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Abstract

Contourites are common morphological features along continental margins where currents
encounter the seafloor. They can provide long-term archives of palaeoceanography, may be prone to
sediment instability, and can have a great potential for hydrocarbon exploration. Despite their
importance and increasingly recognised ubiquitous occurrence worldwide, the link between
oceanographic processes and contourite features is poorly constrained. In particular, it is unclear
under which specific conditions sediments are mobilised, modified and deposited by bottom
currents. Here, we aim to determine key bottom current characteristics (velocity and bottom shear

stress) affecting contourite deposition, by assuming that recent oceanographic regimes may be
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extended back in time over the past glacial-interglacial cycles, with strong winter circulation assumed
similar to glacial conditions and weak summer circulation to interglacials. We present an integrated
study from the NW Mediterranean Sea that couples results of the MARS3D hydrodynamic model
with high-resolution sedimentological and geophysical data (piston cores, multibeam bathymetry
and high resolution seismic data). Near bottom circulation was modelled during winter and summer
2013 as representative of past periods of high and low current intensity, respectively. Model results
match well with the extent of contourite depositional systems and their different localised
morphologic elements. We deduce that higher intensity events control the formation of erosional
features such as moats and abraded surfaces. The heterogeneous distribution of bottom-current
intensity on slopes explains the development of different types of contourite drifts. Plastered drifts
form in zones of low bottom-current velocities constrained upslope and downslope by higher current
velocities. Separated elongated mounded drifts develop where fast bottom-currents decelerate at
foot of the slope. In contrast, no mounded contourite morphologies develop when the current
velocity is homogeneous across the slope, especially in margins prone to downslope sediment
transport processes. In confined basins, gyres may transport sediment in suspension from a margin
with a high sediment supply to an adjacent starved margin, favouring the development of fine-
grained contourites in the latter. Our results provide new insights into how detailed bottom-
circulation modelling and seafloor geomorphological analyses can improve the understanding of
palaeoflow-regimes, at least over time spans when the overall paleogeography and the distribution
of contourite drifts is comparable to present-day conditions. The approach of coupled hydrodynamic
models and geomorphological interpretations proposed here for depositional, erosional and mixed
contourite features may be used to understand other areas affected by bottom currents, and for a
better conceptual understanding of bottom-current processes and their interactions with the

seafloor.
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1. Introduction

Oceanic currents play a major role in controlling the morphological and sedimentary evolution of
continental margins (Rebesco and Camerlenghi, 2008). Bottom current-induced sediment
winnowing, remobilisation and erosion sculpt the seafloor on a wide variety of scales, and can have a
profound influence on local to regional sediment accumulation rates (Hernandez-Molina et al., 2008;
Stow et al., 2009). Large contourite sedimentary accumulations are known as “drifts”, which may be
more than 100 km wide, hundreds of kilometres long and up to 2 km thick (Stow et al., 2002;
Rebesco and Camerlenghi, 2008; Rebesco et al., 2014). As contourite drifts typically have higher
sedimentation rates than pelagic sediments, the resultant expanded stratigraphy can provide long-
term, high-resolution archives of palaeoceanography and palaeoclimate (Knutz, 2008; McCave,
2008). Due to their depositional geometries, contourites may be prone to instability, thus posing a
hazard for seafloor infrastructure (Laberg and Camerlenghi, 2008; Miramontes et al., 2018), and they
may be economically viable prospects for hydrocarbon exploration (Viana, 2008).

Contourite drifts are commonly associated with persistent bottom currents related to long-term
thermohaline circulation patterns (Stow et al., 2002), although the physical processes that control
their formation are still poorly understood due to the paucity of direct observations and modelling
studies (Hunter et al., 2007; de Lavergne et al., 2016; Hernandez-Molina et al., 2016). Persistent
bottom currents can be affected by many intermittent oceanic processes, such as eddies, internal
waves, deep-sea storms, rogue waves and/or tsunami related currents (Shanmugam, 2013; Rebesco
et al., 2014). In addition, thermohaline circulation is often highly variable at seasonal (Astraldi and
Gasparini, 1992), interannual (Pinardi et al., 2015) and geological (thousands to millions of years)

timescales (Cacho et al., 2000).
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The first attempts to explain the effect of bottom currents on sedimentation in deep settings using in
situ measurements were carried out in the 1970’s (Gardner et al.,, 2017; and references therein).
However, oceanographic measurements are scarce in deep areas, and they are also limited in time
and space (de Lavergne et al., 2016). Numerical modelling thus provides a useful tool to study the
interactions between bottom currents and seafloor, since it can cover larger areas and longer periods
of time. New advances in modelling submesoscale circulation (scale ranges 0.1-10 km in the
horizontal, 0.01-1 km in the vertical, and hours-days in time; McWilliams, 2016) allow the
comparison between hydrodynamic modelling and geophysical data. Numerical simulations are a
valuable tool to understand the influence of present-day hydrodynamics on sedimentary processes
along continental slopes (e.g. Bellacicco et al., 2016; Bonaldo et al., 2016), and have been used to
test the effects of different contemporary hydrodynamic processes on contourite systems
(Dutkiewicz et al., 2016; Zhang et al., 2016; Thran et al., 2018). However, these modelling studies
cannot fully explain the sedimentary processes that control the formation of depositional and
erosional contourite features over long time scales. A key outstanding question concerns the relative
significance of short-term intensifications in bottom current activity. Are geologically brief periods of
extreme near-bed currents the dominant controlling factor on the inception of contourites and
correlated seafloor features? Are persistent background conditions more important in shaping
distinct depositional architectures instead? To address these questions, it is necessary to integrate
calibrated numerical modelling with evidence of past bottom-current activity over geological time
scales. In a recent study, Thran et al. (2018) compared at a global scale (low resolution) the extent of
known contourite deposits and modelled bottom current velocity, showing an overall matching of
the two datasets. Here we examine the output of a high resolution numerical oceanographic model,
calibrated on short-term (seasonal) hydrodynamic variations, to propose an explanation of how,
where and why contourite-related features may develop or may be sustained by present-day oceanic
conditions at the seafloor. We then attempt to extrapolate those results to provide inference on the

development of contourites over longer (>millennial) time scales.
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In the present study, we examine the output of a high resolution numerical oceanographic model, to
propose an explanation for the distribution of contourite-related features in the Northwestern
Mediterranean Sea. We focus our study on the NW Mediterranean Sea because: i) the oceanic
circulation of this area has been well studied from measurements and numerical modelling (Pinardi
et al., 2015; and references therein); ii) it has a well-known seasonal variability (intense circulation in
winter and weak in summer; Astraldi and Gasparini, 1992; Artale et al., 1994; Rubio et al., 2009); and,
iii) it is a region where many contourites have been identified. Contourites have been identified in
the Balearic Sea (Velasco et al., 1996; Vandorpe et al., 2011; Lidmann et al., 2012), the Ligurian Sea
(Soulet et al., 2016; Cattaneo et al., 2017) and the northern Tyrrhenian Sea (Roveri, 2002; Cattaneo
et al.,, 2014; Miramontes et al.,, 2016). In particular, we focused on three areas of the NW
Mediterranean Sea: (1) the Balearic Sea (Liguro-Provencal Basin), (2) the Ligurian Sea (offshore the
Portofino Promontory) and (3) the Northern Tyrrhenian Sea (Corsica Trough and a seamount off
southeast Corsica; Fig. 1). The aims of this study are to: i) identify how present-day current velocities
and bottom shear stresses are spatially distributed with respect to the location of long lasting
bottom-current influenced seafloor morphologies and deposits (contourite drifts, seafloor erosion
features); ii) explore the contrasted scenarios of contourite drifts as mainly controlled by constant
currents of moderate intensity or by short-term events of high intensity; and iii) evaluate how
bottom currents might redistribute sediment within a confined basin from a margin with high

sediment supply to a starved margin.
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Fig. 1. Bathymetry of the NW Mediterranean Sea (GEBCO) showing the main circulation structures at
200-300 m based on Pinardi et al. (2015) and the present study, and location of the three study
areas: 1-Balearic Sea, 2-Ligurian Sea, 3-Northern Tyrrhenian Sea. NC: Northern Current; BC: Balearic
Current; WCC: Western Corsica Current; ECC: Eastern Corsica Current. The map shows the extension
of the zone simulated with the MARS3D hydrodynamic model in the MENOR configuration
(resolution of 1.2 km), and the yellow rectangle shows the location of the zoom of the model

simulated with a higher resolution (400 m).

2. Regional setting

The Mediterranean Sea is a mid-latitude semi-enclosed sea connected with the Atlantic Ocean
through the Strait of Gibraltar. At present, it has an anti-estuarine circulation (inflow of low salinity
surface water and outflow of a deep denser water with high salinity) forced by wind stress and
buoyancy fluxes (Pinardi et al., 2015). The negative heat and fresh water budgets of the
Mediterranean Sea are balanced over a multidecadal timescale by the entrance of Atlantic Water
(AW) through the Strait of Gibraltar (Pinardi et al., 2015). As the AW flows through the
Mediterranean Sea, it evolves to a water mass named Modified Atlantic Water (MAW). The MAW is a
fresher water mass present in the upper 100-200 m of the water column (Millot and Taupier-Letage,
2005; Millot, 2009). The MAW overlies the Levantine Intermediate Water (LIW), which is formed in
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the Levantine Basin by a process of evaporation during the summer and by a winter cooling
(Lascaratos et al., 1993; 1999). After passing the Strait of Sicily, the LIW flows northwards along the
eastern and western coasts of the Corsica Island as part of the Eastern and Western Corsican
Currents (ECC, WCC; Millot et al., 1999; Fig. 1). The ECC can reach current speeds of more than 40
cm-s™ near the surface and more than 20 cm-s™ near the seafloor at the Corsica Strait (Vignudelli et
al., 2000). The currents are more intense and with a northwards direction in winter, while in summer
they are weaker and occasionally flow southwards (Astraldi and Gasparini, 1992; Vignudelli et al.,
2000; Ciuffardi et al., 2016). The ECC (at the depth range of the LIW) is related to the formation of

contourite systems in the Corsica Trough (Table 1; Miramontes et al., 2016).

Water mass at

Study area Current velocity from literature Water masses Drift water depth A .
drift location

Northern Current (NC): westwards
along the Iberian slope. Balearic Current
(BC): eastwards along the Balearic
Islands (Pinardi et al., 2006). In winter,

MAW (0-200 m), WIW
(200-400 m, if present),

Balearic Sea . LIW (400-700 m), WMDW 2000-2700 m WMDW
deep convection and dense shelf water
cascading: up to 55 cmss™ in the (>700 m) (Salat and Font,
) g: up 1987; Font et al., 1988).
continental slope (Palanques et al.,
2012; Durrieu de Madron et al., 2017).
Northern Current (NC): westwards; NC MAW (0-150 m), LIW (15.0_
more intense (max. 30-50 cm-s ™ near 1000 m, when the WIW is
Ligurian Sea : . not present), WMDW 900 m Liw
the surface), narrower and deeper in -
winter (Albérola et al., 1995) (>1000 m) (Gasparini et al.,
v ' 1999; Millot et al., 1999).
East Corsica Current (ECC): northwards, 170-850 m in the
episodically southwards (in summer); Corsica Trough
Northern more intense in winter, more than 40 MAW (0-200 m), LIW (200 and 820-900 min

Tyrrhenian Sea 20 cm-s™ near the surface and 20 cm-s™ 1000 m.), WMDW (>1000 the seamount Lw
m) (Millot et al., 1999).

near the seafloor (Vignudelli et al., south of the
2000). Corsica Trough.

Table 1. Summary of the overall current characteristics, water masses distribution, water depth of
the studied sediment drifts and identification of the water mass in contact with contourite
morphologies in the three study areas: Balearic, Ligurian and Northern Tyrrhenian Seas. MAW:
Modified Atlantic Water; WIW: Western Intermediate Water; LIW: Levantine Intermediate Water;

WMDW: Western Mediterranean Deep Water.

The ECC and WCC feed the Northern Current (NC), which is a slope current flowing along the Ligurian
Sea up to the Balearic Sea (Astraldi et al., 1994; Fig. 1). The NC closes cyclonically in the Balearic Sea,

flowing along the northern Balearic margin as the Balearic Current (BC; Pinot et al., 2002; Fig. 1), and
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forming part of the Gulf of Lions gyre (Pinardi et al., 2006). The NC also presents a seasonal
variability: in summer the NC is weak, wide (about 50 km) and shallow (down to 250 m); while in
winter the NC stronger (maximum velocity near the surface of 30-50 cm-s™), narrow (about 30 km)
and deep (down to about 450 m) (Albérola et al., 1995). The NC (at the depth range of the LIW) is at
the origin of contourite features along the Ligurian margin located at 200-1000 m water depth (Table
1; Soulet et al., 2016; Cattaneo et al., 2017).

The deep part of the NW Mediterranean Sea (below 1000 m water depth) is characterised by the
presence of the Western Mediterranean Deep Water (WMDW) (Millot, 1999). This water mass is
mainly formed in the Gulf of Lions by surface cooling and evaporation due to cold and dry northern
winds, and open-sea convection (Durrieu de Madron et al., 2013). Bottom-reaching convection
events can generate intense currents near the seafloor with speeds up to 45 cm-s™, strong enough to
locally resuspend sediment (Durrieu de Madron et al., 2017). Dense shelf water cascading also
generates strong bottom currents up to 95 cm-s™ in canyons and 40-55 cm-s™ in the slopes. Between
January and April, these currents very often erode the seafloor and transport large amount of
particles in the bottom layer (Palanques et al., 2012). All these events may affect the formation of
contourites in the Balearic Sea. Contourites in this area are located at 2000-2700 m in the depth

range of the WMDW (Table 1; Velasco et al., 1996).

3. Materials and methods

3.1. Geophysical, anrd sedimentological data and terminology

Various bathymetric data sets were used to enable geomorphological analysis and oceanographic
modelling, detailed in Table 2. Seismic data were used to characterise the sub-surface architecture of
contourite depositional and erosional features. The seismic data set used for this study was acquired
with four different types of seismic sources (Table 2).

The piston cores presented in this study were collected along the Pianosa Ridge in 2013 during the

PRISME3 cruise (Cattaneo, 2013b) onboard the R/V Pourquoi pas?, and along the Minorca margin in
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2018 during the WestMedFlux2 cruise (Poort and Gorini, 2018) onboard the R/V L’Atalante. The
cores of the Pianosa Ridge are 9 to 22 m long and were collected between 176 and 342 m water
depth, and the core of the Minorca margin is 8 m long and was collected at 2694 m water depth.

The criteria used in the present study to identify contourites and bottom-current related features
followed the concepts proposed by Faugeres et al. (1999), Faugéres and Stow (2008), Nielsen et al.
(2008) and Rebesco et al. (2014). In this study we identified two main types of contourite drifts:
separated elongated mounded drifts and plastered drifts. Separated elongated mounded drifts are
often found on the lower slope, associated with steep slope gradients. They are separated from the
slope by a linear depression (a contourite channel, termed ‘moat’) that can be formed by erosional or
non-depositional processes (Rebesco et al., 2014). We mapped their offshore limit as the inflexion
point of the slope, where the mounded shape ends. Plastered drifts are typically found on gentle
slopes (Faugéres and Stow, 2008). They form a convex shape, with the predominance of sediment
accumulation in the centre of the drift (Faugeres and Stow, 2008). Contourite terraces are flat
surfaces commonly associated with plastered drifts, which are often dominated by erosion

(Hernandez-Molina et al., 2016).

Zone Bathymetry origin and horizontal resolution Seismic data

Low resolution multi-channel seismic reflection data

Balearic Sea GEBCO (GEBCO_08, version 2010-09-27, from VALSIS 2 survey (Mauffret, 1988) and Sub-
http://www.gebco.net), 30 arc-second. Bottom Profiler (SBP) data from WestMedFlux2
(Poort and Gorini, 2018).
. Deep-towed SYSIF (Systéme Sismique Fond) seismic
Ligurian Sea GEBCO (GEBCO_08, version 2010-09-27, reflection data (220-1050 Hz) from PRISME2 survey

http://www.gebco.net), 30 arc-second. (Cattaneo, 2013a).

Multibeam bathymetry from CORFAN (Savoye,

Western and Central Corsica g0, "~ peAN 2 (savoye, 2001) and SIGOLO

48-72-channel sparker seismic reflection data (130-

Trough surveys (Savoye, 2008), 25 m. 750 Hz) from SIGOLO survey (Savoye, 2008)
Multibeam bathymetry from PRISME2 72—c‘hannel high resolution mini Gl gun sglsm|c
. reflection (50-250 Hz) and Sub-Bottom Profiler data
Eastern Corsica Trough (Cattaneo, 2013a), PAMELA-PAPRICA (Cattaneo (SBP, 1800-5300 Hz) from PRISME 2 (Cattaneo
(Pianosa Ridge) and Jouet, 2013) and PRISME3 surveys ! !

201 PAMELA-PAPRICA
(Cattaneo, 2013b), 5 and 15 m. 013a) and CA surveys (Cattaneo and
Jouet, 2013).
Multibeam bathymetry from an industrial data Multi-channel ultra-high resolution seismic reflection
set, 30 m; and detailed bathymetry acquired profile from a sleeve gun array of an industrial data
with AUV, 1 m. set.

Seamount Northern
Tyrrhenian Sea

NW Mediterranean Sea in

hydrodynamic model ETOPO2, 1.2 km )
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219
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224

Zoom in the Northern Compilation of GEBCO bathymetry and
Tyrrhenian Sea in multibeam bathymetry of the Corsica Trough,
hydrodynamic model 400 m.

Table 2. Geophysical data set (Source for morphobathymetric data: bathymetric grid and reflection
seismic profiles) in the three study areas (Balearic, Ligurian and Northern Tyrrhenian Seas) and in
areas with detailed analysis in the Northern Tyrrhenian Sea (Corsica Trough, Pianosa Ridge, Northern

Tyrrhenian Seamounts).

3.2. Hydrodynamic modelling

The MARS3D (3D hydrodynamical Model for Applications at Regional Scale) model was used to
simulate coastal and regional circulation (developed by Lazure and Dumas, 2008; revised by Duhaut

et al., 2008).

- For this study we
used the “MENOR” configuration of the MARS3D model, which extends from the Balearic Islands to
the Gulf of Lions and the Ligurian Sea (longitude: 0°E 16°E, latitude: 39.5°N 44.5°N). The model space
has a horizontal resolution of 1.2 km and 60 vertical levels using a generalised sigma coordinates
system. Details on the model are reported in the supplementary materials. In this study, we modify
the resolution based on the scale of current-related features observed on the seafloor. In the
Balearic Sea contourite drifts have a maximum width of 25 km, and the moat is about 5 km wide
(Velasco et al., 1996). In contrast, contourites in the northern Tyrrhenian Sea present a smaller size.
Sediment drifts are less than 10 km wide, and the moat less than 2 km wide (Miramontes et al.,
2016). Therefore, in order to better simulate the oceanographic processes at smaller scale, we
increased the resolution of the model to 400 m in the Tyrrhenian Sea. The zone of enhanced (400 m)
resolution extends from 9.39°E to 12.33°E and 41.71°N to 43.27°N, covering an area from the east
Corsican coast to the Italian coast (Fig. 1). During the simulation the MENOR configuration and the
zoom are computed simultaneously. Both; the 400 m-resolution zone and the MENOR configuration
mutually exchange information (current, temperature and salinity) at each time step. This two-way

downscaling approach prevents any inconsistency between the coarser and the finer grids.
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We simulated three months of winter (January, February and March) 2013 to represent a period of
strong currents, and summer 2013 (July, August, September) to represent a period of weak currents.
We chose the year 2013 because it is known that the oceanic circulation was very intense during this
winter (Léger et al., 2016). Moreover, an intense observation experiment (HYMEX) conducted in the
North Western Mediterranean Sea from summer 2012 to spring 2013 provided valuable calibration,
enabling robust definition of initial and boundary conditions (Léger et al., 2016). Simulations were
thus extended to include a 4 month-long interval prior to the period of interest to assess the model
against HYMEX results (i.e. calculations started in September 2012 to have a more realistic initial
condition in January 2013). More details on the hydrodynamic model assessment are shown in the
supplementary materials.

For the present study we were interested in the near-bed circulation to study the current-seafloor
interaction. Therefore, we calculated the bottom shear stress generated by currents at the seafloor
based on the model results. At the bed interface the shear stress (t) is mostly turbulent and can be
related to the sea water density (p) and the friction velocity (u*) using:

=p u’ (1)

In the boundary layer with a steady current, the turbulent velocity can be deduced from the current

speed near the bottom with the relation:

« _ K-u(z)

N ln(%)

where k is the Von Karman constant (equal to 0.4; Schlichting, 1962), z, the bottom roughness length

(2)

taken here to a constant equal to 0.0035 m and z the distance from the bottom where the current
velocity u(z) is computed. The bottom shear stress (BSS) is computed over the thickness of the
bottom layer. The use of the bottom stress overcomes the difference in the bottom layer thickness
due to the generalised sigma coordinate. In this model we used 60 vertical sigma-levels that are
parallel to the topography, therefore the cells are stretched in zones of deeper water, and squeezed

where water depths are shallower. We used the 90" percentile of the bottom shear stress in order to
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remove the extreme and transitory events. 75" percentiles, median or even mean values were also
examined without significant changes in resulting patterns.

The Brunt-Vaisala frequency (or buoyancy frequency, N), is the oscillation frequency of a water
parcel displaced vertically in a statically stable environment, and it provides information about the
water stratification (Da Silva et al., 2009). A layer of high Brunt-Vaisala frequency acts in the fluid as a
focus of internal waves, and is an area of potential oscillatory current. It was used in the Corsica
Trough to show the zone where internal waves could be formed. It was calculated from the modelled

vertical oceanic density gradient according to:

9
N = /§£ 3)

where g is the gravitational acceleration, p is the density anda—gls the vertical oceanic density

gradient.

3.3. Coupling hydrodynamic modeling on short timescales (seasons) and long term sediment

erosion/deposition

The locations where contourites have developed in the study areas have not changed significantly
since their onset. Contourites started to develop in the Corsica Trough in the Middle-Late Pliocene
(2.5-3.5 Ma ago) (Roveri, 2002; Miramontes et al., 2016). There is clear evidence for long-lived
contour current activity throughout the Pliocene-Quaternary from seismic data, with remarkable
consistent gross deposit architecture and orientations (e.g. Roveri, 2002). These observations suggest
that the direction and location of bottom currents have not significantly changed during the same
timescales. Although the general circulation pattern in the NW Mediterranean Sea may not have
dramatically changed since the Pliocene, the intensity of the bottom currents has changed cyclically.
The intermediate and deep bottom currents in the Mediterranean Sea were more intense during sea
level low-stands, or colder stages, than during sea level high-stands, or warmer stages (Cacho et al.,

2000; Toucanne et al., 2012; Minto’o et al., 2015). Therefore during sea level low-stands, bottom
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currents affected the contourite depositional systems by enhanced erosion and emplacement of
coarser deposits (Miramontes et al., 2016).

Modelling past oceanic circulation is hampered by the lack of valid boundary conditions. Therefore,
we modelled the oceanic circulation during the winter and the summer seasons of 2013 as two
representations of intense (winter) and weak (summer) oceanic circulation. Given the correlation of
areas of high shear stress under winter conditions with major erosional features, we hypothesize that

the circulation pattern during sea level low-stands could be similar to the present-day winter season.

4, Results

4.1. Balearic Sea (Liguro-Provencal Basin)

The Balearic Sea is located between the north of the Balearic Islands and the Iberian Peninsula, with
water depths decreasing westward from 27500 m to 1000 m (Fig. 1). The modelled circulation shows
the same general patterns during winter and summer 2013. Bottom currents flow westwards along
the lberian slope. They turn cyclonically due to the bathymetric and hydrologic constraints of the
basin, flowing back eastwards along the northern Balearic slope (Fig. 2). Modelling of conditions
during winter 2013 show dense shelf waters cascading downslope at the western output of the Gulf
of Lions and then flowing along the Iberian slope (see Supplementary materials), in agreement with
modelling results by Estournel et al. (2016). During that period of time, high mean velocities (20-30
cm-s; Fig. 2a) and high P90 BSS (90th percentile of the Bottom Shear Stress; > 0.2 N-m?) are
obtained across a large part of the Iberian slope (Fig. 2b). During winter, bottom currents are
relatively vigorous along the continental slope of the Minorca Basin, especially in the lower slope
between 1000 and 2000 m water depth (wd), with mean velocities ranging between 15 and 25 cm-s™
and P90 BSS 0.1-0.2 N-m™. This circulation along the Minorca slope corresponds to the southwards
outflow of WMDW formed during winter (Millot, 1999). Bottom currents remain relatively active

along the Minorca slope also in summer, with mean velocities of 10-20 cm=s™ (Fig. 2c) and P90 BSS of
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0.07-0.2 N-m™ (Fig. 2d). In contrast, in the Iberian slope the circulation near the seafloor is much

weaker during summer with mean velocities <10 cm-s™ (Fig. 2c) and P90 BSS <0.03 N-m (Fig. 2d).
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Fig. 2. Results of the MENOR model (cell size of 1.2 km) in the Balearic Sea: during March 2013, (a)
mean speed and (b) 90th percentile of the Bottom Shear Stress (P90 BSS); during September 2013,
(c) mean speed and (d) P90 BSS. The arrows represent the current direction. The Valencia drainage
network is represented with white polygons (adapted from Amblas et al., 2011), and contourite drifts

are outlined with dashed lines.
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Fig. 3. Seismic reflection profile (VALS88-808) and transect at the same position of the mean speed

(mrainsurface-upper coloured plot) and 90th percentile of the BSS (bottom layer of the coloured plot)
from the MENOR model during March 2013. See Fig. 2 for location. Note that the bathymetry used
for the hydrodynamic model is a simplified bathymetry with a 1.2 km resolution and thus it does not
perfectly fit with the seismic profile. The transect of the model and the seismic profile are not
represented at the same depth to avoid overlapping between the images. The red lines represent the
boundaries of the onset of the contourite development (based on Rabineau et al. (2014) and Leroux
et al. (2017)). Note the two moats at the foot of the continental slope. To the South the moat is
adjacent to the Minorca elongated separated mounded drift. To the North the moat erodes part of a
turbiditic channel/levee system. See-Fig2forlocation-

The morphology of the seafloor between the Iberian and the Minorca slopes is characterized by the
presence of erosional features at the foot of the slope that are about 4 km wide, with an incision of
about 260 m at 2250 m wd in the Iberian slope, and 150 at 2100 m wd m in the Minorca slope (Fig.
3). North of Minorca this feature can be interpreted as a moat associated with the Minorca sediment

drift (dashed line, Fig. 2). The water depth at which the Minorca drift is located increases eastwards,
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and the height of the drift decreases in the same direction (Fig. 2; Velasco et al., 1996). The Minorca
drift has a convex, arcuate morphology and presents the diagnostic shape of a separated elongated
mounded drift on the northern and eastern sides of Minorca (Figs. 3 and 4a). A Sub-Bottom Profiler
(SBP) image of the Minorca slope and foot of the slope shows typical contouritic features: (1) an
eroded slope characterised by truncated reflections; (2) chaotic acoustic facies of strong amplitude in
the moat, suggesting the presence of sediment coarser than on the drift (see core WMF2-KSO01 in Fig.
4b); and (3) mounded continuous reflections commonly found in muddy drifts with thin silt layers
(Fig. 4). Along the Iberian slope the construction of sedimentary bodies shows the morphology of a
turbidite channel with pronounced levees north of the Valencia—and-the Blanes eCanyons (Fig. 3;
Amblas et al., 2011). A closer examination of the northern levee reveals an asymmetry in the levee
and a flat surface at the foot of the slope (interpreted as a moat), probably due to enhanced erosion
by bottom currents at the base of the slope (Fig. 3). The slopes of both Iberian and Minorca margins
are strongly eroded, as indicated by exposed bedrock at the seafloor, in agreement with the high
modelled P90 BSS (Fig. 3). Separated elongated mounded drifts develop in the zone where bottom
currents are relatively weak, with mean velocities below 7 cm-s™ and P90 BSS below 0.03 N-m™ (Figs.

2 and 3; Table 23).
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Fig. 4. (a) WMF2018-AT0006B sSub-bottom profiler image (WMF2018-AT0O006B) of the southern part

of the Minorca drift showing the convex morphology and convergent seismic reflections diagnostic of
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a contourite drift and the location of core WMF2-KS01. See Fig. 2b for location. (b) Sediment log of

core WMF2-KS01.

4.2. Ligurian Sea

Bottom currents flow northwards and westwards along the Ligurian slope during winter and summer
2013. Currents are vigorous on the continental shelf during winter (related to the MAW) with mean
bottom velocities ranging between 15 and 20 cm-s (Fig. 5a) and P90 BSS of 0.2-0.4 N-m™ (Fig. 5b).
Similar values are found related to the LIW between 600 and 800 m wd offshore Portofino, although
in this area P90 BSS is lower; between 0.1 and 0.2 N-m™ (Fig. 5b). In summer, bottom currents on the
shelf become less active, with mean velocities <7 cm-s™ (Fig. 5c) and P90 BSS <0.04 N-m™ (Fig. 5d),
but they remain important on the slope between 400 and 1000 m wd with mean velocities between
10 and 15 cm-s™ (Fig. 5¢) and P90 BSS between 0.06 and 0.13 N-m™ (Fig. 5d). Contourite features are
related to this zone of permanent vigorous currents. A separated elongated mounded drift
developed in the adjacent deeper zone with lower currents at about 900 m wd, that corresponds to
the depth of the drift crest (Fig. 6). The separated elongated mounded drift is mainly composed of
mud (Cattaneo et al., 2017). Plastered drifts have been identified by Soulet et al. (2016) and Cattaneo
et al. (2017) at 200-600 m in the zone of weaker currents located between two zones of intense
bottom currents, as indicated by the model during winter (Fig. 5a). Off Portofino, Cattaneo et al.
(2017) also identified a contourite terrace in a zone where modelled bottom currents are strong, 12-

17 cm-s* in winter (Fig. 5a,b).
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Fig. 5. Results of the MENOR model (cell size of 1.2 km) in the Ligurian Sea: during March 2013, (a)
mean speed and (b) 90th percentile of the Bottom Shear Stress (P90 BSS); during September 2013,
(c) mean speed and (d) P90 BSS. The arrows represent the current direction. The drainage network is
represented with white polygons, and contourite drifts are outlined with dashed lines (adapted from

Soulet et al., 2016 and Cattaneo et al., 2017).
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resolution and thus it does not perfectly fit with the seismic profile. The transect of the model and
the seismic profile are not represented at the same depth to avoid overlapping between the images.

See Fig. 5 for location.

4.3. Northern Tyrrhenian Sea

Bottom currents in the Corsica Trough are mainly dominated by two cyclonic gyres in the middle of
the basin; one offshore the Elba Island and one at about 42°20’N, as well as by alongslope currents
flowing northwards along the eastern margin (Pianosa Ridge) and southwards along the western
slope (Fig. 7). This circulation pattern is the direct consequence of the seafloor morphology. Bottom
currents are weak on the shelf, on the central part of the basin and on the Pianosa Ridge during
summer, as the northwards total flux through the strait halts or even reverses in this season (Fig. 7;

Vignudelli et al., 2000). Bottom-current velocities increase during summer along the Corsican slope
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due to an enhanced entrance of water from the Ligurian Sea southwards into the Corsica Trough (Fig.

7c).
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Fig. 7. Results of the MENOR model (zoom with cell size of 400 m) in the Corsica Trough: during

March 2013, (a) mean speed and (b) 90th percentile of the Bottom Shear Stress (P90 BSS); during
September 2013, (c) mean speed and (d) P90 BSS. The arrows represent the current direction near
the seafloor. Contourite drifts are outlined with dashed lines, and the Golo turbidite network is
represented with white polygons. Isobaths are represented every 100 m, starting at 100 m water

depth. Red dots in Figure 7a represent the location of piston cores.

4.3.1. Eastern slope of the Corsica Trough

Pianosa Ridge

The Pianosa Ridge presents a wide range of drift morphologies. The southern slope, located to the
south of the Pianosa Island, is mainly dominated by a plastered drift, a convex-shaped sediment
deposit that extends between 150 and 700 m wd (Figs. 8, 9 and 10). The drift is characterised by a
contourite terrace in the upper part with lower sedimentary accumulation and lower slope gradients
landward. In a seaward direction, a zone of highest sedimentary accumulation occurs on the middle
slope (Fig. 10). The hydrodynamic model shows that during the month of March 2013, bottom

currents are weaker (mean velocity of 7 cm-s™ and P90 BSS of 0.04 N-m™) in the middle and lower
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slope than in the distal part of the lower slope, foot of the slope and shelf edge (Figs. 8 and 9). In the
lower slope and below 400 m wd bottom currents are faster during the same period, with mean
velocity of 10 cm-s ™ and P90 BSS of 0.08 N-m™. Similar values are found at the shelf edge. Therefore,
the zone of the plastered drift development is in an area of weaker currents constrained upslope and
downslope by two areas of stronger currents. Besides the differences in speed, the direction of the
currents is also different in the zone of the plastered drift. At the shelf edge and at the lower slope
bottom currents flow northwards alongslope, thus presenting a higher meridional (N-S) component
of the velocity (Fig. 9). Conversely, the bottom currents show a mainly across-slope direction along
the plastered drift; west-northwestwards in the middle slope and southeastwards in the upper slope
(Fig. 9). The modelled Brunt-Vaisala frequency (a measure of oceanic stratification) in March 2013 is
higher along the contourite terrace (Fig. 8c). The terrace zone is thus potentially more affected by
internal waves. In summer, the Brunt-Vaisala frequency is only high near the sea surface; therefore,
the plastered drift would be less affected by internal waves than in winter (Fig. 8a). Bottom currents
have generated erosional features, such as moats on the lower slope, which become deeper
northwards (Miramontes et al., 2016). In plan view, these incisions are oriented north-northeast (Fig.
9a). North of the plastered drift, the separated elongated mounded drift is bounded from the shelf
by an abraded surface; a zone almost devoid of Pliocene-Quaternary sediment (Fig—8a;-Miramontes
et al., 2016). The model shows that this area is at present under the influence of weak near-bed
currents. The modelled bottom currents are consistent with the presence in this area of a thin layer
of Holocene muddy sediment, deposited directly on the Messinian surface (Miramontes et al., 2016).
Therefore, the present-day currents in this area are weak but this zone was apparently under erosive

conditions in the past due to enhanced bottom currents.
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mini Gl gun seismic reflection profiles (Sigolo-

MC069, Sigolo-MC054 and PSM2-HR033) coupled with a transect at the same position from of the

MENOR model (zoom 400 m): mean speed (main surface plot) and 90th percentile of the bottom

shear stress (bottom layer of the plot) and isopycnal lines (kg-m™) during (a) March 2013 and (b)

September 2013; and Brunt-Vaisila frequency squared (N?) during (c) March 2013 and (d) September

2013. MTD: Mass Transport Deposit. See Fig. 7a for location.
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Fig. 9. Zoom on the southern part of the Pianosa Ridge showing the results of the 400 m zoom of the

MENOR model during March 2013: (a) Morphosedimentary map showing the location of the main
depositional and erosive features, and vectors of the mean velocity current; (b) meridional
component of the mean velocity and vectors of the mean velocity current; (c) 90th percentile of the

bottom shear stress. See Fig. 7b for location.
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HR-068) and PSM2-CH-068-S sub-bottom profiler image (PSM2-CH-068) showing a plastered drift
characterised by sandy material in the upper and proximal part, and muddy sediment in the lower

and more distal part. See Fig. 7a for location.

Pianosa Island-Elba canyon

Further north, between the Pianosa Island and the Elba Canyon, the drift morphology changes
between-the-Pianosaistand-and-the-Elba-Canyon, and the slope is dominated by multicrested drifts,
which are separated from the shelf edge by an eroded zone (Fig. 11). The crests have variable
orientations. To the south there is a single NE-SW-orientated crest, while to the north the crests are
multiple and parallel, presenting a NW-SE orientation. The moats that separate these crests have an
NW-SE orientation. The variable crest orientation can be explained with the circulation pattern near
the seafloor during winter. In the central part of the basin there is a cyclonic gyre that affects the
lower slope and forms the crest with the NE-SW orientation {Fig—34}. The alongslope currents

flowing towards the north at 500-700 m wd affect the shallower part of the NE-SW-oriented crest.
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Therefore, the drift crest with a NE-SW orientation is the result of predominantly depositional
processes in a zone of slower currents between a cyclonic gyre and alongslope currents {Fig—313}. The
multicrested drifts with a NW-SE orientation are related to the alongslope bottom currents. In the
upper slope, where seismic data show a zone of erosion, the model indicates fast currents during
winter of 7-10 cm-s™ and P90 BSS of 0.05-0.1 N-m™ {Fig—31}.

Faster bottom currents at the shelf edge and at the upper slope favour the transport of sandy
material from the shelf to the upper slope and the winnowing of fine material from the latter.
Therefore, in the zone of the multicrested drifts, the grain size and the abundance of sediment layers
with coarse material decrease with depth (Fig. 12). The sandy sediment is characterised by chaotic
acoustic facies of high amplitude on seismic sub-bottom profiles (Fig. 12). Similar acoustic facies can
be found in the upper and middle part of the plastered drift (Fig. 10) and in the moat of the Minorca
drift (Fig. 4). The terrace located in the upper part of the plastered drift is mainly composed of sand,
while in the middle part the sandy layers are interbedded with muddy sediment and in the lower part

the plastered drift is mainly composed of mud (Fig. 10).

9°58’E 10°6° E 9°42°E 9°50’'E

g

% Tuscan
- Shelf
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Fig. 11. Zoom on the northern part of the Pianosa Ridge showing the results of the 400 m zoom of
the MENOR model during March 2013: (a) morphosedimentary map showing the location of the

main depositional and erosive features; (b) 90th percentile of the bottom shear stress; (c) meridional
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Fig. 12. PSM2-HR-054 mMulti-channel high resolution mini Gl gun seismic reflection profile (PSM2-
HR-054) and PSMR2-CH-854 S sub-bottom profiler image (PSM2-CH-054) showing multicrested
mounded drifts, sampled by 4 Calypso piston cores (sediment logs are shown on the left of the
figure). Note that the sediment is coarser in the upper slope. See Fig. 7a for seismic profile and core

locations.

4.3.2. Western slope of the Corsica Trough

Bottom currents flow southwards along the western margin of the Corsica Trough. Model results
show mean velocities that can be higher than 20 cm-s™ and P90 BSS higher than 0.20 N-m™ in
summer and in winter (Fig. 7). Bottom currents are weaker on the upper slope with mean velocities
of 7-12 cm=s™ and P90 SS of 0.08-0.14 N-m™ both summer and winter (Fig. 7). A small plastered drift

is located in this area of weak currents in the upper part of the slope at 160-400 m wd (Figs. 7 and 8).
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4.3.3. Seamount south of the Corsica Trough

The bottom circulation around the seamount located at the south of the Corsica Trough, off
southeast Corsica (Fig. 1) is clockwise, and the BSS can be intense in winter, reaching up to 0.05-0.1
N-m (Fig. 13). Separated elongated mounded drifts are situated at the east of the seamount at the
foot of the slope, where the results of the model show southwards bottom currents (Fig. 13). The
modelled strong currents explain the reduced sedimentation around the seamount, with a thickness

of only 20-50 m during the last 5.3 Ma (Fig. 13c).
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Fig. 13. (a) Multibeam bathymetry of a seamount in the Northern Tyrrhenian Sea with associated

contourite drifts. (b) 90th percentile of the bottom shear stress and vectors of the mean velocity
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during winter 2013 from the MENOR model. See Fig. 1 for location. (c) Multi-channel high resolution

seismic reflection profile showing two contourite drifts. MTD: Mass Transport Deposit.

4.4. Elongated pockmarks as bottom-current indicators

The morphologic asymmetry of pockmarks has been proven to be in agreement with bottom current
direction and thus to be a useful tool to support modelling of near-seafloor circulation (Schattner et
al., 2016; Picard et al., 2018). Pockmarks formed as a result of seafloor fluid expulsion are abundant
in many parts of the NW Mediterranean Sea (Riboulot et al., 2014; Cattaneo et al., 2017). The
morphology of these seafloor depressions is locally elongated parallel to the direction of dominant
bottom currents in the Ligurian and the Northern Tyrrhenian Seas (Fig. 14). In section, pockmarks
show a steep flank upstream and a flat eroded flank downstream. A mounded sediment deposit,
separated from the pockmark flanks by incisions, is observed in the central part of the pockmarks in
the Ligurian margin and in the western flank of the Corsica Trough (Fig. 14a,b). The deformation,
elongation and erosion in all the observed pockmarks is consistent with the local current direction
provided by the hydrodynamic model: bottom currents flow westwards along the slope along the
Ligurian margin (Fig. 5); southwards along the western flank of the Corsica Trough (Fig. 7a); towards
the northwest in the zone of pockmarks on the eastern flank of the Pianosa Ridge (Fig. 7a) and in the

southern part of a seamount in the Northern Tyrrhenian Sea (Fig. 13a,b).

a Ligurian Margin b West Corsica Trough ¢ East Corsica Trough d Seamount North Tyrrhenian Sea
. S : 0.3 km N

A

N

-

Fig. 14. Multibeam bathymetry of elongated pockmarks in: (a) the Ligurian Margin, (b) in the western

flank of the Corsica Trough, (c) in the eastern flank of the Corsica Trough, and (d) at the south of the
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seamount in the Northern Tyrrhenian Sea. Arrows indicate direction of dominant bottom currents.

See locations in Figs. 5d, 7b and 13a, respectively.

5. Discussion

5.1. The role of currents in sediment redistribution and sediment source of contourites

The MENOR hydrodynamic model shows the presence of two cyclonic gyres in the Corsica Trough
that affect the whole water column. One gyre is located between the latitudes 42°30’N and 42°50°N,
and the other is located between 42°N and 42°30’N (Fig. 15). The Corsica Trough is a small confined
basin where turbidity currents and contouritic processes are dominant on opposite basin flanks
(Miramontes et al., 2016). The eastern flank of the Corsica Trough (the Pianosa Ridge) is a sediment-
starved slope, with little direct sediment supply from the adjacent continental shelf, littoral zone and
continent (Roveri et al., 2002). In contrast, the western slope of the Corsica Trough is dominated by
turbidity currents (Gervais et al., 2006) originated from several turbidite systems: Golo, Tavignano
and Fiume-Orbo (Bellaiche et al., 1994). Hemipelagic and turbiditic deposits are dominant on the
western slope, whereas contouritic deposits along the eastern slope (Cattaneo et al.,, 2014;
Miramontes et al., 2016).

An open question is the possible sediment source for contouritic deposit, but given the
morphological confinement of the Corsica Trough, it is plausible that the fine sediment fraction
transported in suspension by turbidity currents may be ponded within the basin, pirated by
alongslope flows and transported by bottom currents to other zones of the basin, particularly during
sea level low-stands, when the turbidite system is active (Calves et al., 2013; Toucanne et al., 2015).
The cyclonic gyres modelled in the Corsica Trough could be a very effective mechanism of transport
for the fine sedimentary fraction carried in suspension from the western flank to the eastern flank of
the Corsica Trough. The fine-grained sediment would be finally deposited on the large muddy

contourite drifts along the Pianosa Ridge.
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The drifts of the Balearic and Ligurian Seas are probably also formed in part by sediment carried by
turbidity currents through abundant canyons and channels on the slopes (Figs. 2 and 5). Figure 3
shows two turbidite channels in the centre of the Minorca basin, the Valencia Channel and Blanes
Canyonhannels. The Valencia Channel routes a network of submarine canyons from the eastern
Iberian margin and is the main conduit of sediment transport to the deep Liguro-Provencal basin
(Amblas et al., 2011). The sediment carried by turbidity currents is probably transported by bottom
currents and deposited in the contourite systems along the Iberian and Minorca slopes. In the
Ligurian Sea, contourite drifts are located on ridges between canyons interflaves and are probably

often fed by overbanking downslope processes (Fig. 5).
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Fig. 15. Stream lines of the mean currents at three different depths: 200, 400 and 600 m calculated

with the 400 m zoom of the MENOR model during (a) March 2013 and (b) September 2013; and

bathymetry map. Note the presence of cyclonic gyres in the basin at all depths and seasons.

5.2. Seasonal variability in circulation and the impact of extreme events

The results of the hydrodynamic model show that the areas identified from seismic and bathymetric

data as foci for erosion (e.g. moats and eroded continental slopes) present P90 BSS during winter

that exceeded the critical shear stress required to erode unconsolidated mud (above 0.05 N-m;

Schaaff et al., 2002) (Table 3; Fig. 16a). In some cases P90 BSS was even higher than the critical shear

stress of erosion of fine sand (above 0.1 N-m™, according to the Shields curve; Soulsby, 1997) (Table
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3; Fig. 16a). Durrieu de Madron et al. (2017) observed local sediment resuspension during the major
winter open-ocean convection events and estimated that the critical BSS of fine and medium silts in
the Liguro-Provencal basin ranges between the 0.04 and 0.13 N-m™. In contrast, during summer the
areas identified as foci for erosion typically present much lower P90 BSS and thus may not always be
under erosive conditions (Table 3; Fig. 16a). If we consider acceptable the assumption that winter
2013 conditions could be considered as a proxy for oceanographic conditions during cold periods
(glaciations), then the eroded features observed in the geophysical data could be the result of
erosion due to more vigorous bottom currents during colder climatic periods. Even if sediment is
deposited during warm climatic periods in these areas (when shear stresses are lower), it is probably

removed during cold climatic periods, resulting in net erosion or in a lower sediment accumulation.

Zone Environment Mean spee:_i1 90" percenl:ile_2 Mean speed_1 90" percentile »
winter (cmss™) BSS-winter (N-m™) summer (cmss™) BSS-summer (N-m™)
1 Minorca moat 10 0.10 8-9 0.03-0.06
1 Minorca slope 17-24 0.20-0.34 14-20 0.10-0.20
1 Minorca drift 5-7 0.02-0.03 6-7 0.01-0.02
1 Iberian moat 11-13 0.07-0.1 5-6 0.02
1 Iberian slope 18-20 0.20-0.30 8-9 0.03-0.04
1 Iberian reworked levee 5-7 0.02-0.03 3-4 0.005-0.01
2 Portofino moat 15-17 0.14-0.18 11-12 0.06-0.08
2 Portofino drift 9-10 0.05-0.07 5-7 0.017-0.02
3 Pianosa moats 8-10 0.05 5 0.02-0.04
3 Shelf edge-plastered drift 10-12 0.05-0.13 4 0.01
3 Shelf edge-offshore Pianosa Island 13-17 0.13-0.23 4-6 0.02-0.04
3 Plastered drift 6-8 0.03-0.05 4 0.01
3 Separated mounded drift 7-10 0.05-0.07 5-7 0.02-0.03
3 Multicrested drift 7-11 0.05-0.10 4-8 0.02-0.05
3 Upper slope multicrested drift 7-9 0.04-0.07 4-5 0.01
3 Foot of the slope north Elba Canyon 10 0.1 6-7 0.03-0.05

Table 3. Mean speed and 90th percentile of the Bottom Shear Stress (P90 BSS) computed during
winter and summer 2013 in the three study areas: (1) Balearic Sea; (2) Ligurian Sea; (3) Northern
Tyrrhenian Sea. The areas classified as depositional environments (according to geophysical data) are

in grey colour, while the erosive environments are in white colour.

The Minorca slope is subject to vigorous currents, between 14 and 24 cm-s™, that are capable of
eroding sand continuously (Table 3; Figs. 2, 3, 16a). This is supported, over longer time scales, by
geophysical evidence of truncations on the slope (Figs. 3 and 4a). Zones of deposition (identified

from geophysical data) are only found in areas of lower current velocity, but the unconsolidated mud
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can also be eroded during enhanced bottom circulation during cold periods (Fig. 16b). Overall,
sediment can be deposited and eroded several times before being definitively incorporated into the
sediment record. Features such as contourite moats would likely have been continuously under
erosion during sea level low-stands. A similar approach has been proposed for the Gulf of Cadiz
(Llave et al., 2006, 2007; Hernandez-Molina et al., 2006, 2014) and the South Atlantic (Preu et al.,
2013). Thran et al. (2018) also deduced in a global scale that contourite deposition is caused by high-

energy intermittent events.

a Erosion zones b Deposition zones
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Fig. 16. Plot of the mean speed and 90th percentile of the Bottom Shear Stress (BSS) calculated with
the MENOR model for the period of winter and summer 2013 in the zones previously classified
according the geophysical data as zones of erosion or sediment deposition, detailed in Table 3. The
critical shear stress for erosion is based on a critical BSS for unconsolidated mud ranging between
0.02 and 0.05 N-m™ (Schaff et al., 2002) and a critical BSS for fine sand of 0.1 N-m™ according to the

Shields curve (Soulsby, 1997).
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5.3. Conceptual implications for continental margin morphology

Adams and Schlager (2000) and O’Grady et al. (2000) proposed a classification of modern margins
and observed that a sigmoidal slope profile is the most common margin morphology (about 50% of
the studied margins). Sigmoidal margins consist of a convex upper part and a concave lower part that
is below the point of maximum slope (O’Grady et al., 2000). This type of shape is characteristic of
margins with plastered drifts along continental slopes (Figs. 10; 17; Faugueres et al., 1999; Rebesco
et al., 2014; Principaud et al.,, 2015; Tournadour et al., 2015). Multiple contouritic terraces and
plastered drifts can be associated at different depths in a margin, such as in the Argentinean and
Uruguayan margins (Preu et al., 2013; Hernandez-Molina et al., 2016), corresponding to the stepped
margin in the classification of O’Grady et al. (2000). Deep bottom currents can thus have a very
important influence in the morphology of continental margins at large scale, as proposed by Mosher
et al. (2017), and they should be taken into account in the analysis of the origin of continental slope
curvature.

In the NW Mediterranean Sea, three main types of margin morphology can develop, depending on
the amount of sediment supply and on the distribution of the bottom-current velocities (Fig. 17). In
all the described zones, the whole water column flows in the same direction. We identified: Type 1) a
starved margin with an eroded continental slope and a separated elongated mounded drift at the
foot of the slope; Type 2) a margin with direct sediment supply and a homogeneous bottom-current
distribution, resulting in smooth regular seafloor; Type 3) a starved margin with heterogeneous
bottom current distribution, resulting in the formation of a plastered drift on the slope and a
separated elongated mounded drift at the foot of the slope. This classification attempts to relate
bottom-current characteristics to sediment drift morphology and configuration in order to
diagnostically identify current regime for other contourite features worldwide.

Type 1: A separated elongated mounded drift develops at the foot of the slope when bottom
currents are vigorous along the lower slope and they become weaker basinwards, allowing the

formation of a drift. Enhanced bottom currents at the foot of the slope generate a moat and may
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laterally induce the formation of deposits with a mounded shape, such as in the Minorca slope (Fig.
3). This particular setting would be characteristic of starved margins with little direct sediment supply
from the mainland and the shelf, but with lateral supply of the fine-grained sediment by the currents.
Moreover, the action of vigorous bottom currents on the slope can easily erode unconsolidated
sediment and prevent sediment deposition in this area (Fig. 17a). Contourite features formed at the
seamount of the Northern Tyrrhenian Sea are developed in similar conditions. They are related to
escarpments with little sediment accumulation on the slope, and the drifts grow in a zone of lower
bottom currents along the foot of the slope (Fig. 13). These drifts have a small size compared to the
Minorca drift because they are related to obstacles and confined by seafloor irregularities, while in
the case of Minorca the contourites develop all along the margin. Faugeres et al. (1999) and Rebesco
et al. (2014) suggested that separated elongated mounded drifts are associated with steep slopes,
generally located on the lower slope and are formed due to a high current speed gradient, in
agreement with our observations and modelled currents.

Type 2: In a slope where sediment is directly supplied by gravitational processes and is also affected
by coeval active and strong bottom currents, the resulting morphology is a smooth regular seafloor
with a progradational sedimentary stacking pattern, such as the western flank of the Corsica Trough
(Fig. 8). Dominant downslope processes and a high sedimentation rate could mask the influence of
bottom currents. The most important factor in the generation of mounded sedimentary
morphologies is the heterogeneous distribution of bottom currents, since the sediment would
preferentially accumulate in the zone of weak currents. If currents are even across the slope, either
weak or vigorous, there would be no zone of preferential accumulation and thus no mounded
morphology (Fig. 17b). This type of gently sloped margins is typical of regions with high sediment
input (O’Grady et al., 2000).

Type 3: Well-developed plastered drifts can be found on starved margins with heterogeneous
bottom-current distribution. Plastered drifts are typically convex-shaped sedimentary bodies that

have an oval shape in plan view, like in the Pianosa Ridge (Figs. 9 and 10). Here, they develop in a
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zone of weak bottom currents confined between two zones of faster bottom currents in the upper
and in the distal part of the lower slope, resulting in the formation of a terrace upslope and a moat
downslope (Fig. 17c). Moreover, the direction of bottom currents on the middle of the plastered drift
is mainly across slope, favouring the sediment accumulation in this area. Related to a zone of slow
bottom currents at the foot of the slope, a separated elongated mounded drift can develop in a
similar way to Type 1 features (Fig. 17a).

The association of plastered drift in the slope and separated elongated mounded drift at the foot of
the slope has been observed in other settings, such as the Alboran Sea (Ercilla et al., 2016) and the
Uruguayan margin (Hernandez-Molina et al., 2016). Plastered drifts with a convex shape can cover
most of the slope and strongly influence the slope morphology (Principaud et al., 2015; Tournadour
et al.,, 2015; Ercilla et al., 2016; Miramontes et al., 2016). In the study area, the formation of
plastered drifts can be explained by the distribution of geostrophic currents on the slope (Fig. 17c):
strong bottom currents in the upper and lower part of the plastered drifts prevent sediment
deposition in these areas, while sedimentation mainly occurs in the central part of the plastered
drifts where bottom currents are slow (Fig. 9). If a pycnocline is located on the terrace (as modelled
in the Pianosa Ridge, Fig. 8c), the action of internal waves could enhance sediment erosion on the

terrace, at the top of the plastered drift (Hernandez-Molina et al., 2009; Preu et al., 2013).
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Type 2 Type 3 Starved margin: strong-weak-strong-weak
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—
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on the slope

Ex: Minorca drift

Ex: Western Corsica
Trough

Ex: Eastern Corsica
Trough (Pianosa Ridge)

Fig. 17. 3D schematics showing three different types of continental slopes: (a) Type 1: a starved
margin with an eroded continental slope and separated elongated mounded drift at the foot of the
slope; (b) Type 2: a continental slope with direct sediment supply and a homogeneous bottom-
current distribution; (c) Type 3: a starved continental slope with heterogeneous bottom current
distribution, resulting in the formation of a plastered drift on the slope and a separated elongated
mounded drift at the foot of the slope. The arrows indicate bottom current direction and intensity

according to their size.

6. Conclusions

In spite of the potentially large gap in the chronological range of investigation - namely days to
decades for physical oceanography and years to millions of years for sedimentology - we observe
close agreement between the results of hydrodynamic modelling focussed at the seafloor and the
distribution of contourite drifts and their morphological elements in three sectors of the

Mediterranean Sea. The main conclusions of this study can be summarised as follows:
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(1) The results of the MARS3D hydrodynamic model in the MENOR configuration are consistent with
the morphology of contourites observed in three areas of the NW Mediterranean Sea: the Balearic
Sea, the Ligurian Sea and the Northern Tyrrhenian Sea.

(2) By coupling the model results of winter 2013 and summer 2013 with the geophysical and
sedimentological data, we suggest that events of more intense circulation are controlling the
formation and evolution of moats and erosive features on the seafloor. During warm climatic periods
(characterised by weak currents), fine-grained sediment could be deposited in some of these areas,
but during cold climatic periods the enhanced bottom currents would generate erosion, resulting in
net erosion. Therefore, the preservation potential of deposits along these erosional features is very
low.

(3) The presence of gyres in confined basins with asymmetric sediment input causes the
redistribution of sediment from the margin with a direct sediment supply to the opposite starved
margin.

(4) The development of mounded sedimentary morphologies is favoured by heterogeneous bottom
current distributions. The plastered drifts analysed in this study are formed in zones of relative low
current velocity, mainly with an across-slope (oblique and/or perpendicular) direction, confined
between zones of high alongslope current velocity. These morphologies are commonly observed in
starved margins not affected by frequent downslope gravity flows. Separated elongated mounded
drifts are formed in zones of low bottom currents at the foot of the slope associated with fast
currents on the slope. In contrast, when bottom currents are homogeneous across the margin (either
fast or slow), no mounded shapes can develop and the seafloor regularly deepens toward the basin.
These results provide a high resolution physical oceanographic framework to improve our
understanding of palaeoceanographic conditions for the formation of contourite depositional
systems. Our results provide useful guidance for the interpretation of flow regimes and sedimentary
facies distribution based on the seafloor morphology found in other bottom-current dominated

deep-marine settings. Further studies and new numerical modelling should be performed in other
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areas for determining more conceptual implications, especially about the interplay of different
oceanographic processes in the formation of contourite features, and about the effects of sea-level

fluctuations on bottom currents.
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