main 

native distributions. Plots show outputs from the three background specifications, equivalent to Figure 

4 in the main text. 

 



 Figure S4.5. Global projections of suitability for the five study species. Plots show outputs from the 

three model specifications for the background region, equivalent to Figure 4 in the main text. 

 

  

 

 

 

 

 

 



Appendix S5 – Sensitivity analysis on model settings 

Sensitivity to size of the accessible region and number of background samples 

All five species were modelled as in the main text but with all combinations of: 

• the buffer radius for the native accessible region set to 0 km (unsuitable area model), 200 km, 400 

km (as used in the main text) and 600 km; and  

• the number of background samples (pseudo-absences) taken from the unsuitable region set to 0 

(accessible area model), 1000, 3000 (as used in the main text) and 5000. 

Model response plots were generally not very sensitive to the choice of these settings, except when 

only 1000 unsuitable background samples were taken (Figures S5.6-5.8). As a result, global suitability 

projections were almost identical (not shown). 

 

Sensitivity to the rules used to define the unsuitable region 

All five species were modelled as in the main text but with the rules defining their unsuitable regions 

set to either the values in Table S2.1 (used in the main text) or to a more conservative definition of the 

unsuitable region. For the latter, temperature thresholds were made more extreme by 2 °C (e.g. <-10 

°C changed to <-12 °C; >16 °C changed to >18 °C, etc.) and moisture (CMI) thresholds were made 

more extreme by 10% (e.g. 0.25 changed to 0.15, etc.). The effect of this was to reduce the size of the 

unsuitable region and separate it more strongly from the species’ occurrences. Surprisingly, this 

generally had little influence on the fitted response functions (Figure S5.9) or projections made from 

the models (not shown). 

 

 

  



Figure S5.6. Partial response plots for models fitted using only accessible backgrounds, and with the 

native accessible region defined with buffer radii of 200 km, 400 km and 600 km.  

 

  

 

  



Figure S5.7. Partial response plots for models fitted using accessible and unsuitable backgrounds, and 

with the native accessible region defined with buffer radii of 200 km, 400 km and 600 km and 3000 

background samples. 

 

 

  

 

  



Figure S5.8. Effect of the number of unsuitable background samples on response plots fitted by 

models using accessible and unsuitable backgrounds. Models were fitted with 1000, 3000 or 5000 

unsuitable background samples and a 400 km buffer for the native accessible region. 

 

 

 

  

 

  



Figure S5.9. Response curves fitted to models where the unsuitable region was defined as in the main 

text (std) or with more conservative rules (cons). 

 

  

 

 

 

  



Appendix S6 – ‘Read me’ for the data file 

The file 'INNS SDM data for modelling.rds' contains the data used in the study, compiled from 

publicly available sources and gridded at 0.25 x 0.25 degree resolution. To open the file in R and read 

in the data as a data.frame please use the command: 

readRDS('INNS SDM data for modelling.rds') 

The .rds file contains a compressed R data.frame with the following columns: 

 x = longitude of 0.25 degree grid cell centre 

 y = latitude of 0.25 degree grid cell centre 

 bio6 = Worldclim Bio6 (Minimum temperature of the coldest quarter, C) 

 bio10 = Worldclim Bio10 (Mean temperature of the warmest quarter, C) 

 moisture = climatic moisture index (ratio of annual precipitation to potential evapotranspiration) 

 effort = proxy for recording effort, the number of Tracheophyte records held by GBIF 

 occ.Cinnamomum.camphora = occurrences of Cinnamomum camphora (1 = occurrence) 

 occ.Humulus.scandens = occurrences of Humulus scandens (1 = occurrence)      

 occ.Lespedeza.cuneata = occurrences of Lespedeza cuneata (1 = occurrence) 

 occ.Lygodium.japonicum = occurrences of Lygodium japonicum (1 = occurrence)    

 occ.Triadica.sebifera = occurrences of Triadica sebifera (1 = occurrence) 

 native.occ.Cinnamomum.camphora = occurrences of Cinnamomum camphora in native range (1 

= occurrence) 

 native.occ.Humulus.scandens = occurrences of Humulus scandens in native range (1 = 

occurrence)      

 native.occ.Lespedeza.cuneata = occurrences of Lespedeza cuneata in native range (1 = 

occurrence) 

 native.occ.Lygodium.japonicum = occurrences of Lygodium japonicum in native range (1 = 

occurrence)    

 native.occ.Triadica.sebifera = occurrences of Triadica sebifera in native range (1 = occurrence) 



 nonnative.occ.Cinnamomum.camphora = occurrences of Cinnamomum camphora in non-native 

range (1 = occurrence) 

 nonnative.occ.Humulus.scandens = occurrences of Humulus scandens in non-native range (1 = 

occurrence)      

 nonnative.occ.Lespedeza.cuneata = occurrences of Lespedeza cuneata in non-native range (1 = 

occurrence) 

 nonnative.occ.Lygodium.japonicum = occurrences of Lygodium japonicum in non-native range (1 

= occurrence)    

 nonnative.occ.Triadica.sebifera = occurrences of Triadica sebifera in non-native range (1 = 

occurrence) 

 accessible.Cinnamomum.camphora = the accessible background region for Cinnamomum 

camphora (1 = accessible) 

 accessible.Humulus.scandens = the accessible background region for Humulus scandens (1 = 

accessible) 

 accessible.Lespedeza.cuneata = the accessible background region for Lespedeza cuneata (1 = 

accessible) 

 accessible.Lygodium.japonicum = the accessible background region for Lygodium japonicum (1 = 

accessible) 

 accessible.Triadica.sebifera = the accessible background region for Triadica sebifera (1 = 

accessible) 

 unsuitable.Cinnamomum.camphora = the unsuitable background region for Cinnamomum 

camphora (1 = unsuitable) 

 unsuitable.Humulus.scandens = the unsuitable background region for Humulus scandens (1 = 

unsuitable)   

 unsuitable.Lespedeza.cuneata = the unsuitable background region for Lespedeza cuneata (1 = 

unsuitable) 



 unsuitable.Lygodium.japonicum = the unsuitable background region for Lygodium japonicum (1 

= unsuitable) 

 unsuitable.Triadica.sebifera = the unsuitable background region for Triadica sebifera (1 = 

unsuitable)  
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