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SUMMARY 26 

1. The use of data documenting how species’ distributions have changed over time is crucial for 27 

testing how well correlative species distribution models (SDMs) predict species’ range 28 

changes. So far, however, little attention has been given to developing a reliable 29 

methodological framework for using such data.  30 

2. We develop a new tool – the temporal validation (TV) plot  – specifically aimed at making 31 

use of species’ distribution records at two times for a comprehensive assessment of the 32 

prediction accuracy of SDMs over time.  33 

3. We extend existing presence-absence calibration plots to make use of distribution records 34 

from two time periods. TV plots visualise the agreement between change in modelled 35 

probabilities of presence and the probability of observing sites gained or lost between time 36 

periods. We then present three measures of prediction accuracy that can be easily calculated 37 

from TV plots.  38 

4. We present our methodological framework using a virtual species in a simplified landscape, 39 

and then provide a real-world case study using distribution records for two species of 40 

breeding birds from two time periods of intensive recording effort across Great Britain. 41 

5. Together with existing approaches, TV plots and their associated measures offer a simple 42 

tool for testing of how well SDMs model species’ observed range changes – perhaps the best 43 

way available to assess their ability to predict likely future changes. 44 

 45 

Keywords: species distribution models, temporal validation, prediction accuracy, range change, 46 

calibration plots, historic surveys 47 

 48 
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INTRODUCTION 49 

Correlative species distribution models (SDMs) are increasingly used to project likely future 50 

changes in species’ distributions under ongoing global environmental change (Elith & Leathwick 51 

2009). As a result, assessing how well these approaches can predict species’ geographic range 52 

changes over time is of increasing importance.  53 

 54 

Repeated surveys that document species’ distributions at multiple time periods represent 55 

invaluable opportunities for testing SDM predictions over time (Araújo et al. 2005a; b; Kharouba 56 

et al. 2009; Tingley et al. 2009; Rubidge et al. 2010; Dobrowski et al. 2011; Rapacciuolo et al. 57 

2012; Smith et al. 2013). A growing number of temporal datasets are emerging from efforts to 58 

rescue and digitize natural history museum collections and other historical data sources such as 59 

field notes and photographs (Tingley & Beissinger 2009; Pyke & Ehrlich 2010; Drew 2011). So 60 

far, however, little attention has been given to how these data should best be used for testing the 61 

prediction accuracy of SDMs over time. In this paper, we develop a new type of diagnostic plot, 62 

the temporal validation (TV) plot, and an associated set of measures, which make use of 63 

distribution data at two time periods within a given area to evaluate how well SDMs can predict 64 

species’ range changes over time. 65 

 66 

Although tests of SDM predictions through time are still relatively rare, existing studies have 67 

primarily tested how well models built using species distribution data from a first time period 68 

(i.e., calibration data) discriminate between the species’ observed presences and absences in a 69 

second time period (i.e., validation data) using common measures based on a single probability 70 

threshold (e.g., Cohen’s Kappa, sensitivity, specificity; Araújo et al. 2005a; Rapacciuolo et al. 71 
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2012; Smith et al. 2013) or a range of possible thresholds (e.g., AUC; Kharouba et al. 2009; 72 

Rubidge et al. 2010; Dobrowski et al. 2011; Smith et al. 2013). Such tests of SDM predictions 73 

through time are generally used to estimate how well models are likely to predict species’ range 74 

changes in the future (Araújo et al. 2005a; b; Kharouba et al. 2009; Tingley et al. 2009; Rubidge 75 

et al. 2010; Dobrowski et al. 2011; Rapacciuolo et al. 2012; Smith et al. 2013). In this context, 76 

however, this widely-used approach to temporal validation suffers from two main issues.  77 

 78 

The first issue is that converting continuous probabilities of presence to binary presence-absence 79 

predictions using a single or multiple thresholds may not alone provide an exhaustive estimate of 80 

model prediction accuracy over time. The practice ignores a lot of information generated by the 81 

models: all predicted probabilities above the chosen threshold are considered equal, as are all 82 

those below, however near or far they are from it. As a result, slight but important changes in the 83 

environment may not be captured by binary-converted predictions and prediction accuracy 84 

measures based on these converted model predictions may wrongly infer range stability despite 85 

the probability of presence being predicted to change.  86 

 87 

The second issue is that using calibration and validation datasets collected in different time 88 

periods across the same region does not enable fully independent model validation. This is 89 

because many modelled factors that correlate with a species’ distribution across that region will 90 

remain unchanged through the entire study period. As a result, models with high explanatory 91 

power in one time period are likely to retain that power in another time period across areas where 92 

both observations and model predictions indicate no change in the species’ range, regardless of 93 

whether the models have captured fundamental drivers of range change over time (Araújo et al. 94 
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2005a; Rapacciuolo et al. 2012). Importantly, spurious species-environment correlations 95 

identified during model calibration may not be revealed by temporal validation across these 96 

unchanged areas. Therefore, measuring prediction accuracy over the entire study area in a second 97 

time period – including unchanged areas – may be a misleading measure of how well models are 98 

likely to predict to a third time period (e.g., future environmental scenario). This approach should 99 

be complemented with measures that focus on how well models predict to areas where species’ 100 

range changes have actually been observed and/or predicted (Rapacciuolo et al. 2012). The issue 101 

of examining spatial processes of change with global measures that do not incorporate spatial 102 

variation in prediction accuracy within the study region (e.g., Kappa) has been the subject of 103 

much scrutiny in the remote-sensing and map comparison literatures (Csillag & Boots 2005; 104 

Pontius & Millones 2011; Robertson et al. 2014), yet it has been rarely considered in the SDM 105 

literature.  106 

 107 

TV plots aim to overcome both issues with existing approaches. First, we extend the method of 108 

presence-absence calibration plots – originally developed in the context of statistical medicine 109 

(Miller et al. 1991; Harrell et al. 1996; Harrell 2001) but repeatedly used to quantify the 110 

calibration of SDMs (Pearce & Ferrier 2000; Boyce et al. 2002; Hirzel et al. 2006; Phillips & 111 

Elith 2010) – for use with empirical distribution and environmental data from two time periods. 112 

Presence-absence calibration plots fit observed presence-absence directly as a function of 113 

continuous modelled probabilities, without converting to binary predictions based on any 114 

threshold (Phillips & Elith 2010). Thus, our method makes full use of the information generated 115 

by the modelling process without ignoring the probabilistic nature of SDM predictions. Second, 116 

we focus on assessing model performance only on grid cells where either or both observed data 117 
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and model predictions indicate range change over time, whilst disregarding model performance 118 

on grid cells where both observations and predictions indicate no range change. TV plots model 119 

how well changes in modelled probability of presence between time periods reflect species’ 120 

observed gains and losses separately, thus incorporating spatial variation in prediction accuracy 121 

within the study area. Building on the existing literature, we then present three measures of the 122 

agreement between modelled and observed changes that can be easily calculated from TV plots – 123 

AccTV, CorTV, and BiasTV. Together with existing approaches to temporal validation, these 124 

measures provide a comprehensive assessment of how well a model predicts observed range 125 

changes and, thus, the fullest available picture of how likely the model is to predict future 126 

changes. We present our methodological framework using a virtual species in a simplified 127 

landscape, then provide a real-world case study using distribution records for two breeding bird 128 

species from two time periods of intensive recording effort across Great Britain (Sharrock 1976; 129 

Gibbons et al. 1993).  130 

 131 

VIRTUAL CASE STUDY 132 

Simulated environment 133 

We consider an artificial landscape of 30 x 30 grid cells and generate environmental variation 134 

within this grid in an initial time period t using three ‘climate’ variables – temperature, 135 

precipitation and covar – each taking values in the range 0–1. Temperature and covar both 136 

exhibit a linear latitudinal gradient and are highly intercorrelated (Pearson’s r = 0.88), whilst 137 

precipitation exhibits a linear longitudinal gradient (Fig. 1). We then simulate change in the 138 

environment in a second time period t + 1 by updating the values of the three environmental 139 

variables across the landscape. We specify alternative change scenarios for each variable – mean 140 
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temperature increase, mean precipitation decrease and no change in mean covar – by sampling 141 

change values from three different normal distributions (temperature: mean ± standard deviation 142 

= 0.3 ± 0.25; precipitation: -0.15 ± 0.5; covar: 0 ± 0.5) and summing sampled values with initial 143 

environmental values (Fig. S1).  144 

 145 

Environmental functional relationships  146 

We simulate the distribution of a simple virtual species across this landscape by specifying four 147 

alternative functional relationships between the species’ probability of presence and the 148 

environment – a true functional relationship and three potential misspecifications of the truth 149 

(Fig. 1). This approach, based on simulations by Phillips & Elith (2010) and Pagel & Schurr 150 

(2012), enables us to quantify the effects of alternative model misspecifications on how well 151 

models predict the species’ true distribution over time. First, we specify the true probability of 152 

presence for our virtual species conditional on temperature and precipitation only, but not covar, 153 

as: 0.5 x temperature + 0.5 x precipitation. Thus, the variable covar does not bear any functional 154 

relationship with the species’ probability of presence, although it significantly covaries with the 155 

species’ presence-absence because of its strong correlation with temperature. We then consider 156 

three potential models of our virtual species’ probability of presence, which we parameterise 157 

statistically based on subsets of the three environmental variables (see Fig. 1). 158 

1) The Incomplete model estimates probability of presence conditional only on temperature, 159 

ignoring precipitation, as: 0.26 + 0.51 x temperature. This model may arise if relevant 160 

predictors – in this case precipitation – were unavailable, overlooked, or wrongly 161 

excluded during model selection.  162 
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2) The Collinear model estimates the species’ probability of presence conditional on 163 

precipitation and covar, ignoring temperature, as: 0.03 + 0.5 x precipitation + 0.5 x covar. 164 

This model may arise if irrelevant predictors are naively entered into a model selection 165 

algorithm and erroneously selected through their apparent correlation with probability of 166 

presence. 167 

3) The Incomplete and Collinear model estimates the probability of presence conditional 168 

only on covar, ignoring the true predictors temperature and precipitation, as: 0.28 + 0.52 169 

x covar. This model combines both types of misspecification included in the previous two 170 

models: it is incomplete, as it only considers a single variable instead of two, and 171 

collinear, as it includes a variable correlated but not functionally-related to the species’ 172 

true probability of presence. 173 

 174 

We predict the probability of presence of our virtual species across the landscape in period t and 175 

t + 1 based on each of the four environmental functional relationships. To define the true 176 

presence-absence of the species across the landscape in both time periods, we convert each grid 177 

square’s probability of presence to either presence or absence by conducting a Bernoulli trial 178 

according to the species’ true probability of presence in each grid square.  179 

 180 

Temporal validation plots 181 

We extend the approach of presence-absence calibration plots (reviewed by Pearce & Ferrier 182 

2000; Boyce et al. 2002; Hirzel et al. 2006; Phillips & Elith 2010 in the context of SDMs) to 183 

make use of data from two time periods and develop a new plot, the temporal validation (TV) 184 

plot, for assessing the prediction accuracy of SDMs over time. TV plots show the agreement 185 
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between changes in observed presence-absence and changes in modelled probability of presence 186 

between t and t + 1. This is done in three steps: (i) calculating observed and modelled changes, 187 

(ii) estimating gain and loss functions, and (iii) combining gain and loss functions to visualise the 188 

agreement between observed and modelled changes.  189 

 190 

Step 1: Calculating observed and modelled changes 191 

First, the species’ presence-absence (y) across the study area is compared between t and t + 1 to 192 

identify observed gains (instances where yt = 0 and yt + 1 = 1), losses (yt = 1 and yt + 1 = 0), stable 193 

presences (yt = 1 and yt + 1 = 1), and stable absences (yt = 0 and yt + 1 = 0). Figure 2a shows 194 

observed changes in the presence-absence of our virtual species between t and t + 1. Overall, the 195 

species’ presence across the landscape has increased: the species has experienced most gains in 196 

areas that have become warm enough for the species to expand into and have also remained wet 197 

enough for it to occur despite overall decrease in precipitation (i.e., northwest of the landscape). 198 

Additionally, there have been localised gains and losses across the entire landscape.  199 

 200 

Second, values of change in modelled probability of presence (Δm) are calculated by subtracting 201 

modelled probability of presence in t (mt) from modelled probability of presence in t + 1 (mt+ 1). 202 

Importantly, Δm values are not linearly related to the probability that gains or losses are actually 203 

observed, even if we assume that a model has captured perfectly a species’ environmental 204 

functional relationship. For example, consider two absence sites with different mt: for an equal 205 

increase in modelled probability of presence in t + 1 (Δm > 0), the site with a higher mt will 206 

exhibit an inherently higher probability of gain because it already presents a higher probability of 207 

finding the species. Similarly, for equal decreases in modelled probability of presence (Δm < 0), 208 
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a presence site with a higher initial probability of absence (1 - mt) has an inherently higher 209 

probability of loss. Therefore, weighted, instead of absolute, changes in modelled probability of 210 

presence (Δmweighted) are used in TV plots. Δmweighted are calculated by weighting Δm values by mt, 211 

using the following function: 212 

,			
1

, 0

						0,												 	 0

				
	
,							 	 0	

 (eqn 1)

Figure 2b shows the species’ weighted changes in modelled probability of presence between t 213 

and t + 1. Most increases are predicted in the west and most decreases are predicted in the 214 

northeast of the simulated landscape.  215 

 216 

Step 2: Estimating gain and loss functions 217 

Two separate functions – a gain and a loss function – are fitted to subsets of the values calculated 218 

in step 1. Gain and loss functions (blue and red curves of Fig. 2c, respectively) indicate the 219 

probability that gains and losses, respectively, are observed for any given value of Δmweighted by 220 

interpolating from observed instances. Each of these two functions is generated in a manner 221 

analogous to the presence-absence calibration plots of Phillips & Elith (2010): binary 1-0 222 

observations are statistically modelled as a function of continuous modelled probabilities using 223 

natural splines (Ridgeway 2013). For the gain function, the binary response is calculated by 224 

contrasting observed gains (1; the blue tick marks in the top rug plot of Fig. 2c) with observed 225 

losses and stable absences (0; the grey tick marks in the top rug plot of Fig. 2c). Notably, stable 226 

presences are excluded from the estimation of gain functions since they are uninformative of 227 

how well a model predicts change: although Δmweighted may well increase at these sites, a species 228 
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cannot gain sites it already occupies. Similarly, for the loss function, the binary response is 229 

calculated by contrasting observed losses (1; the red tick marks in the bottom rug plot of Fig. 2c) 230 

with gains and stable presences (0; the grey tick marks in the bottom rug plot of Fig. 2c). Stable 231 

absences are not used in the estimation of loss functions since a species cannot lose sites from 232 

which it is already absent. For both functions, responses are modelled as a function of values of 233 

Δmweighted at each site corresponding to a response value. In order to aid visualisation, the loss 234 

function is multiplied by -1 before being plotted in TV plots, so that it appears in the negative 235 

range of the y-axis and can be better contrasted to the gain function (Fig. 2c).  236 

 237 

Step 3: Combining gain and loss functions to visualise the agreement between observed and 238 

modelled changes 239 

A model that perfectly predicts range change through time should predict a probability of gain of 240 

1 and a probability of loss of 0 in areas where there are no losses and all possible gains are made. 241 

Similarly, it should predict a probability of gain of 0 and a probability of loss of 1 where no gains 242 

are made and every presence is lost. To verify these expectations, gain and loss functions are 243 

combined into a temporal validation curve that quantifies how well a model predicts the 244 

probability of observing a given overall change in presence-absence between t and t + 1. For any 245 

given Δmweighted, the temporal validation curve (thick black curve of Fig. 2c) equals the gain 246 

function minus the loss function. Note that, because probabilities of loss are plotted with a 247 

negative sign in TV plots, the model temporal validation curve is actually the sum, not the 248 

difference, of plotted gain and loss functions. Using this approach, an ideal model results in an 249 

ideal straight line going from (-1,-1) – where every presence is lost and there are no gains – to (1, 250 

1) – where every empty cell is filled and no cell is lost (dashed line of Fig. 2c). The ideal line 251 
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also passes through the origin (0, 0) – where probability of observing gains and probability of 252 

observing losses are equal. It should be noted that, even for an ideal model, the probabilities of 253 

observing gains and losses at (0, 0) are not necessarily zero: some grid cells may be gained or 254 

lost due to stochastic population processes, even after accounting for all deterministic 255 

environmental processes.  256 

 257 

We generate TV plots of the true functional response (Fig. 2c) and the three models (Fig. 2d-f); 258 

these visualise the ability of each alternative functional response to model change in the observed 259 

distribution of our virtual species between t and t + 1. The modelled temporal validation curve 260 

can be visually compared to the ideal expectation using ± 2 standard error confidence intervals 261 

(orange lines of Fig. 2c). Predictions from the true functional response show near-perfect 262 

agreement with observed changes in presence-absence: the ideal curve almost entirely falls 263 

within the ± 2 standard error confidence intervals of the model curve and the model curve 264 

approaches both (-1, -1) and (1, 1) (Fig. 2c). On the other hand, TV plots of all three alternative 265 

models of the species’ distribution indicate some level of misprediction (Fig. 2d-f). In particular, 266 

the Incomplete and Collinear model appears to lack any understanding of the species’ drivers of 267 

range change: gains and losses are observed with comparable frequencies across the entire range 268 

of Δmweighted (Fig. 2f).  269 

 270 

Prediction accuracy measures from TV plots 271 

Visual inspection of TV plots is useful and may be all that is needed for a number of 272 

applications, but often repeatable and quantitative measures of predictive accuracy through time 273 

are required. This is especially true in studies where many models are used for comparative 274 
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purposes and visual inspection is impractical (e.g., Araújo et al. 2005a; Kharouba et al. 2009; 275 

Dobrowski et al. 2011; Rapacciuolo et al. 2012; Smith et al. 2013). How can a model’s 276 

prediction accuracy be calculated from TV plots? In the context of SDMs, a number of measures 277 

have been generated from presence-absence calibration plots; however, few of them offer a 278 

comprehensive assessment, as they generally either assume linear model curves (e.g. calibration 279 

bias and spread; Pearce & Ferrier 2000) or focus on a single aspect of model calibration whilst 280 

ignoring others (e.g., point biserial correlation; Phillips & Elith 2010). Here, we build on the 281 

work of Harrell (2001), Pearce & Ferrier (2000) and Phillips & Elith (2010), but also the work of 282 

Boyce et al. (2002) and Hirzel et al. (2006), to develop three simple measures of the agreement 283 

between the model and the ideal temporal validation curves – AccTV, CorTV, and BiasTV. 284 

Together, these measures offer a comprehensive assessment of how well a model predicts range 285 

change through time. Figure 3 provides visual representations of the three measures, exemplified 286 

using the TV plot of the Collinear model of our virtual species. 287 

 288 

The first measure, temporal validation accuracy (AccTV; Fig. 3a), is a measure of the weighted 289 

mean distance between the ideal and model temporal validation curves at each observation, 290 

subtracted from 1. AccTV can be calculated using the following equation:   291 

where ymodel and yideal are the y values of the model curve and ideal curve, respectively, at each 292 

observed site q, and Δmweighted are the weighted changes in modelled probability of presence at 293 

each site q. We use a weighted mean to give more importance to large changes in modelled 294 

probability of presence and less importance to minor changes, so as to provide a more rigorous 295 

Acc 	1 	
∑ , , ,

∑ ,
 (eqn 2)
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measure of agreement when substantial changes are predicted. AccTV ranges from a minimum 296 

value of 0 – indicating a model whose predictions are on average as distant as possible from 297 

probabilities of observing change – to a maximum value of 1 – indicating a perfectly-predictive 298 

model whose weighted changes in modelled probability of presence can be taken at face value.  299 

 300 

The second measure, temporal validation correlation (CorTV; Fig. 3b), is the weighted Pearson’s 301 

r correlation coefficient between ymodel  and yideal at each observed site q, whereby the weights 302 

equal Δmweighted, q. CorTV can be calculated using the following equation:  303 

where cov is the covariance. Our CorTV measure is similar to the point biserial correlation (COR; 304 

Elith et al. 2006; Phillips & Elith 2010), except that it correlates predicted probabilities with 305 

continuous probability values fitted using natural splines, instead of observed binary values; for 306 

this reason, CorTV values are expected to be considerably higher than corresponding COR values. 307 

 308 

The third measure, temporal validation bias (BiasTV; Fig. 3c), quantifies the systematic deviation 309 

between the ideal and the model curves. Unlike AccTV and CorTV, BiasTV is not simply calculated 310 

at each observed site. Instead, it is estimated over the entire interval between minimum and 311 

maximum Δmweighted values – respectively min(Δmweighted) and max(Δmweighted) – using definite 312 

integrals evaluating the area between the ideal and model functions and the x-axis. BiasTV can be 313 

calculated as:  314 

Cor 	
, ; ,

, ; 	 , , ; ,
 (eqn 3)
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 (eqn 4)

A model has a BiasTV of 0 if it perfectly predicts overall change in the probability of observing a 315 

species across the entire range of Δmweighted. A negative BiasTV indicates the model tends to 316 

underestimate species’ overall presence across the landscape in t + 1 by underestimating 317 

observed gains and/or overestimating observed losses. A positive BiasTV indicates the model 318 

tends to overestimate the species’ overall presence in t + 1 by overestimating observed gains 319 

and/or underestimating observed losses. Importantly, a model may have a BiasTV of 0 despite 320 

substantial deviations from the ideal curve at given Δmweighted values. This may occur if 321 

overestimates and underestimates of gains are balanced by equal overestimates and 322 

underestimates of losses, respectively, and overall change in modelled probability averages out 323 

to overall probability of observing change in the species’ presence.  324 

 325 

Table 1 shows how the three measures derived from TV plots vary across the four environmental 326 

functional responses of our virtual species. Unsurprisingly, the true environmental functional 327 

response has the highest AccTV and CorTV – both close to 1 – and the lowest BiasTV – nearly 0. 328 

Amongst the three models, the Incomplete model appears to be the best, with a similar CorTV to 329 

the Truth but a lower AccTV and a large negative BiasTV, whilst the Incomplete and Collinear 330 

model is clearly the least able to predict observed change, with a very low AccTV and negative 331 

CorTV and BiasTV values. The Collinear model has intermediate prediction accuracy, with a 332 

CorTV comparable to the Truth but a lower AccTV than the Incomplete model.  333 

 334 

What aspects of species and their environment affect measures from TV plots? 335 
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The calculation of many commonly-used measures of SDM prediction accuracy is affected by 336 

the prevalence (i.e., proportion of observed presences) of the modelled species within the study 337 

area (McPherson et al. 2004; Santika 2011; Lawson et al. 2014). In addition, there are 338 

indications that the magnitude and extent of environmental change may also affect the 339 

assessment of SDM prediction accuracy over time (Fitzpatrick & Hargrove 2009; Elith et al. 340 

2010). For these reasons, we carried out a sensitivity analysis to test whether temporal prediction 341 

accuracy measures from TV plots are sensitive to various aspects of our virtual species and 342 

simplified landscape. We investigated the effect of varying three main factors: species’ initial 343 

prevalence (i.e., number of presences over total number of grid cells), magnitude of 344 

environmental change and spatial extent over which environmental change takes place. For the 345 

purposes of this sensitivity analysis, we used the same four functional responses and initial 346 

environmental values we used in our main virtual case study (see Fig. 1). However, we 347 

simplified our environmental change scenario by sampling values of change from a normal 348 

distribution with a mean of 0 and a standard deviation of 0.4 for all three variables, unless 349 

otherwise specified. First, given the linear relationship between our species’ probability of 350 

presence and both temperature and precipitation, we varied the species’ initial prevalence across 351 

the landscape by progressively increasing initial values of temperature and precipitation, with 352 

initial covar values varying accordingly (25 alternative scenarios). Second, we varied the 353 

magnitude of environmental change between time periods by progressively increasing the 354 

standard deviation – from 0.01 to 1 – of the normal distribution from which we sampled values 355 

of environmental change, concurrently for all three variables (25 alternative scenarios). Finally, 356 

we varied the spatial extent over which environmental change occurred by varying the extent of 357 

the grid over which we sampled environmental change – from a 1 x 1 grid to the entire 30 x 30 358 
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grid (30 alternative scenarios). We ran 100 repeats of each alternative scenario for each factor 359 

and present mean values of prediction accuracy measures across those 100 repeats.  360 

 361 

Figure 4 shows the effect of varying species’ initial prevalence, magnitude and spatial extent of 362 

environmental change on temporal validation for the four alternative functional responses of our 363 

virtual species. Overall, the three prediction accuracy measures derived from TV plots were not 364 

particularly sensitive to any of the three factors: the four alternative functional responses 365 

generally maintained their relative rank and values of each measure remained relatively stable 366 

across most alternative environmental scenarios of each factor. However, there were two main 367 

noteworthy results. First, all models had higher AccTV than expected compared to the truth at 368 

particularly low magnitudes and extents of environmental change (Fig. 4a, second and third 369 

columns), suggesting that the reliability of certain measures from TV plots may increase with the 370 

amount of environmental change experienced across the study area. Considering alternative 371 

measures such as CorTV and BiasTV, which were less sensitive to the magnitude and extent of 372 

environmental change, appears to be particularly important for a more consistent picture of 373 

temporal validation at low magnitudes and extents of change. Second, all three measures were 374 

somewhat sensitive to our virtual species’ initial prevalence: at low and high extremes of initial 375 

prevalence, BiasTV values were positive and negative, respectively, and AccTV and CorTV values 376 

were slightly lower than expected (Fig. 4a-c, first column). We suspect these results may be 377 

partially explained by the lack of ecological realism in our simulations. In fact, identifying cells 378 

as observed gains or losses from given increases or decreases in probability of presence within a 379 

Bernouilli trial is less likely when initial probabilities of presence are either extremely low (i.e. 380 

low prevalence) or extremely high (i.e. high prevalence), respectively. As a result, mismatches 381 
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between observed and modelled changes in our virtual case study are more likely at extremes of 382 

prevalence. Nevertheless, it should be noted that the species’ initial prevalence, through its 383 

effects on the relative probability of observing gains or losses, may have an effect on measures 384 

of prediction accuracy from TV plots when using real data.  385 

 386 

REAL DATA CASE STUDY 387 

We tested the method of TV plots using observed distribution records for two species of 388 

breeding birds – the Pied Wagtail and the Turtle Dove – across Great Britain in two time periods 389 

between the 1960s and the 1990s. For those two species, we asked: (1) Does model fit in one 390 

time period indicate prediction accuracy over time? (2) Can measures from TV plots – which 391 

focus on instances of range change – identify aspects of prediction accuracy over time not 392 

apparent from commonly-used range-wide measures?  393 

 394 

Species distribution data 395 

We used distribution records for the Pied Wagtail (Motacilla alba) and the Turtle Dove 396 

(Streptopelia turtur) in 2603 British 10-km grid squares at two time periods (t: 1968–1972; t + 1: 397 

1988–1991), corresponding to the periods of intensive recording effort leading to the publication 398 

of two national atlases of breeding birds (Sharrock 1976; Gibbons et al. 1993). Although the 399 

absence of these species from each 10-km grid square could not be definitively recorded during 400 

sampling, most grid squares in Great Britain were meticulously sampled, with high levels of 401 

duplicate recording and under-recorded areas being targeted by extra recording schemes 402 

(Sharrock 1976; Gibbons et al. 1993). Thus, we assumed that each surveyed grid square in which 403 

a species was not recorded (i.e., non-detection) represented a true absence.  404 

 405 
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Climate predictors 406 

We used six climate variables: mean temperature of the coldest month (°C), mean temperature of 407 

the warmest month (°C), ratio of actual to potential evapotranspiration (standard moisture index), 408 

potential sunshine (hours), total annual precipitation (mm), and the difference between total 409 

winter precipitation and total summer precipitation (mm). These were calculated from monthly 410 

values of temperature, precipitation and cloud cover for periods t and t + 1 from the Climate 411 

Research Unit ts2.1 (Mitchell & Jones 2005) and the Climate Research Unit 61-90 (New et al. 412 

1999) and did not show strong multicollinearity (i.e., all pairwise Spearman’s ρ < 0.85).  413 

 414 

Species distribution models 415 

We modelled the presence-absence of the two bird species in period t as a function of climate for 416 

the corresponding period using generalised boosted models (GBMs; Ridgeway 1999); we built 417 

these using the gbm package (Ridgeway 2013) in R version 2.15.2 (R Core Team 2012), and 418 

code provided by Elith et al. (2008). We used the species-climate associations identified in 419 

period t to generate modelled estimates of probability of presence in t and t + 1, based on 420 

observed climate for the corresponding periods. 421 

 422 

Measures of model performance 423 

We measured how well SDMs fitted species’ distributions in the calibration period t using the 424 

area under the receiver operating characteristic (ROC) curve (AUC; Hanley & McNeil 1982) and 425 

the point biserial correlation (COR; Elith et al. 2006) – defined as the Pearson correlation 426 

between model values and binary values of observed presence-absence. We measured how well 427 

models predicted change between t and t + 1 using AccTV, CorTV, and BiasTV derived from TV 428 
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plots. In addition to these, we also quantified how well models discriminated between presences 429 

and absences across the entire study area in t + 1 using AUC and COR.  430 

 431 

Results 432 

Climate-based SDMs provided an excellent fit to observed distribution records for both bird 433 

species in the calibration period t (Pied Wagtail: AUC = 0.992, COR = 0.809; Turtle dove: AUC 434 

= 0.976, COR = 0.875). However, these two models showed different patterns of prediction 435 

accuracy over time. Discrimination across the species’ entire range in period t + 1 indicated a 436 

much higher prediction accuracy for the Turtle Dove model (AUC = 0.924; COR = 0.670) than 437 

the Pied Wagtail model (AUC = 0.691; COR = 0.335), suggesting that climate models may 438 

accurately explain the distribution over time of the Turtle Dove but not the Pied Wagtail. 439 

Furthermore, these results also indicate that model fit within one time period may not necessarily 440 

indicate a model’s ability to predict change over time. Nonetheless, generating TV plots revealed 441 

additional aspects of these models and their predictions that could not be identified through 442 

focusing on the species’ entire ranges.  443 

 444 

The Pied Wagtail has expanded in areas of the Northern coast and Islands of Scotland, as well as 445 

a few localised areas of Eastern England in period t + 1 (Fig. 5a), with gains in many of these 446 

areas being modelled accurately by our climate-based SDM (Fig. 5b). As a result, the TV plot for 447 

this model indicates a near perfect prediction of the species’ gains (i.e., the positive range of the 448 

x-axis), leading to a very high overall precision and correlation (Fig. 5c). This suggests that 449 

expansion of the Pied Wagtail’s breeding range in these areas may be linked to climate – 450 

particularly to an increase in minimum temperature of the coldest month (data not presented). 451 



21 
 

These findings are consistent with previous studies indicating that higher spring temperatures 452 

advance first egg dates in this species (Mason & Lyczynski 1980; Crick & Sparks 1999), 453 

potentially leading to higher clutch size and juvenile survival rates (Mason & Lyczynski 1980). 454 

However, the Pied Wagtail has also experienced localised losses in areas of Northern Scotland 455 

and Central and Western England (Fig. 5a). These losses do not appear to be linked to climate – 456 

or at least the climatic variables we considered – since they were not predicted by our climate-457 

based model, which instead predicted stable or even increasing probability of presence in these 458 

areas (Fig. 5b). Losses in the Pied Wagtail may be due to loss of suitable breeding habitat (e.g. 459 

reed beds) – a driver which our climate-based model could not have captured.  460 

 461 

Contrary to the Pied Wagtail, the Turtle Dove model appears to completely lack any 462 

understanding of the factors driving both gains and losses in the species (Fig. 6). Despite an 463 

overall increase in climatic suitability (Fig. 6b), the Turtle Dove has experienced many losses 464 

along the Northern and Western edges of its range (Fig. 6a).  This inconsistency between 465 

predictions and observations is reflected in the model’s TV plot and measures, which indicate a 466 

substantial lack of agreement between the ideal and the model curve (Fig. 6c). Previous studies 467 

have indicated that range contraction of the Turtle Dove in Great Britain may be a consequence 468 

of agricultural intensification (Fuller et al. 1995) and changes in farming practice (Browne et al. 469 

2004) – drivers that are missing from our climate-based model. 470 

 471 

In summary, our real-data case study shows that model fit in one time period does not 472 

necessarily indicate a model’s ability to predict change over time. The use of empirical data on 473 

observed range changes can be used for a more reliable estimate of a model’s prediction 474 
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accuracy over time. TV plots, which focus on instances of change over time, revealed aspects of 475 

the relationship between species’ range changes and climate that could not be identified through 476 

range-wide measures. Therefore, a comprehensive assessment of prediction accuracy over time 477 

should include both measures of model fit across the species’ entire range and measures that 478 

focus on instances where range changes have been observed and/or predicted. Such an integrated 479 

approach should provide a better assessment of how useful models are likely to be in predicting 480 

to a third time period (e.g., future scenario).  481 

 482 

DISCUSSION 483 

We have developed a new tool that makes full use of species’ distribution records at two time 484 

periods over the same geographical area to quantify how well SDMs predict range changes over 485 

time. Our TV plots and their associated measures overcome the limitations of current approaches 486 

by using all the information generated by SDMs and focusing on predictive accuracy across 487 

areas where range changes have actually been observed and/or predicted over time. The 488 

approach we developed directly relates the redistribution of a species’ suitable environment to 489 

the probability of observing it expanding or retracting from a given area. As a result, high 490 

predictive accuracy from TV plots can only be achieved by models that accurately capture 491 

drivers of change in species distributions.   492 

 493 

Here, we have assumed that temporally-replicated survey data include perfect knowledge of both 494 

species’ presence and absence across a study area; in reality, this assumption never entirely holds 495 

and may potentially affect the results of temporal validation tests. In principle, TV plots could be 496 

extended to alternative, more common types of temporal distribution data. Often, temporal 497 
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distribution datasets only hold information on species’ presence. Incorporating these data in TV 498 

plots could be done through an approach similar to that used by Phillips & Elith (2010) for 499 

presence-only calibration plots: background data (i.e., a random sample of sites in the study area) 500 

could be used in place of species’ absences and a transformation employed to correct for the 501 

distortion in the model’s gain and loss curves obtained this way. In some cases, including our 502 

real data case study, survey data hold more information than just species’ presence: they include 503 

a list of surveyed sites in which the species of interest was not detected (i.e., non-detections). 504 

This additional information can be used to calculate a probability of false absence (PFA) for each 505 

recorded non-detection (Tingley & Beissinger 2009). Examples of statistical approaches for 506 

doing so are occupancy modelling (MacKenzie et al. 2002, 2011; Altwegg et al. 2008), if repeat 507 

samples at each site within each longer time period are available, or list-based methods (Roberts 508 

et al. 2007; Szabo et al. 2010), if repeat samples are unavailable. Estimates of PFA could be 509 

integrated in TV plots in a number of ways. First, absences could be weighted by their certainty 510 

(1 – PFA) within the estimation of gain and loss functions in TV plots. Second, hypothesised true 511 

absences could be identified from a Bernouilli trial according to absence certainty. Third, PFA 512 

estimates could be integrated directly within the response of TV plots so that the new response is 513 

no longer binary (i.e., gain vs no-gain or loss vs no-loss) but continuous, incorporating the 514 

probability of observing true gains/losses over time given absence certainty. Extending TV plots 515 

for use with presence-only and presence-non-detection data would enable taking full advantage 516 

of unsystematic historical data sources – such as natural history museum collections, field notes 517 

and photographs – for a more exhaustive and taxonomically-broader temporal validation of 518 

SDMs aimed at predicting likely future changes.   519 

 520 
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Although the three measures we developed in this paper represent an exhaustive summary of the 521 

principal information contained in TV plots, many other measures could be derived from these 522 

plots. The choice of predictive accuracy measure should depend on the particular application for 523 

which SDMs are being built. Additional measures that we can foresee being useful are measures 524 

that contrast how well models predict gains (i.e., the positive range of the x-axis) versus losses 525 

(i.e., the negative range of the x-axis). Indeed, species’ gains and losses may not necessarily be 526 

driven by the same predictors and models may capture drivers of gain but not loss, or vice versa, 527 

as shown by our Pied Wagtail example. The variety of prediction accuracy measures that can be 528 

derived from TV plots should enable users to assess model performance in a manner that is better 529 

suited to their particular question. Nevertheless, different measures derived from the same TV 530 

plot are likely to be correlated to some degree; assessing the level of dependence amongst these 531 

will be a necessary step to prevent duplication of information. 532 

 533 

We suggest that TV plots are a useful tool for assessing how well SDMs predict species’ range 534 

changes over time, and thus provide R source code and a simple tutorial for their use (see 535 

Supporting Information). Our method complements current range-wide approaches to quantify 536 

the prediction accuracy of SDMs over time by focusing on instances where range changes have 537 

been observed and/or predicted. Taken together, these approaches should enable a much fuller 538 

evaluation of how well SDMs predict species’ observed range changes, perhaps the best way 539 

available to assess their ability to predict the future.  540 

 541 

DATA ACCESSIBILITY 542 
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The bird distribution data used in these analyses can be accessed via the National Biodiversity 543 

Network Gateway (1968–1972 records: https://data.nbn.org.uk/Datasets/GA000600; 1988–1991 544 

records: https://data.nbn.org.uk/Datasets/GA000147), whilst the climate data can be accessed via 545 

the Climate Research Unit (http://www.cru.uea.ac.uk/cru/data/hrg/).   546 
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Tables 677 

Table 1: Prediction accuracy measures derived from temporal validation plots of the four 678 

environmental functional responses of our virtual species 679 

Prediction accuracy measures   

AccTV CorTV BiasTV 

Truth 0.930 0.996 -0.004

Incomplete 0.789 0.976 0.213

Collinear 0.603 0.993 -0.424

Incomplete and Collinear 0.424 -0.187 -0.271
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Fig. 1 697 

 698 

 699 

Figure 1: Four alternative environmental functional responses of a virtual species to three 700 

simulated variables over a simplified landscape of 30 x 30 grid cells. Right panels show 701 
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simulated values for (a) temperature, (b) precipitation, (c) covar across the simplified landscape; 702 

hotter colours indicate higher values (see figure legend). Right panels show how probability of 703 

presence varies with (d) temperature, (e) precipitation, (f) covar (whilst keeping all other 704 

variables constant at 0) according to each functional response – the Truth (thick black), the 705 

Incomplete model (orange), the Collinear model (blue), and the Incomplete and Collinear model 706 

(green).  707 
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Fig. 2 727 
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Figure 2: Quantifying the agreement between observed distribution changes and weighted 728 

changes in modelled probabilities of presence (Δmweighted) between time periods t and t + 1 for 729 

the four functional responses of our virtual species using TV plots. (a) Observed distributional 730 

changes in simulated space of our virtual species (gains, losses, stable presences and stable 731 

absences) between time periods. (b) Δmweighted values across the landscape according to the true 732 

functional response of our virtual species. Bluer and redder colours indicate increases and 733 

decreases in probability of presence, respectively. (c) TV plot for the true functional response of 734 

our virtual species. Shown are the model temporal validation curve (thick black) – the sum of the 735 

plotted gain function (blue curve) and loss function (red curve) – and confidence intervals of ± 2 736 

standard errors of the mean (orange). The dashed black line represents the expectation for an 737 

ideal temporal validation curve. The rug plots show model values at observed gain sites (blue, 738 

top of the plot), loss sites (red, bottom of the plot) and stable absences/losses (grey, top of the 739 

plot) and stable presences/gains (grey, bottom of the plot). (d-f) TV plots (top panels) and 740 

Δmweighted (bottom panels) for (d) the Incomplete model, (e) the Collinear model, and (f) the 741 

Incomplete and Collinear model.  742 
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Fig. 3 752 
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Figure 3: Visualisations of the three measures of prediction accuracy from TV plots (AccTV, 755 

CorTV and BiasTV), exemplified using the TV plot for the Collinear model. (a) AccTV equals 1 756 

minus the mean absolute distance between the model’s and the ideal y values (black lines), 757 

weighted by the corresponding x values, at each observed site (tick marks). (b) CorTV is the 758 

Pearson’s r coefficient between the model’s and the ideal y values, weighted by the 759 

corresponding x values, at each observed site (tick marks). (c) BiasTV is the difference between 760 

the area under the model curve (thick black) and the area under the ideal curve (dashed black); it 761 

is equivalent to the dark grey minus the light grey area. Note that observed sites shown in scatter 762 

and rug plots have been subsampled to aid visualisation.  763 
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Figure 4: Sensitivity analysis of the effect of species’ initial prevalence, magnitude and spatial 785 

extent of environmental change on (a) AccTV, (b) CorTV, and (c) BiasTV measured from TV plots 786 

of the four functional responses of our virtual species. Initial prevalence is the number of 787 

species’ presences in t divided by the total number of grid cells (n = 25). Magnitude of 788 

environmental change corresponds to the standard deviation of the normal distribution from 789 

which we sampled environmental change values (n = 25). Spatial extent of change is the number 790 

of grid cells over which we sampled environmental change divided by the total number of grid 791 

cells (n =30). For each measure, values shown represent the mean values of 100 randomisations 792 

of each alternative environmental scenario.  793 
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Figure 5: Temporal validation of a climate-based species distribution model of the Pied Wagtail 812 

across Great Britain between t and t +1. (a) Observed changes in the distribution of the Pied 813 

Wagtail between time periods. (b) Weighted changes in modelled probability of presence 814 

(Δmweighted) from a climate-based SDM. Bluer and redder colours indicate increases and 815 

decreases in probability of presence, respectively. (c) TV plot of the climate-based SDM. Shown 816 

are the model temporal validation curve (thick black) – the sum of the plotted gain function (blue 817 

curve) and loss function (red curve) – and confidence intervals of ± 2 standard errors of the mean 818 

(orange). The dashed black line represents the expectation for an ideal temporal validation curve. 819 

The rug plots show model values at observed gain sites (blue, top of the plot), loss sites (red, 820 

bottom of the plot) and no-gain and no-loss sites (grey, top and bottom of the plot). 821 
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Figure 6: Temporal validation of a climate-based species distribution model of the Turtle Dove 824 

across Great Britain between t and t +1. (a) Observed changes in the distribution of the Turtle 825 

Dove between time periods. (b) Δmweighted from a climate-based SDM. Bluer and redder colours 826 

indicate increases and decreases in probability of presence, respectively. (c) TV plot of the 827 

climate-based SDM. Shown are the model temporal validation curve (thick black) – the sum of 828 

the plotted gain function (blue curve) and loss function (red curve) – and confidence intervals of 829 

± 2 standard errors of the mean (orange). The dashed black line represents the expectation for an 830 

ideal temporal validation curve. The rug plots show model values at observed gain sites (blue, 831 

top of the plot), loss sites (red, bottom of the plot) and no-gain and no-loss sites (grey, top and 832 

bottom of the plot). 833 
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