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Abstract 31 

Aim: The factors determining spatial distributions and diversity of terrestrial invertebrates are 32 

typically investigated at small scales. Large-scale studies are particularly missing for soil 33 

animals, which control microbial communities and represent one of the most diverse yet 34 

poorly known animal assemblages. Here, we analyzed a major group (Oribatida) to test 35 

whether belowground macroecological patterns can be predicted by climatic variables, 36 

vegetation, and large-scale variation in key soil properties. 37 

Location: we modelled the multivariate distribution of more than 100 species using 38 

biodiversity data collected across Great Britain in the framework of the Countryside Survey 39 

(http://www.countrysidesurvey.org.uk).  40 

Methods: We analysed species-level data from 582 samples collected across 162 hectads 41 

(10 × 10 km) covering the largest possible range of vegetation types, soil properties and 42 

climatic conditions within GB. We created the first large-scale maps of soil animal diversity 43 

metrics at the GB scale, including novel estimates of metrics of phylogenetic diversity. Using 44 

structural equation modelling, we quantified the direct and indirect effects of location 45 

(latitude, longitude), plant community structure, and abiotic factors such as precipitation on 46 

species composition, richness, and phylogenetic diversity.  47 

Results: We found that variation in species composition follows a latitudinal gradient with 48 

diversity generally increasing northward. The latitudinal variation in species composition 49 

drives phylogenetic diversity via changes in both species richness and phylogenetic distance 50 

between species. This gradient is mostly determined by latitudinal variation in precipitation 51 

and organic matter, which were very good predictor of species composition. Precipitation 52 

and organic matter were, however, relatively weak while statistically significant predictors of 53 

diversity metrics.   54 

Conclusions: Past studies have emphasized the unpredictability of species distributions and 55 

variation in species composition in hyper diverse soil animal communities. However, past 56 

studies were conducted at small scales, where stochastic factors may weaken the signal of 57 

deterministic factors. Oribatid mites in our study show for the first time that large scale 58 

latitudinal gradients in climate and organic matter predict not only variation in species 59 

composition but also taxonomic and phylogenetic diversity of soil animal communities.  60 

Keywords: soil macroecology; animals; diversity; distribution; community  phylogenetics; 61 

Oribatida  62 

http://www.countrysidesurvey.org.uk/
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1. Introduction 63 

In the last two decades, one of the major goals of ecology has been to understand the 64 

relative roles of the many factors that structure ecological communities in space and time but 65 

the majority of studies have focused on aboveground communities, particularly plant 66 

communities (Chesson, 2000; Clark & McLachlan, 2003; Hubbell, 2005; Levine & 67 

HilleRisLambers, 2009). More recently, ecologists have started to better investigate the 68 

interactions between aboveground and belowground communities and how these 69 

interactions drive the composition and diversity of both communities (Kardol et al., 2006; Van 70 

Der Heijden et al., 2008; de Vries et al., 2012; Prober et al., 2015). Traditionally, most 71 

studies investigating aboveground-belowground linkages have been conducted at relatively 72 

local spatial scales but some regional and global scale analyses of soil microbial 73 

communities have shed light on the large scales determinants of these communities (Fierer 74 

et al., 2009; de Vries et al., 2012; Ramirez et al., 2014). Local and fine scale variation seems 75 

mostly due to interactions determined by the patchy distribution of resources and plant 76 

species (Bezemer et al., 2010; Thomson et al., 2010) while spatial gradients in vegetation 77 

types and abiotic factors such as pH and climatic conditions are the major correlates of 78 

microbial distribution at regional scales (Fierer et al., 2009; Griffiths et al., 2011). Protists, 79 

too, follow similar macroecological patterns (Soininen, 2011). For some groups such as 80 

arbuscular mycorrhizal fungi (AMF), global studies have started to reveal the relative roles of 81 

local, regional and historical factors on community structure and diversity (Davison et al., 82 

2015) but for soil animals large-scale studies are missing despite some synthesis data 83 

having provided insight in the macroecology of soil arthropods, nematodes and oligochaetes 84 

(Decaëns, 2010; Brusaard et al., 2012; Nielsen, 2014). Studies focusing on selected 85 

assemblages at relatively local scales (Lindo & Winchester, 2009; Nielsen et al., 2010; 86 

Caruso et al., 2011) have shown that, similarly to microbial communities, soil animal 87 

communities are structured at multiple spatial scales, with many species being dispersal-88 

limited over certain scales (Ettema & Wardle, 2002; Wardle, 2006) and soil environmental 89 



 
 

4 
 

heterogeneity being high already at very small scale (e.g. <100cm; Ettema & Wardle 2002). 90 

This small scale heterogeneity promotes community diversity in both animals and microbes 91 

and is mostly due to small scale variation in soil properties such as pH, the concentration of 92 

organic matter and key nutrient such as P and N, and also structural variation in soil such as 93 

variation in the physical distribution of aggregates (Dumbrell et al., 2010; Nielsen et al., 94 

2010). Nevertheless, much spatial variation in the structure and diversity of soil communities, 95 

especially animals, is often left unexplained by variation in environmental variables or other 96 

biotic factors. Previous studies have hypothesised that stochastic population dynamics, 97 

including dispersal limitation, may sometimes play a major role in this variation (Lindo & 98 

Winchester, 2009; Caruso et al., 2011). At large scales, the few studies available on soil 99 

animals have concentrated on classical macroecological patterns such as species-area 100 

relationships, altitudinal and latitudinal gradients in diversity and some insight on patterns of 101 

phylogenetic diversity (see review in Brusaard et al., 2012) but most datasets focused on the 102 

highest taxonomic ranks (e.g., family or class level; Nielsen, 2014) or, as noted by Decaëns, 103 

(2010) are biased in terms of sampling efforts towards temperate countries, and in general 104 

lack the resolution necessary to disentangle the contribution of multiple factors at multiple 105 

spatial scales. The only quantitative study on the regional variation of soil animal 106 

communities at the species level (Zaitsev et al. 2013) showed that studies conducted at 107 

relatively small scales cannot capture the long-term effects of the historical processes that 108 

contribute to large scale gradients in species richness and community composition. Overall, 109 

large-scale studies that help disentangle the roles of abiotic and biotic factors that structure 110 

soil communities at regional scales are in their infancy. 111 

Here we focused on a unique dataset of the species of oribatid mites collected during the 112 

first assessment of soil biodiversity across Great Britain undertaken in 1998 (known as the 113 

GB Countryside Survey or CS: http://www.countrysidesurvey.org.uk). This survey produced 114 

a baseline dataset across all major soil types and habitats (Black et al., 2002) and showed 115 

that populations of microbes and microarthropods varied across major environmental zones, 116 
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vegetation classes and soil types (Black et al., 2003; Griffiths et al., 2011; Keith et al., 2015). 117 

Oribatid mites (Acari, Acariformes) are a cornerstone of soil food webs worldwide: over 118 

10,000 species have been described and they can reach densities of up to 400,000 ind./m2 119 

in forest soils, although they occur in all biomes including continental Antarctica (Coleman et 120 

al., 2004). Oribatid mites are one of the most ancient groups of terrestrial animals and have 121 

been part of the soil food webs ever since soil have appeared on the geological record about 122 

400 mya (Shear et al., 1984; Norton et al., 1988). They appear for the first time in the fossil 123 

record of the Devonian site of Rhynie Chert (407-397 mya, Aberdeenshire, Scotland) 124 

although a relatively recent molecular clock suggests a much earlier origin (Schaefer et al., 125 

2010). For all these reasons, oribatid mites provide an excellent model to analyze the role of 126 

abiotic and biotic factors in structuring diversity and composition of belowground animals at 127 

regional scales. We used the dataset of oribatid mites to conduct a species-level analysis of 128 

the determinants of community structure and diversity of this major group of soil animals. 129 

The CS is a unique audit of vegetation, soils, habitats and landscape across GB that began 130 

in 1978 (Firbank et al., 2003; Keith et al. 2015). Using a spatially explicit approach, we 131 

created the first maps of diversity metrics at the GB scale for a major soil animal group, 132 

including the first estimates of phylogenetic diversity (Faith, 1992; Cadotte et al., 2010) and 133 

used structural equation modelling (Grace, 2006) to estimate the direct and indirect effects of 134 

location (latitude, longitude), abiotic factors such as precipitation, and plant community 135 

structure on oribatid mite species composition and diversity. We hypothesized that large-136 

scale gradients in this belowground community are directly driven by large-scale gradients in 137 

abiotic factors (e.g., climatic variables) but also via the effects of these factors on plant 138 

community structure and edaphic properties such as organic matter.  139 

 140 

 141 

 142 
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Methods 143 

Database Background  144 

The data analysed in this study were collected in the framework of the Country Survey audit 145 

(Firbank et al., 2003; Keith et al. 2015). This environmental audit is based on a stratification 146 

of GB into land classes, each land class being characterised by a combination of climate, 147 

altitude and location (Firbank et al., 2003; Sheail & Bunce, 2003). Each sampling location 148 

was assigned a Broad Habitat (BH) and an Aggregate Vegetation Class (AVC). BH is a 149 

classification consisting of 27 habitats that are used in the Land Cover Map accounting for 150 

the entire land surface of GB, and AVC is a high-level grouping of vegetation types produced 151 

from a classification of plant communities from the original CS vegetation plots and includes 152 

eight categories (crops and weeds, tall grass and herb, fertile grassland, infertile grassland, 153 

lowland woodland, upland woodland, moorland-grass mosaic, and, heath and bog (Bunce et 154 

al., 1999). Specifically, we analysed 582 samples mostly collected between 29 May and 28 155 

October in 1998 with some samples collected between June and August in 1999. The 156 

samples analysed in this study were collected across 162 10 x 10 km plots (hectads), with 157 

an average of 4 locations sampled within each hectad. Each sample location was associated 158 

with information on vegetation, soil properties and land-use, produced during CS. For the 159 

collection of each soil sample, surface vegetation was removed leaving the litter layer intact 160 

and a soil core (4 cm diameter, 8 cm depth) was taken. Cores were placed immediately in 161 

cool boxes and sent to the laboratory at the Centre for Ecology & Hydrology Lancaster for 162 

extraction of invertebrates.  163 

 164 

2.2 Oribatid extraction and identification 165 

Cores were processed over five days using a dry Tullgren extraction method and all 166 

invertebrate specimens collected into 70% ethanol preservative (Emmett et al., 2010) . Once 167 

collected, the soil invertebrates were identified to broad taxa, separated and counted under a 168 
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stereomicroscope. Specimens of Acari (mites) from each extract were removed into another 169 

vial and sent for separation and identification of oribatid mites species. Specimens were 170 

identified at ×400 magnification and, where necessary, were cleared for 24h using lactic acid 171 

at room temperature before being mounted in glass cavity slides. The unpublished 172 

monograph of British oribatid mites by M. Luxton and other specialist primary literature were 173 

used to identify oribatid mites to the species level; identifications have since been checked 174 

against Weigmann, (2006). Weigmann (2006) plus several other specialist publications were 175 

also used to define geographic distributions and ecological traits of the taxa. Oribatid species 176 

records and taxonomic details were then collated into a dataset that is available upon 177 

request from the NERC Environmental Information Centre (see Keith et al. 2018 for details 178 

to access the data).  179 

 180 

2.3 Associated environmental data 181 

Existing soil, vegetation and habitat data from CS were collated for the 582 samples of soil 182 

fauna and are available upon request from the NERC Environmental Information Centre (see 183 

Barr et al. 2014 and Black et al. 2016 for details to access the vegetation and habitat data).. 184 

Soil properties were collected from a separate core taken adjacent to the core used to 185 

extract soil animals; soil data included moisture content, pH, organic matter (loss-on-186 

ignition), total C content and total N content. The sampling protocol and detailed methods 187 

used for these soil analyses can be found in Emmett et al. (2008) and the data are reported 188 

in more detail elsewhere (Reynolds et al., 2013). For vegetation composition, ordination 189 

scores were used from the first three axes of a Detrended Correspondence Analysis (DCA) 190 

using binary plant species data from the same plots. 191 

Climate data associated with each sampling plot was derived from the UKCP09: Met Office 192 

gridded land surface climate observations at 5 × 5km resolution (Met Office, 2017). These 193 
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data were used to calculate average values of mean annual temperature and mean annual 194 

rainfall for the period 1992–1997, in order to incorporate recent climatic trends.  195 

 196 

2.4 Statistical analyses 197 

Community and environmental data 198 

Records of oribatid mites across sampling locations were collated at 10km × 10km/hectad 199 

resolution for a total of 162 10 x 10 km squares, and the associated environmental data were 200 

averaged at this resolution (see Barr et al. 2014, Black et al. 2016 and Keith et al. 2018 to 201 

access the data from NERC Environmental Information Centre).  202 

We used the spatial interpolation method of kriging (Matheron, 1963; Wagner, 2003) to 203 

illustrate spatial variation in community structure and metric of diversity (see below for the 204 

metrics used). The spatial structure of the variables was quantified with the empirical 205 

semivariogram (Wagner, 2003; Bivand et al., 2008) and then fitted with a theoretical 206 

variogram model (i.e., exponential or Gaussian, or spherical models) to estimate values at 207 

unmeasured locations. We used the R library “geoR”, “maps”, “mapdata” and “gstat” for 208 

variograms, kriging estimation and mapping of results. See also Bivand et al.( 2008) for 209 

further details. 210 

We used a multivariate regression approach based on Principal Coordinate Analysis 211 

(Legendre & Legendre, 1998; Borcard et al., 2004) to quantify the relative importance of 212 

location (space) and environment (temperature, plant community composition, pH, 213 

precipitation, organic matter) on oribatid mite community structure. PCoA was applied to the 214 

Jaccard distance matrix obtained by the presence-absence distribution of species, and a 215 

distance based RDA (db-RDA) was used to estimate the effect of space and environment on 216 

the multivariate distribution of species. 217 
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To quantify the effect of “space” (i.e., location), we used latitude, longitude and the method 218 

of principal coordinate analysis of neighbour matrices (PCNM; Borcard & Legendre, 2002), 219 

which defines a set of spatial factors that parsimoniously account for patterns in species 220 

distribution at multiple scales. The final set of PCNM vectors was defined using a 221 

multivariate extension of the Akaike information criterion (AIC; Dray et al., 2006). Variance 222 

partitioning was computed to estimate the amount of fraction uniquely attributable to space 223 

and environment, and the variation shared between space and environment (Borcard et al., 224 

1992; Legendre & Legendre, 1998). Besides observed species number per hectad we also 225 

calculated species rarefaction curve (Gotelli & Colwell, 2001) for each hectad and estimated 226 

the hectad asymptotic richness using the Chao estimator (O’Hara 2005; Chiu et al. 2014). All 227 

multivariate analyses and estimates of species richness were performed using the R 228 

package “vegan” (Oksanen et al., 2007). 229 

 230 

Phylogenetic methods 231 

The phylogenetic tree was reconstructed based on 18S rDNA. Sequences were downloaded 232 

from NCBI (https://www.ncbi.nlm.nih.gov) or, if not available, were newly generated 233 

sequenced at theJ.F.Blumenbach Institute of Zoology and Anthropology, University of 234 

Göttingen.  235 

Genomic DNA was extracted from single individuals using the DNeasy® Blood and Tissue 236 

Kit (Qiagen, Manchester, UK) following the manufacturer’s protocol for animal tissue. 237 

Amplification of the 18S region was performed in 25 µl volumes containing 12.5 µl 238 

HotStarTaq Mastermix (Qiagen), 5 µl of template DNA, 1 µl of each primer (100 pM) and 5.5 239 

µl H2O. Primers for PCR were 5’ -TAC- CTGGTTGATCCTGCCAG-3’ (forward) and 5’ -240 

TAATGATCCTTCCGC AGGTTCAC-3’ (reverse) (Domes et al., 2007). The PCR protocol 241 

consisted of an initial activation step at 95 °C for 15 min, 35 amplification cycles (95°C for 45 242 

s, 57° C for 60 s, 72°C for 60 s) and a final elongation step at 72 °C for 10 min. All PCR 243 

https://www.ncbi.nlm.nih.gov/
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products were visualized on a 1% agarose gel, purified with the QIAquick PCR Purification 244 

Kit (Qiagen), and sequenced by Microsynth Seqlab (Göttingen, Germany), using the 245 

additional sequencing primers 18S554f 5’-AAGTCTGG TGCCAGCAGCCGC-3’ , 18S1282r 246 

5’-TCACTCCACCAACTA AGAACGG C-3’ , 18S1150f 5’ - 247 

ATTGACGGAAGGGCACCACCAG-3’ and 18S614r 5’- TCCAACTACGAGCTTTTTAACC-3’ 248 

(Domes et al., 2007). In total, we used 51 species for the phylogenetic tree, including four 249 

outgroup taxa. All taxa and accession numbers are available at GenBank (Supporting 250 

Information, Appendix S1, Table S1). We aimed to represent each family in the GB dataset 251 

with at least one species but very few rarer species could not be represented either because 252 

sequences are not available in public database or because we did not have sufficient 253 

material to sequence them. In total, the dataset represents 31 out of the 34 families found in 254 

the GB dataset and the three families we could not represent were very rare and present 255 

with very low abundances. Sequences were assembled and ambiguous positions were 256 

corrected in Sequencher 5.3 (Gene Codes Corporation, Ann Arbor, Michigan, USA) and 257 

aligned using ClustalW implemented in BioEdit v7.0.1 (Hall, 1999) with the multiple 258 

alignment parameters gap opening = 30 and gap extension = 0.3. 259 

The alignment was truncated to the shortest sequence resulting in a length of 1,743 bp 260 

including gaps. Evolutionary model parameters were determined with jModelTest v2.0 261 

(Guindon & Gascuel, 2003; Darriba et al., 2012) using the AIC. The best-fit model for 262 

sequence evolution for 18S was GTR + I + G. The phylogenetic tree was constructed in R 263 

using packages “ape” and “phangorn” (Paradis et al., 2004; Schliep 2011, Schliep et al., 264 

2017)  using Maximum Likelihood and 1,000 bootstrap replicates. The phylogenetic tree was 265 

reduced to 31 orbatid mite taxa representing one species per family using the drop.tip 266 

function, the R script is provided in the Appendix S1 (Supporting Information) 267 

We used this oribatid mite phylogenetic tree to calculate metrics of phylogenetic diversity. 268 

The resolution of the available phylogenetic information constrained us to calculate these 269 

metrics at the family level. Specifically, we calculated the Faith’s Index PD (Faith, 1992) and 270 
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two distance based metrics: the mean phylogenetic distance (MPD) and the mean nearest 271 

taxon distance (MNTD). The index PD estimates the phylogenetic diversity of a community 272 

as the sum of the tree branch lengths connecting all species in the assemblage and as such 273 

it can be considered an estimate of point diversity with two components: species richness 274 

and amount of phylogenetic information across all the species in the assemblage. The 275 

indices MPD and MNTD measure the average phylogenetic distance between species in an 276 

assemblage. The MPD is based on mean distance of any taxon from every other taxon while 277 

MNTD is average of the distance between any taxon and its closest relative. Community 278 

phylogenetic metrics were calculated using the R package “picante” and other packages that 279 

support phylogenetically informed statistical analyses (“ape”, 280 

“phylobase”,”adephylo”,”phytools”; Swenson, 2014)  281 

 282 

Structural equation modelling (SEM) 283 

In order to quantify direct and indirect effects of climatic and soil variables (temperature, 284 

plant communities, pH, precipitation, organic matter) on community species composition 285 

(PCoA ordination axes) and diversity (richness and metric of phylogenetic diversity) we used 286 

Structural Equation Modelling (Grace, 2006). We started from an a priori model (Appendix 287 

S2, Fig. S1 in the Supporting Information) assuming that latitude, longitude and elevation 288 

drive the spatial variation of climate (i.e. precipitation and temperature), which correlates with 289 

spatial variation in organic matter. The variation in climate and organic matter then drives 290 

spatial variation in oribatid mite species composition. However, other factors that may vary 291 

with latitude and longitude, including biogeographical factors, may drive the spatial 292 

distribution of oribatid species. Biogeographical factors, which are implicitly accounted for by 293 

latitude and longitude, include the major spatially structured features of the geology of Britain 294 

(Toghil, 2005), with northern areas (e.g, Scottish highlands) being generally older but also 295 

more affected by last glacial maxima than southern areas (e.g., southeast England). 296 
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Eventually, all these environmental and geological changes in space determined spatial 297 

variation both in species composition and metrics of diversity, including species richness and 298 

phylogenetic diversity metrics that combined both richness and compositional information. 299 

Starting from this conceptual model, we fitted various versions of the model to the data until 300 

we obtained a parsimonious model that could adequately fit the data. Model fit was 301 

evaluated using the Chi-square test, and the RMSEA and CFI index, while amount of 302 

explained variation in community metrics and diversity indices (R-square) was used to 303 

measure the predictive power of the model (Grace, 2006; Shipley, 2016). SEM was 304 

performed using the R package lavaan (Rosseel, 2011). 305 

 306 

Results 307 

A total of 141 species were found in this study, which represented more than one third of 308 

known oribatid mites in the British Isles (Luxton, 1996) and the vast majority of belowground 309 

species (the CS survey specifically focused on soil species while oribatid mites also live  on 310 

aboveground moss and tree canopy). Observed species richness ranged from 1 to 28 while 311 

the Chao’s estimator ranged from 1 to 161 species. Hectads with very low species richness 312 

always included arable and very infertile grassland soil, where environmental conditions 313 

typically supported only very poor oribatid mite communities or no oribatids at all. These 314 

soils were colonised only by very few opportunistic species such as some of the species in 315 

the genera Tectocepheus, Liochthonius and Pantelozetes. On the contrary, hectads with 316 

high species richness tended to be characterised by woodland or organic soils, where 317 

oribatid mites are known to be abundant. Observed hectad species richness displayed both 318 

clear latitudinal and longitudinal gradients with hectads in north-west Scotland being richer 319 

than in south-east England (Fig. 1). Instead, Chao’s estimator showed a very patchy 320 

distribution suggesting the existence of hotspots of species richness, mostly located in 321 

central and northern England, and Scotland (Fig. 1).  322 
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The species-area relationship was best fitted by a sigmoidal model (Fig. 2) meaning the 323 

existence of an upper limit below which species richness is relatively, but not completely, 324 

independent of area. Also, as area increases species richness is predicted to reach an upper 325 

asymptotic level (Lomolino, 2000). The classical power model and semi-log model provided 326 

a much poorer fit to the data. 327 

The variation in oribatid mite species composition was mostly driven by the covariation 328 

between organic matter (LOI), pH, and precipitation and variation in plant species 329 

composition, which was almost collinear with amount of organic matter. Although both 330 

community structure and environmental variables follow clear latitudinal patterns (Fig. 3), the 331 

total amount of variance accounted for by measured environmental variables was only 8%. 332 

Yet, this fraction of variation was statistically significant at P<0.05. There was also 6% of 333 

variance accounted for by the spatially structured effect of environmental and plant 334 

variables. The pure effect of latitude, longitude and PCNMs (i.e., after removing 335 

environment) accounted only for 1% of community variance, meaning that the observed 336 

spatial variation in the assemblage is mostly co-varying with the spatial structure observed in 337 

the environmental variables (6%). 338 

Metrics of phylogenetic diversity showed different types of spatial patterns (Fig. 4). The 339 

Faith’s index showed gradients that were highly correlated to the same ones observed for 340 

plot species richness (compare Fig. 4 with Fig. 1) while MPD and MNTD mostly reflected 341 

longitudinal gradients. MPD is higher in the North and the East while MNTD seems more 342 

variable and reaching the highest value in the South-East (Fig. 4). 343 

Structural equation modelling indicated that models including just latitude as a descriptor of 344 

position generally outperformed models with both latitude and longitude in terms of global fit 345 

metrics. For example, all models with both latitude and longitude resulted in Chi-square with 346 

p-values much lower than 0.05 (i.e., model rejected) and with very poor CFI (<0.9) and 347 

RMSEA (>0.2) values. We therefore retained latitude and removed longitude from the 348 

subsequent models. Although latitude could affect indices of diversity both directly and 349 
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indirectly, models with a direct link between latitude and diversity indices returned very poor 350 

global fit metrics and were therefore not considered further. Details on the models 351 

considered during the SEM exercise and their performances are provided Appendix S2. The 352 

optimal model (Fig. 5) suggests that organic matter is the major driver of oribatid mite 353 

community composition and that variation in species composition determines metrics of 354 

phylogenetic diversity. Specifically, greater shifts in oribatid mite community assemblages 355 

towards that typical of heath, bog and highly organic soil, were associated with higher 356 

phylogenetics diversity (positive correlation between PCoA1 and PD) but also lower mean 357 

nearest taxon distance (negative correlation between PCoA1 and MNTD). However, there is 358 

also an indirect positive effect of PCoA1 on MNTD via PD (positive correlation between PD 359 

and MNTD). The model could account for 50, 16 and 5 % of variance in PCoA 1 (major 360 

changes in species composition), PD and MNTD, respectively. The full lavaan ouput of the 361 

SEM is in Appendix S2 (Supporting Information) 362 

 363 

4. Discussion 364 

Soil animal assemblages tend to be very species rich even at small scales. This has been 365 

explained as an effect of the high environmental and microbiological heterogeneity that 366 

some soil can display already from the 10 m to the sub-metre scale (Anderson, 1975; Giller, 367 

1996; Ettema & Wardle, 2002; Nielsen et al., 2010). A surprisingly large fraction of the 368 

variation observed in the distribution of soil species is very often left unexplained by variation 369 

in key soil variables such as pH and organic C, or even pollutants (Maraun & Scheu, 2000; 370 

Caruso et al., 2011, 2017; Maaß et al., 2015). Also, high degrees of stochasticity seem to 371 

characterise assembly dynamics of soil animals such as oribatid mites and collembolans at 372 

least at small to medium scales (Maaß et al., 2014; Dirilgen et al., 2018). Still, species 373 

distributions seem structured at small and medium scales even when spatial structure 374 

cannot be explained by spatial gradients in environmental variables (Caruso et al., 2011; 375 

Zaitsev et al., 2013). At the regional scale of the Netherlands, Zaitsev et al. (2013) found that 376 
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oribatid mite communities significantly changed along the East-West direction in the absence 377 

of a significant variation in precipitation and mean annual temperature. However, geological 378 

age (bedrock) and amount and quality of organic matter did change from East to West 379 

supporting richer communities in the older forest sites (Zaitsev et al. 2013). Our dataset 380 

supports this idea at the much broader scale of Great Britain, which is characterised by a 381 

relationship between climatic gradients and organic matter: in Britain very organic rich soils 382 

(i.e. bogs and peatlands) are mostly found in the North and West, and are characterised by a 383 

colder winter climate with more precipitation. Thus, as mean annual precipitation increases 384 

with latitude so does organic matter. This is reflected in our data by statistically significant, 385 

latitudinal changes in the oribatid mite communities, which prefer organic soil and woodland 386 

over low fertile grassland and cropland. Land use could also contribute to these patterns 387 

because, in GB, land is generally much more exploited for intensive farming in the south 388 

(e.g., England) than the north (Highlands in Scotland). However, our analysis independently 389 

accounted for vegetation types and latitudinal gradients in other properties and our results 390 

suggest a prominent role of organic matter per se. That means that, given the same land use 391 

and vegetation type, sites with higher organic matter are associated to specific oribatid mite 392 

composition and higher diversity overall. Species richness and metrics of phylogenetic 393 

diversities, too, follow this latitudinal gradient in community structure although metrics of 394 

phylogenetic diversity that take into account phylogenetic distance between species (MPD 395 

and MNTD) show patterns more complex than just a latitudinal gradient. The SEM showed 396 

that variation in distance based metrics of phylogenetic diversity (e.g., MNTD) seemed 397 

mostly explained by latitudinal changes in species composition rather than accumulation of 398 

species richness and phylogenetic diversity (PD). In fact, the direct and negative effect of the 399 

latitudinal changes in species composition on MNTD was statistically significant while the 400 

direct and positive effect of PD on MNTD was not. The negative correlation between the 401 

latitudinal gradient in oribatid mite composition and MNTD suggests that the more the 402 

oribatid community moves to the species composition typical of woodland and highly organic 403 

soils the less the phylogenetic distance is between a species and its closest relatives in the 404 
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local assemblages. This result suggests a process of environmental filtering and 405 

convergence toward specific assemblages (Webb, 2000).The SEM, however could explain 406 

only 5% of the variance observed in MNTD and 16% of the variance observed in PD 407 

suggesting that the measured environmental variables are generally weak predictors of 408 

these broad biodiversity metrics. On the contrary, the SEM could explain about 50% of the 409 

variance observed in the latitudinal gradient in species composition, which implies species 410 

composition is much more predictable than compound metrics of biodiversity such as 411 

phylogenetic diversity (PD). Specifically, the latitudinal changes in species composition seem 412 

best explained by latitudinal variation in organic matter and precipitations, regardless of 413 

variation in phylogenetic diversity. 414 

Latitude directly correlates with precipitation and organic matter distribution merely because 415 

of the north-south climatic gradient. When taking into account the direct and indirect effects 416 

of latitude, precipitation and organic matter on oribatid mite species composition, the 417 

strongest effect was that of organic matter. Precipitation, too, had a statistically significant, 418 

direct effect on community structure but the effect was much smaller than that of organic 419 

matter, which is consistent with Zaitsev et al. (2013). Instead, the direct effect of latitude on 420 

species composition was small and not statistically significant, which implies that latitudinal 421 

changes in species composition are driven by latitudinal changes in other variables, namely 422 

precipitation and organic matter. Alternative SEMs that linked latitude, longitude, organic 423 

matter and precipitation directly to metrics of diversity had a very poor global fit supporting 424 

the notion that large-scale gradients in soil oribatid mite diversity are driven by the factors 425 

that drive changes in species composition. Still, changes in species composition explained 426 

only a relatively small fraction of changes in species richness and phylogenetic diversity, 427 

suggesting a potential role for smaller scale heterogeneity. This heterogeneity is not 428 

captured by our predictors and suggests that microscale variation in edaphic properties 429 

remain a fundamental driver of species distribution and diversity in these communities. This 430 

is confirmed by the fact that some hectads resulted to be biodiversity hotspot in terms of 431 



 
 

17 
 

estimated species richness. We could not resolve the variables driving this patchy pattern 432 

but we speculate that this is driven by soil environmental heterogeneity within hectads, which 433 

could be caused by unmeasured variation in habitat fragmentation and land-use intensity 434 

(see also supplementary results in the Supporting Information, Appendix S3, Table S2) 435 

Despite the latitudinal patterns observed in oribatid mites and contrary to what has been 436 

observed in small- and medium-scale studies (Caruso et al., 2011; Maaß et al., 2015), the 437 

investigated community had limited spatial structure, even when considering spatial variation 438 

that is not explainable by spatial structure in environmental variables. In comparison, the 439 

microbial communities of GB seem to be much more spatially structured (Griffiths et al., 440 

2011), which suggests the interesting hypothesis of a decoupling between large-scale 441 

patterns in soil microbes and animals. 442 

 443 

Conclusions 444 

Latitudinal gradients in organic matter are the most important predictor of latitudinal changes 445 

in species composition of oribatid mites across the spatial extent of Great Britain. These 446 

changes partially drive variation in species richness and phylogenetic diversity but a 447 

significant fraction of the variation observed in these metrics remained unexplained, 448 

suggesting a potential role for unmeasured environmental heterogeneity at medium and 449 

small scales. Despite small and medium scale heterogeneity, macroecological patterns in 450 

this major group of soil animals are predictable by the climatic factors that control variation in 451 

plant community structure and organic matter. 452 
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Figure Legends 654 

Figure 1 a) species richness and b) Chao’s estimator of species richness for each 10 × 10 655 

km plots. The maps were obtained via kriging interpolation at the hectad scale. Red 656 

represents high values, yellow low values. Species richness (a) displays a clear latitudinal 657 

gradient with richness increasing northward along the southwest-northeast direction whereas 658 

Chao’s estimator (b) displays a patchy distribution suggesting the existence of hotspots if 659 

species richness. 660 

 661 

Figure 2 Species-area relationships for the oribatid mites of Great Britain. The three fitted 662 

models (power law, semi-log, sigmoidal) all fit the data reasonably well but the AIC criterion 663 

clearly shows that the sigmoidal model provides the best fit (blue dotted line) 664 

 665 

Figure 3 PCoA ordination of oribatid mites (a). The first axis is a gradient that follow 666 

changes in vegetation, with more organic and woodland soil scoring on the positive site of 667 

PCoA1 and grasslands and arable soil on the negative side of PCoA1. This gradient is also 668 

correlated to organic matter, latitude, and precipitation, which are all positively correlated 669 

with PCoA1. In fact, a kriging interpolation of PCoA1 show a clear latitudinal gradient (b) 670 

 671 

Figure 4. Kriging interpolation of three metric of Phylogenetic Diversity. The Faith’s index (a) 672 

showed gradients that were very correlated to the same ones observed for plot species 673 

richness (Fig. 1a) while MPD and MNTD mostly reflected longitudinal gradients although 674 

MPD reaches the highest values in the North and the East while MNTD seems more variable 675 

and reaching the highest value in the South-East. 676 

 677 
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Figure 5 Structural equation model linking latitude and abiotic parameters to oribatid mite 678 

species composition (PCoA1 of Fig. 3) and diversity (Faith Index PD and Mean Nearest 679 

Taxon Distance or MNTD of Fig. 4). Species richness was highly correlated to PD and was 680 

thus excluded, while MNTD and MPD returned similar results in this SEM and we selected 681 

MNTD, which provided the best fit. The model is supported by all metrics of global fit (Chi-682 

square = 8.809 with 9 df and p-value of 0.185, CFI = 0.989 and RMSEA = 0.059). Figures 683 

besides the arrows are the path standardised coefficients. Black arrow stands for positive 684 

coefficient and gray arrows for negative coefficients. Paths statistically significant at p-value 685 

< 0.05 are in bold. All paths were statistically significant except for the direct effect of PD on 686 

MNTD and the direct effect of Latitude on PCoA 1. See also Supporting Information b for the 687 

full model output, including exact values of path coefficients, R-square values, standard 688 

deviations and statistical significance of parameter estimates. The model could account for 689 

50, 16 and 5 % of variance in PCoA 1, PD and MNTD respectively. The model could also 690 

account for 55 and 17 % of variance in Organic Matter and Precipitation, respectively.   691 
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