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Abstract 8 

Mesopelagic fish have recently been highlighted as an important, but poorly studied component of 9 

marine ecosystems, particularly regarding their role in the marine pelagic food webs and 10 

biogeochemical cycles. Myctophids (Family Myctophidae) are one of the most biomass-dominant 11 

groups of mesopelagic fishes, and their large vertical migrations provide means of rapid transfer of 12 

carbon to the deep ocean where it can be sequestered for centuries or more. In this study, we 13 

develop a simple regression for the respiration rate of myctophid fish using literature-based wet 14 

mass and habitat temperature data. We apply this regression to net haul data collected across the 15 

Scotia-Weddell sector of the Southern Ocean to estimate respiration rates of the biomass-dominant 16 

myctophid species. Electrona carlsbergi, Electrona antarctica and Gymnoscopelus braueri made a 17 

high contribution (up to 85%) to total myctophid respiration. Despite the lower temperatures of the 18 

southern Scotia Sea (-1.46 to 0.95 °C), total respiration here was as high (reaching 1.1 mg C m-2 d-1) 19 

as in the warmer waters of the mid and northern Scotia Sea. The maximum respiratory carbon flux 20 

of the vertically migrating community was 0.05-0.28 mg C m-2 d-1, equivalent to up to 47% of the 21 

gravitational particulate organic carbon flux in some parts of the Scotia-Weddell region. Our study 22 

provides the first baseline estimates of respiration rates and carbon flux of myctophids in the 23 

Southern Ocean. However, direct measurements of myctophid respiration, and of mesopelagic fish 24 

generally, are needed to constrain these estimates further and incorporate these fluxes into carbon 25 

budgets. 26 
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Introduction 27 

The biological uptake and cycling of carbon in the ocean are tightly coupled to atmospheric 28 

levels of carbon dioxide (CO2) (Sabine et al. 2004). Primary production in the surface ocean 29 

drives the uptake of CO2, but it only begins to be sequestered once it is transferred below 30 

the mixed layer and is no longer in contact with the atmosphere (Primeau 2005). Species 31 

that migrate vertically in the water column can actively transfer carbon to the deep ocean 32 

through excretion, defecation, mortality and respiration (Longhurst et al. 1990, Zhang & 33 

Dam 1997, Steinberg et al. 2000, Turner 2002, Steinberg & Landry 2017, and references 34 

therein). This has been studied greatly in marine zooplankton (e.g. Zhang & Dam 1997, 35 

Steinberg et al. 2000, Hernández-León et al. 2001, Packard & Gómez 2013), however, there 36 

have been few studies examining active transport in migratory fish, particularly mesopelagic 37 

fish (e.g. Hidaka et al. 2001; Davison et al. 2013; Hudson et al. 2014; Ariza et al. 2015), which 38 

are difficult to sample effectively in remote open ocean regions. 39 

Recently, the importance of including mesopelagic fish in ocean carbon budgets has been 40 

highlighted (Anderson et al. 2018). They are one of the components of marine ecosystems 41 

that we know least about (St John et al. 2016), yet they are highly motile and many species 42 

migrate vertically, feeding at the surface during the night, but migrating to the mesopelagic 43 

and bathypelagic zones during the day where they continue to respire. Previous studies 44 

have found the respiratory carbon flux of migratory fishes to be equivalent to up to 26% of 45 

the gravitational particulate organic carbon (POC) flux (Hidaka et al. 2001, Hudson et al. 46 

2014, Ariza et al. 2015). In addition, their gut passage times are much slower than 47 

zooplankton (Ariza et al. 2015), and thus faecal pellets are more likely to be released in the 48 

deep ocean following night-time feeding at the surface. 49 
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Lantern fish (Family Myctophidae, here after myctophids) are the most common 50 

mesopelagic fish in most of the World’s oceans (Catul et al. 2011), and are known to make 51 

large vertical migrations (Pakhomov et al. 1996). In the mesopelagic and bathypelagic zones 52 

of the Southern Ocean, they are the dominant fish family in terms of species richness, 53 

abundance, and biomass (Duhamel et al. 2014), and are important in the pelagic ecosystem 54 

in this region (Murphy et al. 2007). Yet there have been no studies attempting to quantify 55 

the contribution of myctophid species in the Southern Ocean to active carbon fluxes. 56 

Indeed, the role of mesopelagic and bathypelagic fish communities in biogeochemical 57 

cycling and carbon transfer to depth is one requiring urgent research, both regionally and 58 

globally (Trueman et al. 2014). 59 

The respiration rates of myctophid fish are not easy to measure directly, due to difficulties 60 

in obtaining live, healthy specimens from the mesopelagic zone, and our inability to 61 

successfully incubate them under stress-free conditions. Therefore, previous studies (Hidaka 62 

et al. 2001, Hudson et al. 2014) examining myctophid respiration have either utilised the 63 

relationship between biomass and respiration established by the historical study of Donnelly 64 

and Torres (1988), or used general allometric relationships between mass and metabolic 65 

rate for other fish (Davison et al. 2013). An exception is Ariza et al. (2015), who made direct 66 

measurements of electron transport system (ETS) activity in order to estimate respiration. A 67 

number of large compilations of respiration data have been made, defining regressions 68 

between the biomass of marine organisms and their respiration (e.g. Ikeda et al. 2001; Ikeda 69 

2016), yet none of these were specific to myctophid species. There can be significant 70 

variation in the resting metabolism, and hence, routine respiration, of different taxonomic 71 
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groups (Clarke & Johnston 1999). Therefore, generalised regressions for pelagic marine 72 

fishes (Ikeda 2016) may not provide the most accurate estimate of myctophid respiration. 73 

In this study, we compile previous estimates of myctophid respiration from the literature to 74 

define a simple regression to calculate myctophid respiration from wet mass and habitat 75 

temperature. We then utilise net haul data, collected as part of the most comprehensive 76 

mesopelagic fish survey in the Southern Ocean to date, to examine myctophid respiration in 77 

the Scotia Sea, one of the most productive regions of the Southern Ocean. In this way, we 78 

start to quantify their importance in the active transfer of carbon to depth. 79 

Methods 80 

Myctophid distribution and abundance 81 

Detailed surveys for mesopelagic fish were conducted in the Scotia Sea as part of the British 82 

Antarctic Survey’s Discovery 2010 programme, as has been previously described in Collins et 83 

al. (2012). Briefly, this involved deployment of an opening and closing 25 m2 rectangular 84 

mid-water trawl net (RMT25, minimum 4 mm mesh; Piatkowski et al. 1994) along a transect 85 

spanning the entire Scotia Sea between the Antarctic Polar Front (APF) and the sea ice zone 86 

(SIZ) during three cruises; in November 2006 (cruise JR161, Austral spring), January 2008 87 

(cruise JR177, Austral summer), and March 2009 (cruise JR200, Austral autumn). Depth-88 

stratified net hauls were carried out at six stations that encompassed the main water 89 

masses and frontal zones of the region: Polar Front (PF), Southern Scotia Sea (SSS), Mid 90 

Scotia Sea (MSS), Western Scotia Sea (WSS), Northern Scotia Sea (NSS), and Georgia Basin 91 

(GB). At each station, an RMT25 was deployed at the depth zones: 0-200, 200-400, 400-700, 92 

and 700-1000 m. The depth and ambient temperature of the nets were logged using a 93 
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custom-built net monitoring system. The temperature sensor (SBE-3) was factory calibrated 94 

prior to the surveys and was accurate to ~0.001 °C. Net hauls were repeated during the day 95 

and night in spring and summer, but only during the night-time in autumn. All fish caught 96 

were sorted onboard, identified to the lowest taxonomic level, measured to the nearest mm 97 

using standard length (SL) and the wet mass (WM) measured to the nearest 0.01 g using a 98 

motion compensated balance. General patterns in community structure of these 99 

mesopelagic fish can be found in Collins et al. (2012) and information on species-specific 100 

biomass, abundance and population dynamics of the main myctophids is detailed in 101 

Saunders et al. (2014, 2015a, b). 102 

For 39% of data records (23, 9, and 97% for JR161, JR177 and JR200 cruises, respectively), 103 

the WM was not measured and only the standard length of the fish was recorded. In these 104 

instances, we used length-mass regressions from the long-term records held at the British 105 

Antarctic Survey (unpubl. data, supplementary Table S1). Where possible, these were 106 

species-specific, or else genus-specific for the rarer species. Overall, individual fish WM 107 

ranged from 0.03 to 78.34 g (mean 4.38 g). 108 

Myctophid respiration regression 109 

To calculate the total myctophid respiration at each of the sites sampled, we developed a 110 

regression based on literature measurements of myctophid respiration. A search of the 111 

literature was carried out to identify studies in which the respiration rate of myctophids was 112 

measured, and the temperature and body mass (in terms of wet mass (WM), dry mass (DM) 113 

or carbon (C)) were also recorded. We identified 5 such studies (Torres et al. 1979, Donnelly 114 

& Torres 1988, Torres & Somero 1988, Ikeda 1989, Ariza et al. 2015), giving a total of 74 115 

data points from which we could base our regression analysis (Table 1). 116 



 

6 
 

Torres et al. (1979), Donnelly and Torres (1988) and Torres and Somero (1988) measured 117 

the routine respiration (i.e. under conditions of normal activity) via incubations at 118 

temperatures experienced in situ. Both Ikeda (1989) and Ariza et al. (2015) measured the 119 

capacity of the respiratory ETS, converting this potential respiration to the actual respiration 120 

via experimentally determined ratios. Where possible, we have compiled respiration and 121 

WM data for individual fish. However, in instances where the individual-specific data were 122 

unavailable, we took either the given mean WM and respiration, or in the case of Torres et 123 

al. (1979), the calculated mean WM for the given range. 124 

As the aim was to develop a regression that could readily be applied to fish catch data 125 

collected in the field, we chose to develop an equation for the WM specific respiration rate 126 

(RWM, in µL O2 mg WM-1 h-1) from fish WM (in mg) and ambient temperature (T, °C). Based 127 

on relationships previous established between biomass and respiration (Kiørboe & Hirst 128 

2014, Ikeda 2016), we define a simple regression model. 129 

 130 

𝐿𝑛(𝑅𝑊𝑀) =  𝑎0 + 𝑎1 × 𝐿𝑛(𝑊𝑀) + 𝑎2 × 𝑇      (1) 131 

 132 

Here a0, a1, and a2 are regression coefficients. Regression analysis was carried out using a 133 

regression fitting model for multiple predictors and a response, where data were 134 

continuous and no interactions terms were allowed. Wet mass and respiration data were 135 

transformed to the natural log prior to fitting the regression. Fitting was performed using 136 

the ordinary least squares method in Minitab 18 (version 18.1). To assess the uncertainty 137 

surrounding our calculated regression coefficients, we applied bootstrapping. For this 138 
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procedure, we randomly sampled (with replacement) from all 74 literature-based data 139 

points on myctophid fish respiration to generate 100 simulated dataset. We then calculated 140 

the regression coefficients (as above) for each of these data sets and in this way, estimated 141 

bootstrapped confidence intervals (standard error) for each coefficient over the 100 142 

simulations. 143 

Total respiration 144 

We combine the results of our regression model with the Discovery 2010 survey data to 145 

calculate the respiration rate for each individual fish (RIND, µL O2 ind.-1 h-1) in a particular net 146 

haul. The total respiration RTOT (µL O2 m-3 h-1) for each net haul was then calculated by 147 

standardising to the volume filtered by the net (V, m3), and summing for all myctophid 148 

individuals captured in that haul. 149 

 150 

𝑅𝑇𝑂𝑇 = ∑
𝑅𝐼𝑁𝐷

𝑉
          (2) 151 

 152 

This was then converted to units of carbon per day (RTOT,C, mg C m-3 d-1) using a respiratory 153 

quotient (RQ) of 0.90 for fishes (Brett & Groves 1979, Ariza et al. 2015) and the 154 

stoichiometric relationship between carbon and oxygen (22.4 L O2 = 12 g carbon). For each 155 

cruise, at each station, the mean RTOT of any replicate hauls was calculated for each depth 156 

horizon. This was computed for day and night hauls separately. Only the night-time data 157 

were used for inter-station and inter-species comparisons of total respiration due to the 158 

inherent problem of daytime net avoidance by myctophid fish (Pakhomov et al. 1996, 159 

Collins et al. 2012) (see below). 160 
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Maximum respiratory flux 161 

Many myctophid species are active migrators moving to the euphotic zone at night and 162 

returning to depth during the day, fluxing carbon to depth in the process. The maximum 163 

respiratory flux (below 200 m) of the migrant myctophid community was calculated by 164 

comparing RTOT,C in the 0-200 m depth strata during the day and night (i.e. we subtract the 165 

total respiration of the resident community, the day-time respiration (Rd), from the 166 

respiration of the night-time community (Rn)). Weather and net failure constraints during 167 

the Discovery 2010 cruises resulted in these calculations being possible for four stations, 168 

JR161 WSS and NSS, and JR177 MSS and GB. Our respiration calculations for the 0-200 m 169 

depth horizon are based on the ambient temperature over this depth range, but migrating 170 

individuals will experience different temperatures at depth. Therefore, to estimate the 171 

respiration of the migrating community at depth, we recalculated respiration rates using the 172 

mean temperature at depths of 400-1000 m. Finally, the maximum daily downward flux of 173 

respiratory carbon below 200 m by myctophid migrants (Rm) was estimated based on the 174 

number of daylight hours (h) at each station over the period of the research cruise (mean of 175 

the maximum and minimum daylight length). 176 

 177 

𝑅𝑚 = (𝑅𝑛 − 𝑅𝑑) ×
ℎ

24
         (3) 178 

 179 

We stress here that these calculations represent the maximum respiratory carbon flux. This 180 

is due to the issue of daytime net avoidance (Collins et al. 2012, Fielding et al. 2012). To 181 

investigate this uncertainty, we conducted a sensitivity analysis by recalculating day-time 182 
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respiration assuming catch efficiencies of 14%, 25% and 50%, and used these revised values 183 

for sensitivity analysis of the respiratory carbon flux of the migrant myctophid community. 184 

Results 185 

Myctophid respiration regression 186 

The compiled respiration dataset comprised of myctophids (18 species, plus 23 individuals 187 

identified to the genus Myctophum) of WM ranging from 0.026 – 19.2 g, and experimental 188 

temperatures from 0.5 to 27 °C (Figure 1). The respiration rates (mass specific) decrease 189 

with increasing WM and increase with increasing temperature (Figure 1). 190 

Regression analysis of the collated data reveals the following regression for mass specific 191 

respiration (RWM) of myctophid fishes (n=74, adjusted R2=0.85), with standard error of 192 

coefficients shown in brackets: 193 

 194 

𝐿𝑛(𝑅𝑊𝑀) =  −1.315 (±0.468) − 0.2665 (±0.0516) × 𝐿𝑛(𝑊𝑀) + 0.0848 (±0.0108) × 𝑇 (4) 195 

 196 

The standard errors calculated from our bootstrap analysis were 0.0368, 0.0040 and 0.0010 197 

for a0, a1, and a2 respectively. RWM increases with increasing temperatures (supplementary 198 

Figure S1) and decreases with increasing wet mass (supplementary Figure S2). 199 

Myctophid respiration: Seasonal changes 200 

Total respiration was calculated for each haul of the Discovery 2010 cruises, highlighting 201 

both latitudinal and seasonal patterns. We present the seasonal change in total myctophid 202 
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respiration for the NSS, MSS and SSS stations (Figure 2) as these are the stations where we 203 

have data from all four depth horizons on all three cruises. Night-time only data is examined 204 

to avoid bias by net avoidance during the day. Total respiration (integrated from 0-1000 m 205 

depth) was highest at SSS in autumn (1.0 mg C m-2 d-1), with the lowest rates occurring at 206 

NSS in autumn (0.4 mg C m-2 d-1). Whereas total respiration increased from spring to 207 

autumn at SSS, the opposite pattern was observed at NSS. Total respiration peaked at 1.0 208 

mg C m-2 d-1 in summer at MSS. 209 

Seasonal differences were also apparent in the species making the dominant contribution to 210 

the total respiration (Figures 3-5). At NSS (Figure 3), Electrona carlsbergi accounted for 51% 211 

of the total respiration in spring. As the season progressed at NSS, the total respiration 212 

decreased for all species except Electrona antarctica, which peaked in summer, and the 213 

contribution to total respiration was much more equal across the different species. 214 

At MSS (Figure 4), the highest total respiration was also due to E. carlsbergi but, in this case, 215 

this occurred in the summer, contributing 43% to the total respiration. E. antarctica also 216 

made a strong contribution (26%) to total respiration at MSS in summer. In both the spring 217 

and autumn, Gymnoscopelus braueri dominated the total respiration (38 and 33% 218 

respectively). At SSS (Figure 5), E. antarctica and G. braueri were the dominant species in 219 

terms of total respiration, with G. braueri dominating in spring (39%) and E. antarctica 220 

dominating in summer (47%) and autumn (45%). 221 

Myctophid respiration: depth stratified, day – night comparisons 222 

There are four sites where we have complete day and night data for all four depth horizons 223 

(Figure 6), WSS and NSS in the spring, and GB and MSS in the summer. Total respiration was 224 
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highest at night-time, possibly because this was when more fish were caught, however, the 225 

potential net avoidance during the day makes it difficult to ascertain exact migration 226 

patterns. In the summer, E. antarctica dominated the total depth integrated respiration 227 

during both the day and night at MSS, however, during the day, respiration was highest in 228 

the 0-200 and 401-700 m depth horizons (0.0007 and 0.0006 mg C m-3 d-1 respectively) 229 

whereas, at night, respiration of E. antarctica was highest (0.0009 mg C m-3 d-1) in the 701-230 

1000 m depth range. Generally there was a decline in the total respiration with depth during 231 

the night, and an increase with depth during the day. 232 

Although a particular species may dominate the total depth integrated respiration, this may 233 

be confined to particular depth horizons (Figure 6). For example, E. carlsbergi appears to 234 

contribute markedly to the total respiration at NSS in spring and MSS in summer (Figure 6), 235 

but our data suggest that its contribution is limited to the upper 400 m of the water column. 236 

Conversely, in the summer, both E. antarctica and G. braueri were important contributors to 237 

the myctophid respiration at all depth horizons during the day and night, with possible net 238 

avoidance or migration out of the top 200 m during the day. 239 

Maximum respiratory flux 240 

Of the four sites where data were sufficient, the maximum respiratory flux of carbon below 241 

200 m by the migrant myctophid community was highest at NSS in the spring (0.28 mg C m-2 242 

d-1). The maximum respiratory carbon flux at GB in summer was lower (0.13 mg C m-2 d-1), 243 

with the lowest flux of 0.05 mg C m-2 d-1 at WSS in spring. 244 

As net sampling of nekton is not 100% efficient, with net avoidance being a particular 245 

problem during the daytime, we conducted a sensitivity analysis to examine how this alters 246 
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our calculations of the respiratory carbon flux. Studies have found net capture efficiencies of 247 

~14% for net mouth areas between 5 and 105 m2 (Koslow et al. 1997, Davison 2011). We 248 

take this as a lower bound estimate for our sensitivity analysis, recalculating the respiratory 249 

carbon flux based on day-time capture efficiencies of 14, 25, and 50% (Table 3). 250 

Our sensitivity analysis highlights that these uncertainties in catch efficiency present 251 

problems for accurately incorporating these fluxes into mesopelagic carbon budgets. In two 252 

instances (JR161 WSS and JR177 GB), the respiratory flux assuming 14% day-time capture 253 

efficiency results in slightly negative estimates of respiratory carbon flux. However, it is also 254 

likely that there is also some net avoidance at night-time which we have not attempted to 255 

account for here due to unknown catch efficiencies. 256 

Discussion 257 

Catch efficiency 258 

Considering the lack of data on mesopelagic fish respiration, and difficulty of obtaining such 259 

data, we attempt here to estimate respiration of the dominant fish, myctophids, in the 260 

Southern Ocean, based on biomass and temperature data. In this way we can start to assess 261 

the importance of mesopelagic fish in the Southern Ocean carbon budget. Although our 262 

calculations are based on a dedicated survey programme, spanning multiple regions and 263 

seasons, the biomass data are from net hauls and hence suffer the problems of net 264 

avoidance and catch efficiency. 265 

The sampling of fish, and miconekton generally, via nets is fraught with the loss of 266 

individuals due to both net avoidance by large, fast swimmers during the day, and the loss 267 

of smaller animals through the mesh of the net. The capture efficiency is related to the net 268 
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design as well as to the size and swimming ability of micronekton (Gartner et al. 1989, Itaya 269 

et al. 2007), it is therefore not possible to apply a single correction factor. Acoustic 270 

estimates of biomass are generally greater than those from net trawls (e.g. Koslow et al. 271 

1997; Kaartvedt et al. 2012; Davison et al. 2015a), but acoustic estimates of mesopelagic 272 

fish biomass also present several challenges and require thorough ground-truthing (Davison, 273 

Koslow, et al. 2015). The sensitivity analysis that we conducted (Table 3) increases the range 274 

of our estimates of respiratory active flux, highlighting the need for new developments in 275 

acoustic techniques to improve myctophid abundance estimation that will further constrain 276 

estimates of respiratory flux by mesopelagic fish. 277 

Myctophid respiration regression 278 

Analysis of the myctophid data we collated shows the expected trends of increasing mass 279 

specific respiration with increasing temperature and, decreasing mass specific respiration 280 

with increasing WM, as have been found by previous respiration studies (Winberg 1956, 281 

Clarke & Johnston 1999, Ikeda 2016). The aim of this study is not to examine the theory 282 

behind the success of various predictors, but to develop a simple equation to make first 283 

order estimates of the respiration of myctophid fishes. Our regression therefore uses 284 

parameters that are easily measurable in the field, T and WM. 285 

Although our respiration regression is predominantly driven by abundance and WM, we do 286 

not see the same patterns for respiration as have been shown for abundance for the 287 

Discovery 2010 data. The calculated respiration depends on not only the total biomass, but 288 

also on the contribution of different sized fishes to the total biomass. For example, we 289 

would calculate much higher mass specific respiration (and lower total respiration) for a site 290 

with large numbers of small sized individuals, compared to a site with the same biomass but 291 
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comprised of fewer numbers of larger individuals. As the in situ temperature of the data 292 

used from the Discovery 2010 cruises had a small range of -1.46 – 3.31 °C (based on mean 293 

net haul temperatures), temperature plays a smaller role in the differences in respiration 294 

between stations. 295 

The regression we have developed is based on a relatively small number of studies (n=5) 296 

and data points (n=74), each of which is associated with methodological weaknesses. Torres 297 

et al. (1979), Donnelly and Torres (1988) and Torres and Somero (1988) conducted 298 

incubations on live fish to measure respiration. These incubation-based measurements can 299 

introduce errors due to stress during net capture and incubation, starvation and bacterial 300 

growth. This is particularly true in highly motile myctophid fish that migrate in the water 301 

column. Although the ETS method adopted by Ikeda (1989) and Ariza et al. (2015) avoids 302 

these issues by measuring the capacity of the respiratory ETS on frozen specimens, there are 303 

uncertainties in the choice of ratio to convert from potential respiration to actual 304 

respiration. The inclusion of data collected via both of these methods reduces the influence 305 

of any methodological bias on our results. Additionally, we conduct a bootstrap analysis to 306 

assess uncertainties in our regression model. Although the standard errors calculated for 307 

each coefficient (used to define error bars in Figure 2) were relatively small, they do not 308 

take into account uncertainties in biomass. It is a major challenge, to sample these 309 

mesopelagic fish repeatedly at such a spatial scale, and thus although we are unable to 310 

quantify uncertainties surrounding total biomass estimates at each station, we believe our 311 

analysis is a useful step forward in a complex and poorly-studied area. 312 

To allow comparison to studies compiling larger data sets of fish metabolism, we reran our 313 

regression model using the same data but with respiration rates in units of µL O2 Ind.-1 h-1  314 
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(RIND), rather than mass specific respiration. This allows us to calculate the mass scaling 315 

coefficient (a1) to compare with other studies. 316 

 317 

𝐿𝑛(𝑅𝐼𝑁𝐷) =  𝑎0 + 𝑎1 × 𝐿𝑛(𝑊𝑀) + 𝑎2 × 𝑇      (5) 318 

 319 

This reveals a mass scaling coefficient of 0.734 (0.682-0.785), comparing well to the 320 

coefficients found by Ikeda (2016) (0.843-0.925), Clarke and Johnston (1999) (0.79-0.83) and 321 

Winberg (1956) (0.687-0.930). This gives confidence that the myctophid respiration dataset 322 

is sufficient to capture relationships between respiration, mass and temperature. Our 323 

compiled data set covers several orders of magnitude in WM (0.026 – 19.2 g), and a wide 324 

temperature range from 0.5 to 27 °C. However, these studies in themselves are subject to 325 

limitations as discussed above. 326 

Although relations between mass and metabolic rate have been found when examining 327 

organisms over many orders of magnitude in size (Brown et al. 2004), there is much scatter 328 

around this relationship. A review by Seibel and Drazen (2007) highlighted a 300-fold 329 

variation in metabolic rates between the fastest and slowest marine animals that was 330 

independent of body mass and temperature. Potential differences in locomotory capacity 331 

between the myctophid species used to develop our regression model and those sampled in 332 

our study region therefore adds to the uncertainty in our calculated respiration rates. 333 

Species contribution to total respiration 334 
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We find that, for the three sites analysed here, NSS, MSS, and SSS, Electrona carlsbergi, 335 

Electrona antarctica and Gymnoscopelus braueri were the dominant contributors to 336 

respiration. These species were also dominant in terms of total biomass (Collins et al. 2012, 337 

Saunders et al. 2014, 2015a) highlighting that, of the terms in our regression model, total 338 

biomass is a more important determinant of community respiration than individual fish 339 

mass or temperature when considering the Scotia Sea as a whole. This is likely because the 340 

range in temperatures across our study site is small (-1.46 – 3.31 °C). However, the 341 

differences in species composition regionally within the Scotia Sea likely contributes to the 342 

regional differences we see in total respiration (Figure 2). 343 

Collins et al. (2012) noted a higher species diversity in the northern Scotia Sea where 344 

temperatures are warmer. This is likely related to the need to attain a greater body size at 345 

the colder temperatures of the southern Scotia Sea, hence preventing smaller species and 346 

intra-specific life stages from penetrating the southernmost regions (Saunders & Tarling 347 

2018). Similar macroecological trends in diversity and body size have also been reported for 348 

fish communities globally (Fisher et al. 2010a, b). G. braueri and E. antarctica were the 349 

dominant species in terms of abundance in the southern Scotia Sea, whereas E. carlsbergi, 350 

Krefftichthys anderssoni and Protomyctophum bolini were dominant in the northern stations 351 

(Saunders et al. 2014, 2015a, b). The size of G. braueri and E. antarctica (34-162 mm and 24-352 

115 mm SL respectively) is larger than that of E. carlsbergi, K. anderssoni and P. bolini (68-90 353 

mm, 15-74 mm and 23-66 mm SL respectively), which may in part explain why total 354 

respiration rates in the SSS were typically higher than those in the NSS. 355 

Additionally, as species-specific respiration rates are calculated from a general regression 356 

for myctophids, if there are large inter-species variations in respiration (e.g. due to 357 
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differences in locomotory capacity, diet and behaviour etc), it is possible that less abundant 358 

species could make greater contributions to total respiration than we have estimated here. 359 

However, there are currently insufficient data to develop species-specific mass-respiration 360 

relationships. It is difficult to collect healthy, live fish from mesopelagic depths for use in 361 

incubation experiments, and in situ incubations at depth are not yet feasible for the majority 362 

of scientific research cruises. We suggest that estimating respiration through the 363 

measurement of ETS activity (Packard & Christensen 2004, Ariza et al. 2015) provides a good 364 

alternative, particularly in revealing interspecific differences. 365 

Seasonal patterns in total respiration 366 

Comparison of integrated respiration at NSS, MSS, and SSS (Figure 2) highlights strong 367 

seasonality in the NSS compared to MSS and SSS. As E. carlsbergi, a predominantly copepod 368 

feeding species(Saunders et al. 2015a), accounted for most of the biomass and myctophid 369 

respiration at the NSS site in spring, it is possible that high respiration here was driven by 370 

the large phytoplankton blooms (Korb et al. 2008, 2012) and high mesozooplankton 371 

abundances (Ward et al. 2012) that occur in the region. It has been suggested that E. 372 

carlsbergi may be associated with warm water eddies from the Polar Front (Collins et al. 373 

2012) which, if more prevalent in spring, could explain the seasonal decline in the 374 

contribution of E. carlsbergi to myctophid respiration at NSS. The dominance of E. carlsbergi 375 

to total respiration at NSS in spring highlights that migration behaviour and oceanic 376 

transport mechanism from more remote regions can be an important factor in community 377 

respiration in the Southern Ocean. 378 

Whereas total respiration was greatest in spring at NSS, the maximum respiration occurred 379 

in summer and autumn at MSS and SSS respectively. The spring peak at NSS may be related 380 
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to the aforementioned migration patterns of E. carlsbergi. The later peak in myctophid 381 

respiration in the southern Scotia Sea may be linked to ice cover, with the timing of ice 382 

retreat influencing the development of zooplankton (Korb et al. 2012), which are the prey 383 

for the myctophid species at our study site (Saunders et al. 2014, 2015a). During the same 384 

Discovery 2010 cruises, Ward et al. (2012) observed highest zooplankton abundances in the 385 

autumn in the southern Scotia Sea. 386 

It is very interesting that, despite the low temperatures of the SSS station (-1.46 to 0.95 °C, 387 

based on mean net temperatures), total respiration rates are still high and comparable to 388 

both MSS and NSS where temperatures are higher (Figure 2). Thus, despite much higher 389 

zooplankton abundances in the NSS, in terms of myctophid respiration, total respiration is 390 

actually higher in the SSS. The higher abundance of myctophids in the SSS likely explains 391 

these regional patterns in total respiration, with higher abundances perhaps relating to food 392 

availability, or to the refuge from predation that the sea ice zone provides. Krill abundances 393 

are high across the Scotia Sea (Atkinson et al. 2008), but more krill are found in the southern 394 

Scotia Sea (Fielding et al. 2012) where most spawning occurs (Murphy et al. 2007). 395 

Therefore, higher abundances of krill in the sea ice zone, particularly of smaller life stages 396 

that fall more within the prey size spectra for myctophids may explain, at least in part, the 397 

higher abundances of some myctophid species in the southern Scotia Sea. 398 

Since there are regional differences in prey availability, and myctophids can select larger, 399 

more energy rich copepodite stages when feeding (Shreeve et al. 2009), prey quality may 400 

also play a role in the regional patterns in total respiration. Additionally, as krill typically 401 

have a higher energetic density than copepods (Schaafsma et al. 2018), the increase in krill 402 

predation by E. antarctica with increasing latitude southwards (Saunders et al. 2014) could 403 
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support higher metabolic activities and contribute to higher total respiration at SSS. 404 

However, as our respiration estimates are based primarily on patterns of myctophid 405 

abundance, it would be useful to validate our finding of higher respiration rates in the SSS 406 

by direct measurements of respiration at these sites. If abundance is indeed the primary 407 

driver, then the high spatio-temporal variability in myctophid distribution and abundance 408 

(Collins et al. 2012) has important consequences for active carbon fluxes in the Scotia Sea. 409 

Respiratory carbon flux 410 

We calculate a maximum respiratory carbon flux of 0.05-0.28 mg C m-2 d-1 based on net 411 

catch data that has not been corrected for catch efficiency. This is at the low end of previous 412 

estimates of myctophid/micronekton respiration (Table 2) even when rates are adjusted for 413 

differences in in situ temperatures. Individual fish WM ranged from 0.03 to 78.34 g (mean 414 

4.38 g) compared to 0.085 to 0.225 g (mean 0.163 g) in the study of Ariza et al. (2015). As 415 

respiration rates are higher for larger individuals, it is surprising that respiratory carbon 416 

fluxes calculated by Ariza et al. (2015) are so high, considering the community of small sized 417 

fish in their study. Size is therefore not the only important factor to consider, and 418 

differences in the locomotory capacity and behaviour of the fish species in the various 419 

studies could also contribute to differences in respiratory carbon fluxes. Hidaka et al. (2001) 420 

and Hudson et al. (2014) do not give individual fish weights to allow size based comparisons. 421 

The different methods of sampling and calculation of respiratory flux in the aforementioned 422 

studies make direct comparisons difficult, but it is clear that our estimates sit in the range of 423 

previous estimates. 424 

To assess the potential importance of the respiratory carbon flux of myctophid fishes in the 425 

Scotia Sea we compare our data to the gravitational flux of POC at two sediment traps, P2 at 426 
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1500 m (at NSS site) and P3 at 2000 m (at GB site) (Manno et al. 2015). Between 2008 and 427 

2010, POC fluxes in November at P2 ranged from 0.6 to 3.2 mg C m-2 d-1, and from 7.1 to 428 

13.1 mg C m-2 d-1 at P3 in January (Manno et al. 2015). These compare to a maximum 429 

respiratory carbon flux of 0.28 mg C m-2 d-1 at NSS and 0.13 mg C m-2 d-1 at GB respectively. 430 

The myctophid respiratory carbon flux alone (i.e. excluding other myctophid driven carbon 431 

fluxes via excretion, mortality and defaecation) is equivalent to 9-47% and 1-2% of the 432 

gravitational POC flux at NSS and GB respectively. These are higher than Hidaka et al. (2001) 433 

and Ariza et al. (2015) measured for euphausiids and decapods in the Canary Islands and 434 

western Equatorial Pacific (euphausiid and decapod respiration were equivalent to up to 435 

1.6% and 1.4% of total POC flux respectively). For comparison, data compiled by Steinberg & 436 

Landry (2017) shows that the respiratory fluxes of zooplankton are typically higher (up to 437 

~30 mg C m-2 d-1) than our estimates for myctophid fish. However, differences in biomass, 438 

temperature and depth, for example, make it hard to compare values directly. Their study 439 

further revealed a positive trend between percent contribution to POC and respiratory flux, 440 

with zooplankton respiratory fluxes < 2 mg C m-2 d-1 corresponding to a contribution to POC 441 

flux of <15%. Despite relatively low total respiratory fluxes in comparison to zooplankton, 442 

our data suggest that the percent contribution can still be high for myctophids. 443 

Although our estimate of respiratory carbon flux is a maximum, due to possible day-time net 444 

avoidance, actual active rates of respiration will be higher than the routine respiration rates 445 

calculated here, once physiological processes, such as feeding, swimming activity and 446 

reproductive development have been accounted for. The relationship between the active 447 

metabolic rate (the highest rate of energy expenditure) and the basal or standard metabolic 448 

rate (the minimum energy expenditure required to keep the fish alive) can be as high as 14 449 
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(Steffensen, John 2005). Johnston et al. (1991) measured the oxygen consumption of the 450 

Antarctic teleost fish, Notothenia neglecta, finding that active consumption rates were 4-7 451 

times higher than resting rates. The prior feeding conditions, diet and activity level all affect 452 

respiration, and organisms can adjust their rates of respiration in response to variations in 453 

food supply (Brown et al. 2004). It is therefore not possible to explain all the variation in 454 

respiration rates with T and WM alone, and in situ rates of active respiration will be higher 455 

than the routine respiration rates estimated here. 456 

Fish also contribute to carbon export via mortality, excretion (dissolved organic carbon) and 457 

the production of faecal pellets, such that the total contribution of myctophids to the 458 

transfer of carbon to depth will be greater than we have estimated here. We also estimate 459 

the gut flux, i.e. the flux of POC in faceal pellets containing non-assimilated food. The energy 460 

budgets of Brett and Groves (1979) give a value of 40% for the percentage of respired 461 

carbon that is defecated. The proportion of defecated carbon that is produced in the deep 462 

ocean will depend on the gut clearance time and duration spent at depth. We 463 

conservatively assume that half of the defecation (i.e. 20% of the respiratory flux based on 464 

Brett and Groves (1979)) occurs at depth, and calculate gut fluxes of 0.01-0.06 mg C m-2 d-1 465 

for the migrating myctophids at our case study sites. This increases the active flux to 0.06-466 

0.34 mg C m-2 d-1 (total respiratory and gut flux). At NSS and GB, this equates to 10.5-56.0% 467 

and 1.2-2.1% of the gravitational POC flux at NSS and GB respectively. Myctophid fishes can 468 

therefore be an important component of the mesopelagic carbon budget, particularly 469 

considering the vertical migrations they undertake (Pakhomov et al. 1996). 470 

 471 

Concluding remarks 472 
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Our analysis of the literature on myctophid respiration rates, and its application to the 473 

Discovery 2010 survey data, reveals that myctophid respiration could indeed make a 474 

significant contribution to fluxes of carbon to the deep ocean in the Scotia Sea. Our 475 

estimates are based on allometric equations and could be improved through the further 476 

integration of direct, species-specific measurements of myctophid respiration. There is also 477 

a need to assess daytime avoidance, for instance, through comparison with acoustic 478 

observations. Given the extent of their potential contribution, it is now key that future work 479 

further constrains the levels of carbon flux generated by myctophid fish so that they may be 480 

appropriately included in global biogeochemical models. 481 
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Tables 637 

Table 1: Data sources for respiration rates of myctophid species 638 

^ Maximum lengths (SL, with the exception of species in the study of Torres et al. 1979 which are total length) 639 

of each species have been obtained from Fish Base (Froese & Pauly 2018), and we present here the range in 640 

these lengths for the species within each study. 641 

Reference Location Myctophid species Experimental 
Temperature 
(°C) 

Wet mass 
range (g) 

Range in 
species 
maximum 
length (cm) ^ 

Donnelly & 
Torres (1988) 

Eastern Gulf 
of Mexico 

Diaphus mollis, Lampanyctus 
nobilis, Lepidophanes guentheri, 
Myctophum affine 

7-20 0.112-
6.155 

6.6-12.4 

Torres et al. 
(1979) 

Southern 
California 

Diaphus theta, Lampanyctus 
regalis,  Lampanyctus ritteri, 
Parvilux ingens, Stenobrachius 
leucopsaurus, Symbolophorus 
californiensis, Tarletonbeania 
crenularis, Triphoturus mexicanus 

5-13 0.9-13.7 7.0-21.0 

Torres & 
Somero (1988) 

Antarctica Electrona antarctica, 
Gymnoscopelus braueri, 
Gymnoscopelus opisthopterus 

0.5 1.0-40.0 11.5-16.2 

Ariza et al. 
(2015) 

Canary 
Islands 

Lobianchia dofleini 17.5-19 0.085-
0.225 

5.0 

Ikeda (1989) Coral Sea, 
South 
Pacific 

Symbolophorus evermanni, 
Centrobranchus nigroocellatus, 
Myctophum spp. 

24-27 0.026-
1.101 

5.0-8.0  
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Table 2: Comparison of respiratory carbon fluxes (mg C m-2 d-1) calculated in this study, and in the literature. 

Reference Location Site Taxa Migrant biomass 
(mg C m-2) 

Temperature 
at depth (°C)^ 

Respiratory Flux * 
(mg C m-2 d-1) 

Respiratory Flux at 2 °C 
** (mg C m-2 d-1) 

This study a Southern Ocean JR161 WSS 

Myctophidae 

49.8 2.0 0.05 + 0.05 + 

  JR161 NSS 520.6 2.1 0.28 + 0.28 + 

  JR177 GB 238.5 1.7 0.13 + 0.13 + 

  JR177 MSS 407.1 0.7 0.27 + 0.33 + 

Ariza et al. 
(2015)b Canary Islands 

Time-series 
station (north of 
Gran Canaria) 

Migratory fish 168 12 2.68 0.69 

  Migratory nekton c 201 12 2.92 0.7 

Hudson et 
al. (2014)a 

North Azores Reykjanes Ridge Migratory 
Myctophidae 

5.2 6.6 0.005-0.027 0.003-0.014 

  Azorean Zone 40 11.8 0.046-0.271 0.012-0.071 

Hidaka et 
al. (2001)a 

Western 
equatorial pacific 

Station 15 Migratory 
Myctophidae 

462.5 9.3 1.98 0.73 

  Station 16 248.9 9.3 1.06 0.39 

  Station 8 
Night-time 
Myctophidae 

539.5 9.3 2.31 0.86 

  Station 10 406.5 9.3 1.74 0.64 

  Station 13 716.92 9.3 3.07 1.1 

^ Temperature depth ranges as follows: This study: mean 400-1000 m, Ariza et al. (2015): approximate temperature 400-500m, Hudson et al. (2014): mean 200-750 m, 
Hidaka et al. (2001): 400 m 

*Flux below following depths: This study: 200 m, Ariza et al. (2015): 150 m, Hudson et al. (2014): 200 m, Hidaka et al. (2001): 160 m. 

** Adjusted to 2°C based on a Q10 of 3.9 for myctophids (Donnelly & Torres 1988) 

+ Maximum respiratory carbon flux as day-time net catches have not been corrected for capture efficiency 

a uncorrected for capture efficiency  

b assumes 14% capture efficiency  

c fish, euphausiids and decapods
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Table 3: Sensitivity analysis of respiratory carbon flux estimates. Flux estimates have been recalculated 

based on day-time net capture efficiencies of 14%, 25% and 50%. 

 

 

 

  

Site Respiratory flux (mg C m-2 d-1) 

100% 14% 25% 50% 

JR161 WSS 0.05 -0.00 0.02 0.04 
JR161 NSS 0.28 0.24 0.26 0.27 
JR177 GB 0.13 -0.00 0.06 0.11 
JR177 MSS 0.27 0.25 0.26 0.27 
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Figures 
 

 

Figure 1: Literature compilation of respiration rates (mass specific) of myctophid fishes versus A) wet mass 

(WM), and B) temperature. Note the logarithmic scales. Filled black circles show data from direct oxygen 

consumption experiments, and open circles show respiration estimated from ETS measurements. 
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Figure 2: Seasonal changes in total myctophid respiration (mg C m-2 d-1, depth integrated 0-1000 m) in the 

North Scotia Sea (NSS), Mid Scotia Sea (MSS) and South Scotia Sea (SSS). Data are from night-time hauls 

only. Error bars display the standard error of bootstrapping analysis (100 runs) of our length-mass regression 

only (see Methods for full details). 
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Figure 3: Seasonal change in total respiration (mg C m-3 d-1) of myctophid fishes caught in the upper 1000 m 

at the North Scotia Sea (NSS) station. Species code names are as follows: ELC= Electrona carlsbergi, ELN = 

Electrona antarctica, GYR= Gymnoscopelus braueri¸ KRA= Krefftichthys anderssoni, LAC= Nannobrachium 

achirus, GYN= Gymnoscopelus nicholsi, PRE= Protomyctophum tenisoni, PRM= Protomyctophum bolini, GYP= 

Gymnoscopelus piabilis, GYO= Gymnoscopelus opisthopterus, GYF= Gymnoscopelus fraseri, OTHER= Other 

myctophid species. Data from night-time hauls only. Zero values represent species absence. 



 

33 
 

 

Figure 4: Seasonal change in total respiration (mg C m-3 d-1) of myctophid fishes caught in the upper 1000 m 

at the Mid Scotia Sea (MSS) station. Species code names are as of Figure 3. Data from night-time hauls only. 

Zero values represent species absence. 
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Figure 5: Seasonal change in total respiration (mg C m-3 d-1) of myctophid fishes caught in the upper 1000 m 

at the South Scotia Sea (SSS) station. Species code names are as of Figure 3. Data from night-time hauls only. 

Zero values represent species absence. 
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Figure 6: Contribution of the dominant myctophid species to the depth stratified respiration in A) spring – 

cruise JR161 and B) summer – cruise JR177. Total respiration (mg C m-3 d-1) for each species has been 

calculated for both the day and night (grey shaded graph) net hauls. Species code names are as of Figure 3. 
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Supplementary Material 

 

 

Figure S1: Calculated relationship between temperature (°C) and mass specific respiration rate (µL O2 mg 

WM-1 h-1) for myctophid fishes of wet mass 50 mg (black dashed line), and 500 mg (grey dotted line). 

 

 

 

Figure S2: Calculated relationship between temperature (°C) and mass specific respiration rate (µL O2 mg 

WM-1 h-1) for myctophid fishes at temperatures of 2 °C (black dashed line), 10 °C (grey dotted line), and 20 

°C, solid black line. 
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Table S1: Length- Mass regressions used for conversion from standard length (SL, in mm) to wet mass (WM, 

in g). Lower and upper 95% confidence intervals are also given for each coefficient.  Regression: WM = a SLb 

Species/Genera Name a Lower Upper b Lower Upper R2 

Electrona carlsbergi 
2.09 x10-

05 
9.51 x10-

06 4.59 x10-05 2.90 2.72 3.08 0.7214 

Electrona antarctica 
3.72 x10-

06 
3.22 x10-

06 4.30X10-06 3.27 3.24 3.31 0.9599 

Gymnoscopelus fraseri 
3.53 x10-

06 
1.31 x10-

06 9.51 x10-06 3.24 3.00 3.47 0.8811 

Gymnoscopelus nicholsi 
2.87 x10-

06 
2.02 x10-

06 4.08 x10-06 3.25 3.18 3.33 0.9936 

Gymnoscopelus braueri 
4.58 x10-

06 
3.60 x10-

06 5.82 x10-06 3.11 3.06 3.17 0.9326 

Krefftichthys anderssoni 
9.05 x10-

06 
7.49 x10-

06 1.09 x10-05 3.02 2.97 3.07 0.9599 

Nannobranchium achirus 
8.14 x10-

06 
5.17x 10-

07 1.28 x10-02 2.49 1.45 3.54 0.4259 

Protomyctophum tenisoni 
1.39 x10-

05 
9.74x 10-

06 1.97 x10-05 2.94 2.84 3.03 0.9589 

Protomyctophum bolini 
1.98 x10-

05 
1.34 x10-

05 2.92 x10-05 2.88 2.77 2.98 0.8926 

Protomyctophum choriodon 
1.27 x10-

05 
3.24 x10-

06 4.94 x10-05 2.98 2.66 3.30 0.8779 

Gymnoscopelus opisthopterus 
1.20 x10-

06 
3.36 x10-

07 4.25 x10-06 3.43 3.16 3.71 0.9874 

Electrona 
3.26 x10-

06 
2.84 x10-

06 3.74 x10-06 3.31 3.28 3.34 0.9563 

Gymnoscopelus 
4.49 x10-

06 
3.61 x10-

06 5.59 x10-06 3.12 3.07 3.17 0.9351 

Protomyctophum 
1.24 x10-

05 
9.89 x10-

06 1.55 x10-05 2.99 2.93 3.05 0.9453 
 


