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25 Abstract

26 Instream biogeochemical process measurements are often short term and localised. Here we 

27 use in-situ sensors to quantify the net effects of biogeochemical processes on seasonal patterns 

28 in baseflow nitrate retention at the river-reach scale.  Dual-station high-frequency in-situ 

29 nitrate measurements, were coupled with high-frequency measurements of stream metabolism 

30 and dissolved inorganic carbon, in a tributary of the Buffalo National River, Arkansas.  Nitrate 

31 assimilation was calculated from net primary production, and combined with mass-balance 

32 measurements, to estimate net nitrification and denitrification.   The combined net effects of 

33 these instream processes (assimilation, denitrification and nitrification) removed >30-90% of 

34 the baseflow nitrate load along a 6.5km reach. Assimilation of nitrate by photoautotrophs 

35 during spring and early summer was buffered by net nitrification. Net nitrification peaked 

36 during the spring. After mid-summer, there was a pronounced switch from assimilatory nitrate 

37 uptake to denitrification.  There was clear synchronicity between the switch from nitrate 

38 assimilation to denitrification, a reduction in river baseflows, and a shift in stream metabolism 

39 from autotrophy to heterotrophy.  The results show how instream nitrate retention and 

40 downstream delivery is driven by seasonal shifts in metabolic pathways; and how continuous 

41 in-situ stream sensor networks offer new opportunities for quantifying the role of stream biota 

42 in the dynamics, fate, and transport of nitrogen in fluvial systems. 

43

44

45
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46 1. Introduction 

47 Nutrients, including nitrogen (N), phosphorus (P), and carbon (C) from agriculture and domestic 

48 wastewater, are a major source of water-quality impairment1. Excessive nutrient inputs to 

49 rivers, streams, and lakes can accelerate growth of nuisance and harmful algae. Resulting 

50 increases in microbial activity and depletion of dissolved oxygen (DO) have profound negative 

51 consequences for invertebrates and fish, potable water supply, and recreation2,3.    However, 

52 biogeochemical processes in streams also play an important role in regulating downstream 

53 nutrient transport, with stream biota retaining and removing nutrients from the water column, 

54 reducing downstream ecological impacts4-6.  

55 Streams can provide a major sink for nitrate (NO3
-) through uptake (assimilation) by primary 

56 production and through denitrification7,8.  The effectiveness of these processes varies 

57 throughout the year and between streams, but conventional methods for estimating NO3
- 

58 uptake are based on relatively few, short-term experimental nutrient additions and isotope 

59 measurements9-11, making results difficult to extrapolate in space and time12.   Continuous high-

60 frequency in-situ measurements offer new opportunities to explore NO3
- source dynamics13-17, 

61 and instream processes have been inferred from single-station diurnal concentration 

62 cycles12,18,19, longitudinal profiling20-23, and nested sensor networks24. 

63 In this study, we used in-situ sensors to quantify the net effects of biogeochemical processes on 

64 seasonal patterns in baseflow NO3
- retention at the river-reach scale.  The approach employed 

65 here is novel because it combines dual-station high-frequency NO3
- measurements, with high-

66 frequency measurements of stream metabolism (analysis of diurnal DO curves to calculate 
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67 primary production and respiration), dissolved inorganic carbon (DIC), and excess partial 

68 pressure of carbon dioxide (EpCO2), to explore the capacity of instream biogeochemical 

69 processes to retain and remove NO3
-. High-frequency in-situ monitoring of water chemistry and 

70 stream flow was undertaken along an experimental reach of Big Creek, a tributary of the 

71 Buffalo National Scenic River, Arkansas, U.S.A, and were used to calculate a NO3
- mass balance 

72 along the reach. Net primary production was used to calculate NO3
- assimilation by 

73 photoautotrophs.   Daily NO3
- removal rates and rates of NO3

- assimilation by photoautotrophs 

74 were used to calculate net nitrification and denitrification. The biogeochemical controls on NO3
- 

75 removal were then evaluated in relation to wider ecosystem drivers including streamflow, DO, 

76 and stream ecological function, to explore how seasonal shifts in metabolic pathways influence 

77 instream NO3
- retention and downstream NO3

- delivery.

78 2. Materials and Methods:  

79 2.1 Site description and water-quality monitoring

80 Big Creek, a tributary of the Buffalo National Scenic River, Arkansas (Figure 1), is the subject of 

81 detailed water-quality monitoring because of a permitted swine concentrated animal feeding 

82 operation (CAFO) within the watershed, in operation since September 2013.  The Big Creek 

83 watershed lies in the karst terrain of the Ozark Plateau of mid-continental USA (Figure 1). The 

84 watershed area is 236 km2, with 79% of the land area deciduous forest, 3% evergreen forest, 

85 14% grassland/pasture, and 3% developed land (see Supporting Information, S1.1).  Swine-

86 manure slurry from the CAFO has been land applied to permitted fields since January 1, 2014, in 

87 accordance with State regulations.  
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88 The focus of this study is an experimental reach of Big Creek, downstream of the CAFO, from an 

89 upstream monitoring station at Mt Judea (USGS site 07055790; watershed area 106 km2) to a 

90 downstream monitoring station at Carver (USGS site 07055814; watershed area 233 km2), 7.21 

91 and 0.69 km from the confluence between Big Creek and the Buffalo River, respectively (Figure 

92 1). One tributary (Left Fork) enters Big Creek between Mt Judea and Carver. The watershed is a 

93 mantled karst terrain characterized by intimate connection between groundwater and surface 

94 water; transport of surface-derived nutrients can be rapid25 (see S1.2).

95 USGS conducted high-frequency (15-minute) NO3
- monitoring using submersible ultraviolet 

96 nitrate probes at Carver (06/03/2014 to 04/29/2017) and Mt Judea (11/01/2014 to 

97 11/01/2015); there was therefore one year of overlapping data (11/01/2014 to 11/01/2015), 

98 during which NO3
- monitoring was undertaken at both Mt Judea and Carver.  A water-quality 

99 sonde (YSI 6600) operating at Carver simultaneously collected 15-minute interval DO, pH, 

100 specific conductance, and water temperature data. Further information about the high-

101 frequency water-quality monitoring is provided in S1.3. 

102 Water-quality samples, collected on a weekly basis since 09/12/2013, with additional 

103 opportunistic high-flow sampling, at Mt Judea, Left Fork and at a groundwater (spring) 

104 monitoring site (Figure 1), provided NO3
- (by ion chromatography, Dionex ICS-1600); alkalinity 

105 (by fixed-endpoint acidimetric titration to pH 4.526); and conductivity (VWR Symphony B10C) 

106 data. Water quality data are available at https://bigcreekresearch.org/.

107 2.2 Stream-flow measurements and hydrograph separation
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108 Stream flow was measured using established USGS streamflow gauging methods27 (see S1.4).  A 

109 two-component mixing model was used to partition the contributions to streamflow from 

110 groundwater and surface runoff28, using alkalinity as a conservative groundwater tracer (see 

111 S1.5).  

112 2.3 Analysis of diurnal dissolved oxygen curves to calculate primary production and respiration 

113 The daily average gross primary production, daily average ecosystem respiration and reaeration 

114 coefficient were calculated from the series of diurnal DO curves at Carver, using a piecewise 

115 solution of the mass balance, DO model29 simplified for the situation where the deficit does not 

116 vary spatially (Eq. 1): the Delta method30,31.  

117 (1)𝑑𝐷/𝑑𝑡 + 𝑘𝑎𝐷 = 𝐸𝑅𝑎𝑣 ― 𝐺𝑃𝑃𝑎𝑣(𝑡)

118 where D is the DO deficit (mg-O2 L−1), t is the time (days), ka is the reaeration coefficient,  ERav is 

119 the ecosystem respiration (mg-O2 L−1 d−1), and GPPav is the gross primary production (mg-O2 L−1 

120 d−1); these are standard measures of ecosystem respiration and gross primary production in river 

121 systems32.  

122 Odum33 suggested a classification system of flowing-water communities based on oxygen 

123 metabolism by using the ratio of GPPav to ERav (GPP/ER). Respiration is associated with both 

124 plant and microbial activity. Photosynthesis is only associated with plants. Autotroph-

125 dominated communities are represented by GPP/ER values > 1, whereas heterotroph-

126 dominated communities are represented by GPP/ER values < 1.
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127 2.5 Use of the THINCARB model for calculating dissolved inorganic carbon concentrations and 

128 excess partial pressure of carbon dioxide 

129 The THINCARB model (THermodynamic modelling of INorganic CARBon)34 uses pH, Gran 

130 Alkalinity (AlkGran) and temperature measurements to calculate dissolved inorganic carbon (DIC) 

131 concentrations and DIC speciation from the excess partial pressures of carbon dioxide (EpCO2) 

132 in freshwaters.  THINCARB is open access and is described in detail in Jarvie et al (2017)34; an 

133 outline is provided in SI1.8. Prior to use, alkalinity measurements in units of mg-CaCO3 L-1 were 

134 first converted to AlkGran (in µeq L-1), where 1 mg L-1 CaCO3 = 19.98 µeq L-1 34.  

135 THINCARB was applied to the high-frequency sonde data from Carver.  Specific conductance 

136 was used as a surrogate for alkalinity: using the regression relationship between AlkGran and 

137 specific conductance (κ), measured across the Big Creek watershed, including the spring, and 

138 Mt Judea, Left Fork and Carver stream sites: AlkGran = 8.65 (±0.28) κ – 6.44 (±66), R² = 0.95, ×  

139 n=270, P<0.001  (numbers in parentheses represent twice the standard error). By applying this 

140 regression equation to the hourly κ series, an hourly alkalinity record was derived, which was 

141 then used alongside the hourly pH and water-temperature data, to calculate a high-frequency 

142 DIC and EpCO2 series.   

143 2.6 Mass-balance calculation of baseflow nitrate fluxes, instream losses and net nitrification 

144 and denitrification

145 Daily mass-balance calculations were undertaken for eight quiescent, low-flow periods (each 

146 typically of 1-2 weeks).  USGS stream-velocity readings from Carver ranged from 0.457 and 1.22 

147 m s-1, and with a stream distance of 6.38 km, the travel times ranged from 3.87 h to 1.45 h.  
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148 Therefore, daily mass balances over a 24-h period were assumed sufficient to account for 

149 transit of NO3
-, given: (a) the relatively short travel times; (b) the high degree of stationarity in 

150 flux transfers during quiescent baseflow conditions; and (c) that calculated daily mass balances 

151 were averaged over a 1-2 week period.

152 The 15-minute NO3
- measurements at Mt Judea and Carver were converted to daily means, and 

153 daily nitrate loads at each site were calculated using the corresponding gauged daily stream-

154 flow data. To account for flow accretion along the reach, the difference between the daily flow 

155 downstream at Carver and the upstream site at Mt Judea was calculated.  The increase in flows 

156 was assumed to be input from Left Fork (Figure 1). 

157 Daily NO3
- input loading to the reach (LT) was calculated as the sum of the daily NO3

- loads from 

158 Mt Judea (LMJ) and Left Fork (LLF):

159 (2)𝐿𝑇 = 𝐿𝑀𝐽 + 𝐿𝐿𝐹

160 There was no high-resolution NO3
- monitoring on Left Fork, so weekly NO3

- measurements from 

161 grab samples taken at Left Fork were combined with the measured daily flow accretion to 

162 derive daily loads from Left Fork (S1.6.1). A sensitivity analysis evaluated the potential effects of 

163 under- or over-estimating Left Fork NO3
- concentrations by ±50% (Tables SI1 and SI2).   

164 Within this karst watershed, some of the flow accretion will arise from direct groundwater 

165 input into Big Creek.  Discharge data were not available from the Left Fork tributary, and direct 

166 apportionment of contributions from Left Fork and groundwater was not possible.  We 

167 therefore evaluated a second, alternative ‘endmember’ case scenario whereby all of flow 

168 accretion was attributed to direct groundwater contribution (S1.6.2).  
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169 The daily instream NO3
- load removal (LR) along the reach was calculated as the difference 

170 between the daily input NO3
- loading (LT), and the daily NO3

- load at Carver (LC): 

171 (3)𝐿𝑅 = 𝐿𝑇 ― 𝐿𝐶

172 To allow direct comparison with rates of assimilatory NO3
- uptake by photosynthesis, LR (kg-N d-

173 1) was then converted to a daily NO3
- removal rate, UT (mg-N L-1 d-1). UT incorporates both 

174 assimilatory NO3
- uptake by photoautotrophs (UA), heterotrophic NO3

- removal through direct 

175 uptake and denitrification (UD), and NO3
- enrichment due to remineralization via nitrification 

176 (R)20:

177 (4)𝑈𝑇 = 𝑈𝐴 + 𝑈𝐷 ―𝑅

178 UA was estimated from the GPPav measurements12,35.  GPPav data were converted into net 

179 primary production (NPP), assuming that autotrophic respiration consumed 50% of the 

180 GPPav
36,37. NPP data were then converted from units of O2 uptake (mg-O2 L-1 d-1) to C uptake 

181 (mg-C L-1 d-1), with a photosynthetic quotient of 1.00, then converted to NO3
- uptake (mg-N L-1 

182 d-1), using a molar ratio of C:N of 1238.   Subtracting UT from UA provides a measure of either net 

183 nitrification (positive values) or net heterotrophic NO3
- removal through direct uptake and 

184 denitrification, hereafter referred to as ‘net denitrification’ (negative values).  When the river 

185 was influent, loss of NO3
- to groundwater was accounted for, as described in S1.6.3.

186 3. Results and Discussion

187 3.1 Three-year time series of nitrate, dissolved inorganic carbon and stream metabolism 
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188 The hourly NO3
- and DIC concentrations variations at Carver were driven by streamflow, but in 

189 opposing directions (Figure 2a).  The mean and median NO3
- concentrations were 0.128 and 

190 0.093 mg-N L-1, respectively.  Nitrate concentrations at Carver were lowest during baseflow 

191 (mean 0.043 mg-N L-1; lowest 10% of flows) and highest during storm runoff (mean 0.278 mg-N 

192 L-1; highest 10% of flows), arising from nonpoint-source mobilisation and delivery of NO3
- from 

193 watershed soils during rainfall events. 

194 The mean and median DIC concentrations were 24.8 and 25.2 mg-C L-1, respectively. DIC 

195 concentrations were highest during baseflow (mean 31.7 mg-C L-1), with DIC concentrations 

196 diluted by storm runoff (mean 13.2 mg-C L-1).  Highest DIC and lowest NO3
- concentrations 

197 occurred during the extended low-flows between August and November 2015. 

198 The mean and median molar C:N ratios were 356 and 305, respectively. The mean C:N ratio 

199 during baseflow was 882, and 82 during stormflow.  C:N ratios greater than ~6.6 are indicative 

200 of stoichiometric depletion of N relative to C39.  Absolute NO3
- concentrations below ~0.1 mg-N 

201 L-1 are deemed likely to be limiting to algae, with algal growth response to NO3
- enrichment 

202 occurring between 0.38 to 1.79 mg-N L-1 40. Therefore, under average and baseflow conditions 

203 at Carver, a clear potential exists for algal growth to be limited by low NO3
- availability. 

204 No longer-term trends in either NO3
- or DIC were observed over the three years. These high-

205 frequency monitoring results are consistent with results from near-weekly water quality 

206 monitoring of Big Creek at Mt Judea, which showed no statistically significant increasing or 

207 decreasing trends in dissolved or particulate forms of P and N concentrations since 201341.  
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208 Earlier studies6 have shown that Ozark streams can be very effective at retaining available 

209 nutrients, and buffering additional nutrient inputs.  Therefore, the absence of any increasing 

210 trend in nutrients in the water column may result from the rapid and efficient uptake of 

211 nutrient inputs by stream biota. Consequently, high-resolution stream metabolism and nutrient 

212 measurements were used here to detect whether increased photosynthesis or respiration rates 

213 resulted from increased nutrient assimilation, even where no increases in water-column 

214 nutrient concentrations could be observed.  

215 The time series in daily rates of GPPav and ERav, at Carver (Figure 2b), showed no definitive long-

216 term trends between 2014 and 2017.  GPPav declined rapidly in response to major storm runoff 

217 events, but typically recovered within a couple of weeks. Highest GPPav tended to occur during 

218 quiescent baseflow or recessional streamflow conditions during the summer (May through 

219 August). Both GPPav and ERav declined during the autumn (September through December), 

220 reflecting reductions in stream biological activity, and GPPav tended to decline at a faster rate 

221 than ER.  This was particularly apparent during the extended low-flows between August and 

222 December 2015, suggesting a decline in primary production relative to microbial activity and a 

223 transition from net autotrophic to net heterotrophic stream communities.  During winter 

224 baseflows (November through January), ERav tended to exceed GPPav.  During the 3-yr 

225 monitoring, no CAFO-related impacts on either stream nutrient concentrations or metabolism 

226 are discernible at Carver.

227 3.2 Temporal and spatial variability in NO3
- concentrations, relative to other key environmental 

228 variables  
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229 Mean daily NO3
- concentrations varied between baseflow and storm events at Mt Judea and 

230 Carver, during the one year of overlapping data (Figure 3).  There was a clear differentiation 

231 between a higher-flow period characterised by regular storm events from mid-December 2014 

232 to mid-July 2015, and lower-flow conditions from August to November/December 2015 (Figures 

233 3 and 4).  

234 During the higher-flow period, a positive correlation existed between upstream (Mt Judea) and 

235 downstream (Carver) NO3
-, with a ratio approaching 1 (Figure 3).  During this high-flow period, 

236 NO3
- concentrations at both upstream and downstream sites ranged between ~0.1 and ~0.4 

237 mg-N L-1.  Time series data show close convergence between upstream and downstream NO3
- 

238 concentrations during storm-event peak concentrations (Figure 4a,b). 

239 Under lower-flow conditions, NO3
- concentrations were consistently higher upstream than 

240 downstream (Figure 3). The increase in NO3
- concentrations at the upstream site during the 

241 summer and autumn 2015 corresponds with reductions in flow. This is typical of the longer-

242 term hydrologically-driven cycles in NO3
- concentrations observed at the upstream site, 

243 reflecting a strong flow dependency, with highest concentrations under the lowest flows, and 

244 dilution with increasing flow (Figure SI1). The strong increase in NO3
- concentrations during July 

245 to November 2015 therefore reflects hydrological controls, and is consistent with falling flows. 

246 The high NO3
- concentrations in autumn 2015 subsequently declined with the onset of higher 

247 flows (Fig SI1a,b).  

248 The gap in NO3
- concentrations between upstream and downstream sites widened with 

249 decreasing flow, particularly during the protracted low-flows between mid-July and November 
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250 2015. During this time, minimal soil water contributed to streamflow, and almost all (>95%) of 

251 streamflow was derived from ground water (Figure 4a,b).  By the end of October 2015, 

252 upstream NO3
- concentrations reached ~0.75 mg-N L-1, whereas downstream NO3

- 

253 concentrations were ~0.05 mg-N L-1.   Between July and November 2015,  downstream NO3
- 

254 concentrations exhibited a much lower range (~0.05 to ~0.15 mg-N L-1) as compared with 

255 upstream (~0.1 to ~0.8 mg-N L-1) (Figure 3).  This reduction in both magnitude and range of 

256 downstream NO3
- concentrations under baseflow conditions could arise either from dilution of 

257 NO3
-, as a result of downstream accretion of water sources with much lower NO3

- 

258 concentrations, or by removal of NO3
- through biogeochemical processes, necessitating a mass-

259 balance evaluation (see section 3.3).  

260 The widening gap in NO3
- concentrations between upstream and downstream sites after mid-

261 July 2015 corresponded with a decline in GPP/ER, which fell below 1, indicating a change to net 

262 heterotrophy (Figure 4c).  During the low-flow period from mid-July to November 2015, Big 

263 Creek was heterotrophic for ~90% of days. Daily streamwater EpCO2 doubled between mid-July 

264 and November 2015, from 4.5 to 9.1 times atmospheric pressure, independently confirming an 

265 increase in rates of respiration (CO2 release), relative to photosynthesis (CO2 uptake).  

266 During the higher-flow period from mid-January to mid-July, Big Creek was predominantly net 

267 autotrophic (GPP/ER >1 for 52% of days). Net heterotrophic conditions prevailed predominantly 

268 during lower-flow intervals between storm events, with GPP/ER <1 typically during and 

269 immediately-after storm events.  
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270 Molar C:N ratios at Carver also increased markedly after mid-July, from ~300 to >800 (Figure 

271 4d).  This stoichiometric depletion of N, along with persistence of low NO3
- concentrations 

272 below 0.1 mg-N L-1 (falling to <0.04 mg-N L-1), suggests that algal growth may have been limited 

273 by low N availability at Carver over the late summer and autumn of 2015.   

274 3.3 Nitrate reach mass balance to quantify seasonal nitrate removal during baseflow conditions   

275 Mean daily NO3
- mass balances for the eight seasonal quiescent baseflow periods between 

276 February and October 2015 are presented in Table 1.  Mean daily NO3
- input loadings to the 

277 reach (LT) increased from 17.3 kg-N d-1 in February to 61.7 kg-N d-1 in July, then declined rapidly 

278 to 7.56 kg-N d-1 in August, which also corresponded with an order of magnitude reduction in 

279 baseflow discharge.  By October, LT had fallen to only 2.98 kg-N d-1.  Instream NO3
- removal (LR) 

280 followed a similar pattern to LT, with highest mean daily instream NO3
- removal during June (24 

281 kg-N d-1), then decreasing during the late summer and autumn, and falling to 2.82 kg-N d-1 in 

282 October.  However, the efficiency of instream NO3
- removal (UE, i.e., LR expressed as a 

283 percentage of LT) increased markedly during the late summer and autumn, from 32% in July to 

284 74-95% between August and October.  

285 The fluvial mass balance therefore confirmed that the observed downstream reductions in NO3
- 

286 concentrations under baseflow were a result of net instream removal of NO3
- by 

287 biogeochemical processes, rather than a dilution effect.  

288 Although LT and LR were greatest during the winter to early summer period, UE and the instream 

289 NO3
- removal rate (UT) increased dramatically during the low flows of the late summer and 

290 autumn; UT increased from ≤0.09 mg-N L-1 d-1 (February through July), to >0.2 mg-N L-1 d-1 in 

Page 14 of 40Environmental Science & Technology



15

291 August and September, and 0.66 mg-N L-1 d-1 in October (Table 2).  By autumn 2015, >75% of 

292 the NO3
- inputs were removed by biogeochemical processes (Table 1).

293 We also assessed the efficiency of NO3
- removal under the alternative scenario, where the 

294 increase in flow along the experimental reach was solely from direct groundwater input 

295 (S1.6.2).  This made relatively little difference to the UE, which also increased markedly during 

296 the late summer and autumn, from 46% in July to 72-94% between August and October (Table 

297 SI3).  The sensitivity analysis (Tables SI1 and SI3) showed that a 50% increase or decrease in 

298 either Left Fork or groundwater NO3
- concentrations made little difference to these findings: a 

299 consistent increase in efficiency of NO3
- removal was observed after July, with August to 

300 October UE values consistently ~70-95%. 

301 3.4 Biogeochemical controls on nitrate delivery: accounting for assimilatory nitrate uptake to 

302 calculate net nitrification and net denitrification

303 From February to July, assimilatory NO3
- uptake by photosynthesising plants (UA) consistently 

304 exceeded UT (Table 2) indicating, firstly, that assimilation of NO3
- by photoautotrophs was the 

305 dominant process removing NO3
- from the water column; and secondly that assimilation was 

306 partially balanced by net nitrification NO3
- gains.  In contrast, from August to October, UT 

307 exceeded UA, indicating that heterotrophic NO3
- removal through direct uptake and 

308 denitrification was removing NO3
- along the reach in late summer and autumn. 

309 Table 3 shows that net nitrification gains to the reach ranged from 0.135 mg-N L-1 d-1 in February 

310 to 0.273 mg-N L-1 d-1 in April/May. However, after July, a pronounced switch from net nitrification 

311 gains to net denitrification losses occurred.  During late summer and autumn, denitrification 
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312 losses of NO3
- increased from ~0.100 mg-N L-1 d-1 in August and September to 0.592 mg-N L-1 d-1 

313 in October.  These estimates were based on using an average periphyton C:N molar ratio of 12 

314 for U.S.A. streams35,38.  We also evaluated the effects of using an average periphyton molar C:N 

315 ratio of 8.6, from research in northern European streams17.  This increased UA values by ~39%, 

316 but did not alter our findings of a switch between net nitrification between February and July, to 

317 net denitrification from August to October.  By changing the C:N stoichiometry from 12 to 8.6, 

318 net nitrification ranged from +0.218 mg-N L-1 d-1 in February to +0.414 mg-N L-1 d-1 in April/May, 

319 with net denitrification ranging from -0.033 mg-N L-1 d-1 in August to -0.562 mg-N L-1 d-1 in 

320 October.

321 Net nitrification and denitrification rates were compared with mean daily GPP/ER, EpCO2, 

322 streamflow and percentage groundwater discharge (Table 3). The shift from net nitrification to 

323 net denitrification corresponded directly with: (1) a change in stream metabolism from net 

324 autotrophic (GPP/ER in July was 1.97) to net heterotrophic (GPP/ER fell below 1, to 0.78 in 

325 August, 0.62 in September, and 0.57 in October); and (2) an increase in EpCO2 and a reduction 

326 in DO arising from the increases in microbial respiration relative to photosynthesis.  

327 The alternative scenario where flow accretion between Mt Judea and Carver was attributed to 

328 direct groundwater discharge to Big Creek also had no effect on the timing of the shift from net 

329 nitrification to denitrification (S1.6.2, Table SI4).  Sensitivity analysis (Tables SI2 and SI4) also 

330 showed that, irrespective of a 50% increase or decrease in either Left Fork or groundwater NO3
- 

331 concentrations, the same consistent switch between net nitrification and net denitrification 

332 was observed after July. 
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333 The consistency in this observed switch between instream NO3
- production and instream NO3

- 

334 removal, and its synchronicity with measured changes in stream metabolism, provides 

335 compelling evidence that the marked change in instream NO3
- processing and delivery after July 

336 was linked to changes in stream metabolism from net autotrophy to net heterotrophy.

337 The karst streams of the Ozarks are characterised by a large hyporheic zone42,43, a hotspot of 

338 nitrogen transformation44.  Water residence times and redox conditions provide a key control 

339 on changes between NO3
- removal and NO3

- production with hyporheic zone sediments45-48.  In 

340 Big Creek, the winter to mid-summer period was characterised by higher baseflows (at least an 

341 order of magnitude greater than late summer/autumn baseflows), and net autotrophy resulting 

342 in higher instream DO concentrations. Rapid movement of well-oxygenated water throughout 

343 the water column, and into the hyporheic zone, promotes aerobic metabolism of organic 

344 matter and release of NO3
- through nitrification46,49. From winter to mid-summer, net 

345 nitrification was observed in Big Creek, and nitrification in the hyporheic zone may have been 

346 responsible for buffering the effects of photosynthetic assimilatory uptake of NO3
-.  

347 Under the more sluggish flow conditions during late summer and autumn, available oxygen is 

348 depleted as a result of increased heterotrophic activity. The reduced movement of water and 

349 oxygen through the hyporheic zone favors a shift in respiratory pathways with denitrification 

350 (conversion of nitrate to N2O and/or N2 gas)50,51. Unlike assimilation of NO3
- into plant biomass, 

351 which retains N temporarily, denitrification results in a permanent loss of bioavailable N.  The 

352 low baseflows of late summer and autumn 2015, resulted in higher water residence times and a 

353 greater proportion of flow moving through the hyporheic zone. This provides greater exposure 

354 and water contact time with microbial biofilms where denitrification occurs51. The death and 
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355 breakdown of biomass during the late summer and autumn contribute to the availability of 

356 organic matter for microbial decomposition, promoting higher rates of microbial respiration 

357 relative to photosynthesis, losses of DO, and greater availability of organic carbon as a resource 

358 for denitrifying bacteria45,53.  Denitrification within the hyporheic zone may therefore be 

359 responsible for losses of NO3
- in Big Creek during the late summer and autumn. Although 

360 denitrification can also occur on suspended sediments within the water column54,55, this is likely 

361 to be a second order effect under baseflow conditions in a groundwater-fed stream, where 

362 suspended solids concentrations are low (typically <5 mg L-1).

363 Under baseflow conditions, instream assimilatory NO3
- uptake by photosynthesising plants and 

364 hyporheic-zone denitrification along the experimental reach removed between ~30 and ~90% 

365 of the NO3
- input load. During the period of monitoring (spring 2014 to spring 2017) NO3

- 

366 loading to the upstream section of Big Creek (at Mt Judea) was attenuated by instream 

367 processing such that no CAFO-related impacts on either stream nutrient concentrations or 

368 metabolism were discernible at the downstream location (Carver), and thus, to the Buffalo 

369 River.  Future monitoring will be needed to detect whether long-term changes in nutrients and 

370 organic carbon inputs may occur, whether this stimulates higher rates of heterotrophic and/or 

371 autotrophic activity, and any longer-term effects on the capacity of assimilation and 

372 denitrification processes to remove and buffer any increase in nutrient loadings.

373 The novelty of this research is the combination of continuous, high-frequency in-situ stream 

374 metabolism and nitrate measurements, to apportion the net effects of assimilation, 

375 nitrification, and denitrification on changes in baseflow nitrate fluxes at the river-reach to 

376 watershed scale. In this case, we found that, during winter to mid-summer periods, NO3
- uptake 
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377 in Big Creek was dominated by assimilation by photoautotrophs, which was partially 

378 compensated by release of NO3
- from nitrification.  In late summer, the predominant metabolic 

379 pathway switched to net heterotrophy and heterotrophic NO3
- removal through direct uptake 

380 and denitrification became the dominant process of nitrate removal.  Removal of NO3
- by 

381 assimilation and denitrification provides an important “self-cleansing” ecosystem service, 

382 resulting in a pronounced shift in C:N stoichiometry and decreasing NO3
- concentrations to low 

383 levels which would be expected to limit algal growth56.

384 This approach provides a means scaling up, from micro-scale and meso-scale process 

385 experiments and measurements, which are, by necessity, short term and localised, to explore 

386 how river nitrate delivery responds to shifts in stream metabolism, from day-to-day and 

387 seasonal to inter-annual variability. This research, and the methods presented here, are 

388 applicable along the river continuum, from headwaters to large-scale fluvial systems (with large 

389 spatial and temporal variability in nutrient fluxes), and offer a valuable way forward in 

390 quantifying net process controls on the fate and transport of nitrogen in fluvial systems.

391
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403

404 List of Figures:

405 Figure 1.  Map of the Big Creek watershed.

406 Figure 2. Time series from May 2014 and May 2017 at the downstream monitoring site (Carver), 

407 showing: (a) nitrate (NO3-N), dissolved inorganic carbon (DIC) and stream flow; and (b) daily 

408 average gross primary production (GPP), ecosystem respiration (ER) and stream flow.

409 Figure 3. Scatter plot showing the relations between mean daily NO3-N concentrations 

410 upstream at Mt Judea and downstream at Carver

411 Figure 4. Time series from 1 November 2014 to 1 November 2015, showing: (a) NO3
- 

412 concentrations upstream at Mt Judea and downstream at Carver, and the lower-flow time 

413 periods used for mass balance calculation and evaluation of biogeochemical processes; (b) 

414 stream flow at Carver and the percentage groundwater contribution to streamflow; (c) daily 

415 ratio of gross primary production: ecosystem respiration (GPP/ER) (horizontal dashed line 

416 shows GPP/ER of 1, i.e. balance between heterotrophy and autotrophy), and excess partial 

Page 20 of 40Environmental Science & Technology



21

417 pressure of carbon dioxide (EpCO2); (d) streamflow and the molar C:N ratio (dissolved organic 

418 carbon/NO3-N).

419 List of Tables:

420 Table 1: Seasonal patterns in mean daily NO3
- input loadings (LT) to Big Creek, mean daily 

421 instream NO3
- load removal (LR) along the experimental reach, under low-flow conditions, and 

422 mean daily NO3
- load removal as a percentage of NO3

- inputs (UE).

423 Table 2: Seasonal patterns in mean daily NO3
- removal rate (UT) along the experimental reach of 

424 Big Creek, under low-flow conditions, and mean daily assimilatory uptake of NO3-N by 

425 photoautotrophs (UA).

426 Table 3: Seasonal patterns in mean daily NO3
- concentration gains by net nitrification and losses 

427 by net denitrification along the experimental reach of Big Creek, under low-flow conditions, 

428 with mean daily values of the ratio between gross primary production and ecosystem 

429 respiration (GPP/ER), excess partial pressure of carbon dioxide (EpCO2), dissolved oxygen (DO), 

430 stream flow and the percentage of groundwater contribution to stream flow.
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Figure 1 Map of the Big Creek watershed and its location 
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Figure 2. Time series at the downstream monitoring site (Carver), from May 2014 and May 2017, showing: (a) nitrate (NO3-N), dissolved 

inorganic carbon (DIC) and stream flow; and (b) daily average gross primary production (GPP), ecosystem respiration (ER) and stream flow.
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Figure 3. Scatter plot showing the relations between mean daily nitrate concentrations upstream at Mt Judea and downstream at 

Carver
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Figure 4. Time series from 1 November 2014 to 1 November 2015, showing: (a) NO3
- concentrations 

upstream at Mt Judea and downstream at Carver, and the lower-flow time periods used for mass 
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balance calculation and evaluation of biogeochemical processes; (b) stream flow at Carver and the 

percentage groundwater contribution to streamflow; (c) daily ratio of gross primary production: 

ecosystem respiration (GPP/ER) (horizontal dashed line shows GPP/ER of 1, i.e. balance between 

heterotrophy and autotrophy), and excess partial pressure of carbon dioxide (EpCO2); (d) streamflow 

and the molar C:N ratio (DIC, dissolved inorganic carbon/NO3-N).
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Season Date range
NO3

- input loading to 
reach (LT)             
(kg-N d-1)

Instream NO3
- removal 

along reach                
(LR)             

(kg-N d-1)

Instream NO3
- removal (LR) as 

% of NO3
- input loading (LT)             

(UE)

Winter 4-13 Feb 2015 17.3 (1.12) 7.68 (0.46) 44.7 (4.09)
Spring 1 5-12 Apr 2015 44.1 (6.35) 19.0 (2.82) 43.9 (9.53)
Spring 2 24 Apr - 5 May 2015 37.9 (15.3) 16.9 (3.85) 47.6 (8.93)
Early Summer 2-10 Jun 2015 49.2 (23.6) 24.1 (8.54) 51.2 (5.34)
Mid Summer 11-21 Jul 2015 61.7 (44.2) 14.6 (2.82) 32.1(14.1)
Late Summer 7-16 Aug 2015 7.56 (1.22) 5.57 (0.59) 74.2 (4.66)
Autumn 1 1-14 Sept 2015 5.81 (1.23) 4.49 (0.81) 77.8 (2.39)
Autumn 2 1-11 Oct 2015 2.98 (0.29) 2.82 (0.25) 94.8 (1.20)

Table 1: Seasonal patterns in mean daily NO3
- input loadings (LT) to Big Creek, mean daily instream NO3

- load removal (LR) along the experimental 
reach, under low-flow conditions, and mean daily NO3

-load removal as a percentage of NO3
- inputs (UE). Standard deviations are shown in 

parentheses.

Page 33 of 40 Environmental Science & Technology



34

Season Date range
Instream NO3

- removal 
rate (UT)             

(mg-N L-1 d-1)

Assimilatory NO3
- 

uptake (UA)            
(mg-N L-1 d-1)

Winter 4-13 Feb 2015 0.077 (0.006) 0.212 (0.035)
Spring 1 5-12 Apr 2015 0.072 (0.017) 0.256 (0.050)
Spring 2 24 Apr - 5 May 2015 0.082 (0.018) 0.355 (0.067)
Early Summer 2-10 Jun 2015 0.090 (0.014) 0.269 (0.045)
Mid Summer 11-21 Jul 2015 0.066 (0.030) 0.259 (0.040)
Late Summer 7-16 Aug 2015 0.284 (0.026) 0.180 (0.016)
Autumn 1 1-14 Sept 2015 0.229 (0.019) 0.115 (0.038)
Autumn 2 1-11 Oct 2015 0.656 (0.029) 0.076 (0.028)

Table 2: Seasonal patterns in mean daily NO3
-removal rate (UT) along the experimental reach of Big Creek, under low-flow conditions, and mean 

daily assimilatory uptake of NO3
- by photoautotrophs (UA). Standard deviations are shown in parentheses.
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Season Date range
Net nitrification (+) or 

denitrification (-) 
(mg-N L-1 d-1)

GPP/ER EpCO2

(x atm. press.)
DO             

(mg-O2 L-1)
flow           

(m3 s-1) % groundwater

Winter 4-13 Feb 2015 0.135 (0.032) 1.14 (0.09) 2.80 (0.20) 11.9 (0.49) 1.15 (0.07) 66.5 (1.34)
Spring 1 5-12 Apr 2015 0.184 (0.039) 1.06 (0.13) 3.64 (0.20) 10.2 (0.33) 3.10 (0.37) 58.6 (2.38)
Spring 2 24 Apr - 5 May 2015 0.273 (0.058) 1.25 (0.16) 3.81 (0.59) 10.3 (0.50) 2.61 (1.16) 61.7 (5.79)
Early Summer 2-10 Jun 2015 0.179 (0.044) 1.34 (0.15) 4.71 (0.49) 9.39 (0.42) 3.30 (1.72) 58.0 (6.48)
Mid Summer 11-21 Jul 2015 0.193 (0.024) 1.97 (0.78) 7.15 (0.46) 8.98 (0.29) 2.54 (1.28) 82.8 (7.21)
Late Summer 7-16 Aug 2015 -0.104 (0.032) 0.78 (0.05) 10.6 (0.83) 6.95 (0.35) 0.23 (0.04) 98.8 (0.98)
Autumn 1 1-14 Sept 2015 -0.102 (0.027) 0.62 (0.10) 9.85 (1.65) 6.50 (0.54) 0.24 (0.06) 96.6 (1.42)
Autumn 2 1-11 Oct 2015 -0.592 (0.015) 0.57 (0.23) 8.17 (1.50) 7.85 (0.64) 0.04 (0.004) 97.8 (0.64)

Table 3: Seasonal patterns in mean daily NO3
- concentration gains by net nitrification and losses by net denitrification along the experimental 

reach of Big Creek, under low-flow conditions, with mean daily values of the ratio between gross primary production and ecosystem respiration 
(GPP/ER), excess partial pressure of carbon dioxide (EpCO2), dissolved oxygen (DO), stream flow and the percentage of groundwater 
contribution to stream flow. Standard deviations are shown in parentheses.
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