NERC Open Research Archive

Article (refereed) - postprint

Wang, Jinyang; Hayes, Felicity; Turner, Robert; Chadwick, David R.; Mills, Gina; Jones, Davey L. 2019. Effects of four years of elevated ozone on microbial biomass and extracellular enzyme activities in a semi-natural grassland. *Science of the Total Environment*, 660. 260-268. https://doi.org/10.1016/j.scitotenv.2019.01.040

© 2019 Elsevier B.V.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

This version available http://nora.nerc.ac.uk/id/eprint/522201/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

NOTICE: this is the author's version of a work that was accepted for publication in *Science of the Total Environment*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Science of the Total Environment*, 660. 260-268. https://doi.org/10.1016/j.scitotenv.2019.01.040

www.elsevier.com/

Contact CEH NORA team at noraceh@ceh.ac.uk

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1	Effects of four years of elevated ozone on microbial biomass and extracellular
2	enzyme activities in a semi-natural grassland
3	Jinyang Wang ^{a,*} , Felicity Hayes ^b , Robert Turner ^a , David R Chadwick ^a , Gina Mills ^b , Davey L
4	Jones ^{a,c}
5	^a School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor,
6	Gwynedd LL57 2UW, UK
7	^b Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, Gwynedd LL57
8	2UW, UK
9	^c UWA School of Agriculture and Environment, University of Western Australia, Crawley,
10	WA 6009, Australia
11	Corresponding author.
12	E-mail address: jyw217@gmail.com (J. Wang)
13	

14 Abstract

15	Reduced belowground carbon (C) allocation by plants exposed to ozone may change
16	properties and activities of the microbial community in soils. To investigate how soil
17	microbial biomass and extracellular enzyme activities respond to elevated ozone, we collected
18	soils from a temperate grassland after four years of ozone exposure under fully open-air field
19	conditions. We measured soil microbial biomass, the metabolism of low molecular weight C
20	substrates and hydrolytic extracellular enzyme activities in both bulk soil and isolated
21	aggregates to assess changes in microbial activity and community function. After four years
22	of elevated ozone treatment, soil total organic C was reduced by an average of 20% compared
23	with ambient condition. Elevated ozone resulted in a small but insignificant reduction (4-
24	10%) in microbial biomass in both bulk soil and isolated aggregates. Activities of
25	extracellular enzymes were generally not affected by elevated ozone, except β -glucosidase,
26	whose activity in bulk soil was significantly lower under elevated ozone than ambient
27	condition. Activities of β -glucosidase, leucine aminopeptidase and acid phosphatase were
28	higher in microaggregates (< 0.25 mm) as compared to macroaggregates (> 0.25 mm).
29	Elevated ozone had no effects on mineralization rates of low molecular weight C substrates in
30	both bulk soil and isolated aggregates. We therefore conclude that the size and activity rather
31	than function of the soil microbial community in this semi-natural grassland are altered by
32	elevated ozone.

Keywords: (semi-)natural vegetation, climate change, hydrolytic enzymes, FACE, soil
aggregates

35 1. Introduction

54

36 Tropospheric ozone is currently considered to be a key air pollutant because of its negative 37 impact on plant productivity in most parts of the world (Ashmore, 2005; Fuhrer, 2009). 38 During the past three decades, the background concentration of tropospheric ozone over the 39 Northern Hemisphere midlatitudes has increased at a rate of 0.5–2% per year (Vingarzan, 40 2004). Further increases in the Northern Hemisphere background ozone concentrations may 41 occur over this century if current emission trends continue (Meehl et al., 2007), although this 42 view is being questioned (Oltmans et al., 2013; Ridley et al., 2017). Studies exploring 43 ecosystem responses to elevated ozone have received widespread attention in the last two 44 decades. There is mounting evidence that increasing tropospheric ozone concentration has 45 many direct effects on plants, including lower net primary productivity (Ainsworth, 2008; 46 Feng et al., 2008; Mills et al., 2018; Morgan et al., 2003), changes in plant chemistry (Booker 47 et al., 2005; Kasurinen et al., 2007; Morgan et al., 2003), reduced stomatal conductance of 48 plants (Feng et al., 2008; VanLoocke et al., 2012; Wittig et al., 2007), reduced root growth 49 (Grantz et al., 2006), as well as altered root longevity and turnover (Andersen, 2003). 50 In contrast to the aboveground part, belowground processes in soils in response to 51 elevated ozone have received less attention, despite its critical roles in biogeochemical cycles 52 (Agathokleous et al., 2016; Andersen, 2003; Fuhrer et al., 2016). Since the penetration of 53 ozone into the soil is limited (Toet et al., 2009), the indirect effects of ozone exposure on

55 below ground. The belowground components (e.g. soil microorganisms) responses to elevated

belowground communities and ecosystem processes are primarily due to reduced C allocation

56	ozone in terrestrial ecosystems occurs indirectly through plant-derived deposits, which has
57	not been well documented. Under fully open-air field conditions or in open-top chambers, for
58	example, how the composition and structure of the soil microbial community respond to
59	elevated ozone has been examined in a soybean field (He et al., 2014), a wheat field (Li et al.,
60	2013), a subarctic forest (Kasurinen et al., 2005), a temperate forest (Phillips et al., 2002) and
61	a hay meadow (Kanerva et al., 2008). However, the results in these studies are conflicting,
62	showing that elevated ozone altered (He et al., 2014; Kanerva et al., 2008; Kasurinen et al.,
63	2005; Phillips et al., 2002) or had no significant effect (Li et al., 2013) on the composition
64	and structure of the soil microbial community. Thus, while the inconsistent findings have
65	often been attributed to the differences in experimental durations and other factors (e.g.
66	fumigation facility, ecosystem type and management regime), this reflects an incomplete
67	understanding of the response of soil microorganisms to elevated ozone.
68	Soil microorganisms are the main sources of crucial enzymes in the cycling of main
60	
69	nutrients (e.g. C, N and P). Moreover, soil enzyme activities are highly sensitive to
70	environmental changes and could serve as indicators of various changes in the plant-soil
71	system (Burns et al., 2013; Saiya-Cork et al., 2002). Activities of extracellular enzymes are
72	strongly regulated by the presence of plants, and the release of labile substrates by living roots
73	into soil enhances extracellular enzyme activities (Nannipieri et al., 2002). Therefore, the
74	aforementioned changes in belowground plant growth under elevated ozone could have the
75	potential to alter both substrate availability and extracellular enzyme activities (Andersen,
76	2003). Studies in aspen and aspen-birch forest ecosystems have shown that elevated ozone
77	significantly reduced cellobiohydrolase activity but did not affect N-acetyl-glucosaminidase

78	activity in the forest floor after 2- or 10-year treatment (Edwards and Zak, 2011; Larson et al.,
79	2002). In a lysimeter study with young planted beech, Esperschütz et al. (2009) reported that
80	soil extracellular enzyme activities were generally not affected after 4 years of ozone
81	treatment. In contrast, Williamson et al. (2010) measured the decomposition rates of wetland
82	plants exposed to elevated ozone and showed that the responses of activities of β -glucosidase
83	and N-acetyl-glucosaminidase to elevated ozone were species-dependent. Thus, how soil
84	extracellular enzyme activities respond to elevated ozone remains uncertain.
85	Soil aggregation physically protects certain soil organic matter (SOM) fractions via
86	influencing soil microbial communities and activities. In general, soil aggregates are
87	fractionated by three different approaches: wet-sieving (Six et al., 1998), dry-sieving (Chenu
88	and Cosentino, 2011) and optimal moisture (Dorodnikov et al., 2009; Kristiansen et al.,
89	2006). To link in situ microbial communities and activities with ecological processes, the
90	optimal moisture approach can provide an advantage of minimizing microbial responses to
91	lab processing for a wide-range of biological assays (i.e., microbial biomass and extracellular
92	enzyme activities) (Bach and Hofmockel, 2014). The reported decrease of the available
93	substrates under elevated ozone, through decreased C allocation and fluxes into belowground
94	components, are expected to affect microbial biomass and extracellular enzyme activities
95	(Andersen, 2003). However, less is known about how extracellular enzyme activities respond
96	to elevated ozone in either bulk soil or isolated aggregates.
97	In this study, we aimed (i) to investigate changes in soil properties, microbial biomass

98 and extracellular enzyme activities in bulk soil after four years of elevated ozone treatment,

99	and (ii) to relate these changes observed in bulk soil to contrasting environment of differently
100	sized aggregates. Given the aforementioned ozone effects on above- and belowground
101	components, we hypothesized that field experimental exposure to elevated ozone in a
102	grassland ecosystem would change soil microbial biomass and extracellular enzyme
103	activities. For verifying this hypothesis, we collected soils from a temperate, semi-natural
104	grassland after four years of ozone treatment under fully open-air field conditions.

105 **2. Material and methods**

106 2.1. Experiment site

107	Soil samples were taken from the ozone free-air controlled exposure (O ₃ -FACE) field located
108	at CEH Bangor Air Pollution Facility, Abergwyngregyn, North Wales, UK (13 m asl,
109	53°15'N, 4°01'W). The study site has a temperate oceanic climate, with a mean annual soil
110	temperature of 11°C at 10 cm depth and a mean annual rainfall of 1250 mm. The soil is
111	classified as Eutric Cambisol (FAO) or Dystric Eutrudepts (US Soil Taxonomy) with a sandy
112	clay loam texture, which is derived from Ordovician postglacial alluvial deposits. Vegetation
113	was classified as Lolium perenne leys and related grasslands according to the UK National
114	Vegetation Classification (MG7; Rodwell, 1992), without sheep grazing for more than 15
115	years prior to this study. No fertilizer was applied at this site throughout the experimental
116	period. Grass was cut 2-3 times during each growing season.
117	The O EACE system was established in the apping of 2014 consisting of give since of 4
11/	The O_3 -FACE system was established in the spring of 2014, consisting of nine rings of 4

118 m diameter. Three ozone treatments with three replicates, namely low (ambient air), medium

119	(ambient air + 10 ppb) and high (ambient air + 20 ppb), were randomly assigned to the rings
120	(Table 1), where the latter two treatments are hereafter referred to as elevated ozone. The
121	rings were arranged in a replicated 3×3 Latin square with 10 m between the centers of each
122	ring. Ozone was generated by passing oxygen from a SeQual Integra 10 Oxygen Concentrator
123	(SeQual Technologies, Inc., San Diego, CA, USA) through a Pacific Ozone G11 ozone
124	generator (Benicia, California, USA). Small fans (Redring Xpelair Group Ltd, Southampton,
125	UK) were used to push the ozone through the delivery pipe (65 mm, with 3 mm holes every
126	10 cm). Ozone delivery was achieved via computer controlled (LabView Version 2012,
127	National Instruments) solenoid valves operating using pulse width modulation. Wind speed
128	was monitored continuously (WindSonic, Gill Instruments Ltd, UK) and used to
129	instantaneously adjust solenoid operation and thus ozone delivery. Ozone release was reduced
130	at wind speeds below 16 m $\rm s^{-1}$ and did not occur when wind speeds fell below 2 m $\rm s^{-1}.$ Ozone
131	was sampled adjacent to the plants in each ring at a height of 30 cm for approximately 3.5
132	min in every 30-min using an ozone analyzer (Thermo-Scientific, Model 49i, Reading, UK).
133	Compared with previous studies using similar free-air systems (Paoletti et al., 2017;
134	Watanabe et al., 2013), at very high wind speeds the ozone concentrations may not be well
135	controlled and thus did not reach the target maximum concentrations. Despite this, we still got
136	elevated ozone with the higher in the 'high' ozone treatment compared to that of the
137	'medium' treatment as the solenoid valves were <1 m from the O ₃ -FACE rings, the response
138	time of ozone delivery to track windspeed was fast. Exposure to elevated ozone lasted from
139	17 July to 13 October in 2014, from 13 May to 11 September in 2015, from 1 June to 30
140	September in 2016, and from 25 May to 9 October in 2017. Ozone release was 93, 67, 93 and

141 99% of the time during the fumigation periods in the years 2014, 2015, 2016, and 2017,
142 respectively.

143 2.2. Aggregate-size fractionation

144	Soil was collected from the top 10 cm of soil using 6.5 cm-diameter soil cores in November
145	2017. Three intact soil cores were collected from each ring, placed in CO ₂ permeable
146	polythene bags and then transported to the laboratory. Each soil core was gently broken up
147	along natural points of weakness and passed through an 8-mm sieve, removing visible roots
148	and rocks. Replicated soil cores were combined into one composite sample for each ring and
149	then stored at 4 °C to await further analysis. Prior to aggregate-size fractionation, subsamples
150	of bulk soil were obtained from the cold-dried soils. Similar to previous studies (Bach and
151	Hofmockel, 2014; Kristiansen et al., 2006), the optimal moisture approach was used for
152	aggregate isolation to minimize microbial responses to lab processing for the following
153	biological assays. Briefly, soils were cold dried at 4 °C to approximately 10% gravimetric
154	water content. Approximately 400 g of cold-dried soil was placed on a stack of sieves
155	including 2 mm- and 0.25 mm-mesh openings. The stack was bolted to a circular sieve shaker
156	intend for soil particle analysis and shaken at 200-250 rpm for 3 min. Soil was gently
157	removed from each sieve and weighed to determine the mass distribution of aggregates into
158	the following fractions: large macroaggregates (>2 mm), small macroaggregates (0.25–2 mm)
159	and microaggregates (<0.25 mm). Subsamples of bulk soil and individual aggregate-size
160	fractions were saved to determine gravimetric water content, total C, microbial biomass and

161	mineralization rates of low molecular weight C substrates. Subsamples for the enzyme assay
162	detailed below were frozen immediately at -20 °C until analysis.

163 2.3. Soil analysis

164	Bulk density was determined after insertion of 100 cm ³ metal rings into the soil, removal of
165	soil, and drying at 105°C (24 h). Bulk density was calculated by dividing soil mass by core
166	volume. Soil characteristics of both bulk soil and aggregate fractions were determined. Soil
167	water content was determined gravimetrically by drying soil at 105 °C (24 h). Soil pH was
168	measured using standard electrodes in a 1:2.5 (w/v) soil-to-deionized water mixture.
169	Subsamples of bulk soil and aggregate fractions were directly extracted with $0.5 \text{ M K}_2\text{SO}_4$
170	(1:5 w/v) for available soil C and N pools measurement. For soil microbial biomass,
171	additional subsamples were fumigated for 24 h with chloroform and similarly extracted with
172	0.5 M K ₂ SO ₄ (1:5 w/v) (Vance et al., 1987). The 0.5 M K ₂ SO ₄ extracts of non-fumigation and
173	fumigation samples were quantified using a Multi N/C 2100 TOC analyzer (AnalytikJena,
174	Jena, Germany) to determine soil dissolved organic C (DOC), microbial biomass C and N.
175	Microbial biomass C and N concentrations were corrected using correction factors of 0.45 for
176	C and 0.54 for N (Brookes et al., 1985; Wu et al., 1990). Total C (TC) and N (TN) of oven-
177	dried and ground soils were determined with a TruSpec® elemental analyzer (Leco Corp., St
178	Joseph, MI, USA). Based on the relative weight distribution of aggregates, the total microbial
179	biomass C in different aggregates were recalculated for bulk soil. Net N mineralization and
180	nitrification rates were determined by the aerobic incubation of soil samples for 14 days at

181 10 °C in the dark (Hart et al., 1994), followed by extraction with 0.5 M K₂SO₄ and analyzing
182 for soil mineral N as described above.

183	Carbon mineralization was estimated using a short-term incubation method following
184	Robertson et al. (1999). Briefly, 20 g fresh soils for bulk soil and aggregate fractions was
185	moistened to field moisture content (25%) with deionized water in a 1-L jar. The mason jar
186	was closed with airtight screw-cap lid, fitted with a gas sampling port (butyl rubber septum)
187	at the center, and was incubated at 10 °C for 21 d. Soil respiration were measured on 1, 3, 5,
188	7, 14 and 21 d after incubation by measuring CO_2 concentration in the headspace air samples
189	of the jar using a portable infrared gas analyzer (EGM-5 Environmental Gas Monitor for CO ₂ ,
190	PP Systems, Hitchin, UK). Carbon mineralization rate was calculated and expressed as mg C
191	$kg^{-1} h^{-1}$.

192	In addition, the mineralization of glucose, amino acids and peptide were determined to
193	estimate rates of low molecular weight dissolved organic C and N following the method of
194	Hill et al. (2012). Briefly, 1 g fresh weight (equivalent to c. 0.87 g dry weight) soil was placed
195	into a 1.5-mL microcentrifuge tube in which a hole had been pierced in bottom. This
196	assembly was placed into another intact microcentrifuge tube. To the surface of the soil, 150
197	μ L ¹⁴ C-labelled glucose (25 μ M, 1.85 kBq mL ⁻¹), amino acids (10 μ M, 1.55 kBq mL ⁻¹) and
198	peptide (10 μ M of L-trialanine, 1 kBq mL ⁻¹) were added. It has been suggested that an
199	incubation period of 3 min can reflect maximum variance between treatments (Hill et al.,
200	2012). Thus, these samples were incubated at 20°C for 3 min and then centrifuged at 4 000 g
201	for 1 min to facilitate collection of free soil solution. An aliquot of this solution was then

202	transferred to a 6-mL scintillation vial to which 4 mL Scintisafe3 Scintillation cocktail (Fisher
203	Scientific, Loughborough, Leicestershire, UK) was added before analysis using a Wallac
204	1404 liquid scintillation counter (Wallac, EG&G, Milton Keynes, UK). The amino acids
205	consisted of an equimolar mix of 20 different L-amino acids (glycine, isoleucine, arginine,
206	glutamine, phenylalanine, histidine, asparagine, valine, threonine, leucine, alanine,
207	methionine, cysteine, lysine, tryptophan, serine, proline, glutamate, aspartic acid and
208	ornithine).
209	2.4. Enzyme assays
210	The potential activities of six extracellular hydrolytic enzymes: β -glucosidase,
211	cellobiohydrolase, β -xylosidase, N-acetyl-glucosaminidase, leucine aminopeptidase and acid
212	phosphatase were measured according to the fluorimetric protocol of Saiya-Cork et al. (2002)
213	with modification by DeForest (2009). Briefly, 1 g of fresh soils was suspended in 125 mL
214	sodium acetate buffer with pH adjusted to mean of soils. Soil suspensions were pipetted into
215	96-well microplates, and enzyme activities were determined by adding 4-methylumbelliferyl
216	(MUB)- or 7-amino-4-methylcoumarin (AMC)-linked substrates for a final concentration of
217	40 μ M. Assays were incubated in the dark for 2 h, and the reactions were stopped with 10 μ L
218	0.5 M NaOH. The microplates were then scanned on a fluorescence spectrophotometer (Cary
219	Eclipse, Agilent Technologies, Inc., Santa Clara, CA, USA) using the excitation and emission
220	filters at 365 and 450 nm, respectively. Potential enzyme activity for bulk soil and aggregate-
221	size fractions was expressed as MUB or AMC released in nanomol per gram of dry soil or
222	aggregate and hour (nmol g^{-1} soil h^{-1} or nmol g^{-1} aggregate h^{-1}) as described previously

223	(DeForest, 2009). Specific activities of extracellular enzymes were also calculated as a
224	measure of activity per unit microbial biomass and expressed as MUB or AMC released in
225	nanomol per milligram microbial biomass C and hour (nmol $mg^{-1} C_{mic} h^{-1}$). The recovery of
226	potential enzyme activity was calculated and expressed as a proportion of the bulk soil based
227	on the weight distribution of aggregates.

228 2.5. Statistical analysis

229	All data were c	hecked for	assumptions of	f normality and	l log-transformed	l if necessary.	A
-----	-----------------	------------	----------------	-----------------	-------------------	-----------------	---

- 230 linear mixed effect model (LME, package LME4; Bates et al., 2014) was used to test ozone
- and/or aggregate-size class effects on investigated parameters with column and row included
- as random effects. Multiple comparisons between treatment means were conducted using
- post-hoc Tukey HSD tests (glht package: 'multcomp'). We accepted P values of $P \le 0.05$ as
- significant and those with P > 0.05, but < 0.1 as marginally significant. All statistical analyses
- were performed in R version 3.2.2 (R Development Core Team, 2015).

236 **3. Results**

237 *3.1. The* O₃-FACE system

238 The semi-natural grassland was exposed to ozone under fully open-air field conditions from

July 17, 2014 through to October 9, 2017 during the growing season, with an average of 101

- 240 days effective fumigation. Inter-annual variations in ambient ozone concentration (24 h
- 241 means) showed only a small variation and ranged from 20.6 ppb in 2016 to 28.2 ppb in 2014
- 242 (Table 1). Across all years, mean ozone concentrations in medium and high ozone rings were

243	69 and 116% higher than that in ambient air, respectively. Accumulated exposures above a
244	threshold of 40 ppb (AOT40) averaged 1.3±0.7 ppm h in the ambient rings, 14.0±3.6 ppm h in
245	the medium ozone rings and 26.4±8.0 ppm h in the high ozone rings over the four-year
246	period.

3.2. Soil properties, low molecular weight C substrate mineralization and enzyme activities in
bulk soils

249	After 4 years of ozone treatment, soil total C and N were lower by an average of 20% and
250	16% under elevated ozone (medium and high ozone rings) than ambient ozone, respectively
251	(both $P < 0.05$; Table 2), while soil bulk density, pH and C-to-N ratio did not differ between
252	treatments. There was an apparent decrease in DOC and microbial biomass C in the elevated
253	ozone treatments, which was not statistically significant when compared with those of the
254	ambient ozone treatment. The ratios of microbial biomass C to total C were higher in the
255	elevated ozone treatments than the ambient treatment ($P = 0.06$). Neither short-term C
256	mineralization nor mineralization of low molecular weight C substrates for bulk soil was
257	affected by elevated ozone.
258	Averaged over all treatments, higher extracellular enzyme activities in bulk soil were

- found for β -glucosidase and acid phosphatase (on average 293 and 578 nmol g⁻¹ soil h⁻¹,

260 respectively), while the other four enzymes showed lower and similar activities (Table 2).

- 261 Elevated ozone significantly decreased β -glucosidase activity (P < 0.05) but not the activities
- 262 of cellobiohydrolase, β -xylosidase, N-acetyl-glucosaminidase, leucine aminopeptidase and
- acid phosphatase in bulk soil.

265	Elevated ozone did not affect the relative distribution of three aggregate fractions (Table 3).
266	Large and small macroaggregates dominated in this grassland soil, whereas the
267	microaggregate fraction accounted for a very small percentage of total soil mass ($P < 0.001$).
268	The weight distribution among the aggregate-size classes of the bulk soil was as follows:
269	large macroaggregates (>2 mm) contributed 52.1–57.4%, small macroaggregates (0.25–2
270	mm) 35.6–38.3% and microaggregates (<0.25 mm) 6.5–9.6% of the weight of bulk soil. Total
271	C content were higher in the large macro- and microaggregate fractions than in the small
272	macroaggregate fraction ($P < 0.001$) but did not significantly differ between ozone treatments
273	within each aggregate fraction.
274	Across aggregate fractions, microbial biomass C showed a marginally significant
275	reduction by an average of 10% under elevated ozone ($P = 0.086$; Table 3). There was no
276	clear relationship between microbial biomass C and aggregate-size classes. Relative to the
277	bulk soil, the total microbial biomass C in different aggregates showed approximately 100%
278	recoveries across ozone treatments (Fig. 1A). The ratios of microbial biomass C to total C
279	were affected by aggregate-size class ($P < 0.01$) and its interaction with ozone ($P = 0.064$;
280	Fig. 1B).

3.4. Low molecular weight C substrate mineralization and enzyme activities in isolated
aggregates

283	As with bulk soil, short-term C mineralization in isolated aggregates did not differ between
284	ozone treatments (Fig. 1C), though C mineralization rates in small macroaggregates and
285	microaggregates were lower by 32 and 31%, respectively under elevated ozone as compared
286	to ambient conditions. Neither ozone nor its interaction with aggregate-size class had effects
287	on mineralization rates of low molecular weight C substrates, except that stimulated glucose
288	mineralization was detected in the large macroaggregate from the high ozone treatment (Fig.
289	1D-F). It should be noted that the pronounced effects of aggregate-size class on
290	mineralization rates of low molecular weight C substrates were primarily due to
291	underestimated turnover in the large macroaggregates with a 3-min incubation period.
292	Activities of β -glucosidase, N-acetyl-glucosaminidase, leucine aminopeptidase and acid
293	phosphatase were distributed differently through aggregate-size classes ($P < 0.05-0.01$; Fig.
294	2). Across ozone treatments, activities of β -glucosidase and acid phosphatase were of the
295	order microaggregate > large macroaggregate > small macroaggregate. The lowest activity of
296	leucine aminopeptidase was found both in the high ozone treatment and small
297	macroaggregate fraction. Activities of cellobiohydrolase and β -xylosidase showed similar
298	across all aggregate-size classes irrespective of ozone. Since aggregate-size class had no
299	effect on microbial biomass, the patterns of specific activities of extracellular enzymes are
300	almost identical to patterns as seen above (data not shown). Cumulative proportional enzyme
301	activity in isolated aggregates did not differ from bulk soil, with somewhat larger variation
302	ranged from 89% to 144% across enzymes (data not shown).

4. Discussion

4.1. Aggregate-size fractionation

305	According to the concept of aggregate hierarchy (Tisdall and Oades, 1982), the bulk soil has
306	been fractionated into its constituent aggregates using different disruptive techniques (Chenu
307	and Cosentino, 2011; Mendes et al., 1999; Six et al., 1998). In this study, we chose the
308	optimal moisture sieving technique which allows limited mechanical stress to breakdown of
309	macroaggregates along the planes of weakness, releasing the microaggregates located on
310	surfaces of macroaggregates and along their planes of weakness (Dorodnikov et al., 2009;
311	Kristiansen et al., 2006). The small portion of microaggregates isolated in this study (6.5–
312	9.6%) was comparable to those reported in other studies (Bach and Hofmockel, 2016; Kumar
313	et al., 2017). This finding further supports the claim that free microaggregates and the
314	microaggregates adhering on the surface of macroaggregates are isolated. On the other hand,
315	the most distinguishing characteristics of optimal moisture sieving compared to the
316	conventional wet- and dry sievings is to minimize effects on the soil microbial community
317	and biological parameters. This is supported by our results showing that cumulative
318	recoveries of microbial biomass and enzyme activity were 99–102% and 89–144%,
319	respectively, across all treatments and enzymes.
320	The aggregate weight distribution detected here were in the order large
321	macroaggregates > small macroaggregates > microaggregates (Table 3). This is in agreement
322	with other studies showing that large and small macroaggregates dominated in agricultural
323	soils (Bach and Hofmockel 2014: Kristiansen et al. 2006: Kumar et al. 2017). The
324	distribution of aggregate-size classes was not altered after four years of ozone treatment
<i>J –</i> f	assurbation of approprie size classes was not affered after four yours of ozone iteament,

325	although a significant reduction of root biomass under elevated ozone was detected (ambient
326	ozone: 1176±142 g m ⁻² vs. elevated ozone: 725±87 g m ⁻² ; $P = 0.024$). Consistent with this
327	finding, the high plant density resulted in a two-fold increase of root biomass but had no
328	effect on aggregate redistribution in a maize field (Kumar et al., 2017). Consequently, our
329	findings indicate that elevated ozone had no effect on the distribution of soil aggregate-size
330	classes, although there are negative impacts of elevated ozone on root growth and
331	belowground C allocation (Andersen, 2003; Grantz et al., 2006).
332	4.2. Effects of elevated ozone on microbial biomass in bulk soil and isolated aggregates
333	Numerous studies have been conducted to assess the effect of elevated ozone on soil
334	microbial biomass, but the results remain controversial. Whereas some studies showed a
335	decrease in microbial biomass (Bao et al., 2015; Kanerva et al., 2008; Phillips et al., 2002),
336	others reported no difference (Cheng et al., 2011; Zhang et al., 2014) or even an increased
337	microbial biomass (Mörsky et al., 2008) from soils under elevated ozone. Our results support
338	those studies that found a negative response of soil microbial biomass to elevated ozone,
339	partly corroborating our initial hypothesis. Ozone exposure is considered to alter C flux to
340	soil via changes in rhizodeposition and litter quality or quantity (Andersen, 2003), and
341	therefore, the decreased microbial biomass in bulk soil is most likely due to reduced root
342	biomass and substrate availability under elevated ozone. Further, this is primarily associated
343	with a significant reduction of microbial biomass in the microaggregate fraction under
344	elevated vs. ambient ozone (Table 3). Since macroaggregates and microaggregates are
345	inhabited predominately by fungal and bacterial communities, respectively, we speculate that

346	bacterial communities in microaggregates might be strongly affected by elevated ozone in this
347	grassland soil. In contrast, some studies have shown that elevated ozone significantly reduced
348	both fungal biomass and the fungal-to-bacterial ratio, suggesting that fungi may be more
349	sensitive to elevated ozone as compared to bacteria (Kanerva et al., 2008; Li et al., 2013;
350	Phillips et al., 2002). This inconsistency could be due to the differences in ecosystem types,
351	experimental duration and methods, as well as environmental conditions. Nonetheless, we are
352	aware that the present study is the first to assess the response of microbial biomass to elevated
353	ozone among different aggregate fractions and further investigations are required.
354	The lack of correlation between soil microbial biomass and aggregate-size class
355	contradicts the findings of others in agricultural soils, where they found soil microbial
356	biomass were positively or negatively correlated with decreasing aggregate size (Dorodnikov
357	et al., 2009; Kumar et al., 2017). Different microbial biomass between microaggregates and
358	macroaggregates are often attributed to the contrasting environment of differently sized
359	aggregates, which in turn contributes to the differential distribution of bacteria and fungi in
360	micro- and macroaggregates (Chenu et al., 2001; Gupta and Germida, 1988; Jastrow et al.,
361	2007). Since the composition and structure of the soil microbial community were not
362	determined in isolated aggregates, we are not sure if the lack of correlation between microbial
363	biomass and aggregate-size class is related to changes in microbial communities. In a recent
364	review, Gupta and Germida (2015) also point out that further studies are warranted to
365	investigate the distribution and temporal dynamics of microbes in distinct aggregates. While
366	total organic C and microbial biomass C did not differ between ozone treatments within each
367	aggregate fraction, the reduced ratio of microbial biomass C to total organic C in

368	microaggregates may have contributed to the decline in total C in bulk soil under elevated
369	ozone (Sparling, 1992). In contrast, the increased ratio of microbial biomass C to total organic
370	C in the bulk soil under elevated ozone may be caused by decreases in total organic C content
371	rather than microbial biomass.
372	4.3. Effects of elevated ozone on extracellular enzyme activities in bulk soil and isolated
373	aggregates
374	As an overall indicator of microbial activity, the significantly lower activity of β -glucosidase
375	in bulk soil under elevated vs. ambient ozone supports the findings suggesting depressed
376	microbial activity due to reduced C allocation into the belowground ecosystem (Andersen,
377	2003). Further, the significant reduction of the ratio of the natural logarithm of β -glucosidase
378	and the sum of N-acetyl-glucosaminidase and leucine aminopeptidase in bulk soil indicates
379	that elevated ozone could stimulate microbes to produce enzymes towards acquisitions of
380	organic N (Sinsabaugh et al., 2008), despite the absence of ozone effect on individual
381	enzymes (Table 2). Chitin is one of the dominant sources of organic N to soil, and N-acetyl-
382	glucosaminidase releases small, N-containing amino sugars from chitin in addition to C
383	(Olander and Vitousek, 2000). In this grassland without fertilizers application and grazing for
384	a long-term period, elevated ozone might have resulted in microbially decomposing
385	recalcitrant organic matter for both energy source and nutrient demand (e.g. N). Thus, these
386	findings support our hypothesis regarding ozone effects on extracellular enzyme activities.
387	Yet, there are very few studies addressing the responses of extracellular enzyme activity to
388	elevated ozone and showing mixed results. For example, studies in aspen and aspen-birch

389	forest ecosystems reported that elevated ozone had no effects on enzyme activities in the
390	second year of treatment (Larson et al., 2002), whereas after 10 years cellobiohydrolase
391	activity was affected in the forest floor but N-acetyl-glucosaminidase remained unaffected
392	(Edwards and Zak, 2011). Further, Williamson et al. (2010) measured the decomposition rates
393	of wetland plants exposed to elevated ozone and concluded that the response of hydrolytic
394	enzyme activity to ozone was species dependent. Collectively, these conflicting results
395	indicates that ozone effects on extracellular enzymes remain poorly understood and further
396	work is needed.

397 Across all enzymes, enzyme activities were somewhat higher in microaggregates than in 398 macroaggregates irrespective of ozone treatment. This is consistent with the previous findings 399 showing that the highest enzyme activities occurred in microaggregates, especially for β-400 glucosidase (Dorodnikov et al., 2009; Kumar et al., 2017). We found that enzyme activities in 401 isolated aggregates generally equaled or exceeded those in bulk soil and may have been even 402 greater if there were enzyme losses during the aggregate fractionation. This supports the 403 findings by several researchers who reported similar or higher recovery of enzyme activity in 404 isolated aggregates as compared to the bulk soil (Allison and Jastrow, 2006; Bach and 405 Hofmockel, 2014; Dorodnikov et al., 2009). This indicates that a lack of enzyme activity 406 might be not responsible for C accumulation associated with soil aggregation. In addition, 407 elevated ozone affected neither enzyme activities nor low molecular weight C substrate 408 mineralization within each aggregate fraction, suggesting that substrate utilization patterns of 409 soil microbial communities were unchanged.

410 **5. Conclusions**

411 To our knowledge the present study is the first to assess the responses of microbial biomass 412 and extracellular enzyme activities in bulk soil and isolated aggregates to elevated ozone 413 under O₃-FACE conditions. Our results demonstrated that elevated ozone for a period of four 414 years had negative impacts on both soil C sequestration and total microbial biomass activity 415 (i.e., decreased microbial biomass and β -glucosidase activity), which was mainly due to 416 reduced belowground C allocation. Ozone exposure did not affect soil aggregation in this 417 semi-natural grassland, probably contributing to the absence of effects of ozone and its 418 interaction with aggregate-size class on low molecular weight C substrate utilization and 419 extracellular enzyme activities. It should also be noted that the small, statistically insignificant 420 changes (e.g. microbial biomass) could be associated with high variability. Therefore, our 421 results suggest that changes in the quantity and quality of plant C inputs at elevated ozone can 422 contribute to reduce soil total C content but not to alter the function of the soil microbial 423 community in this semi-natural grassland.

424 Acknowledgements

This work was supported by the European Commission under Horizon 2020 for a Marie
Skłodowska-Curie Actions COFUND Fellowship (663830-BU-048) and by the Welsh
Government and Higher Education Funding Council for Wales through the Sêr Cymru
National Research Network for Low Carbon, Energy and Environment. We thank Aled
Williams for technical support in running the O₃-FACE facility. We thank Dr Elena Paoletti
and two anonymous reviewers for helpful comments in the revision of the manuscript.

431 **Reference**

432	Agathokleous, E., Saitanis, C.J., Wang, X., Watanabe, M., Koike, T., 2016. A Review Study
433	on Past 40 Years of Research on Effects of Tropospheric O3 on Belowground Structure,
434	Functioning, and Processes of Trees: A Linkage with Potential Ecological Implications.
435	Water. Air. Soil Pollut. 227. doi:10.1007/s11270-015-2715-9
436	Ainsworth, E.A., 2008. Rice production in a changing climate: A meta-analysis of responses
437	to elevated carbon dioxide and elevated ozone concentration. Glob. Chang. Biol. 14,
438	1642–1650. doi:10.1111/j.1365-2486.2008.01594.x
439	Allison, S.D., Jastrow, J.D., 2006. Activities of extracellular enzymes in physically isolated
440	fractions of restored grassland soils. Soil Biol. Biochem. 38, 3245-3256.
441	doi:10.1016/j.soilbio.2006.04.011
442	Andersen, C.P., 2003. Source-sink balance and carbon allocation below ground in plants
443	exposed to ozone. New Phytol. 157, 213–228. doi:10.1046/j.1469-8137.2003.00674.x
444	Ashmore, M.R., 2005. Assessing the future global impacts of ozone on vegetation. Plant, Cell
445	Environ. 28, 949–964. doi:10.1111/j.1365-3040.2005.01341.x
446	Bach, E.M., Hofmockel, K.S., 2016. A time for every season: Soil aggregate turnover
447	stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy.
448	GCB Bioenergy 8, 588-599. doi:10.1111/gcbb.12267
449	Bach, E.M., Hofmockel, K.S., 2014. Soil aggregate isolation method affects measures of
450	intra-aggregate extracellular enzyme activity. Soil Biol. Biochem. 69, 54-62.
451	doi:10.1016/j.soilbio.2013.10.033
452	Bao, X., Yu, J., Liang, W., Lu, C., Zhu, J., Li, Q., 2015. The interactive effects of elevated

- 453 ozone and wheat cultivars on soil microbial community composition and metabolic
- 454 diversity. Appl. Soil Ecol. 87, 11–18. doi:10.1016/j.apsoil.2014.11.003
- 455 Bates, D., Mächler, M., Bolker, B., Walker, S., 2014. Fitting linear mixed-effects models
- 456 using lme4. arXiv Prepr. arXiv1406.5823.
- 457 Booker, F.L., Prior, S.A., Torbert, H.A., Fiscus, E.L., Pursley, W.A., Hu, S., 2005.
- 458 Decomposition of soybean grown under elevated concentrations of CO₂ and O₃. Glob.
- 459 Chang. Biol. 11, 685–698. doi:10.1111/j.1365-2486.2005.00939.x
- 460 Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S., 1985. Chloroform fumigation and
- 461 the release of soil nitrogen: A rapid direct extraction method to measure microbial
- 462 biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842. doi:10.1016/0038-
- 463 0717(85)90144-0
- 464 Burns, R.G., DeForest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein,
- 465 M.D., Weintraub, M.N., Zoppini, A., 2013. Soil enzymes in a changing environment:
- 466 Current knowledge and future directions. Soil Biol. Biochem. 58, 216–234.
- 467 doi:10.1016/j.soilbio.2012.11.009
- 468 Cheng, L., Booker, F.L., Burkey, K.O., Tu, C., da Shew, H.D., Rufty, T.W., Fiscus, E.L.,
- 469 Deforest, J.L., Hu, S., 2011. Soil microbial responses to elevated CO₂ and O₃ in a
- 470 nitrogen-aggrading agroecosystem. PLoS One 6. doi:10.1371/journal.pone.0021377
- 471 Chenu, C., Cosentino, D., 2011. Microbial regulation of soil structural dynamics, in: The
- 472 Architecture and Biology of Soils: Life in Inner Space. CABI Wallingford, UK, pp. 37–
 473 70.
- 474 Chenu, C., Hassink, J., Bloem, J., 2001. Short-term changes in the spatial distribution of

- 475 microorganisms in soil aggregates as affected by glucose addition. Biol. Fertil. Soils 34,
- 476 349–356. doi:10.1007/s003740100419
- 477 DeForest, J.L., 2009. The influence of time, storage temperature, and substrate age on
- 478 potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-
- 479 DOPA. Soil Biol. Biochem. 41, 1180–1186. doi:10.1016/j.soilbio.2009.02.029
- 480 Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier, A., Kuzyakov,
- 481 Y., 2009. Stimulation of microbial extracellular enzyme activities by elevated CO₂
- depends on soil aggregate size. Glob. Chang. Biol. 15, 1603–1614. doi:10.1111/j.1365-
- 483 2486.2009.01844.x
- 484 Edwards, I.P., Zak, D.R., 2011. Fungal community composition and function after long-term
- 485 exposure of northern forests to elevated atmospheric CO₂ and tropospheric O₃. Glob.

486 Chang. Biol. 17, 2184–2195. doi:10.1111/j.1365-2486.2010.02376.x

- 487 Esperschütz, J., Pritsch, K., Gattinger, A., Welzl, G., Haesler, F., Buegger, F., Winkler, J.B.,
- 488 Munch, J.C., Schloter, M., 2009. Influence of chronic ozone stress on carbon
- 489 translocation pattern into rhizosphere microbial communities of beech trees (Fagus
- 490 sylvatica L.) during a growing season. Plant Soil 323, 85–95. doi:10.1007/s11104-009-
- 491 0090-2
- 492 Feng, Z., Kobayashi, K., Ainsworth, E.A., 2008. Impact of elevated ozone concentration on
- 493 growth, physiology, and yield of wheat (*Triticum aestivum* L.): A meta-analysis. Glob.
- 494 Chang. Biol. 14, 2696–2708. doi:10.1111/j.1365-2486.2008.01673.x
- 495 Fuhrer, J., 2009. Ozone risk for crops and pastures in present and future climates.
- 496 Naturwissenschaften 96, 173–194. doi:10.1007/s00114-008-0468-7

497	Fuhrer, J., Val Martin, M., Mills, G., Heald, C.L., Harmens, H., Hayes, F., Sharps, K.,
498	Bender, J., Ashmore, M.R., 2016. Current and future ozone risks to global terrestrial
499	biodiversity and ecosystem processes. Ecol. Evol. 6, 8785-8799. doi:10.1002/ece3.2568
500	Grantz, D.A., Gunn, S., Vu, H.B., 2006. O3 impacts on plant development: A meta-analysis of
501	root/shoot allocation and growth. Plant, Cell Environ. 29, 1193-1209.
502	doi:10.1111/j.1365-3040.2006.01521.x
503	Gupta, V.V.S.R., Germida, J.J., 2015. Soil aggregation: Influence on microbial biomass and
504	implications for biological processes. Soil Biol. Biochem. 80, A3-A9.
505	doi:10.1016/j.soilbio.2014.09.002
506	Gupta, V.V.S.R., Germida, J.J., 1988. Distribution of microbial biomass and its activity in
507	different soil aggregate size classes as affected by cultivation. Soil Biol. Biochem. 20,
508	777–786. doi:10.1016/0038-0717(88)90082-X
509	Hart, S.C., Stark, J.M., Davidson, E.A., Firestone, M.K., 1994. Nitrogen mineralization,
510	immobilization, and nitrification. Methods Soil Anal. Part 2. Microbiol. Biochem. Prop.
511	985–1018. doi:10.2136/sssabookser5.2.c42
512	He, Z., Xiong, J., Kent, A.D., Deng, Y., Xue, K., Wang, G., Wu, L., Van Nostrand, J.D.,
513	Zhou, J., 2014. Distinct responses of soil microbial communities to elevated CO2 and O3
514	in a soybean agro-ecosystem. ISME J. 8, 714–26. doi:10.1038/ismej.2013.177
515	Hill, P.W., Farrell, M., Jones, D.L., 2012. Bigger may be better in soil N cycling: Does rapid
516	acquisition of small L-peptides by soil microbes dominate fluxes of protein-derived N in
517	soil? Soil Biol. Biochem. 48, 106–112. doi:10.1016/j.soilbio.2012.01.023

518 Jastrow, J.D., Amonette, J.E., Bailey, V.L., 2007. Mechanisms controlling soil carbon

- 519 turnover and their potential application for enhancing carbon sequestration. Clim.
- 520 Change 80, 5–23. doi:10.1007/s10584-006-9178-3
- 521 Kanerva, T., Palojärvi, A., Rämö, K., Manninen, S., 2008. Changes in soil microbial
- 522 community structure under elevated tropospheric O₃ and CO₂. Soil Biol. Biochem. 40,
- 523 2502–2510. doi:10.1016/j.soilbio.2008.06.007
- 524 Kasurinen, A., Keinänen, M.M., Kaipainen, S., Nilsson, L.O., Vapaavuori, E., Kontro, M.H.,
- 525 Holopainen, T., 2005. Below-ground responses of silver birch trees exposed to elevated
- 526 CO₂ and O₃ levels during three growing seasons. Glob. Chang. Biol. 11, 1167–1179.
- 527 doi:10.1111/j.1365-2486.2005.00970.x
- 528 Kasurinen, A., Peltonen, P.A., Julkunen-Tiitto, R., Vapaavuori, E., Nuutinen, V., Holopainen,
- 529 T., Holopainen, J.K., 2007. Effects of elevated CO₂ and O₃ on leaf litter phenolics and
- subsequent performance of litter-feeding soil macrofauna. Plant Soil 292, 25–43.
- 531 doi:10.1007/s11104-007-9199-3
- 532 Kristiansen, S.M., Schjønning, P., Thomsen, I.K., Olesen, J.E., Kristensen, K., Christensen,
- 533 B.T., 2006. Similarity of differently sized macro-aggregates in arable soils of different
- 534 texture. Geoderma 137, 147–154. doi:10.1016/j.geoderma.2006.08.005
- 535 Kumar, A., Dorodnikov, M., Splettstößer, T., Kuzyakov, Y., Pausch, J., 2017. Effects of
- 536 maize roots on aggregate stability and enzyme activities in soil. Geoderma 306, 50–57.
- 537 doi:10.1016/j.geoderma.2017.07.007
- 538 Larson, J.L., Zak, D.R., Sinsabaugh, R.L., 2002. Extracellular Enzyme Activity Beneath
- 539 Temperate Trees Growing Under Elevated Carbon Dioxide and Ozone. Soil Sci. Soc.
- 540 Am. J. 66, 1848. doi:10.2136/sssaj2002.1848

541	Li, X., Deng, Y., Li, Q., Lu, C., Wang, J., Zhang, H., Zhu, J., Zhou, J., He, Z., 2013. Shifts of
542	functional gene representation in wheat rhizosphere microbial communities under
543	elevated ozone. ISME J. 7, 660-71. doi:10.1038/ismej.2012.120
544	Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, T., Gregory, J.M., Kitoh,
545	A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J.,
546	Zhao, Z.C., 2007. Global climate projections, in: Solomon, S., Qin, D., Manning, M.,
547	Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), IPCC, 2007:
548	Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to
549	the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
550	Cambridge, UK, Cambridge University Press, pp. 747-846.
551	Mendes, I.C., Bandick, A.K., Dick, R.P., Bottomley, P.J., 1999. Microbial biomass and
552	activities in soil aggregates affected by winter cover crops. Soil Sci. Soc. Am. J. 63,
553	873–881.
554	Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M., Uddling, J., Jaramillo, F., Davies,
555	W.J., Dentener, F., Van den Berg, M., Agrawal, M., Agrawal, S.B., Ainsworth, E.A.,
556	Büker, P., Emberson, L., Feng, Z., Harmens, H., Hayes, F., Kobayashi, K., Paoletti, E.,
557	Van Dingenen, R., 2018. Ozone pollution will compromise efforts to increase global
558	wheat production. Glob. Chang. Biol. 24, 3560-3574. doi:10.1111/gcb.14157
559	Morgan, P.B., Ainsworth, E.A., Long, S.P., 2003. How does elevated ozone impact soybean?
560	A meta-analysis of photosynthesis, growth and yield. Plant, Cell Environ. 26, 1317-
561	1328. doi:10.1046/j.0016-8025.2003.01056.x

562 Mörsky, S.K., Haapala, J.K., Rinnan, R., Tiiva, P., Saarnio, S., Silvola, J., Holopainen, T.,

563	Martikainen, P.J., 2008. Long-term ozone effects on vegetation, microbial community
564	and methane dynamics of boreal peatland microcosms in open-field conditions. Glob.
565	Chang. Biol. 14, 1891–1903. doi:10.1111/j.1365-2486.2008.01615.x
566	Nannipieri, P., Kandeler, E., Ruggiero, P., 2002. Enzyme activities and microbiological and
567	biochemical processes in soil, in: Burns, R.G., Dick, R.P. (Eds.), Enzymes in the
568	Environment: Activity, Ecology, and Applications. Marcel Dekker, New York, NY, pp.
569	1–33.
570	Olander, L.P., Vitousek, P.M., 2000. Regulation of soil phosphatase and chitinase activity by
571	N and P availability. Biogeochemistry 49, 175–190. doi:10.1023/A:1006316117817
572	Oltmans, S.J., Lefohn, A.S., Shadwick, D., Harris, J.M., Scheel, H.E., Galbally, I., Tarasick,
573	D.W., Johnson, B.J., Brunke, E.G., Claude, H., Zeng, G., Nichol, S., Schmidlin, F.,
574	Davies, J., Cuevas, E., Redondas, A., Naoe, H., Nakano, T., Kawasato, T., 2013. Recent
575	tropospheric ozone changes - A pattern dominated by slow or no growth. Atmos.
576	Environ. 67, 331-351. doi:10.1016/j.atmosenv.2012.10.057
577	Paoletti, E., Materassi, A., Fasano, G., Hoshika, Y., Carriero, G., Silaghi, D., Badea, O., 2017.
578	A new-generation 3D ozone FACE (Free Air Controlled Exposure). Sci. Total Environ.
579	575, 1407–1414. doi:10.1016/j.scitotenv.2016.09.217
580	Phillips, R.L., Zak, D.R., Holmes, W.E., White, D.C., 2002. Microbial community
581	composition and function beneath temperate trees exposed to elevated atmospheric
582	carbon dioxide and ozone. Oecologia 131, 236–244. doi:10.1007/s00442-002-0868-x
583	R Development Core Team, 2015. R: A language and environment for statistical computing.
584	Vienna, Austria.

585	Ridley, D.A., Cain, M., Methven, J., Arnold, S.R., 2017. Sensitivity of tropospheric ozone to
586	chemical kinetic uncertainties in air masses influenced by anthropogenic and biomass
587	burning emissions. Geophys. Res. Lett. 44, 7472-7481. doi:10.1002/2017GL073802
588	Robertson, G.P., Wedin, D., Groffmann, P.M., Blair, J.M., Holland, E.A., Nadelhoffer, K.J.,
589	Harris, D., 1999. Soil carbon and nitrogen availability: nitrogen mineralization,
590	nitrification, and soil respiration potentials, in: Standard Soil Methods for Long-Term
591	Ecological Research. Oxford University Press, pp. 258–271.
592	Rodwell, J.S., 1992. British plant communities. Volume 3. Grasslands and montane
593	communities, Cambridge University Press, Cambridge, UK. Cambridge University
594	Press, Cambridge, UK.
595	Saiya-Cork, K., Sinsabaugh, R., Zak, D., 2002. The effects of long term nitrogen deposition
596	on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem.
597	34, 1309–1315. doi:10.1016/S0038-0717(02)00074-3
598	Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C.,
599	Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., Gartner, T.B., Hobbie, S.E., Holland,
600	K., Keeler, B.L., Powers, J.S., Stursova, M., Takacs-Vesbach, C., Waldrop, M.P.,
601	Wallenstein, M.D., Zak, D.R., Zeglin, L.H., 2008. Stoichiometry of soil enzyme activity
602	at global scale. Ecol. Lett. 11, 1252–1264. doi:10.1111/j.1461-0248.2008.01245.x
603	Six, J., Elliott, E.T., Paustian, K., Doran, J.W., 1998. Aggregation and Soil Organic Matter
604	Accumulation in Cultivated and Native Grassland Soils. Soil Sci. Soc. Am. J. 62, 1367.
605	doi:10.2136/sssaj1998.03615995006200050032x
606	Sparling, G.P., 1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive

- 607 indicator of changes in soil organic matter. Soil Res. 30, 195–207.
- 608 Tisdall, J.M., Oades, J.M., 1982. Organic matter and water-stable aggregates in soils. J. Soil

609 Sci. 33, 141–163. doi:10.1111/j.1365-2389.1982.tb01755.x

- 610 Toet, S., Subke, J.A., D'Haese, D., Ashmore, M.R., Emberson, L.D., Crossman, Z., Evershed,
- 611 R.P., Barnes, J.D., Ineson, P., 2009. A new stable isotope approach identifies the fate of
- ozone in plant-soil systems. New Phytol. 182, 85–90. doi:10.1111/j.1469-
- 613 8137.2009.02780.x
- 614 Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil

615 microbial biomass C. Soil Biol. Biochem. 19, 703–707. doi:10.1016/0038-

- 616 0717(87)90052-6
- 617 VanLoocke, A., Betzelberger, A.M., Ainsworth, E.A., Bernacchi, C.J., 2012. Rising ozone

618 concentrations decrease soybean evapotranspiration and water use efficiency whilst

- 619 increasing canopy temperature. New Phytol. 195, 164–171. doi:10.1111/j.1469-
- 620 8137.2012.04152.x
- 621 Vingarzan, R., 2004. A review of surface ozone background levels and trends. Atmos.
- 622 Environ. 38, 3431–3442.
- 623 Watanabe, M., Hoshika, Y., Inada, N., Wang, X., Mao, Q., Koike, T., 2013. Photosynthetic
- traits of Siebold's beech and oak saplings grown under free air ozone exposure in
- 625 northern Japan. Environ. Pollut. 174, 50–56. doi:10.1016/j.envpol.2012.11.006
- 626 Williamson, J., Mills, G., Freeman, C., 2010. Species-specific effects of elevated ozone on
- 627 wetland plants and decomposition processes. Environ. Pollut. 158, 1197–1206.
- 628 doi:10.1016/j.envpol.2010.01.019

- 629 Wittig, V.E., Ainsworth, E.A., Long, S.P., 2007. To what extent do current and projected
- 630 increases in surface ozone affect photosynthesis and stomatal conductance of trees? A
- 631 meta-analytic review of the last 3 decades of experiments. Plant, Cell Environ. 30,
- 632 1150–1162. doi:10.1111/j.1365-3040.2007.01717.x
- 633 Wu, J., Joergensen, R., Pommerening, B., Chaussod, R., Brookes, P.C., 1990. Measurement
- of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil

635 Biol. Biochem. 22, 1167–1169. doi:10.1016/0038-0717(90)90046-3

- 636 Zhang, W., He, H., Li, Q., Lu, C., Zhang, X., Zhu, J., 2014. Soil microbial residue dynamics
- 637 after 3-year elevated O₃ exposure are plant species-specific. Plant Soil 376, 139–149.
- 638 doi:10.1007/s11104-013-1973-9

640 **Table 1** Mean ozone concentrations (24 h), mean daily maximum ozone concentration and AOT40 in daylight hours (08:00 to 20:00 GMT) measured in the

641 ozone free-air controlled exposure (O₃-FACE) experiment at CEH Bangor Air Pollution Facility during the growing seasons in 2014–2017. Values represent

642 means \pm SEM (n = 3)

	July–October 2014			May-September 2015			June–September 2016			May-October 2017		
	Mean	Daily		Mean	Daily		Mean					
	conc.	max.	AOT40	conc.	max.	AOT40	conc.	Daily max.	AOT40		Daily max.	AOT40
Ozone level	(ppb)	(ppb)	(ppm h)	(ppb)	(ppb)	(ppm h)	(ppb)	(ppb)	(ppm h)	Mean conc. (ppb)	(ppb)	(ppm h)
Low	28.2±1.2	39.9±1.4	1.1±0.2	28.1±0.4	40.5±0.5	3.5±0.5	20.6±0.1	31.8±0.8	0.4±0.0	22.9±0.6	32.8±0.5	0.3±0.0
Medium	36.8±4.0	68.1±11.1	7.1±3.1	40.5±5.4	71.4±15.9	8.4±2.2	43.3±3.6	77.4±6.6	20.3±4.8	44.1±2.5	86.1±4.2	20.2±4.7
High	49.5±5.8	99.9±12.5	16.2±5.2	40.4±1.6	67.8±2.9	11.2±1.1	62.6±7.7	101.5±11.2	46.2±10.3	54.9±6.1	106.5±12.3	31.9±10.1

644 **Table 2** Soil characteristics, mineralization rates of low molecular weight C substrates and

	Ozone level			
	Low	Medium	High	P value
Total C (g C kg ⁻¹)	39.8±1.7	31.3±0.4	32.6±2.2	*
Total N (g N kg ⁻¹)	3.5±0.2	2.8±0.1	3.0±0.2	*
C:N ratio	11.6±0.9	11.2±0.3	10.8±0.4	NS
Bulk density (g cm^{-3})	0.83 ± 0.01	0.83 ± 0.02	0.87 ± 0.01	NS
pH	5.1±0.2	5.3±0.1	5.1±0.1	NS
Dissolved organic C (mg C kg ⁻¹)	215±11	192±12	202±12	NS
Microbial biomass C (mg C kg ⁻¹)	903±37	889±33	849±51	NS
Microbial biomass N (mg N kg ⁻¹)	95±3	107±6	96±10	NS
Microbial biomass C-to-N ratio	9.5±0.5	8.4±0.2	8.9±0.4	NS
Microbial biomass C-to-total C ratio (%)	2.27 ± 0.08	2.84 ± 0.08	2.61±0.17	•
C mineralization (mg C kg ⁻¹ h ⁻¹)	1.13±0.13	0.75 ± 0.08	1.18±0.29	NS
Glucose mineralization (mg C kg ⁻¹ h ⁻¹)	1.27±0.12	1.32±0.26	1.34±0.10	NS
Amino acids mineralization (mg N kg ^{-1} h ^{-1})	0.15±0.01	0.18±0.02	0.17±0.00	NS
Peptide mineralization (mg N kg ⁻¹ h ⁻¹)	0.31 ± 0.02	$0.30{\pm}0.04$	$0.30{\pm}0.02$	NS
β -glucosidase (nmol g ⁻¹ soil h ⁻¹)	332±28	293±20	224±11	*
Cellobiohydrolase (nmol g ⁻¹ soil h ⁻¹)	50.5±10.7	74.0±10.7	54.4±15.5	NS
N-acetyl-glucosaminidase (nmol g ⁻¹ soil h ⁻¹)	40.7±3.1	47.7±9.2	53.0±0.6	NS
β -xylosidase (nmol g ⁻¹ soil h ⁻¹)	39.0±3.8	47.1±4.3	39.8±8.1	NS
Leucine aminopeptidase (nmol g ⁻¹ soil h ⁻¹)	19.5±0.9	23.7±3.4	20.1±1.1	NS
Acid phosphatase (nmol g ⁻¹ soil h ⁻¹)	537±34	535±36	599±108	NS

645 potential extracellular enzyme activity under different ozone treatments

646 Values represent means \pm SEM (n = 3). Statistical results from linear mixed effect model with

ozone as a fixed factor and column/row as random effects are reported. NS, • and * indicate

648 not significant ($P \ge 0.1$), significant difference at P < 0.1 and P < 0.05, respectively.

	Weights distribution (%)			C content	$(g C kg^{-1})$		Microbial biomass C (mg C kg ⁻¹)		
Aggregate- size class	Low	Medium	High	Low	Medium	High	Low	Medium	High
> 2 mm	57.4±3.2	56.6±1.6	52.1±1.4	41.0±2.4	36.8±2.1	35.9±1.0	912±47	829±24	891±43
0.25–2 mm	36.1±2.5	35.6±2.1	38.3±1.9	32.0±2.8	31.8±0.4	28.8±0.2	896±9	935±5	848±86
< 0.25 mm	6.5±0.9	7.8±0.5	9.6±0.4	37.1±1.6	36.5±1.6	36.8±1.3	1160±92	958±65	819±34
Ozone	NS			NS			•		
Aggregate size	***			***			NS		
Interaction	NS			NS			•		

650 **Table 3** Aggregate-size distribution, organic C content and microbial biomass C in soil aggregates under different ozone treatments

651 Values represent means ± SEM (n = 3). Statistical results from linear mixed effect model with ozone and aggregate-size class as fixed factors and column/row

as random effects are reported. NS, • and *** indicate not significant ($P \ge 0.1$), significant difference at P < 0.1 and P < 0.001, respectively.

653 Figure captions

Fig. 1 Microbial biomass C recovery, microbial biomass C-to-total C ratio, short-term C mineralization, mineralization rates of low molecular weight C substrates (glucose, amino acids (AAs) and peptide) in three aggregate fractions under different ozone treatments. Values represent means \pm SEM (n =3). See text for further explanation on statistical results from linear mixed effect model with ozone and aggregate-size class as fixed factors and column/row as random effects.

Fig. 2 Potential activities of β-glucosidase, cellobiohydrolase, β-xylosidase, N-acetylglucosaminidase, leucine aminopeptidase and acid phosphatase in three aggregate fractions under different ozone treatments. Values represent means \pm SEM (n =3). See text for further explanation on statistical results from linear mixed effect model with ozone and aggregatesize class as fixed factors and column/row as random effects.

668