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Abstract 27 

X-Ray computed microtomography is a non-destructive 3D imaging technique that can be used for 28 

the investigation of both the morphology and internal structures of a solid object. Thanks to its 29 

versatility, it is currently of common use in many research fields and applications, from medical 30 

science to geosciences. The latter includes volcanology, where this analytical technique is becoming 31 

increasingly popular, in particular for quantifying the shape as well as the internal structure of 32 

particles constituting tephra deposits. Particle morphology plays a major role in controlling the 33 

mobility of pyroclastic material in the atmosphere and particle-laden flows, while the internal 34 



structure (e.g. vesicles and crystal content) is of importance in constraining the processes that 35 

occurred in magmatic chambers or volcanic conduits. 36 

In this paper, we present results of X-Ray microtomography morphological and textural analyses on 37 

volcanic particles carried out to study how particle shape is influenced by internal structures. Particles 38 

were selected from tephra generated during explosive eruptions of different magnitudes and 39 

compositions. Results show that particle morphology is strongly influenced by internal structure, 40 

which is characterized by textural features like vesicularity, vesicle and solid structure distribution, 41 

vesicle inter-connectivity and distance between adjacent vesicles. These have been found to vary with 42 

magma composition, vesiculation and crystallization history. Furthermore, our results confirm that 43 

X-Ray microtomography is a powerful tool for investigating shape and internal structure of particles. 44 

It allows us to both characterize the particle shape by means of tridimensional shape parameters and 45 

relate them to their internal structures.  46 
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 51 

1. INTRODUCTION 52 

During explosive eruptions, particles of variable size, shape and density are injected into the 53 

atmosphere and, depending on the eruptive size and style, can have an impact on human beings, 54 

infrastructure and activities from local up to global scale [Blong, 1984; Casadevall 1994; Horwell 55 

and Baxter, 2006; Bonadonna et al., 2012; Wilson et al. 2012, 2014; Beckett et al., 2015]. The 56 

physical properties of pyroclastic particles (size, shape, density) affect their aerodynamic behavior, 57 

i.e. the aerodynamic drag force. Many studies have been carried out over the past few decades 58 

focusing on the dependency of the aerodynamic drag on particle shape, especially in the field of 59 

multiphase flow dynamics [Sneed and Folk, 1958; Wilson and Huang, 1979; Haider and Levenspiel, 60 

1989; Swamee and Ojha 1991; Ganser 1993; Rodrigue et al., 1994; Chien 1994; Taylor, 2002; Tran-61 

Cong et al., 2004; Dellino et al., 2005; Pfeiffer et al. 2005; Loth; 2008; Hölzer and Sommerfeld, 2008; 62 

Mele et al., 2011; Dioguardi and Mele, 2015; Bagheri and Bonadonna, 2016; Dioguardi et al., 2017, 63 

2018]. In these studies, several shape-dependent drag laws have been proposed, which depend on one 64 

or more shape descriptors that are generally functions of 1D and 2D parameters. More recently, the 65 

use of X-Ray microtomography (µX-CT) has enabled improvements in the ability to investigate the 66 

internal structures and morphologies of materials with a non-destructive and three-dimensional (3D) 67 

visualization and quantification [Song et al., 2001; Ersoy et al., 2010; Voltolini et al., 2011; Baker et 68 



al., 2012; Cnudde and Boone, 2013; Rausch et al., 2015; Vonlanthen et al. 2015; Bagheri et al., 2015; 69 

Polacci et al., 2018]. In particular, 3D shape descriptors quantified by means of µX-CT analyses have 70 

been introduced and applied to predict the aerodynamic drag of volcanic particles [e.g. Dioguardi et 71 

al. 2017]. 72 

Recently, Mele and Dioguardi [2018] presented a study on the dependency of particle shape on the 73 

size of vesiculated volcanic juvenile particles analyzed with µX-CT. The study proved how the shape 74 

of these particles, which are commonly generated during explosive eruptions fed by evolved 75 

vesiculated magmas, is the result of the interaction between particle size and the size distribution of 76 

vesicles. This means that the general assumption made when simulating the transport of volcanic ash 77 

in the atmosphere by means of dispersion models [e.g. Costa et al. 2006; Jones et al., 2007; Mastin et 78 

al., 2013], i.e. assuming a size-independent particle shape, does not hold for these types of eruptions. 79 

This is the assumption made, for example, by London VAAC when using the standard grainsize 80 

distribution for operational forecasts [see Beckett et al. 2015]. Particle shape plays a crucial role in 81 

the multiphase flows occurring on Earth’s surface, including sandstorms [e.g. Kok et al., 2012, 82 

Doronzo et al. 2015] and turbulent density currents [e.g. Branney and Kokelaar, 2002; Dufek, 2016; 83 

Dioguardi and Mele, 2018; Dellino et al. 2018]. In fact, Dioguardi et al. [2014] showed how 84 

implementing shape-dependent drag parametrizations into multiphase computational fluid dynamic 85 

models improve their performance in predicting the particle trajectories and fall velocity. 86 

With the aim of further investigating the dependency of particle shape on the internal texture of 87 

volcanic particles, we carried out a systematic quantification of different internal textural properties 88 

of volcanic particles collected from tephra fallout deposits of eruptions of different magnitudes, styles 89 

and magma composition. In this paper, we first describe particle samples and the employed technique, 90 

and then we present results of the analysis on the relationship between particle morphology and 91 

internal structural characteristics, namely the fraction of vesicles and how these are inter-connected 92 

and/or distributed.  93 

 94 

 95 

2. MATERIALS AND METHOD 96 

In order to investigate the influence of internal texture on particle shape, we used the same set of 97 

juvenile particles employed in Dioguardi et al. [2017]. The samples were from the juvenile 98 

component of fallout deposits emplaced by the following eruptions: 1) Eyjafjallajökull 2010 [Dellino 99 

et al., 2012] and Grímsvötn 2004 [Jude-Eton et al., 2012], eruptions of trachybasalt and basaltic 100 

composition in Iceland, respectively; 2) Mt. Etna 2001 [Scollo et al., 2007], of basaltic composition 101 

(trachybasalt); 3) Pomici di Avellino Plinian eruption of Vesuvius (3900 BP; Sulpizio et al., 2010), 102 



of tephritic-phonolitic composition; 4) AD 472 (Pollena) sub-Plinian eruption of Vesuvius [Sulpizio 103 

et al., 2005] of tephritic-phonolitic composition; 5) Agnano Monte-Spina Plinian eruption of Campi 104 

Flegrei (4500 BP; de Vita et al., 1999), of trachytic composition. In this work, all particles were 105 

generated during explosive eruptions driven by dry magmatic fragmentation [Dellino et al., 2001; 106 

Sulpizio et al., 2005; Scollo et al., 2007; Sulpizio et al., 2010; Dellino et al., 2012], with the exception 107 

of particles from the Grímsvötn 2004 eruption, which were the product of magma-water interaction 108 

[Jude-Eton et al., 2012].  109 

We used particles of the same grain-size interval, i.e. 0.500-0.355 mm because, as shown in Mele et 110 

al. [2011] and Mele and Dioguardi [2018], they have a more irregular contour, including a significant 111 

number of vesicles on the particle surface.  112 

For each sample suite, the 3D external morphology and internal texture of 15 particles were 113 

reconstructed by means of µX-CT imaging with a Bruker Skyscan 1172 high-resolution µX-CT 114 

scanner. Particles were cleaned in an ultrasonic bath and mounted on a graphite rod holder using vinyl 115 

glue. The parameters used for the acquisition of µX-CT radiograph are shown in Table 1. In order to 116 

detect vesicles across the widest possible range of sizes, particles were scanned with a pixel size of 117 

1.02 µm, which, as shown in Mele and Dioguardi [2018], is enough to sample the fine vesicle 118 

population. 119 

Bruker’s NRecon software [Liu and Sasov, 2005] was used to reconstruct µX-CT projection images 120 

into two-dimensional cross sections (slices) by applying the Feldkamp algorithm [Feldkamp et al., 121 

1984]. Cross-section reconstruction parameters are shown in Table 1.  122 

3D quantitative image analysis of shape and internal textures of particles was performed using 123 

Bruker’s CTAn software [Skyscan, 2009]. Each particle was segmented from the background (holder, 124 

glue and air) using a global threshold [Otsu, 1979]. It is to be noted that by internal texture we mean 125 

both vesicles and the solid structure. The latter is represented by both glass and crystals due to the 126 

difficulty of discriminating between these two components using the microtomographic technique 127 

since, in most cases, they have a similar X-Ray attenuation coefficient [Arzilli et al. 2016]. 128 

To quantify particle shape, the sphericity F3D and Fractal dimension D3D [Dioguardi et al. 2017] were 129 

calculated. 130 

Sphericity is defined by: 131 
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where Asph is the surface area of the sphere equivalent to the particle of volume Vp and Ap is the 133 

particle surface area. The calculation of particle volume, i.e. the number of voxels of the binarised 134 

solid object times the volume of one voxel, is carried out by means of the hexahedral marching cubes 135 



volume model [Lorensen and Cline, 1987]. The 3D particle surface area calculation is based on the 136 

faceted surface of the marching cubes volume model [Lorensen and Cline, 1987]. By definition, F3D 137 

ranges between 0 and 1, being 1 the value of a perfect sphere. 138 

Fractal dimension (D3D) is defined by:  139 

𝐿 = 𝑘𝑠2#.3    (2) 140 

where L is the length of the fractal line approximating the contour of the object with ever-decreasing 141 

segments of length scale s, D3D is the fractal dimension and k is a number. Graphically D3D is the 142 

slope of the line in the plot log(L) vs. log(s). D3D was calculated by an algorithm based on the “box 143 

counting” method [Chappard et al., 2001], by which the 3D digital object is approximated by an array 144 

of equal-sized cubes, which are counted. The procedure is repeated over a range of cube sizes, and 145 

the number of cubes is plotted against cube size in a log-log plot. D3D is the slope of the regression 146 

line. D3D is equal to 2 for a sphere. The more D3D is larger than 2, the more a particle is irregular in 147 

shape 148 

As far as the internal structure analysis is concerned, for each particle a Volume of Interest (VOI) 149 

with the same shape of particle without vesicles was created by a shrink-wrap operation (Figure 1). 150 

The latter was necessary in order to investigate the total size-range of vesicles inside particles.  151 

The following parameters were then evaluated: vesicularity, vesicle-size distribution, solid structure 152 

distribution, surface convexity index of vesicles and structure linear density of vesicles.  153 

Vesicularity (%) is defined as the fraction of the total volume of a sample occupied by vesicles or 154 

voids, encompassing open and closed vesicles, i.e. the volume of all open plus closed pores as percent 155 

of the total VOI volume. 156 

Vesicle-size or solid structure distribution (mm) are the fractions of vesicle or solid structure volume 157 

that are within a specific range of vesicle size. Its calculation involves two steps: skeletonisation, 158 

which identifies the medial axes of all vesicles or solid structures, and sphere-fitting that measures 159 

the local thickness for all the voxels lying along this axis [Remy and Thiel, 2002]. The average 160 

diameter and standard deviation of vesicle and solid structure size distribution were also calculated.  161 

Surface convexity index of vesicles (mm-1), also known as Fragmentation index, is characterized by 162 

the rupture of connectivity [Hahn et al., 1992; Promentilla et al. 2009]. It is calculated by comparing 163 

volume and surface of binarised vesicles before and after a single voxel image dilation, i.e. 164 

𝐹𝐼 = 6726-
+72+-

     (3) 165 

where S and V are vesicle surface and volume and the subscript numbers 1 and 2 mean before and 166 

after image dilation. The more negative the surface convexity index is, the greater is the vesicle 167 

connectivity. 168 



Structure linear density of vesicles (mm-1), also known in medical sciences as the trabecular number, 169 

is the number of vesicles per unit length on a linear path through the structure, given by the inverse 170 

of the mean distance between the medial axes of the vesicle structure [Hildebrand et al., 1999]. High 171 

structure linear density value means that the thickness of solid structure, which separates vesicles, is 172 

small; i.e. vesicles are very close together. 173 

 174 

3. RESULTS  175 

The averages and standard deviations of all the measured parameters are listed in Table 2; Figure 2 176 

shows the typical morphologies of representative particles chosen from each sample suite illustrated 177 

by 3D volume rendering. Data show that the Avellino and Grímsvötn particles represent the two end-178 

members of both vesicularity and particle shape measured ranges. Grímsvötn particles display the 179 

lowermost vesicularity and the highest sphericity and the lowermost fractal dimensions (Table 2) 180 

whereas particles sampled from the Avellino eruption deposits are the most irregular of the analyzed 181 

samples.  182 

We then determined the vesicle size distribution of all the particles of every sample suite; the 183 

distributions are shown in Figure 3. Two different groups can be clearly discerned by a simple first 184 

qualitative analysis of the vesicle size distribution: Avellino, Pollena and Agnano Monte Spina on 185 

one side (Group 1), Eyjafjallajökull, Grímsvötn and Etna particles on the other (Group 2). Group 1 186 

particles show a finer vesicle population and a narrower distribution than particles of Group 2. 187 

Interestingly, samples from eruptions of similar composition tend to group together: Group 1 include 188 

samples of eruptions fed by tephritic-phonolitic and trachytic vesiculated magmas; Group 2 is made 189 

by particles from basaltic and trachybasaltic eruptions. A similar trend can be inferred from the plots 190 

of the solid structure distribution (Figure 3). Particles from Group 1 are characterized by a thinner 191 

solid structure than basaltic and trachybasaltic particles, which on the contrary show a very variable 192 

thickness of the solid structure (Figure 3). Comparing the average size of both vesicles and solid 193 

structures (Figure 2), we can observe that particles of Group 1 are characterized by both smaller 194 

vesicles and a less thick solid structure than basaltic particles (Group 2), although few particles of 195 

Avellino, Pollena and Agnano Monte Spina eruptions have a thick solid structure. This can be 196 

attributed to: 197 

- the presence of large phenocrysts (Figure 2), which are characterized by a solid structure 198 

histogram with a different population (for example grey and black solid structure histograms 199 

of Pollena particles and green histogram of Avellino particles; Figure 3); 200 

- poorly vesiculated particle with tubular vesicles (Agnano Monte Spina particles, Figure 2 and 201 

light blue histogram of Figure 3) or;  202 



- highly vesiculated particle with a portion of poorly vesiculated glass (Agnano Monte Spina 203 

particles, Figure 2; orange histogram of Figure 3).  204 

Eyjafjallajökull and Etna particles show coarser vesicles than Avellino, Pollena and Agnano Monte 205 

Spina particles, and display a wide range of solid structure size (Figures 2, 3). However, 206 

Eyjafjallajökull particles have smaller structure thickness values than those of Etna, except for three 207 

particles, which have a thick solid structure due to the presence of large phenocrysts (Figure 2). In 208 

general, for Etna particles, the thick solid structure is mainly related to a higher content of large 209 

phenocrystals than Eyjafjallajökull particles (Figure 2). Grímsvötn particles show the largest range 210 

of vesicle size with a thick solid structure, which is mainly represented by glass (Figure 2).  211 

It was also observed that the solid structure is well correlated with particle vesicularity (Figure 4); in 212 

particular, the thinner the solid structure, the greater the particle vesicularity. This behavior is further 213 

corroborated by the significant correlation between structure linear density of vesicles and 214 

vesicularity (Figure 4), i.e. the distance between vesicles decreases (i.e. the structure linear density 215 

value increases) with increasing particle vesicularity. The latter show also a negative correlation with 216 

the surface convexity index, i.e. vesicularity increases as surface convexity index decreases, meaning 217 

that vesicles are better inter-connected (Figure 4).  218 

Concerning the influence of internal texture on particle shape, Figure 5 shows that with increasing 219 

vesicularity, F3D decreases and D3D increases, i.e. particles are more irregular. Furthermore, a 220 

particle’s irregularity increases with decreasing thickness of the solid structure, hence decreasing the 221 

distance between vesicles and with increasing inter-connection of vesicles (Figure 5). It is notable 222 

that particle shape is well-constrained by a thorough analysis of all parameters related to the internal 223 

structure. For example, Avellino particles tend to be more irregular than Agnano Monte Spina 224 

particles, despite having a similar vesicle and solid structure distribution (Figure 3) and the same 225 

vesicularity range (Figure 5). This difference of shape can instead be attributed to a higher inter-226 

connectivity and lower distance between vesicles of Avellino particles than Agnano Monte Spina 227 

particles (Figure 5).  228 

In addition, results suggest how particles produced by magma of the same composition and by similar 229 

fragmentation processes (Group 1 and 2 above) might not display similar shape parameters. For 230 

example, Avellino and Pollena particles have different shapes (Table 2, Figure 5) that can be related 231 

to both a different vesiculation and crystallization history as shown by the vesicularity, surface 232 

convexity index, solid structure thickness and structure linear density parameters (Figure 5). 233 

Furthermore, these particles display the same vesicle size (Figures 2, 3) but Pollena particles are less 234 

vesiculated with a poor inter-connectivity of vesicles than Avellino particles (Figure 5). Finally, 235 

Pollena particles have a thicker solid structure, which is reflected in a greater distance between 236 



vesicles (Figures 4, 5), caused by both a greater thickness of the glass and a greater presence of 237 

phenocrysts (Fig. 6). 238 

 239 

 240 

4. CONCLUSIONS 241 

The use of µX-CT has allowed us to demonstrate that particle shape, which is here described by 242 

sphericity F3D and fractal dimension D3D, is strongly influenced by the internal structure of particles, 243 

here quantified by means of vesicularity, vesicle and solid structure distribution, vesicle inter-244 

connectivity and distance between adjacent vesicles. These textural features have been found to vary 245 

with magma composition and show that volcanic particles collected from tephra fallout deposits of 246 

eruptions of different magnitudes, styles and magma composition show different shapes. 247 

This work highlights that, for modelling purposes, the assumption that particles of different eruptions, 248 

which are produced by magma of the same composition and by similar fragmentation processes, have 249 

the same shape, might not be correct. Therefore, it is necessary to obtain particle shape for each case 250 

study.  251 

Furthermore, our results confirm that µX-CT is a powerful tool for investigating the shape and 252 

internal structure of particles. It both allows us to characterize the shape of irregular particles by 253 

means of tridimensional shape parameters and to relate them to the internal structures of particles.  254 
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 514 

Tables 515 

 516 
µX-CT scanner 

parameters  Reconstruction 
parameters 

Pixel Size 
(µm) 1.02  Smoothing 1 

X-ray Voltage 
(kV) 48  Ring Artifact 

correction 6 

X-ray Current 
(µA) 

208  Beam Hardening 
Correction (%) 56 

Rotation Step 
(degrees) 0.37  -  



Filter No filter  -  

Frame  
averaging 5  -  

     
Table 1. Scan parameters of the µX-CT scanner and cross-section reconstruction. 517 
 518 
 519 

 unit Eyjafjallajö
kull Grímsvötn Etna Avellino Agnano M. 

Spina Pollena 

Object volume mm3 0.041±0.014 0.039±0.013 0.041±0.009 0.035±0.011 0.041±0.021 0.047±0.010 

Vesicularity  % 23.8±11.9 16.0±6.4 16.2±9.5 48.0±9.9 39.3±14.0 24.9±7,6 

Solid structure 
size mm 0.052±0.024 0.062±0.024 0.069±0.032 0.016±0.011 0.019±0.010 0.027±0.017 

Vesicle size mm 0.029±0.016 0.042±0.021 0.029±0.017 0.018±0.010 0.017±0.010 0.018±0.011 

Surface 
convexity 

index 
1/mm 107.5±28.7 104.2±16.8 133.5±35.2 31.8±46.6 93.6±64.0 167.6±47.2 

Structure 
linear density 1/mm 8.38±4.71 4.31±2.62 5.64±2.97 27.35±3.51 21.96±5.49 14.40±4.96 

D3D - 2.288±0.095 2.165±0.058 2.230±0.093 2.564±0.057 2.445±0.154 2.288±0.141 

F3D - 0.244±0.096 0.383±0.075 0.314±0.102 0.073±0.040 0.151±0.134 0.316±0.139 

 520 
Table 2. Average values and standard deviations of 3D parameters of all analyzed particles. 521 
 522 

 523 

Figure Captions 524 

Figure 1. Two examples of segmentation and creation of VOI (Volume of interest) by means of 525 

shrink-wrap operation. a, b and c: raw, binary and ROI (Region of Interest) images of one cross 526 

section of a Grímsvötn particle. d, e and f: raw, binary and ROI (Region of Interest) images of one 527 

cross section of a Agnano Monte Spina particle. 528 

 529 

Figure 2. Solid structure size vs. vesicle size diagram. 3D surface rendering and cross section images 530 

of few particles are also insert. The red line inside the reconstructed particles indicates the position 531 

of the displayed cross section image. 532 

 533 

Figure 3. Vesicle and solid structure distribution histograms of all analyzed particles. 534 

 535 

Figure 4. Structure linear density, solid structure size and surface convexity index vs. vesicularity 536 

diagrams of all analyzed particles. - 537 



 538 

Figure 5. Sphericity F3D and fractal dimension D3D vs. vesicularity, surface convexity index, solid 539 

structure size and structure linear density diagrams of all analyzed particles. 540 

 541 

Figure 6. 3D surface rendering (with Maximum intensity projection function) and cross section image 542 

of two particles of Avellino and Pollena eruption. The red line inside the reconstructed particles 543 

indicates the position of the displayed cross section image. 544 
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