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Highlights 53 

• We report sedimentary charcoal composites for the Central European lowlands (CEL). 54 

• Holocene fire activity shows convergence and divergence across three spatial scales. 55 

• Divergence in low-flammability periods reflects cultural fire use in land management. 56 

• Since 8,500 cal. BP, humans affected CEL-biogeochemical cycles beyond the local scale. 57 
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Abstract 60 

Fire is a natural component of global biogeochemical cycles and closely related to changes in human 61 

land use. Whereas climate-fuel relationships seem to drive both global and subcontinental fire 62 

regimes, human-induced fires are prominent mainly on a local scale. Furthermore, the basic 63 

assumption that relates humans and fire regimes in terms of population densities, suggesting that few 64 

human-induced fires should occur in periods and areas of low population density, is currently 65 

debated. Here, we analyze human-fire relationships throughout the Holocene and discuss how and to 66 

what extent human-driven fires affected the landscape transformation in the Central European 67 

Lowlands (CEL). We present sedimentary charcoal composites on three spatial scales and compare 68 

them with climate model output and land cover reconstructions from pollen records. Our findings 69 

indicate that widespread natural fires only occurred during the early Holocene. Natural conditions 70 

(climate and vegetation) limited the extent of wildfires beginning 8,500 cal. BP, and diverging 71 

subregional charcoal composites suggest that Mesolithic hunter-gatherers maintained a culturally 72 

diverse use of fire. Divergence in regional charcoal composites marks the spread of sedentary 73 

cultures in the western and eastern CEL. The intensification of human land use during the last 74 

millennium drove an increase in fire activity to early-Holocene levels across the CEL. Hence, 75 

humans have significantly affected natural fire regimes beyond the local scale – even in periods of 76 

low population densities – depending on diverse cultural land-use strategies. We find that humans 77 

have strongly affected land-cover- and biogeochemical cycles since Mesolithic times. 78 

1. Introduction 79 

Major questions in the global debate on climate and environmental change are when, how and to 80 

what extent humans have affected land cover and global carbon cycles beyond their natural 81 

variability (Ruddiman et al., 2015; Strandberg et al., 2014; Waters et al., 2016). Fire is a key 82 
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component of many natural ecosystems and biogeochemical cycles worldwide (Jaffé et al., 2013; 83 

Randerson et al., 2006) and closely linked to climate (Daniau et al., 2012). However, fire usage has 84 

also been key in human evolution (Bowman et al., 2009; Roebroeks and Villa, 2011) and an 85 

important tool in anthropogenic land cover change across the globe (Bowman et al., 2011), at least 86 

until the time of active fire suppression and the notion of fire being a threat to society (Marlon et al., 87 

2008; Pyne, 2016). As fire risk and socioecological damage are currently increasing in many parts of 88 

the world, human-fire relationships are highly debated (Balch et al., 2017; Syphard et al., 2017; Ward 89 

et al., 2018). One of the assumptions accounting for humans as drivers of fire regimes is a close 90 

relationship between human population densities and fire, where humans act first as ignition triggers. 91 

Then, after reaching a certain threshold, humans act as fire suppressors by increasing landscape 92 

fragmentation or by taking active suppressive measures (Guyette et al., 2002; Lasslop and Kloster, 93 

2017; Ward et al., 2018). Given the low population densities throughout the early and mid-Holocene 94 

(Kaplan et al., 2011; Klein Goldewijk et al., 2011), fire histories derived from sedimentary charcoal 95 

(CHAR) compilations have been primarily associated with climatic factors (Daniau et al., 2012; 96 

Marlon et al., 2013) and natural vegetation compositions (Blarquez et al., 2015). Only in the most 97 

recent centuries, humans seem to have influenced natural fire regimes on global to regional scales 98 

(Marlon et al., 2008; Pechony and Shindell, 2010).  99 

However, local CHAR records and some regional CHAR compilations show divergent Holocene fire 100 

regimes in adjacent European regions that cannot be explained solely by natural factors (climate, 101 

vegetation) (Rius et al., 2011; Vannière et al., 2011). Instead, diverse local to regional fire regimes 102 

(characterized by fire frequency, seasonality, intensity, and amount of biomass burned) could indicate 103 

human fire use in diverse cultural subsistence traditions and land use practices at least since the last 104 

7,000 to 3,000 years (Molinari et al., 2013; Rius et al., 2011; Vannière et al., 2016; Vannière et al., 105 

2011). However, to what extent early hunter-gatherer and farming societies altered natural fire 106 
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regimes and landscapes beyond the local scale remains poorly understood (Kaplan et al., 2016; 107 

Marlon et al., 2013; Ruddiman, 2013; Vannière et al., 2016). The impacts of future climate change, 108 

such as changing fire risk, will be highly variable at the regional scale and dependent on 109 

preconditions that have shaped a landscape. Considering cultural dependencies in human-fire 110 

relationships over multiple spatial scales relevant to political decision processes is important to (i) 111 

unravel the long-term interactions between natural and human drivers on fire regimes and the 112 

associated human impact on biogeochemical cycles (Arneth et al., 2017; van der Werf et al., 2013) 113 

and (ii) enable informed discussions on future land management and nature conservation efforts 114 

(Whitlock et al., 2018).  115 

Here, we aim to provide (i) a long-term perspective of fire activity in the central European lowlands 116 

that allows assessment of the preconditions of current and future fire risk, and (ii) an analysis of the 117 

dependence of fire activity on natural and anthropogenic drivers. By comparing millennial-scale fire 118 

trends at nested spatial scales to known Holocene climate, land cover, and archaeological histories, 119 

we aim to determine and discuss when and how sociocultural characteristics such as foraging and 120 

agricultural land management have altered the natural occurrence of fire and affected regional 121 

biogeochemical cycles. 122 

2. Study area and assumption 123 

We analyze new sedimentary charcoal composites of the Central European Lowlands and the Baltic 124 

States (CEL, Fig. 1), a temperate region with a well-studied Holocene land-cover and settlement 125 

history (Marquer et al., 2017; Roberts et al., 2018; Trondman et al., 2015). Compared to other 126 

regions of the world, the CEL are a low-flammability landscape; currently, spring and summer fire 127 

events are rare and burned areas are small, usually < 5 ha (Archibald et al., 2013; FAO, 2007), except 128 

for Poland, where slightly larger and more frequent fires have occurred during the last three decades 129 
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(San-Miguel-Ayanz et al., 2012). The low flammability of the CEL is due to active fire suppression 130 

(Pyne, 2016), and several natural factors.  131 

 132 

Fig. 1. Available sedimentary microcharcoal records in the Central European Lowlands (CEL). Sites are regionally 133 

grouped (eastern vs. western CEL) following the modern environmental stratification of Europe after Metzger et al. 134 

(2005) with green-to-brown temperature-related PC1 scores representing the modern climatic-ecological gradient. Black 135 

symbols represent pollen records used in land cover reconstructions. Black boxes frame subregional groups 1 – 5. The red 136 

bold line marks the extent of the Fennoscandian ice sheet during the last glacial maximum (LGM), after Stroeven et al. 137 

(2016). Black dashed lines enclose the current distribution of Norway spruce (Picea abies), after EUFORGEN (2018). 138 

First, the generally humid climate of the CEL limits fires by reducing fire spread in wet fuel (Daniau 139 

et al., 2012; Flannigan et al., 2009; Pausas and Ribeiro, 2013) and droughts are rare compared to 140 

semi-arid, more fire-prone regions (Marlon et al., 2013). Lightning strikes (natural ignition triggers) 141 

occur at comparably low frequencies, i.e., <5 flashes km – 2 yr – 1 (Christian et al., 2003) and 44 % of 142 

the recorded fires in Poland between 1990 and 2006 were related to arson (FAO, 2007). Second, 143 

natural fires require sufficient and connected flammable biomass (fuel), even during prolonged shifts 144 

to dry conditions. Following a climatic gradient from more warm to more cool climate from the 145 

western to the eastern CEL, respectively (Fig. 1), the natural dominance of temperate mixed 146 

broadleaf trees decreases towards the eastern CEL and Norway spruce (Picea abies) becomes more 147 
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abundant in the temperate hemiboreal zone (Caudullo et al., 2016; Giesecke and Bennett, 2004). 148 

Temperate mixed broadleaf forests of the western CEL rarely burn naturally, because of their high 149 

leaf moisture and less-flammable tree compounds (Bowman et al., 2011; Rogers et al., 2015). In the 150 

eastern CEL, the prevailing hemiboreal forests are mainly mixtures of broadleaf trees and Norway 151 

spruce. The long-term fire ecology of Norway spruce is still under discussion: similar to other 152 

conifers, the tree is easily flammable because of its resin-rich needles and canopy structure (Brown 153 

and Giesecke, 2014; Caudullo et al., 2016; Feurdean et al., 2017), but it is generally regarded as a fire 154 

avoider or even suppressor because it suffers in periods of frequent droughts and fires and its moist 155 

understory limits fire (Caudullo et al., 2016; Ohlson et al., 2011; Rogers et al., 2015). In contrast, 156 

Scots pine (Pinus sylvestris) is better adapted to dry soils and regenerates after a fires; its lighter 157 

canopy results in rapid drying of its understory and, hence, increased flammability (Houston Durrant 158 

et al., 2016; Rogers et al., 2015).  159 

Given these natural background conditions in the CEL, we expect higher-than-average fire activity in 160 

times of dry climate and widespread pine-dominated forests. In times of fully established temperate 161 

broadleaf or spruce-dominated hemiboreal forests and wet climate, we expect lower-than-average fire 162 

activity. Human alteration of natural fire regimes should result in diverging fire activity trends over 163 

various spatial scales (Bowman et al., 2011; McWethy et al., 2013), as exemplified by (i) opposing 164 

fire activity trends in adjacent regions, and/or (ii) fire activity trends that contrast the expected natural 165 

flammability based on climate and vegetation trends.  166 

3. Material and methods 167 

3.1 Sedimentary charcoal composites  168 

We compiled 61 (39 published and 22 unpublished) microscopic charcoal influx records (CHAR, 169 

number of particles cm – 2 yr – 1) from lake sediment and peatland cores (Table S1). As 80% of the 170 
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records derive from basins smaller than 90 ha, individual CHAR records represent fires with 171 

potential source areas within 100 kilometers of the sampling site (Adolf et al., 2018; Marlon et al., 172 

2016) and thus integrate fire events of an extra-local area. We used only microscopic charcoal 173 

records from pollen slides, as few continuous macroscopic charcoal records have been published 174 

from this region (Feurdean et al., 2017; Marcisz et al., 2015; Pędziszewska and Latałowa, 2016). 175 

Evaluation of individual age-depth models considering amount and quality of age control points and 176 

type of calculation of age-depth models (see references in Table S2) showed a high diversity of age-177 

depth models. To improve consistency, we recalculated age-depth models for 33 sites using CLAM 178 

in R (Blaauw, 2010) following the approach of Giesecke et al. (2014) and IntCal13 (Reimer et al., 179 

2013). For 9 Baltic sites, we recalculated age-depth models using OxCal 4.2.4 and IntCal13 (Reimer 180 

et al., 2013) and for the remaining 19 sites, we used the original, high-quality age-depth models (i.e., 181 

based on more than 100 age control points, Table S2).  182 

As the resolution and quantity of CHAR vary between sites, established statistical methods of data 183 

transformation and compositing allow the detection of common fire trends (Marlon et al., 2016; 184 

Power et al., 2008). All available charcoal flux records were transformed with the R paleofire 185 

package (Blarquez et al., 2014) using the boxcox, minmax and z-score transformations and a 186 

Holocene base period from – 50 to 11,500 years before 1950 AD (cal. BP) with the zero line 187 

representing the Holocene mean of all transformed records. Prior to resampling sites, transformed 188 

charcoal records were pre-binned in non-overlapping 100-year bins (i.e., at the approximate median 189 

resolution across all records). CHAR composite anomalies were calculated for groups over different 190 

spatial scales by fitting a robust locally-weighted scatterplot smoother (LOESS) to 1000-year 191 

windows using the transformed charcoal records (Blarquez et al., 2014; Daniau et al., 2012). 192 

Composite anomaly records are presented as medians and 95 % confidence intervals from 1000 193 

bootstrap realizations (Figs. 2 – 4). Fig. S1 shows data availability for the 100-year bins.  194 



 
10 

 

 195 

Fig. 2. Subcontinental and regional fire activity, climate, and vegetation trends during the Holocene in the Central 196 

European Lowlands and Baltic States (CEL). a) Subcontinental charcoal influx (CHAR) composite anomalies with the 197 

insolation curve for 55° N (Laskar et al., 2004); b) average CCSM3-TraCE21k (Liu et al., 2009) 1000-year LOESS-198 

smoothed summer temperatures and precipitation relative to the Holocene average (JJA ∆ T and JJA ∆ P, respectively), 199 

averaged over all model grid cells that contain CHAR records; c) and d) regional CHAR anomalies of the western and 200 

eastern CEL (W and E CEL, respectively) CHAR composites, grouped after temperature-related PC1 of Metzger et al. 201 

(2005), with arrows indicating divergence from the expected natural and between the two trends; e) and f) generalized 202 

development of W and E CEL land-cover communities, respectively, according to pollen records (Figs. 3, 4) and 203 

literature review (see text). CHAR composites show the median and 95% confidence interval of LOESS smoothed, 204 

bootstrapped, and standardized microcharcoal influxes using n available sites (see Fig. S1 for sample availability per 205 

time). 206 
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CHAR composite anomalies relative to the Holocene average of all CEL sites represent fire activity, 207 

fire occurrence, or biomass burnt (Harrison et al., 2018; Marlon et al., 2016), with smaller confidence 208 

intervals reflecting greater agreement between records, especially when only few samples were 209 

available in a certain time window (Fig. S1). We interpret CHAR composite anomalies as being 210 

primarily derived from forest fires, with secondary sources being understory, grass, and crop residue 211 

burning (Whitlock and Larsen, 2001). 212 

3.2 Spatial scale representation  213 

We aim to identify the spatial extent of human fire usage in the CEL during the Holocene at nested 214 

subcontinental, regional, and subregional scales (Fig. 1), which have received little attention to date. 215 

The subcontinental CHAR composite (covering ~1,300 x 500 km) integrates all records. The two 216 

regional scale CHAR composites (~500 x 500 km) each represent half of the charcoal records as 217 

separated according to modern climate and vegetation gradients. The latter is represented by the 218 

natural spread of Norway spruce, whereas the climatic gradient is represented by the first principal 219 

component (PC1) of the modern environmental stratification (EnS) of Europe (Fig. 1), which 220 

represents temperature-related parameters of ecological relevance, such as altitude, slope, sunshine 221 

duration, and monthly temperatures (Metzger et al., 2005). We calculated the average EnS PC1 222 

values of 14 spatial buffers (1 – 50 km around each site) in QGIS and grouped sites into the eastern 223 

and western CEL groups (E CEL and W CEL, respectively) according to the median of the data 224 

distribution (Figs. 1, S1a). Some northern central Poland sites were included within the E CEL group 225 

to account for the uneven spatial representation of records. Subcontinental and regional CHAR 226 

composites are shown in Fig. 2. 227 

Five subregional CHAR composites (~200 x 400 km) represent spatial clusters of charcoal records 228 

from northern Germany, northwestern Poland/eastern Germany, north-central Poland and 229 
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northeastern Poland, and the Baltic States (Figs. 1, 3, 4). This grouping is based on the west-to-east 230 

climatic-ecological gradients that affect fuel flammability and considers general knowledge of 231 

cultural histories (Fig. S2, Table S3). For example, the Lithuanian sites were grouped together with 232 

the Latvian and Estonian sites, because of the steep environmental gradient towards northeastern 233 

Poland (Fig. 1) and the closer cultural similarities of present-day Lithuania and the other Baltic 234 

States. Sample and site availabilities per 100-year bin are shown in Fig. S1 for all CHAR composite 235 

anomaly records at the subcontinental scale (n = 61; Fig. S1b), regional scale (W CEL, n = 31; E 236 

CEL, n = 30; Fig. S1b) and subregional scales (N Germany, n = 12; NW Poland/E Germany, n=8; N 237 

Poland, n = 20; NE Poland, n = 7; Baltics, n = 14; Fig. S1c), suggesting that further records are 238 

needed to approve or disprove the trends discussed below, especially those during the early Holocene 239 

in northeastern Poland. 240 
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  241 

Fig. 3. Subregional Holocene fire activity, lake levels, soil erosion, and land cover reconstructions of the western CEL. a), 242 

f) and h) N Germany, NW Poland/E Germany and N Poland CHAR composites, respectively, (median and 95% 243 

confidence interval, this study) based on n available sites (see Fig. S1 for sample availability per time); b) relative lake 244 
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levels of lake Fürstenseer See based on the log-ratio transformed µ-XRF Calcium record, after Dietze et al. (2016); c) 245 

probability density function of 14C ages of colluvial deposits, Mecklenburg Lake District, Germany (Küster, 2014); d) 246 

absolute number of dated colluvial deposits across northern Germany (Dreibrodt et al., 2010); e), g), and j) REVEALS-247 

transformed (Theuerkauf et al., 2016), 1000-year LOESS-smoothed pollen taxa (sums) of lakes Belauer See (Dörfler et 248 

al., 2012), Krebssee (Jahns, 1999, 2000) and Gościąż (Ralska-Jasiewiczowa et al., 1998), respectively; i) depth-to-water 249 

table (DWT) of Tuchola mire, north-central Poland (Lamentowicz et al., 2008). Archaeological periods (from Table S3 250 

and Fig. S2) are: MP, Mesolithic Period (EM/MM/LM, early/mid/late Mesolithic); EN/LN: early/late Neolithic Period; 251 

BA and IA, Bronze and Iron Ages (EB/LB, early/late Bronze Age); RM: Roman and Migration Period; and MA, 252 

Medieval Age. Red and blue framed boxes at top-right mark warm and cool periods during the last 3,000 years (IAC, Iron 253 

Age Cold Period, RWP, Roman Warm Period, and LIA, Little Ice Age) after Moffa-Sánchez and Hall (2017). Arrows 254 

mark divergence in CHAR composites from expected natural trend. 255 

 256 
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Fig. 4. Subregional Holocene fire activity, land cover, lake levels, and soil erosion reconstructions of the eastern CEL. a) 257 

and d) NE Poland and Baltic states CHAR composites, respectively (median and 95% confidence interval, this study), 258 

based on n available sites (see Fig. S1 for sample availability per time); b) cumulative thickness of colluvial deposits, 259 

Masurian Lake District, Poland (Smolska, 2011); c and f) REVEALS-transformed (Theuerkauf et al., 2016), 1000-year 260 

LOESS-smoothed pollen taxa (sums) of lakes Miłkowskie (Wacnik, 2009; Wacnik et al., 2012) and Ähijärv (Poska et al., 261 

2017), respectively; and e) percentage of Estonian lakes with high water levels (Harrison and Saarse, 1992) with 14C dates 262 

recalibrated using IntCal13 (Reimer et al., 2013). Archaeological periods (from Table S3 and Fig. S2) are: MP, Mesolithic 263 

Period; EN/LN, Early/Late Neolithic Period; BA and IA, Bronze and Iron Ages; and MA, Medieval Age). Arrows mark 264 

divergence in CHAR composites from expected natural trend. 265 

3.3 Data for comparison  266 

We compared CHAR composite anomalies with climate and land cover data as well as archeological 267 

knowledge from the literature to discuss natural and human drivers of fire activity in the CEL. The 268 

impact of past anthropogenic fire activity on regional biogeochemical cycles is discussed via 269 

comparison with soil erosion and water level changes. 270 

3.3.1 Climate model output 271 

During the Holocene, climatic conditions have responded to seasonal insolation (Laskar et al., 2004) 272 

and the loss of the last remnants of the large glacial ice sheets, inducing sea level rise. We used 273 

seasonal temperature and precipitation variations derived from a transient climate simulation of a 274 

global coupled atmosphere-ocean-model (CCSM3-Trace21k; Liu et al. (2009)) to assess millennial-275 

scale climate variability. The modeled temperature evolution closely correlates with climate 276 

reconstructions from terrestrial pollen on millennial and centennial time scales (Marsicek et al., 277 

2018). Summer (June to August) temperatures and precipitation represent the climate of the major 278 

fire season and were averaged over all grid cells that contain charcoal records of the subcontinental 279 

and regional groups (grid cell resolution: 3.75 x 3.75°). We extracted individual grid cells covering 280 
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the areas of the subregional CHAR composites (N Germany to NE Poland, Fig. S1) and calculated 281 

the 99-year running mean of the three grid cells covering the Baltic States (centered at 22.5° E, 282 

57.52° N; 26.25° E, 57.52° N, and 26.25° E, 53.81° N). Then, we calculated a 1000-year running 283 

mean ± 2σ relative to the Holocene averages (0 – 11,500 cal. BP), as with the CHAR composites. 284 

Fig. S3 shows that the climate model output (both averages and individual grid cell values) is not 285 

significantly different between adjacent subregions over millennial timescales. The mean 286 

subcontinental climate model output of the CEL is shown in Fig. 2. 287 

3.3.2 Land cover reconstructions 288 

We assessed natural vegetation and human deforestation using quantitative land cover 289 

reconstructions from Holocene pollen records (Fig. 1, Tables S1-S2). We used the longest, most 290 

representative, and best-resolved pollen records available for each subregion; these were chosen from 291 

lakes with basin areas >50 ha to allow application of the REVEALS model (Sugita, 2007). Hence, 292 

pollens from a source area of 100 km² and larger appropriately represent land cover at our 293 

subregional scale appropriately. We used the REVEALSinR function with pollen productivity 294 

estimates from the PPE.MV2015 data set and the default (LSM) dispersal model (Theuerkauf et al., 295 

2016) to convert pollen% into land cover. We calculated the sums of arboreal taxa including Corylus 296 

avellana, but excluding the coniferous, flammable taxa Picea abies and Pinus sylvestris (discussed 297 

and shown separately in the text and Figs. 3, 4). The sum of open land includes all non-arboreal taxa, 298 

but excludes the sum of direct human indicators (HI: Artemisia, Plantago major/media, Plantago 299 

lanceolata, Rumex acetosa/ acetosella, and cereals according to Reitalu et al. (2013); Figs. 3, 4). We 300 

interpolated noncontinuous pollen records and Picea abies and Pinus sylvestris coverages by 301 

calculating the mean coverage in the same 100-year bins used for transformation of the CHAR 302 

records. Then, we fitted a LOESS to 1000-year windows for each taxon (sum) using the stats package 303 
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in R and rescaled to one to fulfill the constant-sum constraint of the compositional pollen data (Figs. 304 

3, 4). 305 

3.3.3 Archeological periods 306 

Cultural histories on millennial to centennial time scales are discussed using a compilation of 307 

representative archeological classifications per subregion based on archeological literature or, where 308 

archeological information was limited, land cover reconstructions from pollen. We provide here only 309 

a rough overview of the timing and duration of certain archeological periods (Table S3, Fig. S2). 310 

While a comprehensive review and data compilation that considers dating uncertainties and the 311 

spatial spread and interaction of past cultures would be helpful and relevant, it is beyond the scope of 312 

this work.  313 

3.3.4 Records of soil erosion and water level changes  314 

To discuss the impact of increased human fire usage and human land cover change on landscape 315 

transformation and regional biogeochemical cycles, we compare CHAR composite anomalies with 316 

records of land surface processes and hydrological processes in subregions with available 317 

reconstructions covering most of the Holocene. We derived soil erosion composites from 318 

compilations of colluvial deposits for N Germany and NE Poland, comprising a probability density 319 

function of 14C dates from the sandur plains of northeastern Germany (Küster, 2014), a record of 320 

dated deposits across northern Germany, including the northeast (Dreibrodt et al., 2010), and a record 321 

of cumulative colluvial deposit thickness in northeastern Poland (Smolska, 2011).  322 

Water level changes in northeastern Germany are based on the only available, continuous Holocene 323 

lake level reconstruction inferred from carbonate deposition in lake Fürstenseer See (Dietze et al., 324 

2016), from which we reassembled the µXRF-Ca record considering 1000 age-depth models within 325 
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the 2σ range of the 14C dates (Fig. 3b shows the median and 95 % confidence interval). We derived 326 

water level changes in northern Poland from a testate amoebae-inferred depth-to-water table record 327 

of Tuchola mire (Lamentowicz et al., 2008). The changes in Baltic lake levels are based on a 328 

compilation of Estonian lake level records that were classified into high, intermediate, and low lake 329 

status by Harrison and Saarse (1992). We recalibrated their age-depth model using IntCal13 (Reimer 330 

et al., 2013) and present the percentage of high-level lakes in approximate 500-year bins (Fig. 4e).  331 

4. Results  332 

The CHAR composite anomalies show common trends and divergences at different spatial scales 333 

relative to the Holocene average of all records (Figs. 2 – 4). The subcontinental CHAR composite 334 

anomalies indicate three phases of CEL fire activity: (i) an early Holocene increase to above-average 335 

fire activity, (ii) a mid- to late Holocene decrease to and stabilization at below-average fire activity, 336 

and (iii) a late Holocene increase to above-average fire activity.  337 

During the early Holocene (11,500 – 8,500 cal. BP), fire activity increased strongly to above-average 338 

levels in all CHAR composites, independent of spatial aggregation (Figs. 2 – 4). At the 339 

subcontinental and regional scales, this increase parallels increasing summer temperatures during 340 

maximum summer insolation and seasonality as shown by the analyzed climate model output (Fig. 341 

2a-d). Summer precipitation was rather low throughout the CEL (Fig. 2b), and flammable vegetation, 342 

i.e., the sum of pine and open land (mainly grasses), reached their maximum coverage during the 343 

Holocene in both regions (Figs. 2e, f). Although the absolute timing of positive CHAR anomalies 344 

varies among subregions, increased fire activity was most pronounced in NW Poland/E Germany 345 

(Fig. 3f).  346 

After c. 8,500 cal. BP, subcontinental and regional CHAR composites declined to below-average 347 

values by 7,000 cal. BP, following summer insolation and seasonality (Fig. 2a-d). The TraCE21k-348 
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climate model data suggest a strong increase in summer precipitation after 8,500 cal. BP across the 349 

CEL (Figs. 2b, S3). At 8,500 cal. BP, pine and open land coverages reduced to their Holocene 350 

minima, while broadleaf forests expanded (Figs. 2e, f; 3e, g, j; 4c, f), reducing the area of flammable 351 

vegetation. However, at the subregional scale, fire trends started to diverge significantly. NW 352 

Poland/E Germany (Fig. 3f) and NE Poland CHAR composites (Fig. 4a) show continuously 353 

declining trends since 9,000 cal. BP and until 6,500 and 4,500 cal. BP, respectively. The adjacent N 354 

Germany and N Poland composites indicate fire maxima between 8,500 and 6,500 cal. BP (Fig. 3a, 355 

h) and the Baltic CHAR composite values stabilize around the Holocene average between 7,500 and 356 

6,500 cal. BP (Fig. 4d). 357 

Although climate and forest composition did not change strongly, we note marked divergences 358 

between the regional CEL fire trends after 6,500 cal. BP that are not evident at the subcontinental 359 

scale (Fig. 2a). CHAR composites in the western CEL, especially N Germany, increased from c. 360 

6,500 cal. BP, peaked at 5,800 cal. BP and declined afterwards (Figs. 2c; 3a, f, h). Human land use 361 

indicators, including cereals, appeared in pollen records and soil erosion increased (Fig. 3e, g, j). In 362 

contrast, CHAR composites in the eastern CEL, especially the Baltic States, show a minimum around 363 

5,800 cal. BP and a slight increase in fire activity around 5,500 cal. BP (Figs. 2d; 4a, d). Furthermore, 364 

Norway spruce expanded across the Baltic region during that time (Fig. 4f), gradually replacing parts 365 

of the broadleaf forest.  366 

During the late Holocene (after 4,000 cal. BP), fire activity increased continuously until present day 367 

throughout the eastern CEL, especially in the Baltic subregion (Figs. 2d, 4d). Regional and 368 

subregional composites in the western CEL showed several periods of positive and negative CHAR 369 

anomalies. The climate model output suggests that cooler and wetter conditions were established 370 

across the entire CEL (Fig. 2b). Flammable, but fire-avoiding and suppressing spruce spread and 371 

reached its maximum coverage between 3,500 and 2,000 cal. BP in the eastern CEL, and human 372 
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indicator pollen records increased during that time (Figs. 2f; 4c, f). Between 2,500 and 1,000 cal. BP, 373 

regional and subregional composites (especially in the western CEL) show pronounced negative 374 

CHAR anomalies of various timings and durations (Figs. 2c, d; 3a, f, h) that follow a trend towards 375 

cooler and wetter summers (Fig. 2b). During that time, human indicator taxa in pollen records 376 

decreased (Fig. 3e, g, j).  377 

During the last millennium, fire activity increased markedly until present day, reaching burning 378 

levels similar to those during the early Holocene, although recent natural conditions were less 379 

favorable for fire (Fig. 2). Human-indicator pollen records show that farming intensified in all 380 

subregions (Figs. 3e, g, j; 4c, f) and soil erosion increased (Fig. 3c, 4b). However, we observe a 381 

significant divergence in subregional CHAR composites. Whereas fire activity in N Poland and the 382 

Baltic States increased until present day (Figs. 4a, d), N Germany CHAR anomalies peak around 800 383 

cal. BP and decline afterwards (Fig. 3a).  384 

5. Discussion 385 

5.1 Natural burning conditions 386 

Fire has been an important component of the CEL landscape in the past (Figs. 2 – 4). Absolute values 387 

of N Germany CHAR composite anomalies (Fig. 3a) were lower than those of the Baltic CHAR 388 

composite anomalies (Fig. 4d), especially during the last millennium. Thus, the natural climatic and 389 

vegetation gradient across the CEL influences biomass flammability: northern Germany is more 390 

oceanic and has less pine coverage (Figs. 3, 4) than the more continental areas towards the east, 391 

which have more coniferous forest cover, are more affected by summer droughts (Lindner et al., 392 

2010) and, hence, are more fire-prone (Marcisz et al., 2017). However, we focus on the interpretation 393 

of trends in CHAR composite anomalies, because absolute anomalies can only be linked to relative 394 

and not quantitative differences in fire regime properties.  395 
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Subcontinental fire activity trends followed major changes in climate/vegetation across the CEL 396 

since the last glacial period, similar to southern Scandinavia (Olsson et al., 2010) and northeastern 397 

Europe (Marlon et al., 2013). Previous (sub)continental CHAR composite anomalies of Europe and 398 

central Europe have shown increasing fire activity throughout the Holocene (Marlon et al., 2013; 399 

Molinari et al., 2013; Power et al., 2008). However, we find alternating periods of high and low fire 400 

activity, similar to southern European CHAR compilations (Vannière et al., 2011). The CEL fire 401 

activity trends are sometimes divergent between adjacent areas at various spatial scales (Figs. 2 – 4) 402 

and could be related to both, natural (i.e., climatic and fuel-related) and human drivers.  403 

During the early Holocene, fire activity paralleled increasing summer temperatures (Figs. 2 – 4, S3) 404 

similar to fire trends at the global scale (Daniau et al., 2012; Marlon et al., 2013; Power et al., 2008). 405 

Frequent droughts related to dominating continental air masses have been reported from regional 406 

hydrological reconstructions mainly based on geochemical and paleoecological proxies (Dietze et al., 407 

2016; Harrison et al., 1993; Lauterbach et al., 2011; Väliranta et al., 2015). Hence, the climate and 408 

natural land cover (dominated by extensive pine forests and grasslands) favored natural fires.  409 

The natural flammability of the CEL landscape reduced after a shift towards wetter summers around 410 

8,500 cal. BP (Fig. 2b), probably related to the increasing influence of north Atlantic air masses 411 

across the CEL, similar to the present-day air mass dominance (Lauterbach et al., 2011; Rust et al., 412 

2018). However, proxy data does not consistently show increased summer wetness after 8,500 cal. 413 

BP (Dietze et al., 2016; Gałka et al., 2014; Latałowa et al., 2013) (Figs. 3b, i; 4e), which we attribute 414 

at different sensitivity and temporal resolution of the proxies. Furthermore, with the establishment of 415 

mixed broadleaf forests across the CEL, less-flammable fuel was available, with pine forests 416 

dominating only in very wet or very dry sites. The slight increase in Baltic CHAR anomalies after 417 

5,500 cal. BP is synchronous with lake level reductions that suggest drier conditions (Harrison and 418 

Saarse, 1992). Climatic conditions became even less favorable for fire during the last 4,000 years, 419 
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when climate model output and proxy reconstructions suggest that cooler and wetter conditions 420 

established across the entire CEL (Figs. 2 – 4) (Dietze et al., 2016; Wanner et al., 2008). However, 421 

fire activity did not decrease accordingly: CHAR composites diverged from the expected natural 422 

trend at the subregional scale since 8,500 cal BP (Figs. 3, 4), at the regional scale since 6,500 cal BP, 423 

and at the subcontinental scale since 1,000 cal BP (Fig. 2).  424 

We propose that the divergence of CHAR composite anomalies from the expected natural trends and 425 

between adjacent subregions indicates human alteration of natural fire regimes. We assume spatially 426 

homogeneous climatic trends across the CEL because modern short-term climatic events show strong 427 

spatial coherence (Merz et al., 2018; Rust et al., 2018) and long-term (i.e., millennial-scale) climate 428 

models and available land-cover data do not suggest a spatial heterogeneity of natural trends between 429 

adjacent regions. This assumption is limited by some constraints: first, available climate proxy data is 430 

heterogeneous concerning archive type, temporal coverage, and the type and spatiotemporal extent of 431 

the proxy-climate relationship (Mauri et al., 2015; Salonen et al., 2012; Väliranta et al., 2015); 432 

second, we lack comparable and independent syntheses of climate-proxy and land cover data on 433 

similar spatiotemporal scales (Marquer et al., 2017; Trondman et al., 2015); and third, the analyzed 434 

climate model output only provides larger-scale trends based on the first-order effects of CO2 and 435 

orbital forcing (Rehfeld and Laepple, 2016; Zhang et al., 2017) and does not consider regional 436 

climate-land cover feedbacks (Qian et al., 2015).  437 

During periods of low natural flammability but increased fire activity after 8,500 cal. BP, we assume 438 

that humans set fires for multiple purposes by taking advantage of dry fuel during short-term 439 

droughts that occur in both wetter and drier climates. As proof of concept, we discuss two examples 440 

of human-fire relationships that affected fire activity even in periods and areas of low population 441 

densities.  442 
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5.2 Fire use by hunter-gatherers 443 

Superimposed on the naturally occurring fire trends, we suggest that maxima in the subregional 444 

CHAR composites between 8,500 and 6,000 cal. BP indicate forest fires started by Mesolithic and 445 

early Neolithic Baltic hunter-gatherers. So far, there is little direct evidence that Mesolithic groups 446 

drove fire activity on larger spatial scales, as archaeological sites document only localized fire use 447 

(Bishop et al., 2015) and the open-land signal in vegetation reconstructions is barely distinguishable 448 

from natural disturbances (Bishop et al., 2015) such as wind throw and forest grazing by large 449 

herbivorous mammals (e.g., Birks (2005). However, the presence of local Mesolithic groups and 450 

social interactions between them are well known across the CEL (Latałowa, 1992; Wacnik et al., 451 

2011; Zvelebil, 2006, 2008). Increasing knowledge of Mesolithic (and early Neolithic) cultures 452 

around the Baltic Sea indicates that their subsistence mainly relied on marine or freshwater fishing, 453 

but always included forest-based resources (Meadows et al., 2016; Rimantienė, 1992; Zvelebil, 2008) 454 

that required maintaining open space in forests (Bishop et al., 2015). Fire is regarded as an important 455 

tool, for example, to selectively support food production, especially hazel (Corylus avellana) (Holst, 456 

2010; Wacnik et al., 2011; Zvelebil, 2008), or to keep clearings open to attract game (Bishop et al., 457 

2015).  458 

The degree of intentional forest disturbance and use of forest resources probably varied in space and 459 

time (Meadows et al., 2016; Poska and Saarse, 2002; Wacnik et al., 2011; Zvelebil, 2008) and in 460 

relation to access to other resources from, e.g., rivers, the sea, or early contacts with sedentary 461 

cultures (Krause-Kyora et al., 2013; Silva and Vander Linden, 2017). For example, new analytical 462 

approaches in archaeology suggest that Mesolithic forest-based diets were reduced in favor of water-463 

based diets in the Baltic hinterland (Meadows et al., 2016). Accordingly, Baltic CHAR anomalies 464 

(Fig. 4d) suggest that fire usage of the mid-Neolithic Narva hunter-gatherers (Table S3, Fig. S2) 465 
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might have reduced their fire usage around 5,800 cal. BP, when the Baltic CHAR composite declines 466 

to a minimum.  467 

We argue that diverse extents of woodland alteration by hunter-gatherers can explain the offset from 468 

the expected natural fire trends on the subregional scale, which represents roughly the territories that 469 

Mesolithic hunter-gatherers occupied (Zvelebil, 2006). Hence, we support earlier interpretations that 470 

Mesolithic communities could have significantly affected landscapes by burning forest to construct 471 

their niche (Bishop et al., 2015; Latałowa, 1992; Poska and Saarse, 2002; Wacnik et al., 2011). We 472 

propose that fire activity was linked not only to human population densities, but also to cultural 473 

subsistence strategies that were based on diverse usage of terrestrial resources. 474 

5.3 Fire as an agrarian land management tool 475 

Divergent regional CHAR composite anomalies after 6,500 cal. BP mirror divergent rates in 476 

Neolithisation and agricultural land use, as previously suggested by discrete charcoal data (Robin and 477 

Nelle, 2014). CHAR composites allow determination of the spatial spread of human fire usage in 478 

prehistoric and historic agrarian land management, which was previously described using 479 

archaeological compilations (Feeser and Dörfler, 2015; Poska et al., 2004; Silva and Vander Linden, 480 

2017) and quantitative land cover reconstructions (Marquer et al., 2017; Trondman et al., 2015). 481 

During the transition from foraging to sedentary cultures that adopted pastoralism and agriculture, 482 

western CEL CHAR composites, especially N Germany and NW Poland/E Germany, show 483 

increasing and declining anomalies that coincide with a known societal cycle of increasing and 484 

declining population development between 6,500 and 5,000 cal BP (Feeser and Dörfler, 2015; 485 

Latałowa, 1992) (Figs. 2 – 4), as inferred from archeological remains (Warden et al., 2017). During 486 

that time, the temperature in the Baltic Sea area increased towards the mid-Holocene thermal 487 

optimum and subsequently decreased after 5,500 cal BP, suggesting a response of cultural 488 
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development to climate change on millennial time scales (Warden et al., 2017). However, despite 489 

continued decreases in overall population densities and Baltic Sea temperatures between 5,000 and 490 

3,000 cal. BP (Warden et al., 2017), fire use increased on regional and subregional scales after the 491 

transition from the Funnel Beaker towards the Corded Ware culture around 4,800 cal. BP.  492 

Yet, the role of fire in Neolithic land management is strongly debated in the western CEL (Feeser et 493 

al., 2012), because of lacking evidence for slash-and-burn practices that were common in other 494 

regions (Bowman et al., 2011; Vannière et al., 2016). Although fire probably helped to alter 495 

woodland structures during the initial period of adoption of animal husbandry (Feeser and Dörfler, 496 

2014; Feeser and Dörfler, 2015), further regional land management strategies without fire usage 497 

evolved for deforestation and agricultural maintenance (Feeser et al., 2012; Latałowa, 1992). Hence, 498 

fire usage seems to depend more on the variable cultural practices than on population densities (see 499 

archeological phases in Figs. 3, S2). 500 

In the eastern CEL, fire activity increased after 5,500 cal. BP but only reached or exceeded the 501 

Holocene average after 3,000 cal. BP (Figs. 2, 4). Lake levels in the Baltic States decreased between 502 

5,200 and 4,000 cal. BP, suggesting a drier climate possibly related to increasing Baltic Sea 503 

temperatures (Warden et al., 2017). Eastern CEL fire activity might therefore be influenced by a 504 

climatic shift. Although the first traces of cereals and pastoralism appear in the region during that 505 

time (Madeja et al., 2010; Poska et al., 2004; Trondman et al., 2015) as a result of the appearance of, 506 

e.g., the Funnel Beaker and Corded Ware cultures (Table S3), archeological and land cover data 507 

suggest that Baltic cultures still relied primarily on forest- and water-based resources (Meadows et 508 

al., 2016; Poska et al., 2004; Rimantienė, 1992; Wacnik, 2009). Only after the onset of the Bronze 509 

Age (4,000 cal. BP) do human indicator pollen and soil erosion records show increasing agricultural 510 

land use (Gałka et al., 2013; Poska et al., 2004; Reitalu et al., 2013; Smolska, 2011) (Fig. 4). Hence, 511 
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increasing CHAR composite anomalies parallel the major onset and spread of farming in the eastern 512 

CEL more than 2,000 years later than in the western CEL (Figs. 2 – 4).  513 

Whereas eastern CEL CHAR composites continuously increased towards present day, western CEL 514 

CHAR composites follow known archaeological phases of altered land management and 515 

technological transitions, such as those occurring during the Bronze and Iron Ages (Fig. 3). Most 516 

prominently, negative fire anomalies of varying timings and durations in adjacent regions between 517 

2,500 and 1,000 cal. BP follow a millennial-scale climatic cooling (Helama et al., 2017; Wanner et 518 

al., 2008) (Fig. 2). Additionally, the expansion of beech (Fagus sylvatica) and hornbeam (Carpinus 519 

betulus) in Germany and northern Poland further reduced fire-prone pine forest cover (Marquer et al., 520 

2017; Pędziszewska and Latałowa, 2016). Although societal responses to climatic changes are 521 

complex and difficult to decipher at millennial time scales (Haldon, 2016), the reduction in fire 522 

activities during that time suggests an altered use of fire in land management. In many areas, reduced 523 

human land use per se during the Migration Period can explain the minimum CHAR composite 524 

anomalies (Figs. 3, S2). Although debated, large-scale human reorganization during this period was 525 

probably related to less-favorable climatic conditions of the Dark Age cold period (Helama et al., 526 

2017; Kaplan et al., 2009; Zhang et al., 2011) and led to the reforestation of large areas, mainly with 527 

broadleaf taxa (Marquer et al., 2017) (Figs. 2 – 4).  528 

The strong increase of fire activity in all CHAR composites during the last millennium (Figs. 2 – 4) 529 

parallels population growth after the Migration Period (Helama et al., 2017). This increase clearly 530 

overrides the millennial-scale cool and wet climatic trends (Fig. 2), similar as suggested for recent 531 

times over shorter time scales (Syphard et al., 2017). Farming extended into previously unsuitable 532 

sites and intensified in all subregions, as reflected in pollen and soil erosion records (Dreibrodt et al., 533 

2010; Kaplan et al., 2009; Marquer et al., 2017) (Fig. 3). Fire activity driven by human land cover 534 

change reached early Holocene levels, even at the subcontinental scale (Fig. 2).  535 
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The pattern in N German CHAR composites, which diverges from other subregional composites, 536 

follows the generally assumed relationship between fire and population densities: increasing 537 

population first lead to increased fire activity, and eventually to landscape fragmentation that 538 

indirectly limited the spread of fires (Marlon et al., 2008; Pechony and Shindell, 2010). The 539 

landscape in northern Germany seems to have become fragmented by around 1200 AD: land cover 540 

reconstructions from pollen data and models suggest that more than 60 % of the land was deforested 541 

in northern Germany by that time, compared to less than 40 % in the Baltic states (intermediate 542 

estimates based on Kaplan et al. (2009), Kaplan et al. (2017), Marquer et al. (2017) and Figs. 3, 4). 543 

All other analyzed subregions did not reach this extent of open land (Figs. 3, 4) and, within 544 

uncertainty, most still show an upward trend in fire activity (Figs. 3, 4). This trend might not only 545 

relate to land openness and associated landscape fragmentation, but also to forest composition and 546 

biomass flammability, as coniferous taxa cover a greater extent in the continental eastern CEL than in 547 

the western CEL (Figs. 1, 3, 4; Marcisz et al. (2017). We note that the Lake Miłkowskie pollen 548 

record (Fig. 4c) shows representative land openness trends in NE Poland, but locally reconstructed 549 

openness was exceptionally high already since ca. 800 cal. BP, whereas other areas remained 550 

strongly forested (Wacnik et al., 2016). 551 

Our relative CHAR composite anomalies do not allow us to infer absolute changes in past fire regime 552 

properties in terms of fire frequency, area, or the amount and type of biomass burned (Marlon et al., 553 

2016). Uncertainties in our reconstructions are still large due to limited data availabilities during 554 

certain periods, especially at the subregional scale (Fig. S1), indicating the need for more and highly 555 

resolved Holocene fire records that allow better characterization of past fire regimes (Feurdean et al., 556 

2017; Vannière et al., 2016). Hence, the impact of human-driven fires and associated human land 557 

management on biogeochemical cycles can only be discussed in general terms. 558 
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5.4 The roles of fire and human land cover change in Holocene landscape transformation and 559 

biogeochemical cycles 560 

Our results suggest that humans have increased fire activity beyond the local scale in the CEL 561 

throughout the Holocene. Accordingly, humans could have significantly affected biogeochemical 562 

cycles in this landscape of low natural flammability. Since the divergence of CHAR composites from 563 

the expected natural trends at the transition from the early to mid-Holocene, the increased occurrence 564 

of fire in a landscape of low natural flammability probably increased carbon release and altered 565 

albedo and vegetation composition and, hence, regional climate-carbon cycle feedbacks (Harrison et 566 

al., 2018; Schimel and Baker, 2002).  567 

In addition to the indirect feedback with regional climate (Strandberg et al., 2014), human fire usage 568 

in land management probably affected biogeochemical cycles also via other landscape components in 569 

the CEL such as soil erosion and water budgets (Latałowa, 1992). Indeed, observations have shown 570 

increased erosion on the catchment scale (<100 km²) following fires (Allen, 2007; Bodí et al., 2014; 571 

Leys et al., 2016), with charcoal remains being a classical diagnostic property of central European 572 

hillslope, i.e., colluvial, sediments (Robin and Nelle, 2014). Hoffmann et al. (2013) quantified 573 

significant carbon burial and storage in floodplain and hillslope sediments due to Holocene human-574 

induced soil erosion. Our lake- and peatland-derived CHAR composite anomalies mirror soil erosion 575 

trends in N Germany and NE Poland (Dreibrodt et al., 2010; Dreibrodt and Wiethold, 2015; Smolska, 576 

2011) after Neolithisation (6,500 and 4,000 cal. BP, Fig. 3) and, hence, provide an independent 577 

record of human-induced and biogeochemically-relevant soil erosion and land cover change. 578 

Water level changes are generally interpreted in terms of precipitation-evaporation ratios (Harrison et 579 

al., 1993; Shuman et al., 2010). In northern Germany, we observe that significant lake level changes 580 

(considering age uncertainties from Dietze et al. (2016) parallel the CHAR composite anomalies 581 
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during the Neolithic period (Fig. 3a, b). Thus, human fire usage in land management may have 582 

resulted in regionally increased groundwater recharge and higher water levels, as shown by 583 

Woodward et al. (2014) on the global scale. Further intense lake level fluctuations related to human 584 

water management (Dietze et al., 2016) occurred at the time of maximum land openness and fire 585 

activity during the last millennium (Fig. 3).  586 

Hence, human land cover change could have significantly affected regional hydrological and 587 

sediment budgets, especially since the Neolithic time (Dietze et al., 2016; Latałowa, 1992; Ruddiman 588 

et al., 2015). Integration and compilation of land, ecosystem, and paleoclimate records over different 589 

spatial and temporal scales are needed to better understand and quantify the interactions between 590 

climate and human drivers of past landscape transformation (Marquer et al., 2017) and the role of 591 

cultural fire use. 592 

6. Conclusions and implications 593 

We provide a new reconstruction of Holocene fire activity in the low-flammability landscape of the 594 

Central European Lowlands. When natural conditions (climate and land cover) limited widespread 595 

fire occurrence, millennial-scale fire activity seems well explained by the cultural use of fire 596 

suggesting that humans have affected natural terrestrial systems at varying intensities over several 597 

millennia, and providing new insights into past human-environment interactions.  598 

We have identified convergences and divergences (i) among nested subregional to subcontinental 599 

CHAR composites and (ii) from the expected natural flammability across spatial scales. This 600 

approach provides a step forward in determining early human-fire-land use relationships (Fig. 5) 601 

when high-resolution macrocharcoal records are lacking, i.e., beyond the assumption of direct fire-602 

population density relationships and independent of classical pollen-derived human impact 603 
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indicators. This approach adds to previous studies in other areas of the globe where natural 604 

conditions did not support the frequent occurrence of fire (McWethy et al., 2013).  605 

 606 

Fig. 5. Scale dependency of millennial fire trends in low-flammability landscapes, based on CEL CHAR composites. 607 

Early human fire usage can be detected with composites aggregating sedimentary charcoal records at small spatial scales. 608 

Whereas the impact of Mesolithic hunter-gatherers is archaeologically well known at the local scale, CHAR composites 609 

allow detection of Mesolithic impacts at the subregional scale under less suitable natural burning conditions, despite low 610 

population densities (Kaplan et al., 2009; Klein Goldewijk et al., 2011). 611 

Our reconstructions have two major implications. First, past human-fire relationships were 612 

multifaceted. Hunter-gatherer subsistence strategies in the CEL seem to have altered natural fire 613 

regimes beyond the local scale despite low population densities, supporting previous hypotheses 614 

(Kaplan et al., 2016; White, 2013). In agrarian societies, millennial CHAR composite anomalies 615 

seem closely associated with cultural land use strategies, which is difficult, but possible to 616 

parameterize in fire models (Lasslop and Kloster, 2017; Pfeiffer et al., 2013). 617 

Second, our millennial scale paleofire perspective provides long-term background information on the 618 

interplay of natural and human drivers of land-cover change, a prerequisite to inform future land 619 

management and nature conservation efforts (Whitlock et al., 2018). At the spatial scales relevant to 620 

political decisions in the CEL, the last millennium seems key to understanding the preconditions that 621 
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determine future fire risks. Although during the last century only minor fire events have occurred in 622 

the CEL compared to other areas of the world, forest cover is expected to increase in the future and 623 

fuel will accumulate in widespread human-planted pine and spruce monocultures (Caudullo et al., 624 

2016; Houston Durrant et al., 2016). Future climate change scenarios predict drier and warmer 625 

summers, and the frequency of natural ignition by lightning might increase (Douville and Plazzotta, 626 

2017; Lhotka et al., 2018; Romps et al., 2014). These factors increase fire hazard and fire risk 627 

(Hardy, 2005), leading to a much more flammable landscape—a situation comparable to the early 628 

Holocene. Our study supports previous suggestions that natural and/or human-driven substitution of 629 

flammable coniferous for broadleaf forests could outpace the increasing fire danger in the continental 630 

and hemiboreal CEL (Feurdean et al., 2017). 631 
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